arXiv:1107.4067v1 [stat.ML] 20 Jul 2011

Finding Non-overlapping Clusters for

Generalized Inference Over Graphical Models

Divyanshu Vats and José M. F. Moura

Abstract

Graphical models compactly capture stochastic depeneemenongst a collection of random vari-
ables using a graph. Inference over graphical models qunes to finding marginal probability dis-
tributions given joint probability distributions. Sevéraference algorithms rely on iterative message
passing between nodes. Although these algorithms can lrajeed so that the message passing occurs
between clusters of nodes, there are limited frameworkdifmting such clusters. Moreover, current
frameworks rely on finding clusters that are overlappingisTihcreases the computational complexity
of finding clusters since the edges over a graph with oveitapplusters must be chosen carefully to
avoid inconsistencies in the marginal distribution conagions. In this paper, we propose a framework
for finding clusters in a graph for generalized inferencetst the clusters areon-overlapping Given
an undirected graph, we first derive a linear time algoritbncbnstructing a block-tree, a tree-structured
graph over a set of non-overlapping clusters. We show hovbétief propagation (BP) algorithm can be
applied to block-trees to get exact inference algorithms.thién show how larger clusters in a block-tree
can be efficiently split into smaller clusters so that theiltasy graph over the smaller clusters, which we
call a block-graph, has lower number of cycles than the valggraph. We show how loopy BP (LBP)
can be applied to block-graphs for approximate inferengergéhms. Numerical simulations show the
benefits of running LBP on block-graphs as opposed to runnB#® on the original graph. Our proposed

framework for generalizing BP and LBP can be applied to othfarence algorithms.

Index Terms

Graphical Models, Markov Random Fields, Belief Propagaticoopy Belief Propagation, General-

ized Belief Propagation, Block-Trees, Block-Graphs.

The authors are with the Department of Electrical and Coemphlngineering, Carnegie Mellon University, Pittsburgh, P
15213, USA (email: dvats@andrew.cmu.edu, moura@eceeciauph: (412)-268-6341, fax: (412)-268-3980).

http://arxiv.org/abs/1107.4067v1

. INTRODUCTION

A graphical model is a random vector defined on a graph sudhetheh node represents a random
variable (or multiple random variables), and edges in theplgrrepresent conditional independencies.
The underlying graph structure in a graphical model leads tactorization of the joint probability
distribution. This property has lead to graphical modelm@peised in many applications such as sensor
networks, image processing, computer vision, bioinforcsaispeech processing, and ecoldgy [1], [2], to
name a few.

The structure of the graph plays an important role in deteimgi the computational complexity of
performing various tasks over graphical models. For examgiven a probability distributiop(x) of
a graphical modek = {z1,...,z,}, it is of interest in many applications to compute the maagin
distributionp,(zs). This problem is referred to asference]2]. Algorithms for performing inference over
graphical models can be divided into exact inference algms and approximate inference algorithms.
The need for approximate inference algorithms arises tsecéar a large class of graphs (with high
treewidth), performing exact inference is computatignaitractable.

Belief propagation (BP)LI3] is a popular algorithm for exatierence oveltree-structuredgraphical
models. The BP algorithm iteratively computes the margdisairibution of each node in the graphical
model by passing messages between nodes. When applying &Rgbs with cycles, resulting in the
loopy BP (LBP) algorithm[[B], it is well known that the algthym may not converge and the estimated
marginal distributions may differ from the true marginasttibution. To improve the accuracy of LBP,
the generalized BP (GBP) was proposedlin [4], where the amithstablish theoretical results showing
how by performing message passing between clusters of rfmdésad of individual nodes), the accuracy
of inference may be improved. Despite the known theoretidabntages of GBP, there have been limited
frameworks for systematically finding clusters in a graph gerforming GBP. Further, in many cases,
it is not clear how the approach of message passing betwesterd instead of nodes can be naturally
extended to other inference algorithms such as mean-fitddeince, tree-based reparameterization belief

propagation (TRP-BP) [5]/ [6], and tree-reweighted befiespagation (TRW-BP)_[7].

A. Summary of Contributions

In this paper, we propose a framework that uses-overlapping clusterso generalize inference
algorithms over graphical models. The proposed framewsilkuistrated in Figl L. LeAlg be an inference
algorithm that marginalizes a joint probability distrilmrt p(x) defined on a grapty = (V, E). The output

of Alg is the set of marginal distribution,(z,)}. In our proposed framework for generaliziAdg, we

Generalized Alg

Fig. 1. A framework for generalized inference over graphinadels.

map the graplGz into a block-graphG = (V,£), defined as a graph in which each node is a cluster of
multiple nodes (from the original grapgh) such that the clusters are non-overlapping. We then apigly

to the block-graph to get marginal distributions of eachstdy which we process to get the marginal
distribution of each node.

Our framework in Fig[1L can be applied to generalize infeeealgorithms. In this paper, we focus on
generalizing belief propagation (BP) and loopy BP. We fistgider the problem of exact inference over
graphical models. Given aon tree-structuredyraphical model, we proposeliaear time algorithm for
finding non-overlapping clusters in the graph so that thelolgraph over these clusters is tree-structured.
We call this graph alock-tree Applying BP to the block-tree leads to exact inference algms for
arbitrary graphical models. We compare the block-tree éaork for exact inference to the junction-
tree frameworkl[8]. A junction-tree is a tree-structuredr over clusters, where clusters connected by
edges araalways overlappingWe show that constructing block-trees is faster and giadetroffs for
using block-trees as opposed to junction-trees when peifigr inference over graphical models.

Next, we generalize the loopy BP (LBP) algorithm using theckigraph framework. LBP is used
extensively in the literature since exact inference usiloghstrees or junction-trees is computationally
intractable when the size of the clusters becomes very.l&gepropose a simple and efficient algorithm
for splitting larger clusters in a block-tree to form a blegtaph. Our proposed algorithm for constructing
block-graphs reduces the number of cycles in the originaplgr(by forming non-overlapping clusters)
since LBP is known to perform better on nearly tree-striedugraphical models. Using numerical
simulations, we show how LBP over block-graphs, constaiageng our algorithm, leads to more accurate

inference algorithms when compared to using LBP on the maigjraph.

B. Related Work

In the literature, exact inference over graphical modelaguson-overlapping clusters is referred to
as the Pearl’s clustering algorithiml [3]. In| [9] arid [10], thethors use non-overlapping clustering for
some particular directed graphical models for an apptcaith medical diagnostics. For lattices, [11]-[13]
derive inference algorithms by scanning the lattice hariathy (or vertically). Our algorithm in this paper
provides a principled way of finding non-overlapping clust®r deriving exact inference algorithms over
arbitrary (not necessarily lattice graphs and particular directeglgs) graphical models.

There has been significant work in extending the LBP algariti message passing between nodes to
message passing between clusters. It is known that the tangimal distributions of a graphical model
minimize the Gibbs free energy [14]. Inl[4],_[15], the auth@howed that the fixed points of the LBP
algorithm minimize the Bethe free energy, which is an appnation to the Gibbs free energy. This
motivated the Generalized Belief Propagation (GBP) athjoriwhich minimizes the Kikuchi free energy
[16], a better approximator to the Gibbs free energy. In GB®,message passing is between clusters of
nodes that are overlapping. A more general approach to GBRmsed in[[1/7] using region graphs and
in [18] using the cluster variation method. Further, regigwmaphs have been used in [5], [19] to extend
the TRP based method for inference in graphical models.

Although [17], [19] show that approximate inference can tmprioved using clustering, they do not
address the problem of choosing regions or clusters inrarpigraphs over which we want to perform
message passing. In our numerical simulations, we showchwising clusters arbitrarily may not result
in better inference algorithms. 10 [20], [21], the authoewé considered methods for choosing regions,
however, their algorithms are limited to a small class ofpbieal models. In([22], the authors propose
Iterative Join-Graph Propagation (IJGP), which is a clads&BP algorithms. The 1IJGP algorithm first
computes a junction-tree and then randomly splits appatprtlusters into smaller clusters to build a
join-graph (or cluster-graph). However, since IJGP usestjan-trees, the clusters chosen are overlapping
and thus it is important to assign edges over these clustetBas the running intersection property is
satisfied. This constraint, combined with the fact that we ewnstructing a junction-tree, makes the
construction of a join-graph computationally hard. Thus,groblems where the graph structure changes
over time, using junction-tree based algorithms can be ctatipnally infeasible. Another restriction
of the 1IJGP based approach is that it does not generalize alperithms for message passing such as
TRP-BP or TRW-BP.

Our proposed approach of using non-overlapping clustarapproximate inference has been con-

sidered before. In the original paper describing GBP [1B§ authors give an example of how non-
overlapping clusters can be used, however, there have beeigorithms in the literature for finding
appropriate clusters. In_[23], [24], the authors use digjoiusters to generalize mean field algorithms
for approximate inference. Although we do not demonstrhte use of our algorithm for mean field
methods, the clustering algorithm usedlinl[24] is based andsird graph partitioning algorithms that are
computationally intensive for large graphs. Our greedyrapgh to finding clusters is simple, efficient,
and motivated by the observation that approximate infaxdaanore accurate on graphs with smaller
and longer cycles than on graphs with larger and shorteesycl

We note that our work differs from some other work on studygngphical models defined over graphs
with non-overlapping clusters. For example, |[25], |[26] sioler the problem of learning a Gaussian
graphical model defined over some block-graph. Similarreffhave been made in_[27] for discrete
valued graphical models. Ih_[28], the author analyzes ptaseof a graphical model defined on a block-
tree. In all of the above works, the underlying graphical elasd assumedo be block-structured. In our
work, we assume a graphical model defined oradritrary graph and then find a representation of the
graphical model on a block-graph to enable more accuraggente algorithms.

Our work in this paper is motivated by earlier work done by mstudying tree structures for Markov
random fields (MRFs) indexed over continuous indi¢es [29][30], [31], we have shown that a natural
tree-like representation for such MRFs exists over nomapging hypersurfacesvithin the continuous
index set. Using this representation, we derived extessidthe Kalman-Bucy filter [32] and the Rauch-

Tung-Striebel smoother [33] to Gaussian MRFs indexed oweticuous indices.

C. Paper Organization

Section]l reviews graphical models and the inference pmblSectio Ill presents our algorithm for
finding non-overlapping clusters in a graph that form a trBee resulting graph over the clusters is
called a block-tree. Sectidn]V shows how exact inferenae lma performed on block-trees. Sectloh V
presents our algorithm for splitting larger clusters in aclttree for tractable approximate inference
algorithms. Sectioh VI presents numerical simulationsashg how effective our clustering algorithm is

for improving the accuracy of LBP. Sectién VIl summarizes thaper.

Il. BACKGROUND

SectionI[-A reviews properties and definitions related tapips and graphical models necessary for

this paper. For a more complete study, we refer the readg8ljoSectior 1I-B reviews the junction-tree

Fig. 2. An example of a graphical model.

algorithm for exact inference over graphical models.

A. Graphical Models and Inference

A graphical model is defined using a graph= (V, E), where the node¥ = {1,2,...,p} index
a collection of random variables = {z; € 2 : s € V} and the edge& C V x V encode statistical
dependencies [34], [35]. In this paper, we assufte= K is finite. Our results and algorithms easily
generalize to continuous valued random variables. Thefsaedges can be directed, undirected, or both.
Since directed graphical models can be mapped to undirgctgahical models by moralizing the graph,
in this paper, we only present algorithms for undirectedpbieal models. The extensions to directed
graphical models follow immediately.

The edges in a graphical model imply Markov properties altbeatcollection of random variables.
Thelocal Markov propertystates that: is independent ofz, : » € V\{N(s)Us}} givenz (), where
N (s) is the set of neighbors of. For example, in Fid.]12y5 is independent of z3, x¢, x7, x5, x9 } given
{z1,x4,z5}. The global Markov propertywhich is equivalent to the local Markov property, statestth
for a collection of disjoint nodegl, B, andC, if B separatesl andC, x4 is independent ok< given
xp. An example of the setsl, B, andC is shown in Fig[R. From thélammersley-Clifforctheorem
[36], the Markov property leads to a factorization of thenjgprobability distribution over cliques (fully

connected subsets of nodes) in the graph,

(@, @a, ..) = % I] votae), (1)

cec
where(is the set of all cliques in the graphl = (V, E), ¥¢(xz¢) > 0 are potential functions defined

over cliques, and’ is the partition function, a normalization constant.

Inference in graphical models corresponds to finding maigdistributions, sayps(xs), given the

probability distributionp(x) for x = {z1,...,2,}. This problem is of extreme importance in many
domains. A classical example is in estimation when we arergioisy observationg of x and we want

to estimate the underlying random vector. To find the mininmagan square error (mmse) estimate, we
need to marginalize the conditional probability distribatp(x|y) to find the marginalg,(zs|y). An
algorithm for marginalizingy(x) can be used for marginalizingx|y).

As mentioned before, belief propagation (BP) is a populgoithm for exact inference over tree-
structured graphical models. BP consists of two stagedhdtrfitst stage, we pass messages from leaves
in a tree to the root. In the second stage, we pass messagethaoot to the leaves. To find the marginal
distribution of each node, we take the product of all incaminessages in the tree. An extension of BP
to more general graphs is provided in [8], where the messagsimy is done between clusters instead of
individual nodes. We review this algorithm, called the jtioie-tree algorithm, in the next Section. Some

other frameworks for exact inference over arbitrary graphmodels have been proposed|in![37]./[38].

B. Junction-Tree

Junction-trees were introduced in [39] for representingpfs with cycles as tree-structured graphs.
In [8], the authors showed that inference over undirecteglgical models with cycles can be achieved
using junction-trees. Formally, a junction-tree is defimadfollows [40].

Definition 1 (Junction-Tree)for a graphG = (V, E), a junction-tree7 = (C,£) is a graph over
clusters of nodes i so that

1) Each node in/ is associated with at least one clusterCin

2) For every edgév;,v2) € E, there exists a cluste?), € C such that{v,,ve} € Cj.

3) J satisfies the running intersection property: For all clsstg, Cy,, andC; such thatC), separates

C; andCj, C;NC; C Cy.

The idea behind using junction-trees for inference in giegdhmodels is to cluster nodes in the graph
and then form a tree-structured graph over the clusters.clisters in a junction-tree are overlapping,
i.e., for two clustersC; and C; connected by an edge in the junction-tré€; N C;| > 0. Given a
tree-structured graph, we can apply a variant of the beliepggation algorithm so that the message
passing is between clusters of nodes (instead of individodes) [[41], [[42]. The running intersection
property ensures that inference over the junction-tremrsistent so that if a nodeis in two clusters,
the marginal distribution of;, computed from each cluster after running message passiting isame.
For an example of a junction-tree, we refer to Appendix A, iehee review algorithms for constructing

junction-trees.

The following proposition summarizes the complexity of stacting junction-trees and that of per-
forming inference over junction-trees.

Proposition 1: Given an undirected grapi = (V, E), the complexity of constructing a junction-tree
J = (C,€)is O(JE| + |C|?). For a random vectax € Q", where|Q2| = K, Markov on the grapld, the

complexity of cluster based message passing using theiguritee 7 is

o Y K% 4K)
(3,7)€€

Proof: See [43] for the complexity of constructing a junction-ttaed [44] for the complexity of

message passing in a junction-tree. |

I1l. BLOCK-TREES FINDING TREESOVER NON-OVERLAPPING CLUSTERS

In this Section, we present our algorithm for finding a bldae, which is formally defined as follows.

Definition 2 (Block-Graph and Block-Tree}or a graphG = (V, E), a block-graphg = (V,€) is a
graph over clusters of nodes In such that each node Wi is associated with only one cluster ih In
other words, the clusters M are non-overlapping. If the edge $tC V x V' is tree-structured, we call
the block-graph @lock-tree

Our proposed algorithm for constructing a block-teggiven an arbitrary grapliy = (V, E) is shown
in Algorithm [1. The input to the algorithm is the original glaG and a set of node¥; C V. The
output of the algorithm is the block-trae We refer toV; as theroot cluster The algorithm first finds
an initial set of clusters and then splits these clustera tfie final block-tree. The various steps in the
algorithm are explained as follows.
Forward step: Find clustersVy, Vs, ..., V, using breadth-first search (BFS) so that= N (V1), V3 =
NWV)\{ViUW}, ..., V., = N(V,)\{V;—2UV,_1} . These clusters serve as initial clusters for the block-
tree. During the BFS step, split each cluskgrinto its connected component¥!, . . ., V" } using the
subgraphG(Vy), which denotes the graph only over the noded/in(Line 2).
Backwards step: We now merge clusters to find the final block-tree. The keyifion in this step is that
each cluste#, should be connected to a single cluste¥jn ;. If this is not the case, we merge clusters
in Vi_1 accordingly. Starting at, = {V,}, V.2 ... V™}, for eachW,j =1,...,m,, find all clusters
C(V/) in V,_; that are connected tg/ (Line 6). Combine all clusters it(V;/) into a single cluster and
update the clusters iI7(Tj_1 accordingly. Repeat the above steps for all the clustet$.in, V,_o, ..., V;.

In the first part of Algorithn{Il, we find successive non-ovepimg neighbors of the root cluster. In

the backwards step, we merge clusters to form a final blak-We illustrate Algorithm]1 using some

Algorithm 1: Constructing Block-Trees: BlockTre&(1)
Data: A graphG = (V, E) and a set of nodeg;.
Result: A block-treeG = (C,)
1 Find successive neighbors &f to construct a sequence ofclustersViy, V4, ..., V, such that
Vo=NW), Vs =N(V2)\{ViUVa},....Ve = N(V)\{Vi2 U Via
2 {V,},...,V™} « Find m;, connected components &, using subgraplt(V).
3fori=rr—1,...3do
4 for j=1,2,...m; do
C(V?) « N(V))NV;_; ; All nodes inV;_; connected td/;.
CombineC(Vij) into one cluster and updaié_;.

o O

7V U VRV V)
8 £ + edges between all the clusterslin

4 V5

@ (b) (©

JOINE Qo+ 0
¢ 9w @ 9| @
© 0w © o | @
@ ®v @ ® @

®

Fig. 3. (a) Original estimates of the clusters in a single loop grapken running the forward pass of AlgoritHrh 1.
(b) The final clusters after running the backwards pass obAtlgm[d. (c) Final block-tree.

examples.

Example: Consider the graph with a single loop in Fig. 3(a). Choosdifig= {1}, we can get the initial
estimates of the clusters as shown in Eig. 3(a). To get thédstamates, which coincides with the initial
estimates of the clusters, we run the backwards step of thgofll. See Fig.13(b) for the resulting graph.
The final block-tree is shown in Figl 3(c).

Example: Now consider the grid graph of Fig.115(a). Choosiig= {1}, we get the initial estimates of
the clusters as shown in F[g. 4(a). Running the backwargststielentify the final clusters (see Fig. 4(b)),
we get the block-tree in Fidl 4(c).

Example: In the examples considered so far, the initial estimateshef dlusters matched the final

estimates and the final block-tree was a chain-structuraphgiwe now consider an example where the

10

A 4 9 ‘/'5 9

O
),
& _®_®v @ B B | @@
D,
(9

(@) (o) (c)

Fig. 4. (@) Original estimates of the clusters in a grid graph wheming the forward pass of Algorithid 1. (b)
The final clusters after running the backwards pass of Algoril. (c) Final block-tree.

¢ _®_ 9w @ g5 [0 @ O
§__B|n B GO

v 3)| Vs 3 e

(@ (o) (c)

Fig. 5. (a) Original estimates of the clusters in a partial grid whenning the forward pass of Algorithid 1. (b)
The final clusters after running the backwards pass of Allgoril. (c) Final block-tree.

final block-tree will in fact be tree-structured. Considie tpartial grid graph of Fid.15(a). Choosing
Vi = {7}, we get the initial estimates of the clusters in Hig. 5(a). We&v run the backwards step of
the algorithm. Sincds = {3} is connected t@ and6, C(V5) = {2,6}. Thus,{2,6} become a single
cluster. We now find neighbors q2,6} in V3 = {9,5,1}. It is clear that only{9,5} are connected to
{2,6}, s0{9,5} become a single cluster. In this way, we have splitinto two clusters:V; = {9,5}
andVz = {1}. Continuing the algorithm we find the rest of the clustersta in Fig.[5(b). The final
block-tree is shown in Figl5(c).

The following proposition summarizes the time complexibdaorrectness of Algorithral 1.

Proposition 2: Algorithm [for constructing block-trees runs in tint®(|E|) and always outputs a

block-tree.

11

(a) (b)

Fig. 6. (@) Junction-tree for the block-tree in F[d. 4(c) (b) Juostiree for the block-tree in Fifl 5(c)

Proof: Both the forward step and the backwards step involve a bnefudit search, which has
complexity O(| E|). Algorithm[1 always outputs a block-tree since each clustdr) is only connected
to a single cluster if;_;. [|

We make the following remarks regarding Algorittiin 1.

Remark 1:If G is a tree to begin with, the output of Algorithid 1 will be thensa tree no matter
which root cluster we start with. However, when construgfunction-trees, it is important to choose an
appropriate elimination order (see Appendik A) to ensued #n optimal junction-tree is constructed.

Remark 2:Different choices of the root clustéf will yield different block-trees. Note that ondég
is fixed, the block-tree is also fixed. In Section IV-B, we defam optimal block-tree which depends on
the choice of the initial clustey;.

Remark 3: Comparing the complexity of constructing block-trees (Beepositio 2) to that of con-
structing junction-trees (see Propositibh 1), we noticat tbonstructing junction-trees has an added
complexity that is quadratic in the number of clusters in jimection-tree. Thus, constructing block-
trees is faster than constructing junction-trees.

Remark 4:Using Algorithm2 for constructing junction-trees (see Apdix(A), we can find a junction-
tree for every block-tree. For example, the junction-trepresentation for the block-trees in Hig. 4(c)
and Fig[5(c) are given in Fi@l 6(a) and Hig. 6(b), respebtiv&/e use this relationship in Sectign TV-C

to find an approximation to the optimal block-trees.

IV. EXACT INFERENCEUSING BLOCK-TREES

Section[1V-A shows how the belief propagation algorithm dzn applied to block-trees for infer-
ence over graphical models. Sectlon 1V-B defines an optinwdkistree. Section [V-C discusses greedy

algorithms for finding optimal block-trees. Section IV-Dnopares block-trees to junction-trees.

12

A. Belief Propagation on Block-Trees

Since block-trees are tree-structured graphs, we can Ued pmpagation algorithms for inference.
Let x be an undirected graphical model 6h= (V, E') with probability distributionp(x). For simplicity,
we assume that is discrete valued so that € 2, where|Q2] = K, however, the inference algorithm
easily extends to continuous valued random variables. IRfeoen (1) that the probability distribution

factorizes over the cliques of the graph so that

p(x) = % I ve(ze), ®3)

cec

where the functiong)c(xzc) are known a priori. Suppose we construct a block-tzee (V, &) from G
using a root clusteV;. To capture the structure of the original gra@hn the block-treej, we introduce
the following notation.
Notation: For every edgéi, j) € £ connecting two clustery; andV;, associate a labg));,V;) so that
in the original graphGG, the nodes inV; are not connected to the nodeslin and the nodes iV, are
not connected to the nodes W). For example, in Fig]5(c), all the edge labels will be empiycept
the label betweer1} and{4, 8}, which will have a label{}, {8}) since8 is not connected ta in the
original graph.

The following steps illustrate how the belief propagatidgoaithm can be modified for block-trees.
Step 1. Construct a block-trée from the undirected grap&y using a root cluster;.
Step 2. The cliques in the block-tréeare the edges, so we can write down an alternative factameat

for the probability distribution imp(x) as

l
p(x) = [T @x@v) I Cis@yp2vv,) (4)
k=1 (i,5)€€

where we map each potential function in the original fazetion in [3) to an appropriate factor
without repeating.

Step 3. Using an arbitrary root node in the block-tree, iferihe leaves and pass messages starting
at the leaves up to the root. For example, a message fronecMsto clusterV; is given as
follows:

misi(@yp,) = Y Wii@yporyp) > I @iav)meie,), (5)
Ty\V; zy, keEN (V)\V;

where N (V;) are neighboring clusters of;.

13

Step 4. Once all messages have reached the root, pass neBsag¢he root back to the leaves using
the same message passing equatiofnlin (5).

Step 5. The joint distribution for each cluster is given by

v (av) = [mjilev)@iay,) (6)
jEN(Vi)

Step 6. Marginalize the distribution of each cluster to fihd distribution of each node.
The complexity of the message passing algorithm is giverob@afs.
Proposition 3: For an undirected graphical modeldefined on a grapty = (V, E), letg = (V, &) be
the block-tree constructed using a root cludterThe complexity of message passing over the block-tree
is
1) (Z KWil 4 gVl 4 QK%\VHrVJ\VJ)])
(i,9)€€

Proof: From (5), the complexity of passing messages from clugtdo clusterV; is
0 (K\w I K\%\WHW\E\) 8)

Summing over all edges and using the fact that we pass message on an edgéi, j), we get the
desired result. [|

We conclude this Section with some remarks regarding thefbptopagation algorithm applied to
block-trees.

Remark 5: An alternative way to derive the message passing algorithen lmock-trees is to transform
the block-tree into a junction-tree and then use populartjan-tree based inference algorithrns|[41],/[42].
The complexity of the inference algorithm will be the samewhver, by directly using the block-tree,
we avoid the step of constructing a junction-tree.

Remark 6:We explain the importance of labeling edges in the block-foe message passing. Consider
the block-tree in Figll5(c). LeV, = {1} andV, = {4,8}. As mentioned before, the label betwegn
andV, is ({},{8}). From this label, we conclude that the potentig], betweenyV, andV}, will be a

function of only 1 and4 since8 is not connected td. The message frow, to V, will have the form
Masp(24) = Y Wap(w1,24) 9)

The complexity of passing the above messag@(&2). Now suppose we do not label the edge. In this

case, the algorithm will assume that the potential betwégandV, is a function ofl, 4, and8. The

14

message fromy, to V, will have the form

Masp(a,78) = Y W p(w1, 24, 28) . (10)

The complexity of passing the above message(i&?). Note that¥, (21, 24,28 = 01) = Yy p(x1, 24, 28 =
6-) for all 61,05 € Q, however, this information is not provided in the messagesipey algorithm since
the label is not specified.

Remark 7:In light of Remark®, an upper bound on the message passinplesity is O (> KVHFVJ) ,

(i,5)e€
which is obtained by passing messages without labeling dgesin the block-tree.

B. Optimal Block-Trees

From Proposition 13, we see that the complexity of messagseimpasver block-trees is dominated by
the term in[(¥) whose exponent is maximum. Thus, an optin@tkstree can be defined such that
w(G,V1) = [nax, {max {[Vil, V], Vi\Vil + [V\Vjl} } (11)
is minimized. Notice that{11) depends on the choice of tha ohusterV; in constructing the block-
tree. Thus, finding aoptimal block-trees equivalent to finding an optimal root cluster. This probles
computationally intractablesince we need to search over all possible combinations dfalastersV;.

As an example illustrating how the choice &f alters the block-tree, consider finding block-trees for
the partial grid in Fig[b. In Figl15(c), we construct a bldeck&e usingl; = {7} as the root cluster.
The complexity of inference in this graph (/K *) because of the message passing between the cluster
{5,9} and{4, 8} and between clustef2,6} and{5,9}. Instead of choosind; = {7}, let V; = {7,4}.
The initial estimate of the clusters are shown in Eig. 7(d)e Tinal block-tree is shown in Figl 7(c). It
is clear that message passing on the block-tree in[Fig. 7ifchawve complexityO (k) because of the

message passing between the clugte, 2} and the clustef8, 5}.

C. Greedy Algorithms for Finding Optimal Block-Trees

In the previous Section, we saw that finding optimal blode# is computationally intractable. In this
Section, we propose three greedy algorithms for findingnagitiblock-trees that have varying degrees of
computationaly complexity.

Minimal degree node - MinDegree: In this approach, which we calllinDegree, we find the node with

minimal degree and use that node as the root cluster. Thigidgmtioehind this is that the minimal degree

15

@ v

&G @
@® By |©0© O
@ v ©

(@) (b) (©

Fig. 7. (a) Original estimates of the clusters in the partial grithgd’, = {7,4} as the root cluster. (b) Splitting
of clusters. (c) Final block-tree.

60

—— Exhaustive Search

—6— MinDegree
GreedyDegree

—8— GreedyFillin

[
(=)
T

N
o

Width of Block-Tree
N w
o o

10§

o L L L
100 200 300 400 500
Number of nodes

Fig. 8. Plot showing the performance of three different dyekeuristics for finding optimal block-trees.

node may lead to the smallest number of nodes being addeceirltisters. The complexity of this
approach is0(n), wheren is the number of nodes in the graph.

The next two algorithms we propose are based on the relaijphetween junction-trees and block-
trees. Recall from Remafl 4 that for every block-tree, we fiaeh a junction-tree. This means that an
optimal junction-tree may be used to find an approximatenugdtiblock-tree. From Appendix]A, we
know that an optimal junction-tree can be found using annogitielimination order. Thus, we make use
of algorithms for finding optimal elimination orders to fingitomal block-trees.

Using an elimination order - GreedyDegree: One of the simplist algorithms for finding an approximate

optimal elimination order is known &sreedyDegree [45], [46], where the elimination order corresponds

16

to the sorted list of nodes in increasing degree. The contplek GreedyDegree is O(n logn) since we
just need to sort the nodes. Using the elimination order,ri@adulate the graph to find the cliques. We
then search over a constant number of cliques to find a rosteslthat leads to the minimal width as
defined in [(11).
Using an elimination order - GreedyFillin: Another popular greedy algorithm is to find an optimal
elimination order such that at each step in the triangulasilgorithm (see Appendix]A), we choose a
node that adds a minimal number of extra edges in the graph.igtknown asGreedyFillin [47] and
has polynomial complexity. ThusGreedyFillin is in general slower thakreedyDegree, but does lead
to slightly better elimination orders on average. To find tih@ck-tree, we again search over a constant
number of cliques over the triangulated graph.

We now evaluate the three different greedy algorithM@Degree, GreedyDegree, and GreedyFillin,
for finding optimal block-trees in Fif] 8. To do this, we ceatusters of sizé such that the total number
of nodes isn (one cluster may have less thamodes). We then form a tree over the clusters and associate
a clique between two clusters connected to each other. Werdmeove a certain fraction of edges over
the graph (not the block-tree), but make sure that the grygstili connected. By construction, the width
of the graph constructed will be at mast. Fig.[8 shows the performance bfinDegree, GreedyDegree,
and GreedyFillin over graphs with different number of nodes and differentigalofk. We clearly see
that bothGreedyDegree and GreedyFillin compute widths that are close to optimal. The main idea is tha

we can use various known algorithms for finding optimal jioretrees to find optimal block-trees.

D. Block-Trees vs. Junction-Trees

In this Section, we show how block-trees can lead to comjmutalt savings when used for inference
over graphical models. The main idea is that for certain lgigd models, the complexity of constructing
the junction-tree can dominate the complexity of the irmfiesealgorithm, thus in these cases, we can use
block-trees instead of junction-trees for inference.

1) Example: Single Cycle Graphical Modelket G = (V, E) be a graphical model on a graph with

a single cycle, as in Fig] 3(a). The complexity of inferenséng a junction-tree is
O(n—|—n2 —|—2nK3) & O(n2—|—2nK3) , (12)

whereO(n + n?) is the complexity of constructing the junction-tree adthK?) is the complexity of

belief propagation (see Propositibh 1) since all the ckqumethe junction-tree will have size three. The

17

2]
o

—8&— Junction—-tree
—O— Block-tree

[
(=)
T

N w B
o o o
T T T

Complexity of Inference

=
o
T

o L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
c,K=2

Fig. 9. Comparing the complexity of inference using junatteees vs. using block-trees for graphs sampled using déskEr
Rényi model. For each, we have denoted the average treewidth over 100 randomigrgieal graphs.

complexity of inference using a block-tree is
O(n+ nK4) ~ 0 (nK4) , (13)

where O(n) is the complexity of constructing the block-tree (see Psifan [2) andO(nK*?) is the
approximate complexity of inference over the block-treee(§ig.[8(c) for an example). It is clear that
there exists some constant- 0 such that ifn. > cK*, the complexity of inference using the junction-tree
will dominate the complexity of inference using the blocke. Recall thatk is the number of states
each random variable can take, so this number remains fixedimseases.

2) Example: Erés-Renyi Graph: In this Section, we assume that the grapk- (V, E) is a realization
of an Erdds-Rényil[48] graph, denoted I%n,c/n). Heren is the number of nodes angn is the
probability that an edge appears in the graph (independeait other edges). Many naturally occurring
networks, such as large social networks, may be modeled) &sids Rényi graphs [49].

It is well known that forc < 1 and forlarge n, the treewidth (see Definitidd 4) of a graph realized using
an Erd6s-Rényi model is at most two [48]. Thus, for graphimodels defined on such random graphs,
inference is tractable. The comparison of the complexitinfdrence using block-trees and junction-trees
on a1000 node graph is shown in Figl 9. The results shown are over lIbraly generated graphs for
¢ chosen betweefi and 1. The average treewidth over the 100 graphs is also shownreimgithph. We

clearly see the benefits of using block-trees over junctieas. Note that, when reporting complexity

18

W : :
G = | Elimination Order| = | Triangulation Junction-Tree| =——>7

l C No
C,g Yes
Block-Tree | =———> g

Fig. 10. Algorithm to choose between a block-tree and a junctioa-fog inference over graphical models.

results, we factor in the complexity of constructing thedgtion-tree or the block-tree, in addition to
the complexity of performing message passing in the graph.cF> 1, the graph realized using an
Erdés-Rényi model no longer has low treewidth and thentig#h is known to be of the ordern, where

¢ is some constant and is the number of nodes in the graph [50]. Thus, in this case ctmplexity
of inference will dominate the complexity of constructirgetjunction-tree, so the block-tree framework
will no longer be faster.

3) Discussion: From the examples presented in this Section, we see thata foertain class of
graphical models, the complexity of using block-trees guerction-trees leads to complexity benefits
when performing inference over graphical models. The maimputational gains are in constructing
the block-tree. We note that, for some applications, thetjon-tree or the block-tree only needs to be
computed once. In these cases, the complexity of infereniéé@ dominated by the message passing
algorithm. Thus, the main advantage of the block-tree fsaomk is in studying inference problems
where the graph structure varies over time and the inferafgarithm needs to compute a new tree-
decomposition at each time instant.

Fig.[10 outlines an algorithm for deciding between choodhregjunction-tree or block-tree for infer-
ence. In the first step of the algorithm, we compute an elittonaorder from the graph. As outlined in
Sectior IV-Q, this can be done using standard algorithmberliterature to compute optimal elimination
orders, see [51] for a review of such algorithms. Using tlmiektion order, we compute a triangulated
graph and find the set of cliques We use the set of cliques to find a block-tree as outlined in
Section[IV-C. From the block-tree, we determine if the coemjily of constructing the junction-tree
dominates the complexity of inference over the block-ttééhis is the case, we use the block-tree for

inference, otherwise we construct the junction-tree.

19

V. BLOCK-GRAPH: SPLITTING CLUSTERS IN ABLOCK-TREE

In this Section, we show how block-trees can be used to degp@oximate inference algorithms.
Section[V-A discusses our algorithm for splitting largeusters in a block-tree to form a block-graph.

Section’V-B shows how approximate inference can be perfdraver block-graphs.

A. Constructing Block-Graphs

From Remarkl7, we know that the complexity of message pas&tvgeen two non-overlapping clusters
V; andV; is at most exponential ifV;| + |V;|. Thus, when the size of the clusters in a block-tree is
large, exact inference using block-trees is computatipriafractable. From Propositidd 1, we conclude
the same about exact inference using junction-trees.

To reduce the computational complexity of message passiagplit larger clusters in the block-tree.
The resulting graph over the new clusters will not be treeestired, hence the BP algorithm can no
longer be applied. We will discuss the loopy BP algorithrif8Bectionl’ V=B for approximate inference
over non tree-structured graphical models.

To determine the size of the clusters allowed, we assume adasimed maximal message passing
complexity m so that the complexity of message passing between any tvetectuis at mosO(K™),
where K is the number of states each random variable can take. Inrgene will be chosen to be
sufficiently small so that inference is tractable. We modigorithm [1 for constructing block-trees to

construct block-graphs, a graph with non-overlappingtehss

Step 1. Using an initial cluster of nodé&3, find clustersiy, Vs, ..., V.. using breadth-first search (BFS)
such thatVy = N (V1), Vs = N(Vo)\{V1 UVa}, ..., V; = N (V;)\{V;_2 U V,_1}. While doing
the BFS, writeV}, as the set of all connected components in the subgfaph). Thus,V; is a
set of clusters.

Step 2. To ensure that the user defined maximal message gassnplexity is satisfied, fok odd, we
split the clusters N/, so that each cluster has maximal cardinality/2] and for k even, we
split clusters inV}, so that each cluster has maximal cardinality/2|. This ensures that for
all messages passed between clusters in diffdrgnthe message passing complexity is at most
O(K™).

Step 3. ForV,, if there exists any cluster that has cardinality greatanthn /2] or |[m/2|, depending
on whetherr is odd or even, partition those components. Lgt= {V,},V.2,... V™ } be the

final set clusters.

20

SRS

(a) (b)
Fig. 11. Explaining Step 6 in the block-graph construction alganthGiven the block-graph in (a), if we merge

nodes2 and 3, we get the block-graph in (b). If we merge nodkand4, we get the block-graph in (c). Notice
that the block-graph in (c) has just one loop.

Step 4. We perform the next steps for edgckr — 1,7 — 2,...,1, starting atk = r — 1. Let V. be the
set of all clusterd/; that have cardinality greater thgm /2] or [m/2], depending on whether
k is odd or even.

Step 5. Partition all clusters i, into appropriate size clusters of size:/2] or |m/2]| and also ensuring
that the message passing complexity between clusteredreatt mostO(K™).

Step 6. We now merge the clusters in the B’@tf/k. The idea used in merging clusters is that if two
clusters are connected to the same clustéf.in, then by merging these two clusters, we reduce
one edge in the final block-graph. Further, if two clusterd/inare not connected to the same
cluster in V1, we do not merge these two clusters, since the number of ddgée final
block-graph will remain the same. The final clusters coms$td using the above rules is denoted
asVi, = {V!,..., V™).

T

Step 7. The block-graph is given by the clustérs= U{Vkl,v,f,...,v,fmk} and the set of edges

k=1
between clusters.

The key step in the above algorithm is Step 6, where we clustdes appropriately. Fig. 111 explains
the intuition behind merging clusters with an example. Siggp we use the block-graph construction
algorithm up to Step 5 and now we want to merge clustergsin= {2,3,4}. If we ignore Step 6 and
merge clusters randomly, we might get the block-graph in[Elgb) on merging nodesand3. If we use
Step 6, then since nod8sand4 are connected to the same node, we merge these to get thegobgaik
in Fig.[11(c). Notice that Fid. 11(c) is a graph with a singjele with five edges, whereas Flg.111(b) is
a graph two cycles of size four and three. It has been obsehatdnference over graphs with longer
cycles is more accurate than inference over graphs withteshoycles([52]. Thus, our proposed algorithm

leads to block-graphs that are favorable for inference.

21

B. Approximate Inference Using Block-Graphs

In this Section, we review the loopy belief propagation ()BRjorithm [3] applied to block-graphs. The
algorithm uses the same message passing updates as in th&l befief propagation (see Section 1V-A)
applied to block-trees, but ignores the fact that the grapoi tree-structured.

Let G = (V, &) be the block-graph constructed using the algorithm in 8a€d. Recall the notation
adopted in Section TV-A for labeling edges in a block-traestJike in Step 2 in SectidnlV, reparameterize
the joint probability distribution as i {4). Lehl_m (:::V W,) denote the message passed from cluster
to V;. Assume the initial messagestat- 0 are unity, i.e.,m{_,;(z),\y) =1 for all z,, \3; € QV\Vil

and(i,j) € €. For each iteration, the message passing updates are given a

t—1
mi i (@05, = > Wiy, V0 Ty,\V, D TI @wvomi, (14)
Ty, \V, g, keN (Vi)\V;

After T iterations, the joint distribution of each clusfgy is proportional to the product of all incoming

messages:

H (I) (L’V j—>z (15)

JEN(i)

To find the marginal distribution of each node, we margirlize joint distributionpy, (xy,), which

has complexityO(|V;|KVih).

VI. NUMERICAL SIMULATIONS

In this Section, we provide numerical simulations to shoe performance gains when using block-
graphs for inference over graphical models. We study imiggeover binary valued graphical models
defined on grid graphs. For each random variablegzlet {—1,+1}. We assume that each node has a

potential given byy;(z;) = exp(—a;z;), wherea; ~ N'(0,(0.25)?) and the edge potentials are given by

Repulsive:z/zij (1'2', xj) = exp(—]bij\xiwj) (16)
Attractive: ”L/Jij (1'2', xj) = exp(\b,-j]w,-xj) (17)
Mixed: ”L/Jij(l'i, xj) = exp(—b,-jxixj) R (18)

whereb;; ~ N (0, 1). For distributions with attractive (repulsive) potensiaheighboring random variables

are more likely to take the same (opposite) value. For digtibns with mixed potentials, some neighbors

22

Number of runs that converged | Number of Iterations for conv. Accuracy
R A M R A M R A M

LBP 500 500 302 22,7 249 1424 | 0213 0219 0.065
LBP4 500 500 500 351 37.2 1289 | 0.189 0.189 0.046
LBP4-Rand| 500 500 500 43.7 44.1 2257 | 0.187 0.185 0.058

Fig. 12. Comparison of convergence and accuracy of using LBP on graphusing LBP on block-graphs for
a7 x 7 grid graph. Results are over 500 runs. The iterations andracg results are when all the algorithms
converge.

are attractive, whereas some are repulsive. We consideg tipes of graph&: x 7 grid graphs8 x 8
grid graphs, an@0 x 30 grid graphs. We analyze the results of the numerical sinwnatas follows:
Notation: LBP refers to running loopy belief propagation on the orayigraph. LBPm refers to running
LBP on a block-graph constructed using our proposed alguriin Section V such that the maximal
message passing complexity (§ K*). LBPm-Rand refers to using a modification of the algorithm in
Section Y so that instead of merging clusters in a structamadner using Step 5 and Step 6, we instead
merge clusters randomly. Note that each iteration of the BRf@rithm has complexity) (2| E|K?2). On
the other hand, running LBP on block-graphs has higher cexityl (see Proposition] 2). To objectively
compare results on the number of iterations, we rescale dhes. Thus, if the LBP on a block-graph
converges il iterations, we rescale this number By C’/C, whereC’ is the complexity of inference
using the block-graph an@' is the complexity of using just the graph. We declare cormecg if the
absolute difference between the messages passed in sueciésstions is less than a threshold of
e = 10~%. If the algorithm does not converge 3000 iterations, we say the algorithm failed to converge.
Given the true marginal distributign, (=) of each node and an estimaig), the accuracy is measured
by

1 ~
Accuracy= V] E Ips(5) — Ps(xs)] - (19)
r.e{—1,+1}

7x 7 grid graph: Fig.[12 shows results of running LBP on block-graphs andinmhBP on the original

7 x 7 grid graph. The first three columns report the number of tithesalgorithm converged out of
500 runs. LBP using mixed potentials converged dil{ of the time, whereas LBP4 and LBP4-Rand
converged on all 500 runs. This suggests that mixed potertguse Ising models to sometimes not
converge. Comparing the mean number of iterations (whiehrescaled) required for convergence, we
note that for both attractive and repulsive potentials, I[d8Rverges faster. However, for mixed potentials,

block-graphs converge faster. Comparing LBP4 and LBP4dRae see the benefits of merging clusters

23

Number of runs that converged | Number of Tterations for conv. Accuracy
R A M R A M R A M
LBP| 200 200 72 253 24.8 220.7 | 0.217 0214 0.073
LBP4| 200 200 200 38.1 37.7 191.1 | 0.199 0.191 0.052
LBP6| 200 200 200 69.2 66.5 192.8 | 0.174 0.157 0.037
LBP6-Rand| 200 200 200 64.4 62.7 368.5 | 0.178 0.182 0.073

Fig. 13. Comparison of convergence and accuracy of using LBP on graphusing LBP on block-graphs for
a 8 x 8 grid graph. Results are over 200 runs. The iterations andracg results are when all the algorithms
converge.

in a structured manner rather than merging clusters randsinte LBP4 converges faster than LBP4-
Rand. For mixed potentials, the convergence speed is altwist as that of LBP4-Rand. Comparing
the accuracy, we see that using block-graphs leads to smeatlers. Comparing LBP4 and LBP4-Rand,
for repulsive and attractive potentials there is almost iffergénce between the error, however, for mixed
potentials, LBP4 has lower error.

8 x 8 grid graph: Fig.[12 shows results of running LBP on block-graphs and ingh.BP on the
original 8 x 8 grid graph. The interpretation of the results are similathtat of the results for th& x 7
grid graph. We notice that increasing the message passimplerity to 6, compared to4, improves
the estimates of the node potentials at the cost of highepatational cost. Comparing LBP6-Rand to
LBP4, we notice that for mixed potentials LBP4 performs &etuggesting and LBP6-Rand performs
as good as LBP.

30 x 30 grid graph: Fig.[12 shows results of running LBP on block-graphs and ingmhBP on the
original 30 x 30 grid graph. In this case, over 100 runs, the LBP failed to eog® in 3000 iterations. The
interpretation of the results is the same as before. We thatietd compare the quality of the estimates,
we did not have the true estimates available since it is coatipnally intractable to find these since
the graph has high treewidth. Instead, we ran LBP on a bloakkgwith maximal message passing
complexity O(K''%) and used these estimates as the ground truth. Note that,tiewegh LBP did not
get converge in 3000 iterations, the quality of the estinmt#most the same as that of using LBP8-Rand.

From the discussion above, it is clear that using LBP on blgrelphs leads to more accurate estimates
of the marginal distributions. For repulsive and attraztiode potentials, we observed that higher accuracy
comes at the cost of more computations. For mixed potentisdsobserved that using block-graphs was
more accurate and faster than using the original graphh&uyrive evaluated our proposed algorithm

for constructing block-graphs and noticed that our profdcagorithm leads to more accurate estimates

24

Number of runs that converged | Number of Iterations for conv. Accuracy*
R A M R A M R A M
LBP| 100 100 0 86.85 83.74 - 0.232 0243 0.114
LBP4| 100 100 100 126.6 1202 1971.8 | 0.157 0.181 0.078
LBP8| 100 100 100 454.1 5122 77699 | 0.083 0.068 0.059
LBP8-Rand| 100 100 100 493.9 491.5 5574 | 0.258 0.257 0.101

Fig. 14. Comparison of convergence and accuracy of using LBP on graghusing LBP on block-graphs for a
30 x 30 grid graph. Results are over 100 runs. Since finding the toge potentials is computationally intractable,
we use a higher order block-graph to estimate the grount.trut

when compared to an approach of randomly selecting clusiéis shows the advantage of using the

block-tree as an initial estimate of the block-graph.

VIl. SUMMARY

We have built a framework for performing inference, i.e.mputing marginal distributions, over
graphical models using non-overlapping clusters. Our ntaintribution is in proposing an efficient
algorithm for finding clusters in a graph to generalize vasiénference algorithms. We first derived a
linear time algorithm for mapping an arbitrary graph intoreetstructured graph over non-overlapping
clusters. We call this graph a block-tree. Belief propaga{BP) on block-trees lead to an alternative to
the junction-tree algorithm for performing exact inferemaver arbitrary graphical models. We showed
that constructing block-trees is faster than construgtingtion-trees and identified domains where using
a block-tree framework for inference is more suitable thaimgi a junction-tree framework.

Next, we considered the problem of generalizing approxéniafierence algorithms. We modified the
block-tree construction algorithm so that larger clustgesappropriately split so that the message passing
complexity can be reduced. We call the resulting graph oweraverlapping clusters a block-graph. Our
proposed algorithm for finding block-graphs tries to mirdenthe number of cycles in the original graph
since it is known that performing approximate inference oapys that are approximately tree like is
more accurate. Using numerical simulations, we showed loopyl belief propagation (LBP) on block-
graphs lead to more accurate inference algorithms than yleeiorming LBP on the original graph.
Further, in some cases, we showed that performing LBP onkigjegphs was computationally more
efficient. Although we only showed how BP and LBP can be gdized as shown in Fig.1, other
inference algorithms can be easily generalized using #@radwork of choosing non-overlapping clusters

in a graph. In fact, the block-graph framework can also bedusegeneralize maximum a posteriori

25

(MAP) inference algorithms such as [53]-[55], where theeabye is to find ax that maximizes the

joint probability distributionp(x).

APPENDIXA

CONSTRUCTINGJUNCTION-TREES

Before reviewing the algorithm for constructing junctittees, we first review some standard graph
theoretic definitions. A triangulated graph, also known ahardal graph, is defined as follows [40]:

Definition 3 (Triangulated graph)A graph is triangulated if all cycles of length four or morevha
an edge connecting non-adjacent nodes in the cycle.

Given any graplG, we can triangulate it using the following steps|[56].

Step 1. Choose aealimination order which is a permutation of nodes in the graph.

Step 2: For each node in the elimination order, form an edgedsn all the nodes in its neighbors and
update the edge set.

Step 3: Remove the node and all its edges to other nodes apdtreep 2 until we exhaust all the

nodes in the elimination order.

The resulting graph after steps 1-3 will be triangulatedingshe triangulated graph, width and
treewidth of a graph are defined as follows|[39].

Definition 4 (Width and Treewidth)Width of a triangulated graph is the size of the largest diqu
minus 1. Treewidth, t4G), of a graphG is the minimum width among all possible triangulations & th
graphG.

An algorithm to construct a junction-tree is outlined in Atghm[2. In summary, we first triangulate
a graph using an elimination order, then find the cliques i tfangulated graph, and then use a
maximum weight spanning tree (MWST) algorithm to find an appiate tree over the cliques. Note
that from Propositiofil]l1, we see that the complexity of infieeeover junction-trees is exponential in the
number of nodes in the largest clique. From Definifion 4, thisans that the complexity of inference is
exponential in the width of the triangulated graph. Thuspptimal junction-treecorresponds to choosing
an elimination order in the triangulation algorithm leaglio the minimum width. The elimination order
leading to an optimal junction-tree is called aptimal elimination order

To illustrate Algorithm[2, we consider finding the junctitmee for the grid graph in Fid.15(a). A
triangulated graph, constructed using the eliminatioreofd, 3,7,9,4, 5,2, 6, 8}, is shown in FigLIb(b).

It can be shown that the elimination order chosen is optiffilaé weighted graph over cliques is shown

in Fig.[13(c). The junction tree constructed using the gidated graph is shown in Fig.]15(d). The width

26

Algorithm 2: Constructing a Junction-Tree: JunctionTi&g{’)

Data: A graphG = (V, E) and an elimination ordeW .

Result: A junction-treeJ = (C, &)
1 Triangulate the grapl’ using the elimination ordeW/ .
2 ldentify the set of cliqueg in the triangulated graph.
3 For all tuplesC;, C; € C, construct a weighted graph with weightgi, j) = |C; N Cj].
4 &+ arg max Z w(i, j).

(4,9)€€

689

(d)

Fig. 15. (a) A grid graph (b) Triangulated graph of (a). (c) Weightedph over cliques. (d) Junction-tree

of the triangulated graph in Fig. 115(c) is three. Since thmigahtion order is optimal, the treewidth of
the graph in Figl_15(a) is also three.

REFERENCES

[1] H. Rue and L. HeldGaussian Markov Random Fields: Theory and Applicationsndpaphs on Statistics and Applied
Probability), 1st ed. Chapman & Hall/lCRC, February 2005.

[2] M. J. Wainwright and M. |. JordanGraphical Models, Exponential Families, and Variationafdrence Hanover, MA,
USA: Now Publishers Inc., 2008.

[3] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Netwark®lausible Inference Morgan Kaufmann, 1988.

[4] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalizetieh propagation,” inNIPS 2001, pp. 689—695.

[5] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “Treased reparameterization framework for analysis of suwoyrt
and related algorithmsfJEEE Trans. Inf. Theoryvol. 45, no. 9, pp. 1120-1146, May 2003.

[6] E. B. Sudderth, M. J. Wainwright, and A. S. Willsky, “Entiged trees: estimation of Gaussian processes on graphs with
cycles,”|IEEE Trans. Signal Processvol. 52, no. 11, pp. 3136-3150, Nov. 2004.

[7] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “A neglass of upper bounds on the log partition functiolisEE
Trans. on Information Theorwol. 51, no. 7, pp. 2313 — 2335, July 2005.

[8] S. L. Lauritzen and D. J. Spiegelhalter, “Local compiaias with probabilities on graphical structures and thepleation
to expert systemsJournal of the Royal Statistical Society. Series B (Methmgioal), vol. 50, no. 2, pp. 157-224, 1988.

[9] G. F. Cooper, “Nestor: A computer-based medical diaginasd that integrates causal and probabilistic knowlgdga.D.

dissertation, Department of Computer Science, Stanfongddsity, 1984.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

27

Y. Peng and J. A. Reggia, “Plausibility of diagnosticplbgheses,” inNational Conference on Artificial Intelligence
(AAAI'86), 1986, pp. 140-145.

J. W. Woods and C. Radewan, “Kalman filtering in two dirsiens,”|[EEE Trans. Inf. Theoryvol. 23, no. 4, pp. 473-482,
Jul 1977.

J. M. F. Moura and N. Balram, “Recursive structure of cemmsal Gauss-Markov random fieldlEPEE Trans. Inf. Theory
vol. IT-38, no. 2, pp. 334-354, March 1992.

B. C. Levy, M. B. Adams, and A. S. Willsky, “Solution anihéar estimation of 2-D nearest-neighbor modeRgbc.
IEEE, vol. 78, no. 4, pp. 627-641, Apr. 1990.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “Atraduction to variational methods for graphical models,”
Machine Learningvol. 37, no. 2, pp. 183—-233, Nov 1999.

J. Yedidia, W. Freeman, and Y. Weiss, “Bethe free enekigkuchi approximations, and belief propagation algarity’
Mitsubishi Electric Research Laboratories, Tech. Rep. 00R216, 2001.

R. Kikuchi, “A theory of cooperative phenomen&hys. Rey.vol. 81, no. 6, pp. 988— 988-1003, 1951.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Construrfiree energy approximations and generalized belief prajiay
algorithms.”IEEE Transactions on Information Theoryol. 51, no. 7, pp. 2282-2312, July 2005.

A. Pelizzola, “Cluster variation method in statistigzhysics and probabilistic graphical modelg@urnal of Physics A:
Mathematical and Generalol. 38, no. 33, pp. R309-R339, 2005.

M. J. Wainwright, “Stochastic processes on graphs:rtac and variational approaches,” Ph.D. dissertaticepddtment
of Electrical Engineering and Computer Science, Massattaufnstitute of Technology, 2002.

M. Welling, “On the choice of regions for generalizedlibé propagation,” inProceedings of the 20th conference on
Uncertainty in Artificial Intelligence2004, pp. 585-592.

M. Welling, T. Minka, and Y. W. Teh, “Structured regionraphs: Morphing EP into GBP,” ifProceedings of the
International Conference on Uncertainty in Artificial Ititgence vol. 21, 2005.

R. Mateescu, K. Kask, V. Gogate, and R. Dechter, “Joap propagation algorithmsJournal of Artificial Intelligence
Researchvol. 37, pp. 279-328, 2010.

E. P. Xing, M. I. Jordan, and S. Russell, “A generalizedam field algorithm for variational inference in exponelntia
families,” in Proceedings of the 20th conference on Uncertainty in aidifiotelligence ser. UAI '04. Arlington, Virginia,
United States: AUAI Press, 2003, pp. 602—610. [Online].ikumde: http://portal.acm.org/citation.cfm?id=103@3%036916
——, “Graph partition strategies for generalized meagldfiinference,” inProceedings of the 20th conference on
Uncertainty in artificial intelligenceser. UAI '04. Arlington, Virginia, United States: AUAI Pss, 2004, pp. 602—610.
[Online]. Available:| http://portal.acm.org/citatiofine?id=1036843.1036916

B. M. Marlin and K. P. Murphy, “Sparse Gaussian graphigcadels with unknown block structure,” iinternational
Conference on Machine Learning009, pp. 89-712.

J. Friedman, T. Hastie, and R. Tibshirani, “Applicatso of the lasso and grouped lasso to the estimation of sparse
graphical models,” pp. 1-22, 2010. [Online]. Availabletphtwww-stat.stanford.edufibs/ftp/ggraph.pdf

A. Jalali, P. Ravikumar, V. Vasuki, and S. Sanghavi, “Qrarning discrete graphical models using group-sparse
regularization,” ininternational Conference on Machine Learnjrip11, pp. 89-712.

D. Malioutov, “Approximate inference in Gaussian gnagal models,” Ph.D. dissertation, Department of Elealric
Engineering and Computer Science, Massachusetts lestfutechnology, 2008.

P. Lévy, “A special problem of Brownian motion, and angeal theory of Gaussian random functions,’Rroceedings of

http://portal.acm.org/citation.cfm?id=1036843.1036916
http://portal.acm.org/citation.cfm?id=1036843.1036916
http://www-stat.stanford.edu/~tibs/ftp/ggraph.pdf

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

28

the Third Berkeley Symposium on Mathematical StatisticsRmobability, 1954-1955, vol. Il Berkeley and Los Angeles:
University of California Press, 1956, pp. 133-175.

D. Vats and J. M. F. Moura, “Telescoping recursive repréations and estimation of Gauss-Markov random fielgfis.
on Information Theoryvol. 57, no. 3, pp. 1645 — 1663, 2011.

D. Vats, “Tree-structured like representations fontimuous and graph indexed Markov random fields,” Ph.D .edtation,
Department of Electrical and Computer Engineering, Cam#gellon University, May 2011.

R. E. Kalman and R. Bucy, “New results in linear filteriagd prediction theory,Transactions of the ASME-Journal of
Basic Engineeringvol. 83, no. Series D, pp. 95-108, 1960.

H. E. Rauch, F. Tung, and C. T. Stribel, “Maximum likedibd estimates of linear dynamical system&[AA J, vol. 3,
no. 8, pp. 1445-1450, August 1965.

S. L. Lauritzen,Graphical Models Oxford University Press, USA, 1996.

D. Koller and N. FriedmanProbabilistic Graphical Models: Principles and Technigue The MIT Press, 2009.

J. Besag, “Spatial interaction and the statisticalysis of lattice systemsJournal of the Royal Statistical Society. Series
B (Methodological) vol. 36, no. 2, pp. 192-236, 1974.

N. Zhang and D. Poole, “A simple approach to Bayesiawngt computations,” inProceedings of the Tenth Canadian
Conference on Atrtificial Intelligencel994, pp. 171-178.

R. Dechter, “Bucket elimination: A unifying framewofkr reasoning,Artificial Intelligence vol. 113, no. 1-2, pp. 41-85,
Sep 1999.

N. Robertson and P. D. Seymour, “Graph minors. Il. Alonic aspects of tree-widthJournal of Algorithmsvol. 7,
no. 3, pp. 309 — 322, 1986.

D. B. West,Introduction to Graph Theory2nd ed. Prentice Hall, 2000.

G. Shafer and P. P. Shenoy, “Probability propagatidhiihals of Mathematics and Artificial Intelligenceo. 1-4, pp.
327-352, 1990.

F. V. Jenson, S. L. Lauritzen, and K. G. Oleson, “Bayesipdating in causal probabilistic networks by local coragion,”
Computational Statistics Quartetlyol. 4, no. 4, pp. 269—282, 1990.

F. Jensen and F. Jensen, “Optimal junction trees?roceedings of the 10th Annual Conference on Uncertainfriificial
Intelligence (UAI-94) San Francisco, CA: Morgan Kaufmann, 1994, pp. 360-36.

G. F. Cooper, “The computational complexity of probiestic inference using Bayesian belief networks (researcte),”
Artificial Intelligence vol. 42, no. 2-3, pp. 393-405, 1990.

H. M. Markowitz, “The elimination form of the inverse drits application to linear programmingWlanagement Science
vol. 3, no. 3, pp. 255-269, 1957. [Online]. Available: httwww.jstor.org/stable/2627454

A. Berry, P. Heggernes, and G. Simonet, “The minimumrdedeuristic and the minimal triangulation process Giaph-
Theoretic Concepts in Computer Scienser. Lecture Notes in Computer Science, H. Bodlaender, E@ringer Berlin /
Heidelberg, 2003, vol. 2880, pp. 58-70.

U. B. Kjaerulff, “Triangulation of graphs - algorithmgiving small total state space,” Department of Mathematiod
Computer Science, Aalborg University, Denmark, Tech. R&gsearch Report R-90-09, 1990.

P. Erdés and A. Rényi, “On the evolution of random drapin Publication of the Mathematical Institute of the Hungarian
Academy of Science$960, pp. 17-61.

M. O. JacksonSocial and Economic NetworksPrinceton University Press, 2008.

C. Lee, J. Lee, and S. il Oum, “Rank-width of random gapharXiv:1001.0461v12010.

http://www.jstor.org/stable/2627454

29

[51] H. L. Bodlaender and A. M. Koster, “Treewidth computets |. upper boundsnformation and Computatigrnvol. 208,
no. 3, pp. 259 — 275, 2010.

[52] E. Fabre and A. Guyader, “Dealing with short cycles iamtical codes,” iHEEE International Symposium on Information
Theory (ISIT) June 2000, p. 10.

[53] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MA&stimation via agreement on (hyper)trees: Message-gassin
and linear programming approachelZEE Trans. Inf. Theoryvol. 51, no. 11, pp. 3697-3717, Nov. 2005.

[54] V. Kolmogorov, “Convergent tree-reweighted messagssmng for energy minimization/EEE Transactions on Pattern
Analysis and Machine Intelligenceol. 28, pp. 1568-1583, 2006.

[55] D. Sontag and T. Jaakkola, “Tree block coordinate detst@ map in graphical models,Journal of Machine Learning
Researchvol. 5, pp. 544-551, 2009.

[56] A. Becker and D. Geiger, “A sufficiently fast algorithrorffinding close to optimal junction trees,” Iroceedings of the
10th Annual Conference on Uncertainty in Atrtificial Intgéince (UAI-96) 1996, pp. 81-89.

	I Introduction
	I-A Summary of Contributions
	I-B Related Work
	I-C Paper Organization

	II Background
	II-A Graphical Models and Inference
	II-B Junction-Tree

	III Block-Trees: Finding Trees Over Non-overlapping Clusters
	IV Exact Inference Using Block-Trees
	IV-A Belief Propagation on Block-Trees
	IV-B Optimal Block-Trees
	IV-C Greedy Algorithms for Finding Optimal Block-Trees
	IV-D Block-Trees vs. Junction-Trees
	IV-D1 Example: Single Cycle Graphical Models
	IV-D2 Example: Erdos-Rényi Graph
	IV-D3 Discussion

	V Block-Graph: Splitting Clusters in a Block-Tree
	V-A Constructing Block-Graphs
	V-B Approximate Inference Using Block-Graphs

	VI Numerical Simulations
	VII Summary
	Appendix A: Constructing Junction-Trees
	References

