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Abstract

We show that SU(2)L Yangian and q-deformed SU(2)R symmetries are realized in

a two-dimensional sigma model defined on a three-dimensional squashed sphere. These

symmetries enable us to develop the two descriptions to describe its classical dynamics,

1) rational and 2) trigonometric descriptions. The former 1) is based on the SU(2)L

symmetry and the latter 2) comes from the broken SU(2)R symmetry. Each of the

Lax pairs constructed in both ways leads to the same equations of motion. The two

descriptions are related one another through a non-local map.
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1 Introduction

The notion of integrability is of significance in theoretical and mathematical physics. It

enables us to study physical quantities non-perturbatively and often prove strong-weak du-

alities exactly as in the case of sine-Gordon and massive Thirring models [1]. Similarly,

integrability would be an important building block toward the proof of AdS/CFT [2] (For

an overview, see [3]). In this direction the symmetric coset structure of AdS spaces and

spheres would play an important role [4]. A classification of symmetric cosets potentially

applicable to AdS/CFT is performed in [5].

In applications of AdS/CFT to condensed matter physics, there is a motive to consider

gravitational backgrounds, such as Schrödinger [6,7] and Lifshitz [8] spacetimes, represented

by non-symmetric cosets [9]. As other examples, anisotropic geometries like warped AdS

spaces and squashed spheres also appear as gravity duals to field theories in the presence of

a magnetic field [10]. In condensed matter physics a magnetic field is of importance to vary

the system, and hence the anisotropic geometries are very interesting to study.

In this letter we will focus upon the classical integrable structure of a two-dimensional

sigma model defined on a three-dimensional squashed sphere. Since the squashed sphere is

described as a non-symmetric coset, it is not so obvious in comparison to symmetric cases

such as principal chiral models [11].

The squashed sphere is described as a one-parameter deformation of round S3 and the

metric of squashed S3

ds2 = −L2

2

[

Tr
(

J2
)

− 2C
(

Tr
[

T 3J
])2
]

(1.1)

is represented by the left-invariant one-form J ≡ g−1dg with an SU(2) group element g. The

SU(2) generators T a (a = 1, 2, 3) satisfy

[

T a, T b
]

= εabcT
c , Tr

(

T aT b
)

= −1

2
δab ,

where εabc is the totally antisymmetric tensor. The constant C measures the deformation

from S3 . When C = 0 , the metric (1.1) describes the round S3 with radius L . For C 6= 0 ,

the S3 isometry SO(4) = SU(2)L ×SU(2)R is broken to SU(2)L ×U(1)R . The infinitesimal

transformations under SU(2)L × U(1)R are given by

δL,ag = ǫL T
ag , δR,3g = −ǫR gT 3 . (1.2)
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Let us consider a two-dimensional non-linear sigma model whose target space is the

squashed sphere (1.1). The action is given by

S =

∫∫

dtdx
[

Tr (JµJ
µ)− 2C Tr

(

T 3Jµ

)

Tr
(

T 3Jµ
)

]

. (1.3)

The coordinates and metric of base space are xµ = (t, x) and ηµν = diag(−1,+1) . Suppose

that the value of C is restricted to C > −1 so that the sign of kinetic term is not flipped.

The action (1.3) is invariant under (1.2).

Note that the Virasoro and periodic boundary conditions are not imposed here. Instead,

we impose the boundary condition that the variable g(x) approaches a constant element

rapidly as it goes to spatial infinity,

g(x) → g±∞ : const. (x → ±∞) . (1.4)

That is, Jµ(x) vanishes rapidly as x → ±∞ .

The equations of motion are

∂µJµ − 2CTr(T 3∂µJµ)T
3 − 2C Tr(T 3Jµ)[J

µ, T 3] = 0 . (1.5)

Multiplying T 3 and taking the trace, we obtain the conservation law for U(1)R,

∂µTr(T 3Jµ) = 0 . (1.6)

Then the expressions in (1.5) are simplified as

∂µJµ − 2C Tr(T 3Jµ)[J
µ, T 3] = 0 . (1.7)

We will show that the equations of motion (1.7) are reproduced from the two descriptions,

1) the rational description with SU(2)L and 2) the trigonometric one with U(1)R .

2 Rational description

First let us consider a description based on the SU(2)L symmetry. The SU(2)L Noether

current jLµ is given by

jLµ = gJµg
−1 − 2CTr

(

T 3Jµ

)

gT 3g−1 . (2.1)

Then the conservation laws follow from (1.7). The number of dynamical degrees of freedom

in this system is just three. It agrees with that of the conserved charges for SU(2)L . Thus
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the equations of motion and the conservation laws of SU(2)L are equivalent. The U(1)R

current is automatically conserved due to the conservation laws of SU(2)L .

Although the current (2.1) does not satisfy the flatness condition, it can be improved by

adding a topological term so that it does. The improved current j̃Lµ is given by

j̃Lµ ≡ jLµ −
√
C ǫµν∂

ν
(

gT 3g−1
)

, (2.2)

and satisfies the flatness condition [12]:

ǫµν
(

∂µj̃
L
ν − j̃Lµ j̃

L
ν

)

= 0 . (2.3)

The anti-symmetric tensor ǫµν on the base space is normalized as ǫtx = +1 . The coefficient

of the last term in (2.2) is fixed so that the flat condition (2.3) is satisfied.

For the improved SU(2)L current, the current algebra is deformed by the squashing

parameter C as follows:

{

j̃L,at (x), j̃L,bt (y)
}

P
= εabc j̃

L,c
t (x) δ(x− y) ,

{

j̃L,at (x), j̃L,bx (y)
}

P
= εabc j̃

L,c
x (x) δ(x− y) + (1 + C)δab ∂xδ(x− y) ,

{

j̃L,ax (x), j̃L,bx (y)
}

P
= −C εabc j̃

L,c
t (x) δ(x− y)

Here we have used the vector index notation with j̃L,aµ ≡ −2Tr(T aj̃Lµ ) . Due to the im-

provement, an infinite number of conserved charges can be constructed, for example, by

following [13]. The first two of them are

QL,a
(0) =

∫

dx j̃L,at (x) ,

QL,a
(1) = −

∫

dx j̃L,ax (x) +
1

4

∫∫

dxdy ǫ(x− y)εabc j̃
L,b
t (x)j̃L,ct (y) .

Here ǫ(x − y) ≡ θ(x − y) − θ(y − x) and θ(x) is a step function. Although the current

algebra is deformed, the Yangian algebra [14] is still realized and the Serre relations are also

satisfied [12]. This is the case even after adding the Wess-Zumino term [15], though the

current algebra becomes much more complicated.

It is a turn to construct a Lax pair. With the improved SU(2)L current, it can be

constructed as a linear combination,

LL
µ(x;λ) =

λ

λ2 − 1

[

ǫµν j̃
ν L(x) + λj̃Lµ (x)

]

, (2.4)
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where λ is a spectral parameter. Then the commutation relation

[

∂t − LL
t (λ), ∂x − LL

x (λ)
]

= 0 (2.5)

leads to the whole equations of motion (1.7) .

With (2.4), the monodromy matrix UL(λ) is defined as

UL(λ) ≡ P exp

[
∫ ∞

−∞

dxLL
x (x;λ)

]

.

The symbol P means the path ordering. Due to (2.5), UL(λ) is conserved,

d

dt
UL(λ) = 0 .

Thus one can obtain an infinite number of conserved charges by expanding UL(λ) around a

fixed value of λ . The expressions of the charges depend on expansion points. The expansion

around λ = 0 leads to an infinite number of the non-local charges constructed in [12]. When

it is expanded around λ = ±1 , an infinite number of commuting local charges which ensure

the classical integrability in the sense of Liouville.

The classical r-matrix is derived by evaluating the Poisson bracket of the monodromy

matrices. Following the prescription in [16], it is evaluated as

{

UL(λ)i j , U
L(µ)kl

}

P
=
[

rL(λ, µ) , UL(λ)⊗ UL(µ)
]ik

jl
,

and the classical r-matrix is

rL(λ, µ)ikjl =
λµ

λ− µ
δab(T

a)i j(T
b)kl .

Note that the resulting r-matrix does not contain C and is of the familiar rational type.

Thus it satisfies the classical Yang-Baxter equation as a matter of course.

3 Trigonometric description

Next we shall consider another description based on the broken SU(2)R symmetry. We first

show that the broken SU(2)R symmetry is enhanced to a q-deformed SU(2)R symmetry.

Recall that the U(1)R current is given by

jR,3
µ = −2(1 + C)Tr

(

T 3Jµ

)

. (3.1)
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The normalization is taken for later convenience.

The action (1.3) is invariant under the transformations generated by the following non-

local currents,

jR,±
µ = −2 eγχ

(

ηµν ± i
√
Cǫµν

)

Tr
(

T±Jν
)

, (3.2)

where

γ =

√
C

1 + C
, T± ≡ 1√

2

(

T 1 ± iT 2
)

.

The field χ(x) contained in (3.2) is given by

χ(x) =
1

2

∫

dy ǫ(x− y) jR,3
t (y) (3.3)

and non-local. Thus the currents in (3.2) are also non-local‡. To show the conservation laws

of non-local currents in (3.2) , it is necessary to use the boundary condition (1.4) and the

identities,

∂µχ = ǫµνjR,3
ν , ǫµν

[

±iTr(T±∂µJν)− 2Tr(T±Jµ)Tr(T 3Jν)
]

= 0 .

The Poisson brackets of jR,±
t and jR,3

t are

{

jR,±
t (x), jR,∓

t (y)
}

P
= ±i e2γ χ(x) jR,3

t (x)δ(x− y)

= ± i

2γ
∂x
[

e2γ χ(x)
]

δ(x− y) ,

{

jR,±
t (x), jR,±

t (y)
}

P
= ±i γ ǫ(x− y) jR,±

t (x)jR,±
t (y) ,

{

jR,3
t (x), jR,±

t (y)
}

P
= ±i jR,±

t (x)δ(x− y) .

The conserved charges are constructed as

QR,± =

∫

dx jR,±
t (x) , QR,3 =

∫

dx jR,3
t (x) .

Then the transformation laws generated by QR,± are

δR,±g = {QR,±, g}P = g
[

−T±eγ χ + γT 3ξ±
]

, (3.4)

where ξ± are new non-local fields given by

ξ±(x) ≡ 1

2

∫

dy ǫ(x− y) jR,±
t (y) .

‡Note that a non-local symmetry concerning SU(2)R is discussed also in [17] from a T-duality argument.

However, the one discussed here is different from this. A modification is done motivated by [18].
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It is now straightforward to check the invariance of the sigma model action directly. When

checking, we have to use the equations of motion (1.7) and hence the transformations in

(3.4) give rise to an “on-shell” symmetry. When C = 0 , those in (3.4) are reduced to the

usual SU(2)R ones.

Note that the relations χ(±∞) = ±QR,3/2 hold under the boundary condition (1.4) .

Thus the Poisson brackets of the charges lead to a q-deformed SU(2) algebra [14, 19] :

{

QR,+, QR,−
}

P
= i

qQ
R,3 − q−QR,3

q − q−1
, q ≡ eγ = exp

( √
C

1 + C

)

,

{

QR,3, QR,±
}

P
= ±i QR,± . (3.5)

Here we have rescaled QR,± as

QR,± −→
(

γ

sinh γ

)1/2

QR,± .

The normalization of (3.1) is fixed so that the expression of the second commutator in (3.5)

is obtained.

It is worth noting the C → 0 limit where round S3 is reproduced and hence the SU(2)R

Yangian should be recovered. This is the case as we can see by expanding the non-local

currents in (3.2) in terms of
√
C like

QR,± = QR,±
(0) ± i

√
C QR,±

(1) + · · · , (3.6)

where QR,±
(0) and QR,±

(1) are the SU(2)R Yangian generators. The third component of the

Yangian generators is supplemented from the Poisson bracket of the + and − components.

On the other hand, when considering the C → ∞ limit, Tr(T±Jµ) and Tr(T 3Jµ) have to

vanish for the finiteness of QR,3. This implies that a single element of SU(2) is specified. In

analogy with the XXZ model, the C → ∞ limit resembles the Ising model limit. The fact

that a single point is preferred would be analogous to that a ferromagnetic ground state is

picked up in the Ising model.

It is a turn to consider a Lax pair given by [20]

LR
x = −

3
∑

a=1

[

wa(λ− α)Sa + wa(λ+ α)S̄a
]

T a ,

LR
t = −

3
∑

a=1

[

wa(λ− α)Sa − wa(λ+ α)S̄a
]

T a . (3.7)
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Sa and S̄a are related to Ja
t and Ja

x as follows:

J3
t = (w1(2α) + w3(2α))(S

3 + S̄3) ,

J3
x = (w1(2α) + w3(2α))(S

3 − S̄3) ,

J1,2
t =

√

2w1(2α)(w1(2α) + w3(2α)) (S
1,2 + S̄1,2) ,

J1,2
x =

√

2w1(2α)(w1(2α) + w3(2α)) (S
1,2 − S̄1,2) .

Here λ is a spectral parameter and wa(λ) are defined as

w1(λ) = w2(λ) ≡
1

sinhλ
, w3(λ) ≡ cothλ .

The location of pole α is specified as

C =
w1(2α)− w3(2α)

w1(2α) + w3(2α)
= − tanh2 α .

By definition, α can take a complex value, while C must be real. Therefore α should be real

or purely imaginary. When we take α = iβ (β: real) , then C = tan2 β . Then the range

of C is naturally restricted to the physical region C ≥ −1 . By rescaling λ as λ = αλ̃ and

taking the α → 0 limit in (3.7), the Lax pair of rational type for SU(2)R is reproduced.

The commutation relation

[

∂t + LR
t (λ), ∂x + LR

x (λ)
]

= 0

leads to the equations of motion (1.7) with the help of the flatness of J = g−1dg . Then the

monodromy matrix is defined as

UR(λ) ≡ P exp

[

−
∫ ∞

−∞

dxLR
x (x;λ)

]

and it is conserved,

d

dt
UR(λ) = 0 .

Following the prescription in [16], the Poisson bracket of the monodromy matrices is evalu-

ated as

{

UR(λ)i j, U
R(µ)kl

}

P
=
[

rR(λ, µ), UR(λ)⊗ UR(µ)
]ik

jl
.

The resulting classical r-matrix is given by

rR(λ, µ)ikjl ≡
1

sinh (λ−µ)

[

(T+)
i
j(T−)

k
l+(T−)

i
j(T+)

k
l +cosh (λ−µ)(T3)

i
j(T3)

k
l

]
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and is of trigonometric type. This classical r-matrix also satisfies the Yang-Baxter equation.

Finally let us discuss the equivalence between the two descriptions. The current circum-

stance is quite similar to the Seiberg-Witten map [21]. On the one hand, The improvement

term added in (2.2) may be regarded as a constant two-form flux. On the other hand, the

existence of q-deformed SU(2)R implies a “quantum space” such as a noncommutative space.

In fact, jR,a
µ can be expressed in terms of the improved SU(2)L current j̃L,aµ like

jR,±
µ = −2 eγχ Tr(g−1j̃Lµ gT

±) ,

jR,3
µ = −2Tr(g−1j̃Lµ gT

3) . (3.8)

Thus the two descriptions discussed so far are not independent one another, as in the case

of principal chiral models where both left and right currents are of rational type. It is

remarkable that in the present case the trigonometric description is equivalent to the rational

one through the non-local map (3.8).

4 Discussions

In this letter we have shown that SU(2)L Yangian and q-deformed SU(2)R symmetries are

realized in a two-dimensional sigma model defined on a three-dimensional squashed sphere.

According to these hidden symmetries, we have presented the two descriptions, 1) the rational

description and 2) the trigonometric one. They are related one another via a non-local map

and hence are equivalent. Recall that one may consider the Seiberg-Witten map in a field

theory equipped with a magnetic field. On the other hand, warped AdS spaces, which are

obtained from the squashed sphere through double Wick rotations, appear as gravity duals

of condensed matter systems in the presence of a magnetic field. Therefore, the equivalence

discussed here would be rather natural as a sigma model realization of Seiberg-Witten map

in the field theory dual.

The next question is what is the interpretation of this equivalence in gravitational the-

ories. Warped AdS spaces appear also in the Kerr/CFT correspondence [22]. A three-

dimensional slice of the near-horizon extreme Kerr geometry [23] is described as a warped

AdS3 space. It would be interesting to consider the role of q-deformed SU(2)R in this direc-

tion. It may lead to a new source of entropy.

Another issue is to construct the Bethe ansatz based on the SU(2)L Yangian and q-

deformed SU(2)R symmetries. The speculated Bethe ansatz should be called “hybrid” Bethe
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ansatz which is composed of the S-matrices of XXX and XXZ models for the left and right,

respectively. In fact, quantum solutions are already known [24–26], though the classical

integrable structure we revealed here has not been discussed there. It would be interesting

to consider them in the context of AdS/CFT.
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