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Abstract

In this paper, we propose an adaptive semiparametric estimation for the nonparametric

component of partially linear models. The new estimator is better than the usual nonpara-

metric method in the sense that the convergence rate of its MSE adapts to the underlying

models. The convergence rate is of optimal nonparametric rate O(n−4/5) generally and can

achieve the parametric rate O(n−1) on some conditions. Simulation studies show that the

new estimator outperforms the traditional nonparametric estimator.
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1. Introduction

In recent years, there has been increasing interest and activity in the general area of

partially linear regression smoothing. For a detailed account of this model, see the monograph

by Härdle, Liang and Gao(2000).

In this paper, we mainly consider the following fixed design partially linear model

Yi = xτ
i β + g(ti) + εi, i = 1, · · · , n, (1.1)

where {xi} and {ti} are respectively p-dimensional and scalar explanatory variables, data

{Yi} are observed at (xi, ti), β is an unknown p-dimensional parameter, g(t) is an unknown

smooth function for t ∈ [0, 1], and ε1, · · · , εn are independent and identically distributed
1E-mail address: wkp@sdu.edu.cn. This paper is supported by RFDP project (20070422034) of China.
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with mean zero and variance σ2. Without loss of generality, assume that the design points

t1, · · · , tn satisfy 0 ≤ t1 < t2 · · · < tn ≤ 1.

Usually, the estimation procedure is designed as follows. For every given β, define an

estimator of g(t) by

gn(t;β) =
n∑

i=1

Wni(t)(Yi − xτ
i β),

where Wni(t) is positive weight function depending on t and the design points t1, · · · , tn.

Replacing g(t) by gn(t;β) in the model (1.1) and using the least squares (LS) criterion, we

obtain the LS estimator of β as

β̃LS = (X̃τ X̃)−1X̃τ Ỹ , (1.2)

where X̃τ = (x̃1, · · · , x̃n) with x̃j = xj −
∑n

i=1 Wni(tj)xi and Ỹ τ = (Ỹ1, · · · , Ỹn) with Ỹj =

Yj −
∑n

i=1 Wni(tj)Yi. Then, the nonparametric estimator of g(t) is defined as

g̃n(t) =
n∑

i=1

Wni(t)(Yi − xτ
i β̃LS). (1.3)

Under some regularity conditions, the mean squared error (MSE) of g̃n(t) satisfies

MSE(g̃n(t)) =
σ2

nh
+ O(h4) + o(n−1h−1) + o(h4). (1.4)

This suggests that the optimal choice for h is proportional to n−1/5 and then MSE(g̃n(t)) is

proportional to n−4/5.

Note that n−4/5 is the standard convergence rate of nonparametric estimation. However,

although we do not know which form g(t) has, we are very interested in finding an estimation

procedure to guarantee that the estimator of g(t) has the following properties: if g(t) is in fact

a parametric function, then the estimator has parametric convergence rate; otherwise, the

estimator has the nonparametric convergence rate. In other words, the estimation procedure

should adapt to the model function g(t).

In this paper, we will utilize a nonparametric adjustment to solve the above problem.

Nonparametric adjustment technique has been used to improve the density estimation (Naito

(2004), Hjort and Glad (1995) and Hjort and Jones (1996)). The proposed estimator can

be viewed as semiparametric in such a case that it combines parametric and nonparametric

methods. In the proposed approach, a parametric plug-in estimator is used as a crude guess
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of g(t). This initial parametric approximation is adjusted via multiplication by a nonpara-

metric factor. The resulting estimator can achieve a satisfactory convergence rate, even the

parametric convergence rate, when regression function space has “good” properties in the

sense that the underlying functions are sufficiently smooth or are already parametric.

It is worth pointing out that, in our estimation procedure, we need not to have any

knowledge about the function g(t). The convergence rate of the MSE of the new estimator

is of optimal nonparametric rate O(n−4/5) generally and can achieve the parametric rate

O(n−1) on some conditions. However, for the usual nonparametric estimator, its convergence

rate is at most O(n−4/5), and in this sense, the new estimator is better than the traditional

nonparametric method.

This paper is organized as follows. In Section 2, a nonlinear least squares is used to obtain

a series approximation to the nonparametric component and then this initial estimator is ad-

justed based on a local L2-fitting criteria to establish the adaptive semiparametric estimator.

The asymptotic behavior of the proposed estimator is investigated in Section 3. In Section 4,

random design regression model as an extension is discussed. Simulation studies are reported

in Section 5 to illustrate the theoretical conclusions. The technical proofs are relegated to

Section 6.

2. The Estimation Procedure

We now introduce the semiparametric estimation procedure to construct our adaptive es-

timator. For every given β, the initial estimator of g(t), denoted by g̃M (t, β) =
∑M

k=1 θ̃kpk(t),

can be obtained by minimizing

1
n

n∑

i=1

{
(Yi − xτ

i β)−
M∑

k=1

θkpk(ti)
}2

for θk ∈ Θ, where Θ is parameter space, pk(t) are basis functions satisfying
∫ 1

−1
pk(t)dt = 0,

∫ 1

−1
pj(t)pk(t)dt =

{
1, for j = k
0, otherwise,

and M depends on n and tends to infinity as n tends to infinity. Let

PM (t) = (p1(t), · · · , pM (t))τ

θM = (θ1, · · · , θM )τ

θ̃M (β) = (θ̃1(β), · · · , θ̃M (β))τ

=
(
n−1 ∑n

i=1 PM (ti)P τ
M (ti)

)−1
n−1 ∑n

i=1 PM (ti)(Yi − xτ
i β).
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Then the initial estimator can be expressed as

g̃M (t, β) = P τ
M (t)θ̃M (β).

To the above notations be well defined, we assume that the design points are well designed

such that the matrix
∑n

i=1 PM (ti)P τ
M (ti) is positive definite. For the fixed design regression

model, this assumption condition is somewhat difficult to be realized, but for the random

design model it is common.

Next, we aim to multiple the initial estimator by an adjustment factor ξ = ξ(t, β). We will

give general criterion in Section 4 to determine the adjustment for random design models.

We here define the following local L2-fitting criterion for fixed design model as

q(t, β, ξ) =
1
h

∫ 1

0
K

(u− t

h

)
{g(u)− (g̃M (u, β)ξ)}2du (2.1)

for the solution of ξ. Let s0 = 0, si = (ti+ti+1)/2, i = 1, · · · , n−1, and sn = 1. By minimizing

the criterion (2.1) with respect to ξ, we get the estimator of ξ(t, β)

ξ̂(t, β) =
h−1

∫ 1

0
K(u−t

h )g(u)g̃M (u,β)du

h−1
∫ 1

0
K(u−t

h )g̃2
M (u,β)du

=
h−1

∑n

i=1

∫ si
si−1

K(u−t
h )g(u)g̃M (u,β)du

h−1
∫ 1

0
K(u−t

h )g̃2
M (u,β)du

≈
h−1

∑n

i=1

∫ si
si−1

K(u−t
h )g̃M (u,β)du(Yi−xτ

i β)

h−1
∫ 1

0
K(u−t

h )g̃2
M (u,β)du

=
∑n

i=1 w̃ni(t)(Yi − xτ
i β),

where

w̃ni(t) =
h−1

∫ si
si−1

K(u−t
h )g̃M (u,β)du

h−1
∫ 1

0
K(u−t

h )g̃2
M (u,β)du

. (2.2)

Consequently, the semiparametric estimator of g(t) can be expressed as

ĝn(t, β) = g̃M (t, β)ξ̂(t, β) =
n∑

i=1

n∑

j=1

wnij(t)(Yi − xτ
i β)(Yj − xτ

j β),

where

wnij(t) = P τ
M (t)

(
n−1

n∑

i=1

PM (ti)P τ
M (ti)

)−1
n−1PM (ti)w̃nj(t). (2.3)

By substituting ĝn(t, β) for g(t) in the model (1.1) we can obtain an LS estimator of β.

However, such an estimator has no explicit representation. For convenience, we now use a
√

n-consistent estimator β̂ , e.g., β̃LS defined by (1.2), as a replacer of the estimator of β.
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From the proof of Theorem 3.1, we can see that the
√

n-consistent condition is necessary

and sufficient for the convergence of nonparametric component. Finally, the nonparametric

estimator of g(t) is defined as

ĝn(t) =
n∑

i=1

n∑

j=1

wnij(t)(Yi − xτ
i β̂)(Yj − xτ

j β̂). (2.4)

3. Asymptotic Behavior

In this section, we assume that the design points are generated by a positive, Lipschitz

continuous function ϕ(·) in the sense that ti = Q
(

i−1/2
n

)
, i = 1, · · · , n, in which Q(u) =

F−1(u) and F (t) =
∫ t
0 ϕ(u)du, 1 ≤ u ≤ 1. We also assume that K(·) has support [−1, 1], is

Lipschitz continuous and
∫ 1
−1 K(u)du = 1 and

∫ 1
−1 uK(u)du = 0. From now on, we denote

JK =
∫ 1
−1 K2(u)du and σ2

K =
∫ 1
−1 u2K(u)du.

Suppose that there exist θk ∈ Θ such that g(t) =
∑∞

k=1 θkpk(t) and let remainder term

eM (t) =
∑∞

k=1 θkpk(t)−
∑M

k=1 θkpk(t). We need the following conditions.

(i) For t ∈ (0, 1), there are functions ε0(t), ε1(t) and ε2(t) such that εk(t) 6≡ 0, k = 0, 1, 2,

and

lim
M→∞

Mγ0eM (t) = ε0(t), lim
M→∞

Mγ1(eM (t))′ = ε1(t), lim
M→∞

Mγ2(eM (t))′′ = ε2(t)

for constants γ2 ≤ γ1 ≤ γ0 and γ0 > 0.

(ii) E(β̂ − β)2 = O(n−1).

Condition (i) presents the convergence rates of the remainder term and its derivatives,

respectively. It also implies that the nonparametric component g(t) should be smooth to

some suitable extent such that the remainder term has a suitable rate to tend to zero. The

decreasing relationship between the rates described by γ2 ≤ γ1 ≤ γ0 is also common. For

example, if {pk} is trigonometric function basis or polynomial basis, the remainder term has

this property. Condition (ii) presents the standard convergence rate of parametric estimator

and β̃LS defined by (1.2) satisfies it.

Let h = O(n−ν) and M = O(nδ) for 0 < ν < 1 and 0 < δ < 1. We have the following

theorem.

Theorem 3.1 Assume that conditions (i) and (ii) hold, g(t) and p(t) have two continuous

derivatives on (0,1). Then, for t ∈ (0, 1), the bias and variance of ĝn(t) can be expressed
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respectively as

Bias(ĝn(t)) = 1
2h2σ2

KM−γ2ε2(t) + o(h2M−γ2) + O(M−γ0+1) + O(n−1M),

Var(ĝn(t)) = σ2JK
nhϕ(t) + O(n−1) + O(n−2h−2).

The theorem above shows that, when δ < 2/(1 + γ0), the MSE of ĝn(t) has the represen-

tation

MSE∗
h =

σ2JK

nhϕ(t)
+

1
4
h4σ4

KM−2γ2(ε2(t))2 + O(M−2(γ0−1)).

To determine the convergence rate of MSE∗
h, we need the following conditions:

(iii) γ0 − γ2 > 1.

(iv) γ0 − γ2 ≤ 1.

Then by minimizing MSE∗
h, we get the following corollary.

Corollary 3.1 (I) Under condition (iii), suppose the conditions of Theorem 3.1 hold, if ν

and δ are chosen satisfying

ν < 1/2, 2ν/(γ0 − γ2 − 1) < δ < min{2/(1 + γ0), (1− 2ν)/(1 + γ2)},

then, for estimating g(t), the optimal choice of h satisfies

h =
( σ2JK

σ4
Kϕ(t)(ε2(t))2

)1/5( 1
nM−2γ2

)1/5
.

In this case the the mean squared errors of ĝn(t) satisfy

MSE(ĝn(t)) ∼ σ2JK
ϕ(t)

{
1
4

(
σ2JK

σ4
Kϕ(t)(ε2(t))2

)−1/5
+

(
σ2JK

σ4
Kϕ(t)(ε2(t))2

)1/5}(
1

Mγ2/4n

)4/5

(II) Under condition (iv), suppose the conditions of Theorem 3.1 hold, if δ is chosen satisfying

δ < 2/(1 + γ0), then, for any h,

MSE(ĝn(t)) ∼ σ2JK

nhϕ(t)
+ O(M−2(γ0−1))

According to Corollary 3.1, we have the following surprising results.

(A) Conditions (iii) and (iv) are essential for the adaptability of our semiparametric

estimator. Under condition (iii), the MSE has a standard asymptotic structure as in the
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classical nonparametric estimation. Under condition (iv), the MSE can achieve the conver-

gence rate of parametric estimation. For example, if γ0 ≥ 5/3, δ is chosen to satisfy that

1/[2(γ0 − 1)] ≤ δ < 2/(1 + γ0), and h is independent of n, then

MSE∗
h ∼ O(n−1).

This means that in a “good” regression function space G, the convergence rate of the MSE of

the new estimator can achieve the order of O(n−1), the optimal rate in the parametric case.

(B) Under condition (iii), the convergence rate of the new estimator also depends on the

property of the function space G. If γ2 = 0, the asymptotic order of bandwidth h is of

order O(n−1/5), the standard optimal convergence rate. If γ2 < 0, the resulting estimator

is under-smoothing. This means that, in a larger function space, the estimator has to be

under-smoothing to guarantee optimal convergence rate. On the other hand, if γ2 > 0, the

resulting estimator is over-smoothing. This means that any function in a smaller function

space can get a better first-stage estimator and, consequently, the second-stage estimator can

be over-smoothing.

4. Extension

We now extend the previous method to random design regression model, i.e., ti = Ti are

randomly designed in model (2.1). In this case, the regression function is defined as the

conditional mean of Y given explanatory variable (X, T ), and (X, T ) and ε are unrelated.

Let T(1) ≤ T(2) ≤ · · · ≤ T(n) be the order statistics of T1, T2, · · · , Tn and s0 = 0, si =

(T(i) + T(i+1))/2, i = 1, · · · , n − 1, sn = 1. In this case the semiparametric estimator of

g(T ) has the same representation as in (2.4). Furthermore, if the random design points

T1, T2, · · · , Tn are quasi-uniform, we can get the same properties as in the above theorem and

corollary. Here we need the quasi-uniform design points to guarantee good approximations

to the integrals as given in Section 2. The conclusions and the proofs are similar and thus

the details are omitted.

However, the quasi-uniform condition is not a necessary condition if the local L2-fitting

criteria (2.1) is replaced by the following locally weighted least squares,

n∑

i=1

{
Yi − [XT

i β + g̃M (Ti)ξ]
}2

Wni(t) (4.1)

where the weight functions Wni(t) depend on the distances |Ti − t|. Minimizing the criteria

7

http://www.paper.edu.cn  



(4.1), we get the estimators of ξ(t) as

ξ̂(t) =

∑n
i=1

{
Yi −XT

i β
}
g̃M (Ti)Wni(t)

∑n
i=1(g̃M (Ti))2Wni(t)

Finally, the second-stage estimators of g can be expressed as

ĝn(t) = g̃M (t)

∑n
i=1

{
Yi −Xτ

i β
}
g̃M (Ti, β)Wni(t)

∑n
i=1(g̃M (Ti, β))2Wni(t)

(4.2)

The estimator (4.2) is similar to (2.4), and then has the similar properties as given before.

The details are omitted.

5. Simulation Studies

Finite sample performance of the semiparametric estimator is investigated by simulations.

In the following examples, the sample size is chosen as n = 500, the basis functions are chosen

as sin-cosine functions, and the nonparametric estimator of g(t) is obtained by local linear

method.

Example 1. Consider the following model

Yi = 0.75Xi + sin(πTi) + εi, i = 1, · · · , 500, (5.1)

where Xi are independently distributed as U(0, 1), Ti = i/n, and ε is distributed as N(0, 0.1252).

The kernel function is chosen as K(u) = 0.75(1 − u2)I(|u| < 1); the bandwidth is derived

from the cross validation; the number of the basis functions is chosen to be M = 4.

Note that, in this model, the nonparametric component can be completely parameterized

by finite basis functions. Then this example is designed for checking that, in a “good”

regression space, the new semiparametric estimator can achieve a satisfactory convergence

rate. In fact, a number of simulations show that the new estimator is better than the

nonparametric method. Figure 1 reports the detail of one of the simulations we conducted.

(Figure 1 is about here)

Example 2. Consider the following model

Yi = 0.75Xi + T 3
i + εi, i = 1, · · · , 500, (5.2)

where Xi, Ti and ε are distributed as those in Example 1. The simulations we conducted

again indicate that the new estimator of the nonparametric component g has the similar
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behavior as that of the nonparametric estimator. Figure 2 presents part of the simulations

for model (5.2).

(Figure 2 is about here)

6. Proofs

Denote gM (t) =
∑M

k=1 θkpk(t) and

ĝM (t) = gM (t)
h−1 ∑n

i=1(Yi − xτ
i β̂)

∫ si
si−1

K
(

u−t
h

)
gM (u)du

h−1
∫ 1
0 K

(
u−t
h

)
g2
M (u)du

.

Lemma 6.1 If the conditions of Theorem 3.1 hold, then

Bias(ĝM (t)) = σ2
Kh2

2 M−γ2ε2(t) + o(h2) + O(n−1) + O(M−γ0),

V ar(g̃M (t)) = σ2JK
nhϕ(t) + O

(
n−1

)
+ O

(
n−2h−2

)
.

Proof.

E(ĝM (t))

= gM (t)
h−1

∑n

i=1
(Yi−xτ

i β+xτ
i β−xτ

i β̂)
∫ si

si−1
K(u−t

h )gM (u)du

h−1
∫ 1

0
K(u−t

h )g2
M (u)du

= g(t) +
gM (t)h−1

∑n

i=1
g(ti)

∫ si
si−1

K(u−t
h )gM (u)du−g(t)h−1

∫ 1

0
K(u−t

h )g2
M (u)du

h−1
∫ 1

0
K(u−t

h )g2
M (u)du

+
gM (t)h−1

∑n

i=1
xτ

i E(β−β̂)
∫ si

si−1
K(u−t

h )gM (u)du

h−1
∫ 1

0
K(u−t

h )g2
M (u)du

= g(t) + H1 + H2.

The numerator of H1 can be expressed as

g(t)h−1
∫ 1
0 K(u−t

h )g(u)gM (u)du− g(t)h−1
∫ 1
0 K(u−t

h )g2
M (u)du

+O(n−1) + O(M−γ0)

= g(t)
(
g(t)gM (t) + σ2

Kh2

2 (g(t)gM (t))′′ − g2
M (t)− σ2

Kh2

2 (g2
M (t))′′

)

+o(h2) + O(n−1) + O(M−γ0)

= σ2
Kh2

2 g2(t)M−γ2ε2(t) + o(h2) + O(n−1) + O(M−γ0).

Then H1 = σ2
Kh2

2 M−γ2ε2(t) + o(h2) + O(n−1) + O(M−γ0).

It can be easily verified that H2 = o(n−1). Consequently,

Bias(ĝM (t)) =
σ2

Kh2

2
M−γ2ε2(t) + o(h2) + O(n−1) + O(M−γ0)
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as required.

The remainder can be easily proved by the typical method, e. g. see the proof of Theorem

3.1 of Hart (1997), and then the detail is omitted here.

Proof of Theorem 3.1 Write

θM = (θ1, · · · , θM )τ ,

RM (t) = g(t)−
M∑

k=1

θkpk(t).

Then the first-stage estimator of nonparametric component g(t) can be expressed as

P τ
M (t)θ̃M

= P τ
M (t)

(
n−1

n∑
i=1

PM (ti)Pτ
M (ti)

)−1
n−1

n∑
i=1

PM (ti)
(
P τ

M (ti)θM + RM (ti) + εi + xτ
i (β − β̂)

)

= gM (t) + P τ
M (t)

(
n−1

n∑
i=1

PM (ti)P τ
M (ti)

)−1
n−1

n∑
i=1

PM (ti)
(
εi + RM (ti) + xτ

i (β − β̂)
)
,

(6.1).

Using Taylor expansion, we can expend ĝn(t)− ĝM (t) at gM (t) and then get

ĝn(t)− ĝM (t)

= g̃M (t, β̂)

∑n

i=1
(Yi−xτ

i β̂)
∫ si

si−1
K(u−t

h )g̃M (u,β̂)du
∫ 1

0
K(u−t

h )g̃2
M (u,β̂)du

− gM (t)

∑n

i=1
(Yi−xτ

i β)
∫ si

si−1
K(u−t

h )gM (u)du
∫ 1

0
K(u−t

h )g2
M (u)du

= B(t)
(
g̃M (t, β̂)− gM (t)

)
+ op(n−1M),

(6.2)

where

B(t) = η1

η2
+ gM (T )η3

η2
− 2gM (T ) η1

η2
4

with
η1 =

∑n
i=1

(
Yi − xτ

i β̂
) ∫ si

si−1
K

(
u−t
h

)
gM (u)du,

η2 =
∫ 1
0 K

(
u−u

h

)
(gM (u))2du,

η3 =
∑n

i=1

(
Yi − xτ

i β̂
) ∫ si

si−1
K

(
u−t
h

)
du,

η4 =
∫ 1
0 K

(
u−t
h

)
gM (u)du.
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From the results above and (6.1) it follows that

E
(
η1

(
g̃M (t, β̂)− gM (t)

))

= E
[ ∑n

i=1

(
g(ti) + εi + xτ

i (β − β̂)
) ∫ si

si−1
K

(
u−t
h

)
gM (u)du

×P τ
M (t)

(
n−1

n∑
i=1

PM (ti)P τ
M (ti)

)−1
n−1

n∑
i=1

PM (ti)
(
εi + RM (ti) + xτ

i (β − β̂)
)

=
∑n

i=1 g(ti)
∫ si
si−1

K
(

u−t
h

)
gM (u)du

×P τ
M (t)

(
n−1

n∑
i=1

PM (ti)P τ
M (ti)

)−1
n−1

n∑
i=1

PM (ti)RM (ti)

+
∑n

i=1 g(ti)
∫ si
si−1

K
(

u−t
h

)
gM (u)du

×P τ
M (t)

(
n−1

n∑
i=1

PM (ti)P τ
M (ti)

)−1
n−1

n∑
i=1

PM (ti)xτ
i E(β − β̂)

+σ2

n

∑n
i=1

∫ si
si−1

K
(

u−t
h

)
gM (u)duP τ

M (t)
(
n−1

n∑
i=1

PM (ti)P τ
M (ti)

)−1
n−1

n∑
i=1

PM (ti)

+E(
n∑

i=1
xτ

i (β − β̂)
∫ si
si−1

K
(

u−t
h

)
gM (u)du

×P τ
M (t)

(
n−1

n∑
i=1

PM (ti)P τ
M (ti)

)−1
n−1

n∑
i=1

PM (ti)
(
εi + RM (ti) + xτ

i (β − β̂)
)

= O(hM−γ0+1) + O(hM−2γ0+1) + O(hn−1M)

= O(hM−γ0+1) + O(hn−1M).

Similarly,

E
[
η3

(
g̃M (t, β̂)− gM (t)

)]
= O(hM−γ0+1) + O(hn−1M).

Consequently,

E
[
B(t)

(
g̃M (t, β̂)− gM (t)

)]
= O(M−γ0+1) + O(n−1M).

Combining the results above and Lemma 6.1 leads to

Bias(ĝn(t)) = 1
2h2σ2

KM−γ2ε2(t) + o(h2M−γ2) + O(M−γ0+1) + O(n−1M),

as required.

Using the similar method and Lemma 6.1, we can prove

V ar(ĝn(t)) =
σ2JK

nhϕ(t)
+ O(n−1) + O(n−2h−2),

as required.
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Figure 1. The estimation curve of the nonparametric component g in model (5.1).
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Figure 2. The estimation curve of the nonparametric component g in model (5.2).
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