
ar
X

iv
:1

10
7.

40
67

v1
 [

st
at

.M
L]

 2
0

Ju
l 2

01
1

1

Finding Non-overlapping Clusters for

Generalized Inference Over Graphical Models
Divyanshu Vats and José M. F. Moura

Abstract

Graphical models compactly capture stochastic dependencies amongst a collection of random vari-

ables using a graph. Inference over graphical models corresponds to finding marginal probability dis-

tributions given joint probability distributions. Several inference algorithms rely on iterative message

passing between nodes. Although these algorithms can be generalized so that the message passing occurs

between clusters of nodes, there are limited frameworks forfinding such clusters. Moreover, current

frameworks rely on finding clusters that are overlapping. This increases the computational complexity

of finding clusters since the edges over a graph with overlapping clusters must be chosen carefully to

avoid inconsistencies in the marginal distribution computations. In this paper, we propose a framework

for finding clusters in a graph for generalized inference so that the clusters arenon-overlapping. Given

an undirected graph, we first derive a linear time algorithm for constructing a block-tree, a tree-structured

graph over a set of non-overlapping clusters. We show how thebelief propagation (BP) algorithm can be

applied to block-trees to get exact inference algorithms. We then show how larger clusters in a block-tree

can be efficiently split into smaller clusters so that the resulting graph over the smaller clusters, which we

call a block-graph, has lower number of cycles than the original graph. We show how loopy BP (LBP)

can be applied to block-graphs for approximate inference algorithms. Numerical simulations show the

benefits of running LBP on block-graphs as opposed to runningLBP on the original graph. Our proposed

framework for generalizing BP and LBP can be applied to otherinference algorithms.

Index Terms

Graphical Models, Markov Random Fields, Belief Propagation, Loopy Belief Propagation, General-

ized Belief Propagation, Block-Trees, Block-Graphs.

The authors are with the Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA,
15213, USA (email: dvats@andrew.cmu.edu, moura@ece.cmu.edu, ph: (412)-268-6341, fax: (412)-268-3980).

http://arxiv.org/abs/1107.4067v1

2

I. INTRODUCTION

A graphical model is a random vector defined on a graph such that each node represents a random

variable (or multiple random variables), and edges in the graph represent conditional independencies.

The underlying graph structure in a graphical model leads toa factorization of the joint probability

distribution. This property has lead to graphical models being used in many applications such as sensor

networks, image processing, computer vision, bioinformatics, speech processing, and ecology [1], [2], to

name a few.

The structure of the graph plays an important role in determining the computational complexity of

performing various tasks over graphical models. For example, given a probability distributionp(x) of

a graphical modelx = {x1, . . . , xn}, it is of interest in many applications to compute the marginal

distributionps(xs). This problem is referred to asinference[2]. Algorithms for performing inference over

graphical models can be divided into exact inference algorithms and approximate inference algorithms.

The need for approximate inference algorithms arises because for a large class of graphs (with high

treewidth), performing exact inference is computationally intractable.

Belief propagation (BP) [3] is a popular algorithm for exactinference overtree-structuredgraphical

models. The BP algorithm iteratively computes the marginaldistribution of each node in the graphical

model by passing messages between nodes. When applying BP tographs with cycles, resulting in the

loopy BP (LBP) algorithm [3], it is well known that the algorithm may not converge and the estimated

marginal distributions may differ from the true marginal distribution. To improve the accuracy of LBP,

the generalized BP (GBP) was proposed in [4], where the authors establish theoretical results showing

how by performing message passing between clusters of nodes(instead of individual nodes), the accuracy

of inference may be improved. Despite the known theoreticaladvantages of GBP, there have been limited

frameworks for systematically finding clusters in a graph for performing GBP. Further, in many cases,

it is not clear how the approach of message passing between clusters instead of nodes can be naturally

extended to other inference algorithms such as mean-field inference, tree-based reparameterization belief

propagation (TRP-BP) [5], [6], and tree-reweighted beliefpropagation (TRW-BP) [7].

A. Summary of Contributions

In this paper, we propose a framework that usesnon-overlapping clustersto generalize inference

algorithms over graphical models. The proposed framework is illustrated in Fig. 1. LetAlg be an inference

algorithm that marginalizes a joint probability distribution p(x) defined on a graphG = (V,E). The output

of Alg is the set of marginal distributions{ps(xs)}. In our proposed framework for generalizingAlg, we

3

Alg(p(x), G) {ps(xs)}

Alg
{pVi

(xVi
)}

Block-Graph
(p(x),G)

Process(p(x), G) {ps(xs)}

Generalized Alg

Fig. 1. A framework for generalized inference over graphical models.

map the graphG into a block-graphG = (V, E), defined as a graph in which each node is a cluster of

multiple nodes (from the original graphG) such that the clusters are non-overlapping. We then applyAlg

to the block-graph to get marginal distributions of each cluster, which we process to get the marginal

distribution of each node.

Our framework in Fig. 1 can be applied to generalize inference algorithms. In this paper, we focus on

generalizing belief propagation (BP) and loopy BP. We first consider the problem of exact inference over

graphical models. Given anon tree-structuredgraphical model, we propose alinear time algorithm for

finding non-overlapping clusters in the graph so that the block-graph over these clusters is tree-structured.

We call this graph ablock-tree. Applying BP to the block-tree leads to exact inference algorithms for

arbitrary graphical models. We compare the block-tree framework for exact inference to the junction-

tree framework [8]. A junction-tree is a tree-structured graph over clusters, where clusters connected by

edges arealways overlapping. We show that constructing block-trees is faster and give trade-offs for

using block-trees as opposed to junction-trees when performing inference over graphical models.

Next, we generalize the loopy BP (LBP) algorithm using the block-graph framework. LBP is used

extensively in the literature since exact inference using block-trees or junction-trees is computationally

intractable when the size of the clusters becomes very large. We propose a simple and efficient algorithm

for splitting larger clusters in a block-tree to form a block-graph. Our proposed algorithm for constructing

block-graphs reduces the number of cycles in the original graph (by forming non-overlapping clusters)

since LBP is known to perform better on nearly tree-structured graphical models. Using numerical

simulations, we show how LBP over block-graphs, constructed using our algorithm, leads to more accurate

inference algorithms when compared to using LBP on the original graph.

4

B. Related Work

In the literature, exact inference over graphical models using non-overlapping clusters is referred to

as the Pearl’s clustering algorithm [3]. In [9] and [10], theauthors use non-overlapping clustering for

some particular directed graphical models for an application in medical diagnostics. For lattices, [11]–[13]

derive inference algorithms by scanning the lattice horizontally (or vertically). Our algorithm in this paper

provides a principled way of finding non-overlapping clusters for deriving exact inference algorithms over

arbitrary (not necessarily lattice graphs and particular directed graphs) graphical models.

There has been significant work in extending the LBP algorithm of message passing between nodes to

message passing between clusters. It is known that the true marginal distributions of a graphical model

minimize the Gibbs free energy [14]. In [4], [15], the authors showed that the fixed points of the LBP

algorithm minimize the Bethe free energy, which is an approximation to the Gibbs free energy. This

motivated the Generalized Belief Propagation (GBP) algorithm which minimizes the Kikuchi free energy

[16], a better approximator to the Gibbs free energy. In GBP,the message passing is between clusters of

nodes that are overlapping. A more general approach to GBP isproposed in [17] using region graphs and

in [18] using the cluster variation method. Further, regiongraphs have been used in [5], [19] to extend

the TRP based method for inference in graphical models.

Although [17], [19] show that approximate inference can be improved using clustering, they do not

address the problem of choosing regions or clusters in arbitrary graphs over which we want to perform

message passing. In our numerical simulations, we show thatchoosing clusters arbitrarily may not result

in better inference algorithms. In [20], [21], the authors have considered methods for choosing regions,

however, their algorithms are limited to a small class of graphical models. In [22], the authors propose

Iterative Join-Graph Propagation (IJGP), which is a class of GBP algorithms. The IJGP algorithm first

computes a junction-tree and then randomly splits appropriate clusters into smaller clusters to build a

join-graph (or cluster-graph). However, since IJGP uses junction-trees, the clusters chosen are overlapping

and thus it is important to assign edges over these clusters so that the running intersection property is

satisfied. This constraint, combined with the fact that we are constructing a junction-tree, makes the

construction of a join-graph computationally hard. Thus, for problems where the graph structure changes

over time, using junction-tree based algorithms can be computationally infeasible. Another restriction

of the IJGP based approach is that it does not generalize other algorithms for message passing such as

TRP-BP or TRW-BP.

Our proposed approach of using non-overlapping clusters for approximate inference has been con-

5

sidered before. In the original paper describing GBP [15], the authors give an example of how non-

overlapping clusters can be used, however, there have been no algorithms in the literature for finding

appropriate clusters. In [23], [24], the authors use disjoint clusters to generalize mean field algorithms

for approximate inference. Although we do not demonstrate the use of our algorithm for mean field

methods, the clustering algorithm used in [24] is based on standard graph partitioning algorithms that are

computationally intensive for large graphs. Our greedy approach to finding clusters is simple, efficient,

and motivated by the observation that approximate inference is more accurate on graphs with smaller

and longer cycles than on graphs with larger and shorter cycles.

We note that our work differs from some other work on studyinggraphical models defined over graphs

with non-overlapping clusters. For example, [25], [26] consider the problem of learning a Gaussian

graphical model defined over some block-graph. Similar efforts have been made in [27] for discrete

valued graphical models. In [28], the author analyzes properties of a graphical model defined on a block-

tree. In all of the above works, the underlying graphical model is assumedto be block-structured. In our

work, we assume a graphical model defined on anarbitrary graph and then find a representation of the

graphical model on a block-graph to enable more accurate inference algorithms.

Our work in this paper is motivated by earlier work done by us in studying tree structures for Markov

random fields (MRFs) indexed over continuous indices [29]. In [30], [31], we have shown that a natural

tree-like representation for such MRFs exists over non-overlappinghypersurfaceswithin the continuous

index set. Using this representation, we derived extensions of the Kalman-Bucy filter [32] and the Rauch-

Tung-Striebel smoother [33] to Gaussian MRFs indexed over continuous indices.

C. Paper Organization

Section II reviews graphical models and the inference problem. Section III presents our algorithm for

finding non-overlapping clusters in a graph that form a tree.The resulting graph over the clusters is

called a block-tree. Section IV shows how exact inference can be performed on block-trees. Section V

presents our algorithm for splitting larger clusters in a block-tree for tractable approximate inference

algorithms. Section VI presents numerical simulations showing how effective our clustering algorithm is

for improving the accuracy of LBP. Section VII summarizes the paper.

II. BACKGROUND

Section II-A reviews properties and definitions related to graphs and graphical models necessary for

this paper. For a more complete study, we refer the readers to[34]. Section II-B reviews the junction-tree

6

X3

X9

X1

X4

X2
X5

X6

X7

X8

A
B C

Fig. 2. An example of a graphical model.

algorithm for exact inference over graphical models.

A. Graphical Models and Inference

A graphical model is defined using a graphG = (V,E), where the nodesV = {1, 2, . . . , p} index

a collection of random variablesx = {xs ∈ Ω : s ∈ V } and the edgesE ⊆ V × V encode statistical

dependencies [34], [35]. In this paper, we assume|Ω| = K is finite. Our results and algorithms easily

generalize to continuous valued random variables. The set of edges can be directed, undirected, or both.

Since directed graphical models can be mapped to undirectedgraphical models by moralizing the graph,

in this paper, we only present algorithms for undirected graphical models. The extensions to directed

graphical models follow immediately.

The edges in a graphical model imply Markov properties aboutthe collection of random variables.

The local Markov propertystates thatxs is independent of{xr : r ∈ V \{N (s)∪ s}} givenxN (s), where

N (s) is the set of neighbors ofs. For example, in Fig. 2,x2 is independent of{x3, x6, x7, x8, x9} given

{x1, x4, x5}. The global Markov property, which is equivalent to the local Markov property, states that,

for a collection of disjoint nodesA, B, andC, if B separatesA andC, xA is independent ofxC given

xB . An example of the setsA, B, andC is shown in Fig. 2. From theHammersley-Cliffordtheorem

[36], the Markov property leads to a factorization of the joint probability distribution over cliques (fully

connected subsets of nodes) in the graph,

p(x1, x2, . . . , xp) =
1

Z

∏

C∈C

ψC(xC) , (1)

whereC is the set of all cliques in the graphG = (V,E), ψC(xC) > 0 are potential functions defined

over cliques, andZ is the partition function, a normalization constant.

Inference in graphical models corresponds to finding marginal distributions, sayps(xs), given the

7

probability distributionp(x) for x = {x1, . . . , xn}. This problem is of extreme importance in many

domains. A classical example is in estimation when we are given noisy observationsy of x and we want

to estimate the underlying random vector. To find the minimummean square error (mmse) estimate, we

need to marginalize the conditional probability distribution p(x|y) to find the marginalsps(xs|y). An

algorithm for marginalizingp(x) can be used for marginalizingp(x|y).

As mentioned before, belief propagation (BP) is a popular algorithm for exact inference over tree-

structured graphical models. BP consists of two stages. In the first stage, we pass messages from leaves

in a tree to the root. In the second stage, we pass messages from the root to the leaves. To find the marginal

distribution of each node, we take the product of all incoming messages in the tree. An extension of BP

to more general graphs is provided in [8], where the message passing is done between clusters instead of

individual nodes. We review this algorithm, called the junction-tree algorithm, in the next Section. Some

other frameworks for exact inference over arbitrary graphical models have been proposed in [37], [38].

B. Junction-Tree

Junction-trees were introduced in [39] for representing graphs with cycles as tree-structured graphs.

In [8], the authors showed that inference over undirected graphical models with cycles can be achieved

using junction-trees. Formally, a junction-tree is definedas follows [40].

Definition 1 (Junction-Tree):For a graphG = (V,E), a junction-treeJ = (C, E) is a graph over

clusters of nodes inV so that

1) Each node inV is associated with at least one cluster inC.

2) For every edge(v1, v2) ∈ E, there exists a clusterCk ∈ C such that{v1, v2} ∈ Ck.

3) J satisfies the running intersection property: For all clustersCi, Ck, andCj such thatCk separates

Ci andCj, Ci ∩ Cj ⊂ Ck.

The idea behind using junction-trees for inference in graphical models is to cluster nodes in the graph

and then form a tree-structured graph over the clusters. Theclusters in a junction-tree are overlapping,

i.e., for two clustersCi and Cj connected by an edge in the junction-tree,|Ci ∩ Cj | > 0. Given a

tree-structured graph, we can apply a variant of the belief propagation algorithm so that the message

passing is between clusters of nodes (instead of individualnodes) [41], [42]. The running intersection

property ensures that inference over the junction-tree is consistent so that if a nodes is in two clusters,

the marginal distribution ofxs computed from each cluster after running message passing isthe same.

For an example of a junction-tree, we refer to Appendix A, where we review algorithms for constructing

junction-trees.

8

The following proposition summarizes the complexity of constructing junction-trees and that of per-

forming inference over junction-trees.

Proposition 1: Given an undirected graphG = (V,E), the complexity of constructing a junction-tree

J = (C, E) is O(|E|+ |C|2). For a random vectorx ∈ Ωn, where|Ω| = K, Markov on the graphG, the

complexity of cluster based message passing using the junction-treeJ is

O


 ∑

(i,j)∈E

K |Ci| +K |Cj |


 . (2)

Proof: See [43] for the complexity of constructing a junction-treeand [44] for the complexity of

message passing in a junction-tree.

III. B LOCK-TREES: FINDING TREESOVER NON-OVERLAPPING CLUSTERS

In this Section, we present our algorithm for finding a block-tree, which is formally defined as follows.

Definition 2 (Block-Graph and Block-Tree):For a graphG = (V,E), a block-graphG = (V, E) is a

graph over clusters of nodes inV such that each node inV is associated with only one cluster inV. In

other words, the clusters inV are non-overlapping. If the edge setE ⊆ V × V is tree-structured, we call

the block-graph ablock-tree.

Our proposed algorithm for constructing a block-treeG given an arbitrary graphG = (V,E) is shown

in Algorithm 1. The input to the algorithm is the original graph G and a set of nodesV1 ⊂ V . The

output of the algorithm is the block-treeG. We refer toV1 as theroot cluster. The algorithm first finds

an initial set of clusters and then splits these clusters to find the final block-tree. The various steps in the

algorithm are explained as follows.

Forward step: Find clustersV1, V2, . . . , Vr using breadth-first search (BFS) so thatV2 = N (V1), V3 =

N (V2)\{V1∪V2}, . . . , Vr = N (Vr)\{Vr−2∪Vr−1} . These clusters serve as initial clusters for the block-

tree. During the BFS step, split each clusterVk into its connected components{V 1
k , . . . , V

mk

k } using the

subgraphG(Vk), which denotes the graph only over the nodes inVk (Line 2).

Backwards step: We now merge clusters to find the final block-tree. The key intuition in this step is that

each clusterVk should be connected to a single cluster inVk−1. If this is not the case, we merge clusters

in Vk−1 accordingly. Starting atVr = {V 1
r , V

2
r , . . . , V

mr

r }, for eachV j
r , j = 1, . . . ,mr, find all clusters

C(V j
r) in Vr−1 that are connected toV j

r (Line 6). Combine all clusters inC(V j
r) into a single cluster and

update the clusters inV j
r−1 accordingly. Repeat the above steps for all the clusters inVr−1, Vr−2, . . . , V3.

In the first part of Algorithm 1, we find successive non-overlapping neighbors of the root cluster. In

the backwards step, we merge clusters to form a final block-tree. We illustrate Algorithm 1 using some

9

Algorithm 1: Constructing Block-Trees: BlockTree(G,V1)

Data: A graphG = (V,E) and a set of nodesV1.
Result: A block-treeG = (C, E)

1 Find successive neighbors ofV1 to construct a sequence ofr clustersV1, V2, . . . , Vr such that
V2 = N (V1), V3 = N (V2)\{V1 ∪ V2}, . . . , Vr = N (Vr)\{Vr−2 ∪ Vr−1}.

2 {V 1
k , . . . , V

mk

k } ← Find mk connected components ofVk using subgraphG(Vk).
3 for i = r, r − 1, . . . 3 do
4 for j = 1, 2, . . . mi do
5 C(V j

i)← N (V j
i) ∩ Vi−1 ; All nodes inVi−1 connected toV j

i .
6 CombineC(V j

i) into one cluster and updateVi−1.

7 V ←
⋃r

k=1{V
1
k , V

2
k , . . . , V

mk

k }
8 E ← edges between all the clusters inV

1

2 3

4 5

6 7

8

V1

V2

V3

V4

V5

(a)

1

2 3

4 5

6 7

8

(b)

1

2 3

4 5

6 7

8

(c)

Fig. 3. (a) Original estimates of the clusters in a single loop graphwhen running the forward pass of Algorithm 1.
(b) The final clusters after running the backwards pass of Algorithm 1. (c) Final block-tree.

examples.

Example: Consider the graph with a single loop in Fig. 3(a). ChoosingV1 = {1}, we can get the initial

estimates of the clusters as shown in Fig. 3(a). To get the final estimates, which coincides with the initial

estimates of the clusters, we run the backwards step of Algorithm 1. See Fig. 3(b) for the resulting graph.

The final block-tree is shown in Fig. 3(c).

Example: Now consider the grid graph of Fig. 15(a). ChoosingV1 = {1}, we get the initial estimates of

the clusters as shown in Fig. 4(a). Running the backwards step to identify the final clusters (see Fig. 4(b)),

we get the block-tree in Fig. 4(c).

Example: In the examples considered so far, the initial estimates of the clusters matched the final

estimates and the final block-tree was a chain-structured graph. We now consider an example where the

10

1

4 2

7 5 3

8 6

9

V1

V2

V3

V4

V5

(a)

1

4 2

7 5 3

8 6

9

(b)

1

2 4

3 5 7

6 8

9

(c)

Fig. 4. (a) Original estimates of the clusters in a grid graph when running the forward pass of Algorithm 1. (b)
The final clusters after running the backwards pass of Algorithm 1. (c) Final block-tree.

7

8 4

9 5 1

6 2

3

V1

V2

V3

V4

V5

(a)

7

8 4

9 5 1

6 2

3

(b)

7

4 8

5 9 1

2 6

3

(c)

Fig. 5. (a) Original estimates of the clusters in a partial grid whenrunning the forward pass of Algorithm 1. (b)
The final clusters after running the backwards pass of Algorithm 1. (c) Final block-tree.

final block-tree will in fact be tree-structured. Consider the partial grid graph of Fig. 5(a). Choosing

V1 = {7}, we get the initial estimates of the clusters in Fig. 5(a). Wenow run the backwards step of

the algorithm. SinceV5 = {3} is connected to2 and6, C(V5) = {2, 6}. Thus,{2, 6} become a single

cluster. We now find neighbors of{2, 6} in V3 = {9, 5, 1}. It is clear that only{9, 5} are connected to

{2, 6}, so {9, 5} become a single cluster. In this way, we have splitV3 into two clusters:V 1
3 = {9, 5}

andV 2
3 = {1}. Continuing the algorithm we find the rest of the clusters as shown in Fig. 5(b). The final

block-tree is shown in Fig.5(c).

The following proposition summarizes the time complexity and correctness of Algorithm 1.

Proposition 2: Algorithm 1 for constructing block-trees runs in timeO(|E|) and always outputs a

block-tree.

11

1 2 4

2 4 3 5 7

3 5 7 6 8

6 8 9

(a)

7 4 8

1 4 85 9 4 8

2 6 5 9

3 2 6

(b)

Fig. 6. (a) Junction-tree for the block-tree in Fig. 4(c) (b) Junction-tree for the block-tree in Fig. 5(c)

Proof: Both the forward step and the backwards step involve a breadth first search, which has

complexityO(|E|). Algorithm 1 always outputs a block-tree since each clusterin Vk is only connected

to a single cluster inVk−1.

We make the following remarks regarding Algorithm 1.

Remark 1: If G is a tree to begin with, the output of Algorithm 1 will be the same tree no matter

which root cluster we start with. However, when constructing junction-trees, it is important to choose an

appropriate elimination order (see Appendix A) to ensure that an optimal junction-tree is constructed.

Remark 2:Different choices of the root clusterV1 will yield different block-trees. Note that onceV1

is fixed, the block-tree is also fixed. In Section IV-B, we define an optimal block-tree which depends on

the choice of the initial clusterV1.

Remark 3:Comparing the complexity of constructing block-trees (seeProposition 2) to that of con-

structing junction-trees (see Proposition 1), we notice that constructing junction-trees has an added

complexity that is quadratic in the number of clusters in thejunction-tree. Thus, constructing block-

trees is faster than constructing junction-trees.

Remark 4:Using Algorithm 2 for constructing junction-trees (see Appendix A), we can find a junction-

tree for every block-tree. For example, the junction-tree representation for the block-trees in Fig. 4(c)

and Fig. 5(c) are given in Fig. 6(a) and Fig. 6(b), respectively. We use this relationship in Section IV-C

to find an approximation to the optimal block-trees.

IV. EXACT INFERENCEUSING BLOCK-TREES

Section IV-A shows how the belief propagation algorithm canbe applied to block-trees for infer-

ence over graphical models. Section IV-B defines an optimal block-tree. Section IV-C discusses greedy

algorithms for finding optimal block-trees. Section IV-D compares block-trees to junction-trees.

12

A. Belief Propagation on Block-Trees

Since block-trees are tree-structured graphs, we can use belief propagation algorithms for inference.

Let x be an undirected graphical model onG = (V,E) with probability distributionp(x). For simplicity,

we assume thatx is discrete valued so thatx ∈ Ω, where|Ω| = K, however, the inference algorithm

easily extends to continuous valued random variables. Recall from (1) that the probability distribution

factorizes over the cliques of the graph so that

p(x) =
1

Z

∏

C∈C

ψC(xC) , (3)

where the functionsψC(xC) are known a priori. Suppose we construct a block-treeG = (V, E) from G

using a root clusterV1. To capture the structure of the original graphG in the block-treeG, we introduce

the following notation.

Notation: For every edge(i, j) ∈ E connecting two clustersVi andVj, associate a label(V i,Vj) so that

in the original graphG, the nodes inV i are not connected to the nodes inVj and the nodes inVj are

not connected to the nodes inVi. For example, in Fig. 5(c), all the edge labels will be empty,except

the label between{1} and{4, 8}, which will have a label({}, {8}) since8 is not connected to1 in the

original graph.

The following steps illustrate how the belief propagation algorithm can be modified for block-trees.

Step 1. Construct a block-treeG from the undirected graphG using a root clusterV1.

Step 2. The cliques in the block-treeG are the edges, so we can write down an alternative factorization

for the probability distribution inp(x) as

p(x) =

l∏

k=1

Φk(xVk
)

∏

(i,j)∈E

Ψi,j(xVi\Vi
, xVj\Vj

) , (4)

where we map each potential function in the original factorization in (3) to an appropriate factor

without repeating.

Step 3. Using an arbitrary root node in the block-tree, identify the leaves and pass messages starting

at the leaves up to the root. For example, a message from cluster Vi to clusterVj is given as

follows:

mi→j(xVj\Vj
) =

∑

xVi\Vi

Ψi,j(xVi\Vi
, xVj\Vj

)
∑

xVi

∏

k∈N (Vi)\Vj

Φi(xVi
)mk→i(xVi

) , (5)

whereN (Vi) are neighboring clusters ofVi.

13

Step 4. Once all messages have reached the root, pass messages from the root back to the leaves using

the same message passing equation in (5).

Step 5. The joint distribution for each cluster is given by

pVi
(xVi

) =
∏

j∈N (Vi)

mj→i(xVi
)Φi(xVi

) (6)

Step 6. Marginalize the distribution of each cluster to find the distribution of each node.

The complexity of the message passing algorithm is given as follows.

Proposition 3: For an undirected graphical modelx defined on a graphG = (V,E), let G = (V, E) be

the block-tree constructed using a root clusterV1. The complexity of message passing over the block-tree

is

O


 ∑

(i,j)∈E

K |Vi| +K |Vj | + 2K |Vi\Vi|+|Vj\Vj |


 . (7)

Proof: From (5), the complexity of passing messages from clusterVi to clusterVj is

O
(
K |Vi| +K |Vi\Vi|+|Vj\Vj |

)
(8)

Summing over all edges and using the fact that we pass messages twice on an edge(i, j), we get the

desired result.

We conclude this Section with some remarks regarding the belief propagation algorithm applied to

block-trees.

Remark 5:An alternative way to derive the message passing algorithm over block-trees is to transform

the block-tree into a junction-tree and then use popular junction-tree based inference algorithms [41], [42].

The complexity of the inference algorithm will be the same, however, by directly using the block-tree,

we avoid the step of constructing a junction-tree.

Remark 6:We explain the importance of labeling edges in the block-tree for message passing. Consider

the block-tree in Fig. 5(c). LetVa = {1} andVb = {4, 8}. As mentioned before, the label betweenVa

andVb is ({}, {8}). From this label, we conclude that the potentialΨa,b betweenVa andVb will be a

function of only1 and4 since8 is not connected to1. The message fromVa to Vb will have the form

ma→b(x4) =
∑

x1

Ψa,b(x1, x4) . (9)

The complexity of passing the above message isO(K2). Now suppose we do not label the edge. In this

case, the algorithm will assume that the potential betweenVa andVb is a function of1, 4, and8. The

14

message fromVa to Vb will have the form

ma→b(x4, x8) =
∑

x1

Ψa,b(x1, x4, x8) . (10)

The complexity of passing the above message isO(K3). Note thatΨa,b(x1, x4, x8 = θ1) = Ψa,b(x1, x4, x8 =

θ2) for all θ1, θ2 ∈ Ω, however, this information is not provided in the message passing algorithm since

the label is not specified.

Remark 7: In light of Remark 6, an upper bound on the message passing complexity isO


 ∑

(i,j)∈E

K |Vi|+|Vj|


,

which is obtained by passing messages without labeling the edges in the block-tree.

B. Optimal Block-Trees

From Proposition 3, we see that the complexity of message passing over block-trees is dominated by

the term in (7) whose exponent is maximum. Thus, an optimal block-tree can be defined such that

w(G, V1) = max
(i,j)∈E

{
max

{
|V i|, |Vj |, |Vi\V i|+ |Vj\Vj|

}}
(11)

is minimized. Notice that (11) depends on the choice of the root clusterV1 in constructing the block-

tree. Thus, finding anoptimal block-treeis equivalent to finding an optimal root cluster. This problem is

computationally intractablesince we need to search over all possible combinations of root clustersV1.

As an example illustrating how the choice ofV1 alters the block-tree, consider finding block-trees for

the partial grid in Fig. 5. In Fig. 5(c), we construct a block-tree usingV1 = {7} as the root cluster.

The complexity of inference in this graph isO(K4) because of the message passing between the cluster

{5, 9} and{4, 8} and between cluster{2, 6} and{5, 9}. Instead of choosingV1 = {7}, let V1 = {7, 4}.

The initial estimate of the clusters are shown in Fig. 7(a). The final block-tree is shown in Fig. 7(c). It

is clear that message passing on the block-tree in Fig. 7(c) will have complexityO(K5) because of the

message passing between the cluster{9, 6, 2} and the cluster{8, 5}.

C. Greedy Algorithms for Finding Optimal Block-Trees

In the previous Section, we saw that finding optimal block-trees is computationally intractable. In this

Section, we propose three greedy algorithms for finding optimal block-trees that have varying degrees of

computationaly complexity.

Minimal degree node - MinDegree: In this approach, which we callMinDegree, we find the node with

minimal degree and use that node as the root cluster. The intuition behind this is that the minimal degree

15

7 4

8 5 1

9 6 2

3

V1

V2

V3

V4

(a)

7 4

8 5 1

9 6 2

3

(b)

7 4

8 5 1

9 6 2

3

(c)

Fig. 7. (a) Original estimates of the clusters in the partial grid using V1 = {7, 4} as the root cluster. (b) Splitting
of clusters. (c) Final block-tree.

100 200 300 400 500
0

10

20

30

40

50

60

Number of nodes

W
id

th
 o

f B
lo

ck
−

T
re

e

Exhaustive Search
MinDegree
GreedyDegree
GreedyFillin

Fig. 8. Plot showing the performance of three different greedy heuristics for finding optimal block-trees.

node may lead to the smallest number of nodes being added in the clusters. The complexity of this

approach isO(n), wheren is the number of nodes in the graph.

The next two algorithms we propose are based on the relationship between junction-trees and block-

trees. Recall from Remark 4 that for every block-tree, we canfind a junction-tree. This means that an

optimal junction-tree may be used to find an approximate optimal block-tree. From Appendix A, we

know that an optimal junction-tree can be found using an optimal elimination order. Thus, we make use

of algorithms for finding optimal elimination orders to find optimal block-trees.

Using an elimination order - GreedyDegree: One of the simplist algorithms for finding an approximate

optimal elimination order is known asGreedyDegree [45], [46], where the elimination order corresponds

16

to the sorted list of nodes in increasing degree. The complexity of GreedyDegree is O(n log n) since we

just need to sort the nodes. Using the elimination order, we triangulate the graph to find the cliques. We

then search over a constant number of cliques to find a root cluster that leads to the minimal width as

defined in (11).

Using an elimination order - GreedyFillin: Another popular greedy algorithm is to find an optimal

elimination order such that at each step in the triangulation algorithm (see Appendix A), we choose a

node that adds a minimal number of extra edges in the graph. This is known asGreedyFillin [47] and

has polynomial complexity. Thus,GreedyFillin is in general slower thanGreedyDegree, but does lead

to slightly better elimination orders on average. To find theblock-tree, we again search over a constant

number of cliques over the triangulated graph.

We now evaluate the three different greedy algorithms,MinDegree, GreedyDegree, andGreedyFillin,

for finding optimal block-trees in Fig. 8. To do this, we create clusters of sizek such that the total number

of nodes isn (one cluster may have less thank nodes). We then form a tree over the clusters and associate

a clique between two clusters connected to each other. We then remove a certain fraction of edges over

the graph (not the block-tree), but make sure that the graph is still connected. By construction, the width

of the graph constructed will be at most2k. Fig. 8 shows the performance ofMinDegree, GreedyDegree,

andGreedyFillin over graphs with different number of nodes and different values ofk. We clearly see

that bothGreedyDegree andGreedyFillin compute widths that are close to optimal. The main idea is that

we can use various known algorithms for finding optimal junction-trees to find optimal block-trees.

D. Block-Trees vs. Junction-Trees

In this Section, we show how block-trees can lead to computational savings when used for inference

over graphical models. The main idea is that for certain graphical models, the complexity of constructing

the junction-tree can dominate the complexity of the inference algorithm, thus in these cases, we can use

block-trees instead of junction-trees for inference.

1) Example: Single Cycle Graphical Models:Let G = (V,E) be a graphical model on a graph with

a single cycle, as in Fig. 3(a). The complexity of inference using a junction-tree is

O
(
n+ n2 + 2nK3

)
≈ O

(
n2 + 2nK3

)
, (12)

whereO(n + n2) is the complexity of constructing the junction-tree andO(nK3) is the complexity of

belief propagation (see Proposition 1) since all the cliques in the junction-tree will have size three. The

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

c, K = 2

C
om

pl
ex

ity
 o

f I
nf

er
en

ce

Junction−tree
Block−tree

1

1.19 1.6
1.86

1.99

2.03

2.15

2.33

2.79

Fig. 9. Comparing the complexity of inference using junction-trees vs. using block-trees for graphs sampled using an Erdős-
Rényi model. For eachc, we have denoted the average treewidth over 100 randomly generated graphs.

complexity of inference using a block-tree is

O
(
n+ nK4

)
≈ O

(
nK4

)
, (13)

whereO(n) is the complexity of constructing the block-tree (see Proposition 2) andO(nK4) is the

approximate complexity of inference over the block-tree (see Fig. 3(c) for an example). It is clear that

there exists some constantc > 0 such that ifn > cK4, the complexity of inference using the junction-tree

will dominate the complexity of inference using the block-tree. Recall thatK is the number of states

each random variable can take, so this number remains fixed asn increases.

2) Example: Erd̋os-Ŕenyi Graph: In this Section, we assume that the graphG = (V,E) is a realization

of an Erdős-Rényi [48] graph, denoted byG(n, c/n). Heren is the number of nodes andc/n is the

probability that an edge appears in the graph (independent of all other edges). Many naturally occurring

networks, such as large social networks, may be modeled using Erdős Rényi graphs [49].

It is well known that forc < 1 and forlargen, the treewidth (see Definition 4) of a graph realized using

an Erdős-Rényi model is at most two [48]. Thus, for graphical models defined on such random graphs,

inference is tractable. The comparison of the complexity ofinference using block-trees and junction-trees

on a1000 node graph is shown in Fig. 9. The results shown are over 100 randomly generated graphs for

c chosen between0 and 1. The average treewidth over the 100 graphs is also shown in the graph. We

clearly see the benefits of using block-trees over junction-trees. Note that, when reporting complexity

18

Elimination Order Triangulation

Block-Tree |C|2 > Kw(G)

Junction-TreeG
W

C

C,G
G

J

Yes

No

Fig. 10. Algorithm to choose between a block-tree and a junction-tree for inference over graphical models.

results, we factor in the complexity of constructing the junction-tree or the block-tree, in addition to

the complexity of performing message passing in the graph. For c > 1, the graph realized using an

Erdős-Rényi model no longer has low treewidth and the treewidth is known to be of the orderc′n, where

c′ is some constant andn is the number of nodes in the graph [50]. Thus, in this case, the complexity

of inference will dominate the complexity of constructing the junction-tree, so the block-tree framework

will no longer be faster.

3) Discussion: From the examples presented in this Section, we see that, fora certain class of

graphical models, the complexity of using block-trees overjunction-trees leads to complexity benefits

when performing inference over graphical models. The main computational gains are in constructing

the block-tree. We note that, for some applications, the junction-tree or the block-tree only needs to be

computed once. In these cases, the complexity of inference will be dominated by the message passing

algorithm. Thus, the main advantage of the block-tree framework is in studying inference problems

where the graph structure varies over time and the inferencealgorithm needs to compute a new tree-

decomposition at each time instant.

Fig. 10 outlines an algorithm for deciding between choosingthe junction-tree or block-tree for infer-

ence. In the first step of the algorithm, we compute an elimination order from the graph. As outlined in

Section IV-C, this can be done using standard algorithms in the literature to compute optimal elimination

orders, see [51] for a review of such algorithms. Using the elimination order, we compute a triangulated

graph and find the set of cliquesC. We use the set of cliques to find a block-tree as outlined in

Section IV-C. From the block-tree, we determine if the complexity of constructing the junction-tree

dominates the complexity of inference over the block-tree.If this is the case, we use the block-tree for

inference, otherwise we construct the junction-tree.

19

V. BLOCK-GRAPH: SPLITTING CLUSTERS IN A BLOCK-TREE

In this Section, we show how block-trees can be used to deriveapproximate inference algorithms.

Section V-A discusses our algorithm for splitting larger clusters in a block-tree to form a block-graph.

Section V-B shows how approximate inference can be performed over block-graphs.

A. Constructing Block-Graphs

From Remark 7, we know that the complexity of message passingbetween two non-overlapping clusters

Vi andVj is at most exponential in|Vi| + |Vj|. Thus, when the size of the clusters in a block-tree is

large, exact inference using block-trees is computationally intractable. From Proposition 1, we conclude

the same about exact inference using junction-trees.

To reduce the computational complexity of message passing,we split larger clusters in the block-tree.

The resulting graph over the new clusters will not be tree-structured, hence the BP algorithm can no

longer be applied. We will discuss the loopy BP algorithm [3]in Section V-B for approximate inference

over non tree-structured graphical models.

To determine the size of the clusters allowed, we assume a user defined maximal message passing

complexitym so that the complexity of message passing between any two clusters is at mostO(Km),

whereK is the number of states each random variable can take. In general, m will be chosen to be

sufficiently small so that inference is tractable. We modifyAlgorithm 1 for constructing block-trees to

construct block-graphs, a graph with non-overlapping clusters.

Step 1. Using an initial cluster of nodesV1, find clustersV1, V2, . . . , Vr using breadth-first search (BFS)

such thatV2 = N (V1), V3 = N (V2)\{V1 ∪ V2}, . . . , Vr = N (Vr)\{Vr−2 ∪ Vr−1}. While doing

the BFS, writeVk as the set of all connected components in the subgraphG(Vk). Thus,Vk is a

set of clusters.

Step 2. To ensure that the user defined maximal message passing complexity is satisfied, fork odd, we

split the clusters inVk so that each cluster has maximal cardinality⌈m/2⌉ and fork even, we

split clusters inVk so that each cluster has maximal cardinality⌊m/2⌋. This ensures that for

all messages passed between clusters in differentVk, the message passing complexity is at most

O(Km).

Step 3. ForVr, if there exists any cluster that has cardinality greater than ⌈m/2⌉ or ⌊m/2⌋, depending

on whetherr is odd or even, partition those components. LetVr = {V 1
r , V

2
r , . . . , V

mr

r } be the

final set clusters.

20

1

2 3 4

5 6 7 8

(a)

1

42 3

5 6 7 8

(b)

1

2 3 4

5 6 7 8

(c)

Fig. 11. Explaining Step 6 in the block-graph construction algorithm. Given the block-graph in (a), if we merge
nodes2 and 3, we get the block-graph in (b). If we merge nodes3 and 4, we get the block-graph in (c). Notice
that the block-graph in (c) has just one loop.

Step 4. We perform the next steps for eachk = r− 1, r − 2, . . . , 1, starting atk = r− 1. Let Ṽk be the

set of all clustersVk that have cardinality greater than⌈m/2⌉ or ⌊m/2⌋, depending on whether

k is odd or even.

Step 5. Partition all clusters iñVk into appropriate size clusters of size⌈m/2⌉ or ⌊m/2⌋ and also ensuring

that the message passing complexity between clusters created is at mostO(Km).

Step 6. We now merge the clusters in the setVk\Ṽk. The idea used in merging clusters is that if two

clusters are connected to the same cluster inVk+1, then by merging these two clusters, we reduce

one edge in the final block-graph. Further, if two clusters inVk are not connected to the same

cluster inVk+1, we do not merge these two clusters, since the number of edgesin the final

block-graph will remain the same. The final clusters constructed using the above rules is denoted

asVk = {V 1
k , . . . , V

mk

k }.

Step 7. The block-graph is given by the clustersV =

r⋃

k=1

{V 1
k , V

2
k , . . . , V

mk

k } and the set of edgesE

between clusters.

The key step in the above algorithm is Step 6, where we clusternodes appropriately. Fig. 11 explains

the intuition behind merging clusters with an example. Suppose, we use the block-graph construction

algorithm up to Step 5 and now we want to merge clusters inV2 = {2, 3, 4}. If we ignore Step 6 and

merge clusters randomly, we might get the block-graph in Fig. 11(b) on merging nodes2 and3. If we use

Step 6, then since nodes3 and4 are connected to the same node, we merge these to get the block-graph

in Fig. 11(c). Notice that Fig. 11(c) is a graph with a single cycle with five edges, whereas Fig. 11(b) is

a graph two cycles of size four and three. It has been observedthat inference over graphs with longer

cycles is more accurate than inference over graphs with shorter cycles [52]. Thus, our proposed algorithm

leads to block-graphs that are favorable for inference.

21

B. Approximate Inference Using Block-Graphs

In this Section, we review the loopy belief propagation (LBP) algorithm [3] applied to block-graphs. The

algorithm uses the same message passing updates as in the normal belief propagation (see Section IV-A)

applied to block-trees, but ignores the fact that the graph is not tree-structured.

Let G = (V, E) be the block-graph constructed using the algorithm in Section V. Recall the notation

adopted in Section IV-A for labeling edges in a block-tree. Just like in Step 2 in Section V, reparameterize

the joint probability distribution as in (4). Letmt
i→j(xVj\Vj

) denote the message passed from clusterVi

to Vj. Assume the initial messages att = 0 are unity, i.e.,m0
i→j(xVj\Vj

) = 1 for all xVj\Vj
∈ Ω|Vj\Vj |

and (i, j) ∈ E . For each iteration, the message passing updates are given as

mt
i→j(xVj\Vj

) =
∑

xVi\Vi

Ψi,j(xVi\Vi
, xVj\Vj

)
∑

xVi

∏

k∈N (Vi)\Vj

Φi(xVi
)mt−1

k→i , (14)

After T iterations, the joint distribution of each clusterVi is proportional to the product of all incoming

messages:

pVi
(xVi

) ∝
∏

j∈N (Vi)

Φi(xVi
)mT

j→i (15)

To find the marginal distribution of each node, we marginalize the joint distributionpVi
(xVi

), which

has complexityO(|Vi|K
|Vi|).

VI. N UMERICAL SIMULATIONS

In this Section, we provide numerical simulations to show the performance gains when using block-

graphs for inference over graphical models. We study inference over binary valued graphical models

defined on grid graphs. For each random variable, letxs ∈ {−1,+1}. We assume that each node has a

potential given byφi(xi) = exp(−aixi), whereai ∼ N (0, (0.25)2) and the edge potentials are given by

Repulsive:ψij(xi, xj) = exp(−|bij |xixj) (16)

Attractive:ψij(xi, xj) = exp(|bij |xixj) (17)

Mixed: ψij(xi, xj) = exp(−bijxixj) , (18)

wherebij ∼ N (0, 1). For distributions with attractive (repulsive) potentials, neighboring random variables

are more likely to take the same (opposite) value. For distributions with mixed potentials, some neighbors

22

Fig. 12. Comparison of convergence and accuracy of using LBP on graphs vs. using LBP on block-graphs for
a 7 × 7 grid graph. Results are over 500 runs. The iterations and accuracy results are when all the algorithms
converge.

are attractive, whereas some are repulsive. We consider three types of graphs:7 × 7 grid graphs,8 × 8

grid graphs, and30× 30 grid graphs. We analyze the results of the numerical simulations as follows:

Notation: LBP refers to running loopy belief propagation on the original graph. LBPm refers to running

LBP on a block-graph constructed using our proposed algorithm in Section V such that the maximal

message passing complexity isO(Km). LBPm-Rand refers to using a modification of the algorithm in

Section V so that instead of merging clusters in a structuredmanner using Step 5 and Step 6, we instead

merge clusters randomly. Note that each iteration of the LBPalgorithm has complexityO(2|E|K2). On

the other hand, running LBP on block-graphs has higher complexity (see Proposition 2). To objectively

compare results on the number of iterations, we rescale the values. Thus, if the LBP on a block-graph

converges inT iterations, we rescale this number byT ·C ′/C, whereC ′ is the complexity of inference

using the block-graph andC is the complexity of using just the graph. We declare convergence if the

absolute difference between the messages passed in successive iterations is less than a threshold of

ǫ = 10−4. If the algorithm does not converge in3000 iterations, we say the algorithm failed to converge.

Given the true marginal distributionps(xs) of each node and an estimatep̂s(xs), the accuracy is measured

by

Accuracy=
1

2|V |

∑

xs∈{−1,+1}

|ps(xs)− p̂s(xs)| . (19)

7×7 grid graph: Fig. 12 shows results of running LBP on block-graphs and running LBP on the original

7 × 7 grid graph. The first three columns report the number of timesthe algorithm converged out of

500 runs. LBP using mixed potentials converged only60% of the time, whereas LBP4 and LBP4-Rand

converged on all 500 runs. This suggests that mixed potentials cause Ising models to sometimes not

converge. Comparing the mean number of iterations (which are rescaled) required for convergence, we

note that for both attractive and repulsive potentials, LBPconverges faster. However, for mixed potentials,

block-graphs converge faster. Comparing LBP4 and LBP4-Rand, we see the benefits of merging clusters

23

Fig. 13. Comparison of convergence and accuracy of using LBP on graphs vs. using LBP on block-graphs for
a 8 × 8 grid graph. Results are over 200 runs. The iterations and accuracy results are when all the algorithms
converge.

in a structured manner rather than merging clusters randomly since LBP4 converges faster than LBP4-

Rand. For mixed potentials, the convergence speed is almosttwice as that of LBP4-Rand. Comparing

the accuracy, we see that using block-graphs leads to smaller errors. Comparing LBP4 and LBP4-Rand,

for repulsive and attractive potentials there is almost no difference between the error, however, for mixed

potentials, LBP4 has lower error.

8 × 8 grid graph: Fig. 12 shows results of running LBP on block-graphs and running LBP on the

original 8× 8 grid graph. The interpretation of the results are similar tothat of the results for the7× 7

grid graph. We notice that increasing the message passing complexity to 6, compared to4, improves

the estimates of the node potentials at the cost of higher computational cost. Comparing LBP6-Rand to

LBP4, we notice that for mixed potentials LBP4 performs better suggesting and LBP6-Rand performs

as good as LBP.

30× 30 grid graph: Fig. 12 shows results of running LBP on block-graphs and running LBP on the

original 30×30 grid graph. In this case, over 100 runs, the LBP failed to converge in 3000 iterations. The

interpretation of the results is the same as before. We note that to compare the quality of the estimates,

we did not have the true estimates available since it is computationally intractable to find these since

the graph has high treewidth. Instead, we ran LBP on a block-graph with maximal message passing

complexityO(K10) and used these estimates as the ground truth. Note that, eventhough LBP did not

get converge in 3000 iterations, the quality of the estimateis almost the same as that of using LBP8-Rand.

From the discussion above, it is clear that using LBP on block-graphs leads to more accurate estimates

of the marginal distributions. For repulsive and attractive node potentials, we observed that higher accuracy

comes at the cost of more computations. For mixed potentials, we observed that using block-graphs was

more accurate and faster than using the original graph. Further, we evaluated our proposed algorithm

for constructing block-graphs and noticed that our proposed algorithm leads to more accurate estimates

24

Fig. 14. Comparison of convergence and accuracy of using LBP on graphs vs. using LBP on block-graphs for a
30× 30 grid graph. Results are over 100 runs. Since finding the true node potentials is computationally intractable,
we use a higher order block-graph to estimate the ground truth.

when compared to an approach of randomly selecting clusters. This shows the advantage of using the

block-tree as an initial estimate of the block-graph.

VII. SUMMARY

We have built a framework for performing inference, i.e., computing marginal distributions, over

graphical models using non-overlapping clusters. Our maincontribution is in proposing an efficient

algorithm for finding clusters in a graph to generalize various inference algorithms. We first derived a

linear time algorithm for mapping an arbitrary graph into a tree-structured graph over non-overlapping

clusters. We call this graph a block-tree. Belief propagation (BP) on block-trees lead to an alternative to

the junction-tree algorithm for performing exact inference over arbitrary graphical models. We showed

that constructing block-trees is faster than constructingjunction-trees and identified domains where using

a block-tree framework for inference is more suitable than using a junction-tree framework.

Next, we considered the problem of generalizing approximate inference algorithms. We modified the

block-tree construction algorithm so that larger clustersare appropriately split so that the message passing

complexity can be reduced. We call the resulting graph over non-overlapping clusters a block-graph. Our

proposed algorithm for finding block-graphs tries to minimize the number of cycles in the original graph

since it is known that performing approximate inference on graphs that are approximately tree like is

more accurate. Using numerical simulations, we showed how loopy belief propagation (LBP) on block-

graphs lead to more accurate inference algorithms than whenperforming LBP on the original graph.

Further, in some cases, we showed that performing LBP on block-graphs was computationally more

efficient. Although we only showed how BP and LBP can be generalized, as shown in Fig. 1, other

inference algorithms can be easily generalized using the framework of choosing non-overlapping clusters

in a graph. In fact, the block-graph framework can also be used to generalize maximum a posteriori

25

(MAP) inference algorithms such as [53]–[55], where the objective is to find ax̂ that maximizes the

joint probability distributionp(x).

APPENDIX A

CONSTRUCTINGJUNCTION-TREES

Before reviewing the algorithm for constructing junction-trees, we first review some standard graph

theoretic definitions. A triangulated graph, also known as achordal graph, is defined as follows [40]:

Definition 3 (Triangulated graph):A graph is triangulated if all cycles of length four or more have

an edge connecting non-adjacent nodes in the cycle.

Given any graphG, we can triangulate it using the following steps [56].

Step 1: Choose anelimination order, which is a permutation of nodes in the graph.

Step 2: For each node in the elimination order, form an edge between all the nodes in its neighbors and

update the edge set.

Step 3: Remove the node and all its edges to other nodes and repeat step 2 until we exhaust all the

nodes in the elimination order.

The resulting graph after steps 1-3 will be triangulated. Using the triangulated graph, width and

treewidth of a graph are defined as follows [39].

Definition 4 (Width and Treewidth):Width of a triangulated graph is the size of the largest clique

minus 1. Treewidth, tw(G), of a graphG is the minimum width among all possible triangulations of the

graphG.

An algorithm to construct a junction-tree is outlined in Algorithm 2. In summary, we first triangulate

a graph using an elimination order, then find the cliques in the triangulated graph, and then use a

maximum weight spanning tree (MWST) algorithm to find an appropriate tree over the cliques. Note

that from Proposition 1, we see that the complexity of inference over junction-trees is exponential in the

number of nodes in the largest clique. From Definition 4, thismeans that the complexity of inference is

exponential in the width of the triangulated graph. Thus, anoptimal junction-treecorresponds to choosing

an elimination order in the triangulation algorithm leading to the minimum width. The elimination order

leading to an optimal junction-tree is called anoptimal elimination order.

To illustrate Algorithm 2, we consider finding the junction-tree for the grid graph in Fig. 15(a). A

triangulated graph, constructed using the elimination order {1, 3, 7, 9, 4, 5, 2, 6, 8}, is shown in Fig. 15(b).

It can be shown that the elimination order chosen is optimal.The weighted graph over cliques is shown

in Fig. 15(c). The junction tree constructed using the triangulated graph is shown in Fig. 15(d). The width

26

Algorithm 2: Constructing a Junction-Tree: JunctionTree(G,W)

Data: A graphG = (V,E) and an elimination orderW .
Result: A junction-treeJ = (C, E)

1 Triangulate the graphG using the elimination orderW .
2 Identify the set of cliquesC in the triangulated graph.
3 For all tuplesCi, Cj ∈ C, construct a weighted graph with weightsw(i, j) = |Ci ∩ Cj|.

4 E ← argmax
E

∑

(i,j)∈E

w(i, j).

1 2 3

4 5 6

7 8 9

(a)

1 2 3

4 5 6

7 8 9

(b)

1 2 4

2 4 5 8

4 7 8

2 5 6 8

2 3 6

6 8 9

1 1

2

1

1

3

2

1

1

1

1

2

2

(c)

1 2 4

2 4 5 8

4 7 8

2 5 6 8

2 3 6

6 8 9

(d)

Fig. 15. (a) A grid graph (b) Triangulated graph of (a). (c) Weighted graph over cliques. (d) Junction-tree

of the triangulated graph in Fig. 15(c) is three. Since the elimination order is optimal, the treewidth of

the graph in Fig. 15(a) is also three.

REFERENCES

[1] H. Rue and L. Held,Gaussian Markov Random Fields: Theory and Applications (Monographs on Statistics and Applied

Probability), 1st ed. Chapman & Hall/CRC, February 2005.

[2] M. J. Wainwright and M. I. Jordan,Graphical Models, Exponential Families, and Variational Inference. Hanover, MA,

USA: Now Publishers Inc., 2008.

[3] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networksof Plausible Inference. Morgan Kaufmann, 1988.

[4] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propagation,” inNIPS, 2001, pp. 689–695.

[5] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “Tree-based reparameterization framework for analysis of sum-product

and related algorithms,”IEEE Trans. Inf. Theory, vol. 45, no. 9, pp. 1120–1146, May 2003.

[6] E. B. Sudderth, M. J. Wainwright, and A. S. Willsky, “Embedded trees: estimation of Gaussian processes on graphs with

cycles,” IEEE Trans. Signal Process., vol. 52, no. 11, pp. 3136–3150, Nov. 2004.

[7] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “A newclass of upper bounds on the log partition function,”IEEE

Trans. on Information Theory, vol. 51, no. 7, pp. 2313 – 2335, July 2005.

[8] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities on graphical structures and their application

to expert systems,”Journal of the Royal Statistical Society. Series B (Methodological), vol. 50, no. 2, pp. 157–224, 1988.

[9] G. F. Cooper, “Nestor: A computer-based medical diagnostic aid that integrates causal and probabilistic knowledge,” Ph.D.

dissertation, Department of Computer Science, Stanford University, 1984.

27

[10] Y. Peng and J. A. Reggia, “Plausibility of diagnostic hypotheses,” inNational Conference on Artificial Intelligence

(AAAI’86), 1986, pp. 140–145.

[11] J. W. Woods and C. Radewan, “Kalman filtering in two dimensions,” IEEE Trans. Inf. Theory, vol. 23, no. 4, pp. 473–482,

Jul 1977.

[12] J. M. F. Moura and N. Balram, “Recursive structure of noncausal Gauss-Markov random fields,”IEEE Trans. Inf. Theory,

vol. IT-38, no. 2, pp. 334–354, March 1992.

[13] B. C. Levy, M. B. Adams, and A. S. Willsky, “Solution and linear estimation of 2-D nearest-neighbor models,”Proc.

IEEE, vol. 78, no. 4, pp. 627–641, Apr. 1990.

[14] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An introduction to variational methods for graphical models,”

Machine Learning, vol. 37, no. 2, pp. 183–233, Nov 1999.

[15] J. Yedidia, W. Freeman, and Y. Weiss, “Bethe free energy, Kikuchi approximations, and belief propagation algorithms,”

Mitsubishi Electric Research Laboratories, Tech. Rep. TR2001-16, 2001.

[16] R. Kikuchi, “A theory of cooperative phenomena,”Phys. Rev., vol. 81, no. 6, pp. 988– 988–1003, 1951.

[17] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free energy approximations and generalized belief propagation

algorithms.” IEEE Transactions on Information Theory, vol. 51, no. 7, pp. 2282–2312, July 2005.

[18] A. Pelizzola, “Cluster variation method in statistical physics and probabilistic graphical models,”Journal of Physics A:

Mathematical and General, vol. 38, no. 33, pp. R309–R339, 2005.

[19] M. J. Wainwright, “Stochastic processes on graphs: Geometric and variational approaches,” Ph.D. dissertation, Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2002.

[20] M. Welling, “On the choice of regions for generalized belief propagation,” inProceedings of the 20th conference on

Uncertainty in Artificial Intelligence, 2004, pp. 585–592.

[21] M. Welling, T. Minka, and Y. W. Teh, “Structured region graphs: Morphing EP into GBP,” inProceedings of the

International Conference on Uncertainty in Artificial Intelligence, vol. 21, 2005.

[22] R. Mateescu, K. Kask, V. Gogate, and R. Dechter, “Join-graph propagation algorithms,”Journal of Artificial Intelligence

Research, vol. 37, pp. 279–328, 2010.

[23] E. P. Xing, M. I. Jordan, and S. Russell, “A generalized mean field algorithm for variational inference in exponential

families,” in Proceedings of the 20th conference on Uncertainty in artificial intelligence, ser. UAI ’04. Arlington, Virginia,

United States: AUAI Press, 2003, pp. 602–610. [Online]. Available: http://portal.acm.org/citation.cfm?id=1036843.1036916

[24] ——, “Graph partition strategies for generalized mean field inference,” in Proceedings of the 20th conference on

Uncertainty in artificial intelligence, ser. UAI ’04. Arlington, Virginia, United States: AUAI Press, 2004, pp. 602–610.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1036843.1036916

[25] B. M. Marlin and K. P. Murphy, “Sparse Gaussian graphical models with unknown block structure,” inInternational

Conference on Machine Learning, 2009, pp. 89–712.

[26] J. Friedman, T. Hastie, and R. Tibshirani, “Applications of the lasso and grouped lasso to the estimation of sparse

graphical models,” pp. 1–22, 2010. [Online]. Available: http://www-stat.stanford.edu/∼tibs/ftp/ggraph.pdf

[27] A. Jalali, P. Ravikumar, V. Vasuki, and S. Sanghavi, “Onlearning discrete graphical models using group-sparse

regularization,” inInternational Conference on Machine Learning, 2011, pp. 89–712.

[28] D. Malioutov, “Approximate inference in Gaussian graphical models,” Ph.D. dissertation, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, 2008.

[29] P. Lévy, “A special problem of Brownian motion, and a general theory of Gaussian random functions,” inProceedings of

http://portal.acm.org/citation.cfm?id=1036843.1036916
http://portal.acm.org/citation.cfm?id=1036843.1036916
http://www-stat.stanford.edu/~tibs/ftp/ggraph.pdf

28

the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II. Berkeley and Los Angeles:

University of California Press, 1956, pp. 133–175.

[30] D. Vats and J. M. F. Moura, “Telescoping recursive representations and estimation of Gauss-Markov random fields,”Trans.

on Information Theory, vol. 57, no. 3, pp. 1645 – 1663, 2011.

[31] D. Vats, “Tree-structured like representations for continuous and graph indexed Markov random fields,” Ph.D. dissertation,

Department of Electrical and Computer Engineering, Carnegie Mellon University, May 2011.

[32] R. E. Kalman and R. Bucy, “New results in linear filteringand prediction theory,”Transactions of the ASME–Journal of

Basic Engineering, vol. 83, no. Series D, pp. 95–108, 1960.

[33] H. E. Rauch, F. Tung, and C. T. Stribel, “Maximum likelihood estimates of linear dynamical systems,”AIAA J., vol. 3,

no. 8, pp. 1445–1450, August 1965.

[34] S. L. Lauritzen,Graphical Models. Oxford University Press, USA, 1996.

[35] D. Koller and N. Friedman,Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009.

[36] J. Besag, “Spatial interaction and the statistical analysis of lattice systems,”Journal of the Royal Statistical Society. Series

B (Methodological), vol. 36, no. 2, pp. 192–236, 1974.

[37] N. Zhang and D. Poole, “A simple approach to Bayesian network computations,” inProceedings of the Tenth Canadian

Conference on Artificial Intelligence, 1994, pp. 171–178.

[38] R. Dechter, “Bucket elimination: A unifying frameworkfor reasoning,”Artificial Intelligence, vol. 113, no. 1-2, pp. 41–85,

Sep 1999.

[39] N. Robertson and P. D. Seymour, “Graph minors. II. Algorithmic aspects of tree-width,”Journal of Algorithms, vol. 7,

no. 3, pp. 309 – 322, 1986.

[40] D. B. West,Introduction to Graph Theory, 2nd ed. Prentice Hall, 2000.

[41] G. Shafer and P. P. Shenoy, “Probability propagation,”Annals of Mathematics and Artificial Intelligence, no. 1-4, pp.

327–352, 1990.

[42] F. V. Jenson, S. L. Lauritzen, and K. G. Oleson, “Bayesian updating in causal probabilistic networks by local computation,”

Computational Statistics Quarterly, vol. 4, no. 4, pp. 269–282, 1990.

[43] F. Jensen and F. Jensen, “Optimal junction trees,” inProceedings of the 10th Annual Conference on Uncertainty inArtificial

Intelligence (UAI-94). San Francisco, CA: Morgan Kaufmann, 1994, pp. 360–36.

[44] G. F. Cooper, “The computational complexity of probabilistic inference using Bayesian belief networks (researchnote),”

Artificial Intelligence, vol. 42, no. 2-3, pp. 393–405, 1990.

[45] H. M. Markowitz, “The elimination form of the inverse and its application to linear programming,”Management Science,

vol. 3, no. 3, pp. 255–269, 1957. [Online]. Available: http://www.jstor.org/stable/2627454

[46] A. Berry, P. Heggernes, and G. Simonet, “The minimum degree heuristic and the minimal triangulation process,” inGraph-

Theoretic Concepts in Computer Science, ser. Lecture Notes in Computer Science, H. Bodlaender, Ed.Springer Berlin /

Heidelberg, 2003, vol. 2880, pp. 58–70.

[47] U. B. Kjaerulff, “Triangulation of graphs - algorithmsgiving small total state space,” Department of Mathematicsand

Computer Science, Aalborg University, Denmark, Tech. Rep.Research Report R-90-09, 1990.

[48] P. Erdős and A. Rényi, “On the evolution of random graphs,” in Publication of the Mathematical Institute of the Hungarian

Academy of Sciences, 1960, pp. 17–61.

[49] M. O. Jackson,Social and Economic Networks. Princeton University Press, 2008.

[50] C. Lee, J. Lee, and S. il Oum, “Rank-width of random graphs,” arXiv:1001.0461v1, 2010.

http://www.jstor.org/stable/2627454

29

[51] H. L. Bodlaender and A. M. Koster, “Treewidth computations I. upper bounds,”Information and Computation, vol. 208,

no. 3, pp. 259 – 275, 2010.

[52] E. Fabre and A. Guyader, “Dealing with short cycles in graphical codes,” inIEEE International Symposium on Information

Theory (ISIT), June 2000, p. 10.

[53] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MAPestimation via agreement on (hyper)trees: Message-passing

and linear programming approaches,”IEEE Trans. Inf. Theory, vol. 51, no. 11, pp. 3697–3717, Nov. 2005.

[54] V. Kolmogorov, “Convergent tree-reweighted message passing for energy minimization,”IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 28, pp. 1568–1583, 2006.

[55] D. Sontag and T. Jaakkola, “Tree block coordinate descent for map in graphical models,”Journal of Machine Learning

Research, vol. 5, pp. 544–551, 2009.

[56] A. Becker and D. Geiger, “A sufficiently fast algorithm for finding close to optimal junction trees,” inProceedings of the

10th Annual Conference on Uncertainty in Artificial Intelligence (UAI-96), 1996, pp. 81–89.

	I Introduction
	I-A Summary of Contributions
	I-B Related Work
	I-C Paper Organization

	II Background
	II-A Graphical Models and Inference
	II-B Junction-Tree

	III Block-Trees: Finding Trees Over Non-overlapping Clusters
	IV Exact Inference Using Block-Trees
	IV-A Belief Propagation on Block-Trees
	IV-B Optimal Block-Trees
	IV-C Greedy Algorithms for Finding Optimal Block-Trees
	IV-D Block-Trees vs. Junction-Trees
	IV-D1 Example: Single Cycle Graphical Models
	IV-D2 Example: Erdos-Rényi Graph
	IV-D3 Discussion

	V Block-Graph: Splitting Clusters in a Block-Tree
	V-A Constructing Block-Graphs
	V-B Approximate Inference Using Block-Graphs

	VI Numerical Simulations
	VII Summary
	Appendix A: Constructing Junction-Trees
	References

