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In this paper we propose some very promissing results in interval arithmetics which permit to build
well-defined arithmetics including distributivity of multiplication and division according addition
and substraction. Thus, it allows to build all algebraic operations and functions on intervals. This
will avoid completely the wrapping effects and data dependance. Some simple applications for matrix
eigenvalues calculations, inversion of symmetric matrices and finally optimization are exhibited in
the object-oriented programming language python.
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I. HISTORY

The first mathematician who has used intervals was the famous Archimedes from Syracuse (287-212
b.C). He has proposed a two-sides bounding of π : 3 + 10

71 < π < 3 + 1
7 using polygons and a systematic

method to improve it. In the beginning of the twentieth century, the American mathematician and physicist
Wiener, published two papers2,3, and used intervals to give an interpretation to the position and the time
of a system. More papers on the subject were written4–7 only after Second World War. Nowadays, we
consider R.E. Moore8–12 as the first mathematician who has proposed a framework for interval arithmetics
and analysis. The interval arithmetic, or interval analysis has been introduced to compute very quickly
range bounds (for example if a data is given up to an incertitude). Now interval arithmetic is a computing
system which permits to perform error analysis by computing mathematic bounds. The extensions of the
areas of applications are important: non linear problems, PDE, inverse problems. It finds a large place of
applications in controllability, automatism, robotics, embedded systems, biomedical, haptic interfaces, form
optimization, analysis of architecture plans, ...
Interval calculations are used nowadays as a powerful tool for global optimization and set inversion17. Several
groups have developped some softwares and libraries to perform those new apparoaches such as INTLAB18,
INTOPT90 and GLOBSOL19,Numerica20. But our goal for this article, is not to replace the semantic
approach of intervals, which has to be adapted to each problem by the engineer or the scientist, but to
propose a new arithmetic of intervals, which allows to avoid the wrapping and data dependance effects. It
yields to a better construction of inclusion functions.
We expose in this paper the main results of a PhD thesis1 defended by one the author and some consecutive
numerical applications. The plan is the following. In a first time we define a real Banach structure on
the completion IR of the semi group of intervals IR, with a vector space structure. This permits to define
the notion of differential function with values of IR and to use some important tools and the fixed point
theorem. Next we extend the classical product to have a distributivity property. With this approach we
obtain a notion of differential calculus and a natural linear algebra on the set of intervals. After that, we
gives some examples in a python implementation and we end this article by giving some simple numerical
applications : optimization of interval functions, interval matrix diagonalization, and inversion of symmetric
matrices .

II. AN ALGEBRAIC APPROACH TO THE SET OF INTERVALS.

In this section we present the set of intervals as a normed vector space. We define also a four-dimensional
associative algebra whose product gives the product of intervals in any cases.

A. Minkowski operations

An interval is a bounded non empty connected closed subset of R. Let IR be the set of intervals. The
semantical arithmetic operations on intervals, called Minkowski operations, are defined such that the result
of the corresponding operation on elements belonging to operand intervals belongs to the resulting interval.
That is, if � denotes one of the semantical operations +,−, ∗, we have, if X and Y are bounded intervals of
R,

X � Y = {x � y / x ∈ X, y ∈ Y },

In many problems using interval arithmetic, that is the set IR with the Minkowski operations, there
exists an informal transfers principle which permits, to associate with a real function f a function define
on the set of intervals IR which coincides with f on the interval reduced to a point. But this transferred
function is not unique. For example, if we consider the real function f(x) = x2 + x = x(x+ 1), we associate

naturally the functions f̃1 : IR −→ IR given by f̃1(X) = X(X + 1) and f̃2(X) = X2 + X. These two
functions do not coincide. Usually this problem is removed considering the most interesting transfers. But
the qualitative ”interesting” depends of the studied model and it is not given by a formal process. In this
section, we determine a natural extension IR of IR provided with a vector space structure. The vectorial
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substraction X r Y does not correspond to the semantical difference of intervals and the interval rX has
no real interpretation. But these ”negative” intervals have a computational role. If a problem conduce to a
”negative” result, then this problem is ”pervert” (see Lazare Carnot with his feeling on the natural negative
number).

Let IR be the set of intervals. It is in one to one correspondence with the half plane of R2:

P1 = {(a, b), a ≤ b}.

This set is closed for the addition and P1 is endowed with a regular semi-group structure. Let P2 be the
half plane symmetric to P1 with respect to the first bisector ∆ of equation y − x = 0. The substraction on
IR, which is not the symmetric operation of +, corresponds to the following operation on P1:

(a, b)− (c, d) = (a, b) + s∆ ◦ s0(c, d),

where s0 is the symmetry with respect to 0, and s∆ with respect to ∆. The multiplication ∗ is not globally
defined. Consider the following subset of P1: P1,1 = {(a, b) ∈ P1, a ≥ 0, b ≥ 0},

P1,2 = {(a, b) ∈ P1, a ≤ 0, b ≥ 0},
P1,3 = {(a, b) ∈ P1, a ≤ 0, b ≤ 0}.

We have the following cases:

1) If (a, b), (c, d) ∈ P1,1 the product is written (a, b) ∗ (c, d) = (ac, bd).

The vectors e1 = (1, 1) and e2 = (0, 1) generate P1,1 that is any (x, y) in P1,1, can be decomposed as

(x, y) = xe1 + (y − x)e2,with x > 0 and y − x > 0.

The multiplication corresponds in this case to the following associative commutative algebra:{
e1e1 = e1,
e1e2 = e2e1 = e2e2 = e2.

2) Assume that (a, b) ∈ P1,1 and (c, d) ∈ P1,2 so c ≤ 0 and d ≥ 0. Thus we obtain (a, b) ∗ (c, d) = (bc, bd)
and this product does not depend of a. Then we obtain the same result for any a < b. The product
(a, b) ∗ (c, d) = (bc, bd) corresponds to {

e1e1 = e2e1 = e1

e1e2 = e2e2 = e2

This algebra is not commutative and it is different from the previous.

3) If (a, b) ∈ P1,1 and (c, d) ∈ P1,3 then a ≥ 0, b ≥ 0 and c ≤ 0, d ≤ 0 and we have (a, b) ∗ (c, d) = (bc, ad).
Let e1 = (1, 1), e2 = (0, 1). This product corresponds to the following associative algebra: e1e1 = e1,

e1e2 = e2,
e2e1 = e1 − e2.

This algebra is not associative because (e2e1)e1 6= e2(e1e1). We have similar results for the cases
(P1,2,P1,2), (P1,2,P1,3) and (P1,3,P1,3).

An objective of this paper is to present an associative algebra which contains all these results.

B. The real vector space IR

We recall briefly the construction proposed by Markov13 to define a structure of abelian group. As (IR,+)
is a commutative and regular semi-group, the quotient set, denoted by IR, associated with the equivalence
relations:

(x, y) ∼ (z, t)⇐⇒ x+ t = y + z,
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for all x, y, z, t ∈ IR, is provided with a structure of abelian group for the natural addition:

(x, y) + (z, t) = (x+ z, y + t)

where (x, y) is the equivalence class of (x, y). We denote by r(x, y) the opposite of (x, y) . We have r(x, y) =

(y, x). If x = [a, a], a ∈ R, then (x, 0) = (0,−x) where −x = [−a,−a], and r(x, 0) = (0, x). In this case,
we identify x = [a, a] with a and we denote always by R the subset of intervals of type [a, a]. Naturally, the

group IR is isomorphic to the additive group R2 by the isomorphism (([a, b], [c, d])→ (a− c, b− d). We find
the notion of generalized interval.

Proposition 1 Let X = (x, y) be in IR. Thus

1. If l(y) < l(x), there is an unique A ∈ IR \ R such that X = (A, 0),

2. If l(y) > l(x), there is an unique A ∈ IR \ R such that X = (0, A) = r(A, 0),

3. If l(y) = l(x), there is an unique A = α ∈ R such that X = (α, 0) = (0,−α).

Any element X = (A, 0) with A ∈ IR− R is said positive and we write X > 0. Any element X = (0, A) with
A ∈ IR− R is said negative and we write X < 0. We write X ≥ X ′ if X rX ′ ≥ 0. For example if X and X ′
are positive, X ≥ X ′ ⇐⇒ l(X ) ≥ l(X ′).. The elements (α, 0) with α ∈ R∗ are neither positive nor negative.

In13, one defines on the abelian group IR , a structure of quasi linear space. Our approach is a little bit
different. We propose to construct a real vector space structure. We consider the external multiplication:

· : R× IR −→ IR

defined, for all A ∈ IR, by {
α · (A, 0) = (αA, 0) ,

α · (0, A) = (0, αA) ,

for all α > 0. If α < 0 we put β = −α. So we put:{
α · (A, 0) = (0, βA),

α · (0, A) = (βA, 0).

We denote αX instead of α · X . This operation satisfies

1. For any α ∈ R and X ∈ IR we have: {
α(rX ) = r(αX ),
(−α)X = r(αX ).

2. For all α, β ∈ R, and for all X ,X ′ ∈ IR, we have (α+ β)X = αX + βX ,
α(X + X ′) = αX + αX ′,
(αβ)X = α(βX ).

Theorem 1 The triplet (IR,+, ·) is a real vector space and the vectors X1 = ([0, 1], 0) and X 2 = ([1, 1], 0)
of IR determine a basis of IR. So dimR IR = 2.

Proof. We have the following decompositions:{
([a, b], 0) = (b− a)X1 + aX2,

(0, [c, d]) = (c− d)X1 − cX2.
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The linear map

ϕ : IR −→ R2

defined by {
ϕ( ([a, b], 0) ) = (b− a, a),

ϕ( (0, [c, d]) ) = (c− d,−c)

is a linear isomorphism and IR is canonically isomorphic to R2.

Remark. Let E be the subspace generated by X2. The vectors of E correspond to the elements which have
a non defined sign. Then the relation ≤ defined in the paragraph 1.2 gives an order relation on the quotient
space IR/E.

C. A Banach structure on IR

Any element X ∈ IR is written (A, 0) or (0, A). We define its length l(X ) as the length of A and its center
as c(A) or −c(A) in the second case.

Theorem 2 The map || || : IR −→ R given by

||X || = l(X ) + |c(X )|

for any X ∈ IR is a norm.

Proof. We have to verify the following axioms: 1) ||X || = 0⇐⇒ X = 0,
2) ∀λ ∈ R ||λX|| = |λ|||X ||,
3) ||X + X ′|| ≤ ||X ||+ ||X ′||.

1) If ||X || = 0, then l(X ) = |c(X )| = 0 and X = 0.

2) Let λ ∈ R. We have

||λX|| = l(λX ) + |c(λX )| = |λ|l(X ) + |λ||c(X )| = |λ|||X ||.

3) We consider that I refers to X and J refers to X ′ thus X = (I, 0) or = (0, I). We have to study the two
different cases:

i) If X + X ′ = (I + J, 0) or (0, I + J), then

||X + X ′|| = l(I + J) + |c(I + J)| = l(I) + l(J) + |c(I) + c(J)| ≤ l(I) + |c(I)|+ l(J) + |c(J)|
= ||X ||+ ||X ′||.

ii) Let X + X ′ = (I, J). If (I, J) = (K, 0) then K + J = I and

||X + X ′|| = ||(K, 0)|| = l(K) + |c(K)| = l(I)− l(J) + |c(I)− c(J)|

that is

||X + X ′|| ≤ l(I) + |c(I)| − l(J) + |c(J)| ≤ l(I) + |c(I)|+ l(J) + |c(J)| = ||X ||+ ||X ′||.

So we have a norm on IR.
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Theorem 3 The normed vector space IR is a Banach space.

Proof. In fact, all the norms on R2 are equivalent and R2 is a Banach space for any norm. The vector space
IR is isomorphic to R2. Thus it is complete.

Remarks.

1. To define the topology of the normed space IR, it is sufficient to describe the ε-neighborhood of
any point χ0 ∈ IR for ε a positive infinitesimal number. We can give a geometrical representation,
considering χ0 = ([a, b], 0) represented by the point (a, b) ∈ R2. We assume that χ0 = ([a, b], 0) and ε
an infinitesimal real number. Let A1, · · · , A4 the points A1 = (a− ε, b− ε), A2 = (a+ ε

2 , b−
ε
2 ), A3 =

(a+ε, b+ε), A4 = (a− ε
2 , b+ ε

2 ). If 0 < a < b, then the ε-neighborhood of χ0 = ([a, b], 0) is represented
by the parallelograms whose vertices are A1, A2, A3, A4.

2. We can consider another equivalent norms on IR. For example

||X || = ||r X|| = Sup(|x|, |y|)

where X = ([x, y], 0). But we prefer the initial one because it has a better geometrical interpretation.

III. DIFFERENTIAL CALCULUS ON IR

As IR is a Banach space, we can describe a notion of differential function on it. Consider X0 = (X0, 0)
in IR . The norm ||.|| defines a topology on IR whose a basis of neighborhoods is given by the balls

B(X0, ε) = {X ∈ IR, ||X rX0|| < ε}. Let us characterize the elements of B(X0, ε). X0 = (X0, 0) = ([a, b], 0).

Proposition 2 Consider X0 = (X0, 0) = ([a, b], 0) in IR and ε ' 0, ε > 0. Then every element of B(X0, ε)

is of type X = (X, 0) and satisfies

l(X) ∈ BR(l(X0), ε1) and c(X) ∈ BR(c(X0), ε2)

with ε1, ε2 ≥ 0 and ε1 + ε2 ≤ ε, where BR(x, a) is the canonical open ball in R of center x and radius a.

Proof. First case : Assume that X = (X, 0) = ([x, y], 0) . We have

X r X0 = (X,X0) = ([x, y], [a, b])

=

{
([x− a, y − b], 0) if l(X) ≥ l(X0)

(0, [a− x, b− y]) if l(X) ≤ l(X0)

If l(X) ≥ l(X0) we have

||X r X0|| = (y − b)− (x− a) +

∣∣∣∣y − b+ x− a
2

∣∣∣∣
= l(X)− l(X0) + |c(X)− c(X0)|.

As l(X)− l(X0) ≥ 0 and |c(X)− c(X0)| ≥ 0, each one of this term if less than ε. If l(X) ≤ l(X0) we have

||X r X0|| = l(X0)− l(X) + |c(X0)− c(X)|.

and we have the same result.

Second case : Consider X = (0, X) = ([x, y], 0) . We have

X r X0 = (0, X0 +X) = ([x+ a, y + b])
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and

||X r X0|| = l(X0) + l(X) + |c(X0) + c(X)|.

In this case, we cannot have ||X r X0|| < ε thus X /∈ B(X0, ε).

Definition 4 A function f : IR −→ IR is continuous at X0 if

∀ε > 0,∃η > 0 such that ||X r X0|| < η implies ||f(X ) r f(X0)|| < ε.

Consider (X1,X2) the basis of IR given in section 2. We have

f(X ) = f1(X )X1 + f2(X )X2 with fi : IR −→ R.

If f is continuous at X0 so

f(X ) r f(X0) = (f1(X )− f1(X0))X1 + (f2(X )− f2(X0))X2.

To simplify notations let α = f1(X ) − f1(X0) and β =f2(X ) − f2(X0). If ||f(X ) r f(X0)|| < ε, and if we
assume f1(X )− f1(X0) > 0 and f2(X )− f2(X0) > 0 (other cases are similar), then we have

l(αX1 + βX2) = l([β, α+ β], 0) < ε

thus f1(X )− f1(X0) < ε. Similarly,

c(αX1 + βX2) = c([β, α+ β], 0) =
α

2
+ β < ε

and this implies that f2(X )− f2(X0) < ε.

Corollary 5 f is continuous at X0 if and only if f1 and f2 are continuous at X0.

Definition 6 Consider X0 in IR and f : IR −→ IR continuous. We say that f is differentiable at X0 if
there is g : IR −→ IR linear such as

||f(X ) r f(X0) r g(X r X0)|| = o(||X r X0||).

Examples.

• f(X ) = X . This function is continuous at any point and differentiable. It’s derivative is f ′(X ) = 1.

• f(X ) = X 2. Consider X0 = (X0, 0) = ([a, b], 0) and X ∈ B(X0, ε). We have

||X 2 r X 2
0 || = ||(X r X0)(X + X0)||
≤ ||X r X0||||X + X0||.

Given ε > 0, let η =
ε

||X + X0||
, thus if ||X r X0|| < η, we have ||X 2 r X 2

0 || < ε and f is continuous

and differentiable. It is easy to prove that f ′(X ) = 2X is its derivative.

• Consider P = a0 + a1X + · · · + anX
n ∈ R[X]. We define f : IR −→ IR with f(X ) = a0X2 + a1X +

· · · + annXn where Xn = X · Xn−1 . From the previous example, all monomials are continuous and
differentiable, it implies that f is continuous and differentiable as well.

• Consider the function Q2 given by Q2([x, y]) = [x2, y2] if |x| < |y| and Q2([x, y] = [y2, x2] in the other
case. This function is not differentiable.
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IV. A 4-DIMENSIONAL ASSOCIATIVE ALGEBRA ASSOCIATED WITH IR

In introduction, we have observed that the semi-group IR is identified to P1,1∪P1,2∪P1,3. Let us consider
the following vectors of R2


e1 = (1, 1),
e2 = (0, 1),
e3 = (−1, 0),
e4 = (−1,−1).

They correspond to the intervals [1, 1], [0, 1], [−1, 0], [−1,−1]. Any point of P1,1 ∪ P1,2 ∪ P1,3 admits the
decomposition

(a, b) = α1e1 + α2e2 + α3e3 + α4e4

with αi ≥ 0.The dependance relations between the vectors ei are{
e2 = e3 + e1

e4 = −e1.

Thus there exists a unique decomposition of (a, b) in a chosen basis such that the coefficients are non negative.
These basis are {e1,e2} for P1,1, {e2, e3} for P1,2, {e3, e4} for P1,3, Let us consider the free algebra of basis
{e1, e2, e3, e4} whose products correspond to the Minkowski products. The multiplication table is

e1 e2 e3 e4

e1 e1 e2 e3 e4

e2 e2 e2 e3 e3

e3 e3 e3 e2 e2

e4 e4 e3 e2 e1

.

This algebra is associative. Let ϕ : IR→ A4 the natural injective embedding. If we identify an interval with
its image in A4, we have:

Theorem 7 The multiplication of intervals in the algebra A4 is distributive with respect the addition.

The application is not bijective. Its image on the elements X = (x, 0) = ([a, b], 0) is: x = [a, b] ∈ P1,1, ϕ(X ) = ae1 + (b− a)e2 (a ≥ 0, b− a ≥ 0)
x = [a, b] ∈ P1,2, ϕ(X ) = −ae3 + be2 (−a ≥ 0, b ≥ 0)
x = [a, b] ∈ P1,3, ϕ(X ) = −be4 + (b− a)e3 (−b ≥ 0, b− a ≥ 0).

Consider in A4 the linear subspace F generated by the vectors e1 − e2 + e3, e1 + e4. As

(e1 + e4)(e1 + e4) = 2(e1 + e4)
(e1 + e4)(e1 − e2 + e3) = e1 + e4

(e1 − e2 + e3)(e1 − e2 + e3) = e1,

F is not a subalgebra of A4. Let us consider the map

ϕ : IR→A4/F

defined from ϕ and the canonical projection on the quotient vector space A4/F . A vector x =
∑
αiei ∈ A4

is equivalent to a vector of A4 with positive components if and only if

α2 + α3 ≥ 0.
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In this case, all the vectors equivalent to x =
∑
αiei with α2 + α3 ≥ 0 correspond to the interval [α1 −

α3 − α4, α1 + α2 − α4] of IR. Thus we have for any equivalent classes of A4/F associated with
∑
αiei with

α2 + α3 ≥ 0 a preimage in IR. The map ϕ is injective. In fact, two intervals belonging to pieces P1,i,P1,j

with i 6= j, have distinguish images. Now if (a, b) and (c, d) belong to the same piece, for example P1,1, thus

ϕ(a, b) = {(a+ λ+ µ, b− a− λ, λ, µ), λ, µ ∈ R.}

If ϕ(c, d) = ϕ(a, b), there are λ, µ ∈ R such that (c, d) = (a+ λ+ µ, b− a− λ, λ, µ). This gives a = c, b = d.
We have the same results for all the other pieces.Thus ϕ : IR→A4/F is bijective on its image, that is the
hyperplane of A4/F corresponding to α2 + α3 ≥ 0.

Practically the multiplication of two intervals will so be made: letX,Y ∈ R. ThusX =
∑
αiei, Y =

∑
βiei

with αi, βj ≥ 0 and we have the product

X • Y = ϕ−1(ϕ(X).ϕ(Y ))

this product is well defined because ϕ(X).ϕ(Y ) ∈ Imϕ. This product is distributive because

X • (Y + Z) = ϕ−1(ϕ(X).ϕ(Y + Z))
= ϕ−1(ϕ(X).(ϕ(Y ) + ϕ(Z))
= ϕ−1(ϕ(X).ϕ(Y ) + ϕ(X).ϕ(Z))
= X • Y +X • Z

Remark. We have

ϕ−1(ϕ(X).ϕ(Y + Z)) 6= ϕ−1(ϕ(X)).ϕ−1(ϕ(Y + Z))).

We shall be careful not to return in IR during the calculations as long as the result is not found. Otherwise
we find the semantic problems of the distributivity.

We extend naturally the map ϕ : IR→A4 to IR by{
ϕ(A, 0) = ϕ(A)

ϕ(0, A) = −ϕ(A)

for every A ∈ IR.

Theorem 8 The multiplication

X ′ • X ′′ = ϕ−1(ϕ(X ′).ϕ(X ′′))

is distributive with respect the addition.

Proof. This is a direct consequence of the previous computations.

In A4 we consider the change of basis  e′1 = e1 − e2

e′i = ei, i = 2, 3
e′4 = e4 − e3.

This change of basis shows that A4 is isomorphic to A′4
e1 e2 e3 e4

e1 e1 0 0 e4

e2 0 e2 e3 0
e3 0 e3 e2 0
e4 e4 0 0 e1

.

The unit of A′4 is the vector e1 + e2. This algebra is a direct sum of two ideals: A′4 = I1 + I2 where I1
is generated by e1 and e4 and I2 is generated by e2 and e3. It is not an integral domain, that is, we have
divisors of 0. For example e1 · e2 = 0.
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Proposition 3 The multiplicative group A∗4 of invertible elements of A4 is the set of elements x =
(x1, x2, x3, x4) such that {

x4 6= ±x1,
x3 6= ±x2.

If x ∈ A∗4 we have:

x−1 =

(
x1

x2
1 − x2

4

,
x2

x2
2 − x2

3

,
x3

x2
2 − x2

3

,
x4

x2
1 − x2

4

)
.

Let us compute the product of intervals using the product in A4 and we compare with the Minkowski
product. Let X = [a, b] and Y = [c, d] two intervals.

Lemma 1 If X and Y are not in the same piece P1,i, then X • Y corresponds to the Minkowski product.

Proof. i) If X ∈ P1,1 and Y ∈ P1,2 then ϕ(X) = (a, b− a, 0, 0) and ϕ(Y ) = (0, d,−c, 0). Thus

ϕ(X)ϕ(Y ) = (ae1 + (b− a)e2)(de2 − ce3)
= bde2 − cbe3

= (0, bd,−cb, 0)
= ϕ([cb, bd]).

ii) If X ∈ P1,1 and Y ∈ P1,3 then ϕ(X) = (a, b− a, 0, 0) and ϕ(Y ) = (0, 0, d− c,−d). Thus

ϕ(X)ϕ(Y ) = (ae1 + (b− a)e2)((d− c)e3 − de4)
= (ad− bc)e3 − ade4

= (0, 0, ad− cb,−ad)
= ϕ([bc, ad]).

iii) If X ∈ P1,2 and Y ∈ P1,3 then ϕ(X) = (0, b,−a, 0) and ϕ(Y ) = (0, 0, d− c,−d). Thus

ϕ(X)ϕ(Y ) = (be2 − ae3)((d− c)e3 − de4)
= ace2 − bce3

= (0, ac,−cb, 0)
= ϕ([bc, ad]).

Lemma 2 If X an Y are both in the same piece P1,1 or P1,3, then the product X • Y corresponds to the
Minkowski product.

The proof is analogous to the previous.

Let us assume that X = [a, b] and Y = [c, d] belong to P1,2. Thus ϕ(X) = (0, b,−a, 0) and ϕ(Y ) =
(0, d,−c, 0). We obtain

XY = (be2 − ae3)(de2 − ce3) = (bd+ ac)e2 + (−bc− ad)e3.

Thus

[a, b][c, d] = [bc+ ad, bd+ ac].

This result is greater that all the possible results associated with the Minkowski product. However, we have
the following property:

Proposition 4 Monotony property: Let X1,X2 ∈ IR. Then{
X1 ⊂ X2 =⇒ X1 • Z ⊂ X2 • Z for all Z ∈ IR.
ϕ(X1) ≤ ϕ(X2) =⇒ ϕ(X1 • Z) ≤ ϕ(X2 • Z)
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The order relation on A4 that ones uses here is
(x1, x2, 0, 0) ≤ (y1, y2, 0, 0)⇐⇒ y1 ≤ x1 and x2 ≤ y2,
(x1, x2, 0, 0) ≤ (0, y2, y3, 0)⇐⇒ x2 ≤ y2,
(0, x2, x3, 0) ≤ (0, y2, y3, 0)⇐⇒ x3 ≤ y3 and x2 ≤ y2,
(0, 0, x3, x4) ≤ (0, y2, y3, 0)⇐⇒ x3 ≤ y3,
(0, 0, x3, x4) ≤ (0, 0, y3, y4)⇐⇒ x3 ≤ y3 and y4 ≤ x4.

Proof. Let us note that the second property is equivalent to the first. It is its translation in A4. We can
suppose that X1 and X2 are intervals belonging moreover to P1,2: ϕ(X1) = (0, b,−a, 0), ϕ(X2) = (0, d,−c, 0).
If ϕ(Z) = (z1, z2, z3, z4), then{

ϕ(X1 • Z) = (0, bz1 + bz2 − az3 − az4,−az1 + bz3 − az2 + bz4, 0),
ϕ(X2 • Z) = (0, dz1 + dz2 − cz3 − cz4,−cz1 + dz3 − cz2 + dz4, 0).

Thus

ϕ(X1 • Z) ≤ ϕ(X2 • Z)⇐⇒
{

(b− d)(z1 + z2)− (a− c)(z3 − z4) ≤ 0,
−(a− c)(z1 + z2) + (b− d)(z3 = z4) ≤ 0.

But (b− d), −(a− c) ≤ 0 and z2, z3 ≥ 0. This implies ϕ(X1 • Z) ≤ ϕ(X2 • Z).

V. THE ALGEBRAS An AND AN BETTER RESULT OF THE PRODUCT

We can refine our result of the product to come closer to the result of Minkowski. Consider the one
dimensional extension A4⊕Re5 = A5, where e5 is a vector corresponding to the interval [−1, 1] of P1,2. The
multiplication table of A5 is

e1 e2 e3 e4 e5

e1 e1 e2 e3 e4 e5

e2 e2 e2 e3 e3 e5

e3 e3 e3 e2 e2 e5

e4 e4 e3 e2 e1 e5

e5 e5 e5 e5 e5 e5

.

The piece P1,2 is written P1,2 = P1,2,1 ∪ P1,2,1 where P1,2,1 = {[a, b],−a ≤ b} and P1,2,2 = {[a, b],−a ≥ b}.
If X = [a, b] ∈ P1,2,1 and Y = [c, d] ∈ P1,2,2, thus

ϕ(X).ϕ(Y ) = (0, b+ a, 0, 0,−a).(0, 0,−c− d, 0, d) = (0,−(a+ b)(c+ d), 0, 0, a(c+ d) + bd).

Thus we have

X • Y = [−bd− ac− ad,−bc].

Example Let X = [−2, 3] and Y = [−4, 2]. We have X ∈ P1,2,1 and Y ∈ P1,2,2. The product in A4 gives

X • Y = [−16, 14].

The product in A5 gives

X • Y = [−12, 10].

The Minkowski product is

[−2, 3].[−4, 2] = [−12, 8].



[July 20, 2011] 12

Thus the product in A5 is better.

Conclusion. Considering a partition of P1,2, we can define an extension of A4 of dimension n, the choice
of n depends on the approach wanted of the Minkowski product. For example, let us consider the vector e6

corresponding to the interval [−1, 1
2 ]. Thus the Minkowsky product gives e6.e6 = e7 where e7 corresponds

to [− 1
2 , 1]. We obtain a 7-dimensional associative algebra whose table of multiplication is

e1 e2 e3 e4 e5 e6 e7

e1 e1 e2 e3 e4 e5 e6 e7

e2 e2 e2 e3 e3 e5 e6 e7

e3 e3 e3 e2 e2 e5 e7 e6

e4 e4 e3 e2 e1 e5 e7 e6

e5 e5 e5 e5 e5 e5 e5 e5

e6 e6 e6 e7 e7 e5 e7 e6

e7 e7 e7 e6 e6 e5 e6 e7

.

Example Let X = [−2, 3] and Y = [−4, 2]. The decomposition on the basis {e1, · · · , e7} with positive
coefficients writes

X = e5 + 2e7, Y = 2e6.

Thus

X • Y = (e5 + 2e7)(4e6) = 4e5 + 8e6 = [−12, 8].

We obtain now the Minkowski product. In general, when one increases the algebra dimension, the product
will be closer to the Minkowski one and one still get the distributivity and associativity.

VI. NUMERICAL IMPLEMENTATION

In this section, we show some examples of interval arithmetics applications on simple problems which will
prove how this new approach efficient and robust is.

A. Arithmetic implementation in python

We have choosen python programming langage28. The main reason is that it is a free object-oriented
langage, with a huge number of numerical libraries. One of the main advantage of python is that first it is
possible to link the source code with others written in C/C++, FORTRAN, and second, it interacts easily
with other calculations tools such as SAGE29 and Maxima30 in order to do formal calculations with python
langage. But here, we present pure numerical applications within python environnement. The translation in
other langages such as C++ and scilab32 is very easy and would be available soon. To start it is necessary
to import the interval lib library which has been developped to define intervals, vector and matrices of
intervals, and all the arithmetic operations.

Python 2.6.6 (r266:84292, Sep 15 2010, 15:52:39)
[GCC 4.4.5] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from interval_lib import *

The instanciation of an interval [x, y] is done with interval(x, y, order). The variable order corresponds to
the dimension of the algebra used to represent the intervals. Its value is set to 4 by default, which is the
minimal one. Another way to define an interval such as [x− ε, x+ ε] is interval(x, eps = ε). Now, let’s define
the intervals [−1, 2], [3, 4], [3, 12] and [1, 3] for example :
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>>> a=interval(-1,2)
>>> b=interval(3,4)
>>> c=interval(3,12)
>>> d=interval(2,eps=1)

It is possible to have more information on each interval :

>>> print c.min,c.max
3.0 12.0
>>> print abs(c),c.width,c.midpoint
16.5 9.0 7.5

A partial order relation can be implemented on the set of intervals IR :

∀x, y ∈ IR, x 6⊂ y, center(x) < center(y)⇔ x < y (1)

and

∀x, y ∈ IR, x ⊂ y, width(x) < width(y)⇔ x < y (2)

This can be extended to a total order relation.

>>> print a,b,a<b
[-1.0,2.0] [3.0,4.0] True

>>> print c,d,d<c
[3.0,12.0] [1.0,3.0] True

B. Semantic and True Arithmetic

There are two possible arithmetic implementations, depending on the choosen semantic21,22. In the first
one, called semantic arithmetics, the substraction of two intervals x and y is done according to x− y = x+
(−y), and the addition of those two terms. For example [2, 3]−[0, 1] = [2, 3]+[−1, 0] = [2+(−1), 3+0] = [1, 3],
and [−1, 1]−[−1, 1] = [−1, 1]+[−1, 1] = [−2, 2] 6= [0, 0] = 0. As mentionned in the introduction of this paper,
”negative” intervals do not have a physical meaning and the addition/substraction between two intervals
can not be easily transfered to the bounds of the resulting interval. This yields to the fact that differential
calculus in this framework is not relevant and one has to compute the derivatives in the center of the intervals
in order to recover a certain meaning. It is not obvious to transfer natural functions to inclusion ones. In
the second framework, called true arithmetic, the substractions are done in the algebra An with n ≥ 4.
For the previous example in An : [2, 3] − [0, 1] = (2, 1, 0, 0) − (0, 1, 0, 0) = (2, 0, 0, 0) = [2, 2] and for any
interval x, x−x = [0, 0] = 0. In this arithmetic, it is possible to perform differential calculus and to transfer
natural functions to inclusion ones by replacing the terms in the definition by intervals. One has to note
that in both cases, multiplication remains distributive and associative according to addition. But division is
distributive for substraction only for the true arithmetic even if it is distributive for addition in the semantic
one. The main reason of this phenomenon, is that the opposite intervals have no real meaning, and it
remains to the user to modelize correctly the physical problem. Moreover, there is no wrapping effects and
data dependencies as shown on simple examples below.
Some other examples :

>>> # Semantic arithmetic
>>> print a-a,a*b,b*a,b/b,c+1
[-3.0,3.0] [-4.0,8.0] [-4.0,8.0] [1.0,1.0] [4.0,13.0]

and
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>>> # True arithmetic
>>> print a-a,a*b,b*a,b/b,c+1
[0.0,0.0] [-4.0,8.0] [-4.0,8.0] [1.0,1.0] [4.0,13.0]

The division is not allowed for intervals containing 0 :

>>> print b/a
Interval division in A4 not allowed !!

Let’s see the distributive operations :

>>> # True arithmetic
>>> print a*(b+c),a*b+a*c,(a+b)/c,a/c+b/c
[-16.0,32.0] [-16.0,32.0] [0.5,0.916666666667] [0.5,0.916666666667]

>>> print a*(b-c),a*b-a*c,(a-b)/c,a/c-b/c
[-16.0,8.0] [-16.0,8.0] [-1.08333333333,-0.166666666667] [-1.08333333333,-0.166666666667]

In the semantic arithmetic

# Semantic arithmetic
>>> print a*(b+c),a*b+a*c,(a+b)/c,a/c+b/c
[-16.0,32.0] [-16.0,32.0] [0.5,0.916666666667] [0.5,0.916666666667]

>>> print a*(b-c),a*b-a*c,(a-b)/c,a/c-b/c
[-28.0,20.0] [-28.0,20.0] [-0.833333333333,-0.416666666667] [-1.08333333333,-0.166666666667]

In the semantic framework, the distributivity of division according substraction is lost but not according
addition. This is due to the calculation of a−b before to be divided by c. However the division distributivity
is always fully respected in the true arithmetic.
Another interesting example shows that one gets no wrapping and data dependancy for the two arithmetic
frameworks.

>>> def f1(x):return x**2-2*x+1
>>> def f2(x):return x*(x-2)+1
>>> def f3(x):return (x-1)**2

>>> # Semantic arithmetic
>>> print f1(a), f2(a), f3(a)
[-7.0,8.0] [-7.0,8.0] [-7.0,8.0]
>>> print f1(b), f2(b), f3(b)
[2.0,11.0] [2.0,11.0] [2.0,11.0]

and

>>> # True arithmetic
>>> print f1(a), f2(a), f3(a)
[-1.0,2.0] [-1.0,2.0] [-1.0,2.0]
>>> print f1(b), f2(b), f3(b)
[4.0,9.0] [4.0,9.0] [4.0,9.0]

One remarks that the true arithmetic results are always included in the ones obtained with the semantic
arithmetic.
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C. Optimization examples

1. Fixed-step gradient descent method

Here is a script example of minimization with fixed-step gradient method which belongs to the so-called
gradient descent method16. This algorithm and this example are very simple but it shows that the result is
garanted to be found within the final interval.
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Figure 1. Convergence of the fixed-step gradient algorithm for the function x 7→ x · exp(x) to an interval centered
around −1.

from interval_lib import *
# Example of fixed step gradient descent method

file=open("res.data", "w") # Data file to be plotted
h=1.e-6 # Finite difference step
def f(x):return x*(exp(x)) # Function to be minimized
def fp(x):return interval(((f(x+h)-f(x-h)).midpoint)/h/2.) # Finite difference
x=interval(2, eps=.1) # Initial guess
rho=interval(1.e-2) # Gradient step
epsilon=1.e-6 # Accuracy of the gradient
while abs(fp(x))>epsilon: # Descent loop

fprime=fp(x)
x=x-rho*fprime
file.write(("%f %f %f %f %f\n")%(x.min, x.max, x.midpoint, fprime.min, fprime.max))

file.close()

In the true arithmetic, the finite differences are ”smaller” and it has meaning to do derivative calculations.
This is due to the fact that for close intervals, the difference is close to 0. One has just to change

def fp(x):return (f(x+h)-f(x-h))/h/2. # Finite difference

The result shown in figure 2 is impressive, because for any initial guess the interval width decreases to
converge to real point minimum. In the semantic interval on figure 1, the width of the interval does not
decrease and the center converges to the right value. This is due to finite difference calculation at the center.
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Figure 2. Convergence of the fixed-step gradient algorithm with true arithmetic for the function x 7→ x · exp(x) to
an interval centered around −1.

2. Newton-Raphson method

Let’s optimize the same function x 7→ x · exp(x) with a second order method such as the Newton-Raphson
one, which is the basis of all second order methods such as Newton or quasi-Newton’s ones16. It finds the
same minimum which is an interval centered around −1.

# Example of Newton-Raphson method
from interval_lib import *
file=open("res.data", "w") # Data file to be plotted
h=(1.e-6) # Finite difference step
def f(x):return x*(exp(x)) # Function to be minimized
def fp(x):return interval(((f(x+h)-f(x-h)).midpoint)/h/2.) # Finite difference
def fp2(x):return interval(((f(x+h)+f(x-h)-2*f(x)).midpoint)/(h*h)) # Finite difference
x=interval(2, eps=.1) # Initial guess
epsilon=1.e-10 # Accuracy of the gradient
while abs(fp(x))>epsilon: # Descent loop

fprime=fp(x)
fsecond=fp2(x)
file.write(("%f %f %f %f %f\n")%(x.min, x.max, x.midpoint, fprime.min, fprime.max))
x=x-fprime/fsecond

file.close()

Another interesting example is shown on the figures 5,6 and 7 for different initial guess intervals. We
would like to optimize x 7→ (x2− 1)2. One has to change the finite differences calculated in the center of the
interval by classical finite differences :

def fp(x):return (f(x+h)-f(x-h))/h/2. # Finite difference
def fp2(x):return (f(x+h)+f(x-h)-2*f(x))/(h*h) # Finite difference

The minima are {−1, 0, 1}. One can see that depending on the initial guess, this simple algorithm finds the
right real point minima.
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Figure 3. Convergence of the Newton-Raphson algorithm for the function x 7→ x · exp(x) to an interval centered
around −1.
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Figure 4. Convergence of the Newton-Raphson algorithm with true arithmetic for the function x 7→ x · exp(x) to an
interval centered around −1.

D. Matrix diagonalization and inversion

1. Diagonalization

As an example, we define the matrix M whose elements are intervals centered around a certain real number
with a radius ε.

M =

(
[1− ε, 1 + ε] [2− ε, 2 + ε]
[3− ε, 3 + ε] [4− ε, 4 + ε]

)
.

If one uses scilab to compute the spectrum of the previous matrix without radius (ε = 0), the highest
eigenvalue is approximatively 5.3722813 and the corresponding eigenvector is (0.4159736, 0.9093767). In
order to show that arithmetics and interval algebra developped above is robust and stable, let’s try to
compute the highest eigenvalue of an interval matrix. One uses here the iterate power method, which is very
simple and constitute the basis of several powerful methods such as deflation and others. The two figures
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Figure 6. Convergence of the Newton-Raphson algorithm with true arithmetic for the function x 7→ (x2 − 1)2.

8 and 9 show clearly for different value of ε the stability of the multiplication, and the largest eigenmode
is recovered when ε = 0. The other eigen modes can be computed with the deflation methods for example
which consists to withdraw the direction spanned by the eigenvector associated to the highest eigenvalue to
the matrix by constructing its projector and to do the same. Several methods are available and efficient.
We have choosen to compute only the highest eigenvalue and its corresponding eigenvector in order to show
simply the efficiency of our new artihmetic. The corresponding code in python is described below :

# Example of an interval matrix diagonalization
from interval_lib import *
file=open("res.data", "w") # Data file to be plotted
for i in xrange(10):# Loop on the radius of the matrix elements

epsilon=10.**(-i)
# Construction of the matrix

a=interval(1, eps=epsilon);b=interval(2, eps=epsilon)
c=interval(3, eps=epsilon);d=interval(4, eps=epsilon)
u=Vector([a, b]);v=Vector([c, d])
u0=Vector([interval(1), interval(1)]) #Initial guess



[July 20, 2011] 19

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6  7  8

In
t
e
r
v
a
l 
b
o
u
n
d
s

Iterations

Minimization of (x**2-1)**2 with Newton-Raphson method

Figure 7. Convergence of the Newton-Raphson algorithm with true arithmetic for the function x 7→ (x2 − 1)2.

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 1e-06  1e-05  0.0001  0.001  0.01  0.1  1

H
ig

h
e
s
t
 e

ig
e
n
v
a
lu

e
 i
n
t
e
r
v
a
l 
b
o
u
n
d
s
 a

n
d
 c

e
n
t
e
r

interval radius of matrix elements

Iterate power method

Lower bound
Center

Upper bound

Figure 8. Comparison of the largest eigenvalue found with scilab 5.3722813 versus the iterate power method one
computed with intervals.

m=Matrix([u, v]) # Interval matrix to be diagonalized
e,v=iterate_power(m, u0, 10) #Power iteration
file.write("%f %f %f %f %f %f %f\n"%(epsilon, e.min, e.max, v[0].min, v[0].max,v[1].min, v[1].max ))

file.close()

2. Inversion

Let’s define a symmetric matrix.

M =

 [1− ε, 1 + ε] [4− ε, 4 + ε] [5− ε, 5 + ε]
[4− ε, 4 + ε] [2− ε, 2 + ε] [6− ε, 6 + ε]
[5− ε, 5 + ε] [5− ε, 6 + ε] [3− ε, 3 + ε]

 .
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Figure 9. Comparison of the eigenvector corresponding to the largest eigenvalue found with scilab
(0.4159736, 0.9093767) versus the iterate power method one computed with intervals.

We would like to use the well-know Schutz-Hotelling algorithm16,31 to inverse a matrix X :

X0 =
Xt∑
i,j A

2
ij

, Xj = Xj−1(2−A ·Xj−1), ∀n ≥ 1 (3)

Scilab gives numerically for ε = 0

M−1 =

 −0.2678571 0.1607143 0.125
0.1607143 −0.1964286 0.125

0.125 0.125 −0.125

 . (4)

The python code is very simple :

# Example of an interval matrix inversion
from interval_lib import *

epsilon=.2 #intervals radius
a=interval(1, eps=epsilon);b=interval(2, eps=epsilon);c=interval(3, eps=epsilon)
d=interval(4, eps=epsilon);e=interval(5, eps=epsilon);f=interval(6, eps=epsilon)
# Build the matrix m
u=Vector([a, d, e]);v=Vector([d, b, f]);w=Vector([e, f, c])
m=Matrix([u, v, w]);inv_m=schultz(m);inv_inv_m=schultz(inv_m)
# Display results
print "M=", m
print "Inverse matrix = ", inv_m
print "M^(-1)*M=", inv_m*m
print "M*M^(-1)=", m*inv_m
print "(M^(-1))^(-1)=",inv_inv_m

We obtain with intervals for ε = 0.2 for example :

M= [*
[0.8,1.2][3.8,4.2][4.8,5.2]
[3.8,4.2][1.8,2.2][5.8,6.2]
[4.8,5.2][5.8,6.2][2.8,3.2]
*]
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Inverse matrix = [*
[-0.267918088737,-0.267790262172][0.160409556314,0.161048689139][0.12457337884,0.125468164794]
[0.160409556314,0.161048689139][-0.19795221843,-0.194756554307][0.122866894198,0.12734082397]
[0.12457337884,0.125468164794][0.122866894198,0.12734082397][-0.127986348123,-0.121722846442]
*]
M^(-1)*M= [*
[1.0,1.0][-2.77555756156e-17,0.0][-1.80411241502e-16,-1.66533453694e-16]
[-2.22044604925e-16,-2.11636264069e-16][1.0,1.0][-1.38777878078e-17,0.0]
[0.0,1.38777878078e-17][0.0,0.0][1.0,1.0]
*]
M*M^(-1)= [*
[1.0,1.0][-1.21430643318e-16,-1.11022302463e-16][0.0,1.38777878078e-17]
[0.0,0.0][1.0,1.0][-1.38777878078e-17,0.0]
[4.16333634234e-17,5.55111512313e-17][-1.80411241502e-16,-1.66533453694e-16][1.0,1.0]
*]
(M^(-1))^(-1)= [*
[0.8,1.2][3.8,4.2][4.8,5.2]
[3.8,4.2][1.8,2.2][5.8,6.2]
[4.8,5.2][5.8,6.2][2.8,3.2]
*]

and for ε = 0.1

M= [*
[0.9,1.1][3.9,4.1][4.9,5.1]
[3.9,4.1][1.9,2.1][5.9,6.1]
[4.9,5.1][5.9,6.1][2.9,3.1]
*]
Inverse matrix = [*
[-0.267888307155,-0.267824497258][0.160558464223,0.160877513711][0.124781849913,0.125228519196]
[0.160558464223,0.160877513711][-0.197207678883,-0.195612431444][0.123909249564,0.126142595978]
[0.124781849913,0.125228519196][0.123909249564,0.126142595978][-0.126527050611,-0.123400365631]
*]
M^(-1)*M= [*
[1.0,1.0][2.22044604925e-16,2.35922392733e-16][1.66533453694e-16,1.7694179455e-16]
[0.0,0.0][1.0,1.0][0.0,0.0]
[-1.31838984174e-16,-1.11022302463e-16][-1.2490009027e-16,-1.11022302463e-16][1.0,1.0]
*]
M*M^(-1)= [*
[1.0,1.0][0.0,0.0][-6.93889390391e-18,0.0]
[0.0,0.0][1.0,1.0][0.0,6.93889390391e-18]
[-3.46944695195e-18,0.0][0.0,0.0][1.0,1.0]
*]
(M^(-1))^(-1)= [*
[0.9,1.1][3.9,4.1][4.9,5.1]
[3.9,4.1][1.9,2.1][5.9,6.1]
[4.9,5.1][5.9,6.1][2.9,3.1]
*]

and for ε = 0.01

M= [*
[0.99,1.01][3.99,4.01][4.99,5.01]
[3.99,4.01][1.99,2.01][5.99,6.01]
[4.99,5.01][5.99,6.01][2.99,3.01]
*]
Inverse matrix = [*
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[-0.267860324247,-0.267853946662][0.160698378764,0.160730266691][0.124977730269,0.125022373367]
[0.160698378764,0.160730266691][-0.196508106182,-0.196348666547][0.124888651345,0.125111866834]
[0.124977730269,0.125022373367][0.124888651345,0.125111866834][-0.125155888117,-0.124843386433]
*]
M^(-1)*M= [*
[1.0,1.0][1.11022302463e-16,1.12323345069e-16][5.55111512313e-17,5.63785129692e-17]
[-1.51788304148e-18,0.0][1.0,1.0][-5.74627151417e-17,-5.55111512313e-17]
[-8.67361737988e-19,0.0][-2.22911966663e-16,-2.22044604925e-16][1.0,1.0]
*]
M*M^(-1)= [*
[1.0,1.0][-2.16840434497e-19,0.0][0.0,0.0]
[-2.22044604925e-16,-2.21610924056e-16][1.0,1.0][0.0,0.0]
[-1.12323345069e-16,-1.11022302463e-16][-5.57279916658e-17,-5.55111512313e-17][1.0,1.0]
*]
(M^(-1))^(-1)= [*
[0.99,1.01][3.99,4.01][4.99,5.01]
[3.99,4.01][1.99,2.01][5.99,6.01]
[4.99,5.01][5.99,6.01][2.99,3.01]
*]

It is obvious that this method is very stable and confirms that the true arithmetic operations are robust. It
is not difficult to extend usual linear iterative algebra numerical algorithms to intervals. It permits to solve a
lot problems where the entries of the matrices are not well defined, especially for automation applications22.

VII. CONCLUSION

We have presented a better algebraic way to do calculations on intervals. This approach1 is done by
embedding the space of intervals into a free algebra of dimension greater or equal to 4. This permits to
obtain all the basic arithmetic operators with distributivity and associativity. We have shown that when one
increases the representative algebra dimension, the multiplication result will be closer to the usual Minkowski
product. We have compared two approaches for interpreting substraction operation, and the canonical
approach we have proposed, called true arithmetics is more coherent and efficient. Differential calculus
is possible and very efficient to solve some optimization problems. It is now possible to build inclusion
functions from the natural ones. This will be studied in a more accurate way in a forthcoming paper. The
set of intervals is now endowed with an order relation which permits to define inequalities for intervals. One
of the straightforward application can be non-linear simplex algorithm, the so-called Nelder-Mead simplex
method or downhill simplex16,23 which is derivative-free method and can be easily implemented. We have
exhibited some examples of applications : optimization, diagonalization and inversion of matrices which
clearly state that the arithmetic is stable and that if the initial datas are known with a certain uncertainity
(belonging to an interval), it is thus possible to estimate with accuracy the point solution of the problem, a
real number or a smaller interval centered around it.
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