m E ﬂ H iE i E ﬁ http://www.paper.edu.cn

Estimation of Variance and Its Properties in
Measurement Error Model

Chen Qiuhua! and Cui Hengjian?

! Department of Mathematics and Physics, North China Electric Power
University(Beijing), Beijing, 102206, China
2 Department of Statistics and Financial Mathematics, School of Mathematical
Sciences, Beijing Normal University, Beijing, 100875, China

Email: hjeui@bnu. eud. cn

Abstract

This paper introduces variance estimators of Y in measurement error model
X =Y+ E with known Var({E). An unbiased estimator and an adjust non-negative
estimator of Var(Y) are given. Meanwhile, some properties of expectation and
variance for both estimators are discussed, and some relationships of expectation
(or variance) with sample size and Var(Y')/Var(E) are also shown.
Key words: Measurement error model, independence, unbiased estimator, non-

negative estimator.

1 Introduction

A general measurement error model is as following X =Y + E, where Y, E are
independent, error E' has known variance o2, see Fuller (1987). It is obvious that

the variance of X is a”

= 03 + o3, where U; is the variance of Y. We are interested
in estimating the variance of Y. Let X, X5, -+, X, be a sample from X. Of course,
an unbiased estimator of o2 is the sample variance S? = L5 % (X; — X)? with
X=41¥" X, and

22 _ g2 _ 2
g, =5"—0;5
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is naturally an unbiased estimator of J;‘. Ity ~ N(p, crgj and E ~ N(0,02), then

it is well known that S? is a minimum uniformly variance and unbiased estimator

2
¥

5% is a complete and sufficient statistic of o2.

of o2, and &2 is a minimum uniformly variance and unbiased estimator of r::rj since

Unfortunately, érj is not always non-negative and unreasonable as an estimator
of the variance r::rg. For example, when V" ~ N(O,Ug) and F ~ N(0,1), then X ~
N0, O’S + 1), and the probability of ds is negative for various n and O’S is listed in

the following table.

Table. P{a2 < 0} for various n and o}

n 3 5 8 10
O’,j =0.5] 0487 | 0.385 | 0.209 | 0.260
03 =1 |0.394 | 0.260 | 0.164 | 0.124
03 =2 | 0.283 | 0.144 | 0.061 | 0.034

From the above table, P{c’rg < 0} is always positive, if n = 5 and 03 = 1, then
the probability of é: is negative is larger than 1/4. Note that 52 is a complete and
sufficient statistic of o2 in normal case, thus S? — g2 is just unique a.s. unbiased es-
timator of crg based on the S?. This means the unbiased and non-negative estimator
of crg based on S? doesn’t exist for normal case.

This paper would give a non-negative estimator of as without unbias requirement

and some properties are shown.

2. Non-negative Estimator and Lemmas
Denote that £* = max{&, 0} and £~ = max{—£, 0} are the positive and negative
part of a random variable £ respectively. Intuitively, if ég is negative, we would take

“07 as an estimator of US. Therefore, we take the positive part of és, i.e.
24+ . Q2 _ vt
L (S° —a5)

as a naive non-negative estimator of 03 based on S%. To obtain main results, the

following two lemmas are needed.
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Lemma 1. If E(X?) < 450, then 67 is an unbiased estimator of o2 and &2 -~

oy asn— +oo. If E(X?*) < 400, then

) o n— 3)o*
Vi=V a-r(G’g) = T_; - % (21)

Moreover, \/n(a; — o7) . N(o, Var((X —p)?)) asn — +oc provided Var((X —
1)?) = 0, where * 2= " and * L. stand for the convergence in probability and

in distribution respectively, oy = E(X — p)t, p = E(X).
Lemma 2. Let £ be a random variable with Var(£) < 4oc, then
Var(§) = Var(Et)+ Var(E7)+ 2E(EN)E(E7) = Var(£), (2.2)

and

for any x > 0.

3. Main Results

Denote F,,_y(t), fn-1(t) are the cumulative distribution function and density of
(n —1)58?/0? respectively. The main theorems are listed below.
Theorem 1.

il

(i). Suppose E(X?) < 400, we have lim, ., E(6;7) = a;, and if F,, 4(t) is
continuous at “07 uniformly for oy, then lim,z [E (égﬂ - crg] =0; if f,_4(t) is

independent of o, then E(67%) is a strictly increasing function of o7 and E(67%) —o7
is a strictly decreasing function of Jg.
(ii). If B(X") < 40, then |E(67%) —ay| < agV,,/(V, +a,), where V,, is in (2.1).

Theorem 2. If E(X*) < 400, then Var(a2t) < Var(6}) =V, and MSE(6}%) <

MS E‘(ég), where MSE stands for the mean square error. Meanwhile, T a-r(érj*') is

an increasing function of o2 provided f,_,(t) is independent of o2
v
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Theorems 1 and 2 say that although (ﬁ'§+ is a biased estimator, but its variance

and MSE are smaller than that of érf, .

Theorem 3. If E(X?) < 4o, then f}§+ N crg as n — +oo. and if 0 <
Var((X — p)?) < 40, then a(62t — 02) <2 N(0,Var((X — p)?)) as n — 4.
Theorem 3 says that c‘rg"' and érg have the same properties of consistency and

asymptotic normality.

4 Comparisons and Figures for Normal Case
In this section, we give the comparisons of Bias = E‘[érgﬂ — 03 for various o, n
) - a2 4ol . . -
and oy in normal case. Note that S§? ~ 272 it means f,_,(t) is the density
n—1 n—1: J

of ¥2_, which is independent of a2 in this sense, and

f,, T S dH, 1 (2) = (0 — 1)(1 = Hy_1y06(2))

for i = 1,2 and any » > 0, where x2 | and H, (r) are the random variable and
the cumulative chi-square distribution function of with degree of freedom n — 1
respectively. Therefore,

2 2 o A2 1 A2
Tp + 0y T gy +a

i — o)t - ot = [ (e — o)A () — o

Bias = E|( y

n— v A n—1
= O3Ha(A) — (03403 Haa(A),

S (n—1ja?
where A = =3, and
[

DMSE = ;’thE‘(érg) — ﬂ-fSE‘(cErSJr)

) a2+ a?
= MSE(5) - E[(—5 1 — o0 — o}
n+1

= (g + 0, [Har(A) + - Hoga(A) — 2H,41(A)] — oy H,_1(A).

Figures 1 and 3 present the three curves of Bias and DMSE for oy = 1, 1.5,
2 respectively with fixed n = 10. When o, increasing, then Bias approaches zero;

when o, is larger, then DM SE" approaches zero.
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Ficures 2 and 4 show the three curves of Bias and DMSE for n = 5, 10,50

respectively with fixed 7y = 1. When » is increasing. E(a%) approaches IT;: anl
. . Ty ‘

DMSE :i[:])],‘nzaf'lu'h 0. So we could increase the :w;ilu]lll‘ size it it is I!‘H.“\.\ihll‘,
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5 Proof of Lemmas and Theorems

Proof of Lemma 1.
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Since E(S?) = Var(X) and S* "~ Var(X), then E(6}) = E(S?) —

S 2 P
Var(X) — o0 = 0% — o = 02 and 62 —— o2 as n — +ox.

v y v
It can be derived by the similar way of Serfling (1980, pG9-70) that

5 n py — ot 2(py — 20 L Ha— 3o

Var(s2) = Var(s?) = (——)?|

n—1 n n
py  (n—3)o*
n  nn-—1)"

2 3

Te

and /(5?2 Var(X)) <, N0, Var((X —pu)?)). Thus, / ﬂ(a —crz]l — N{0,Var((X—

1)%)). O

Proof of Lemma 2.

Note that £ =& — &7, £T¢™ =0 and Cov(t,£7) = —E(£T)E(¢7). Hence,

Var(§) = Var(g* — €)= Var(€") + Var(6") — 2C0u(",€")
= Var(éY)+ Var(E7) +2E(ENE(E7),

it means (2.2) in Lemma 2 is true. The proof of {2.3) in Lemma 2 can be referred

to Laha and Rohatgi (1979, p62). O

Proof of Theorem 1.

(i). Let 0® = o) 405, A= (n—1)og/a?, the density of i_, (X; — X )*/o® is f, (1),

then
2 n ooy T2 2
oy O im (X — X)) (n—1)ogy+
E(9,7) = ?1—1E[ o2 B o? }
2 n v, T2
— T i:l(‘x‘?—_‘x) . +
N n—lE[ o2 A}
=" [_a d
= [T — = = [ At

n—
2
oer+

= — (t—A)f, 1t
A Ja Jna(f)
2
i

o [ - Dt

|

UZ

0
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Note that [™tf, 1(t)dt = E[X,(X; — X)?/o?] =n — 1, then

+oo [n o 1)0‘2

.9 2 2 i 2

B —ob = ot [ (g~ Daaldt - =% 4 of
as e (n—1)o2

) ) A
= - thua(t)dt — L0 4 fD fui(t)dt

2

A
A
- auf fas(tydt = 2 [" e (t)at

- onfo (1 —E)fn_l(t)dt.
Hence,
0 < B(62%) — o2 < gof Faa(t)dt. (5.1)

According to the law of large numbers, as n — +oc,

[*ftnie = PEEIT < 4y = Pis? <o)

a2
1
n—1

Zn:(Xﬁ ~X)Pzal} -0 (5.2)

i=1

= P{r:r2 —

ie. limﬂ_,er[E(t’\fgﬂ — 05] = 0.
Using (5.1) and F,_y(f) is continuous at “0” uniformly for o,. we have 0 <

E'(r:}gﬂ — U < 02F,_1(A) and then

lim [E(a;*) — o7] = lim [E‘ (63%) —ag] =0

—,+’x_.

Denote hy(A) = (%—l)fn (E)dt, ho(A) = f,;‘(l — E)fai(t)dt.  Since

fn-1(t) is independent Df a?, it means f,_(t) is also independent- of A, we have

1 (A) = —Aig[:%tfn_dt)dt <0, hy(A) = f 1 ()dE > 0.

We can conclude that £ (c,‘rg“‘) is a strictly inc-reasing function of A, so it is also a

2

y s a strictly increasing

strictly increasing function of Jg. Furthermore, F (érgﬂ —a
function of A, so it is a strictly decreasing funetion of US.

(ii). By (5.1) and (5.2), we have

B(62) — 02| < o3P {o? -

SN, - X)? > 02}

?1_1i=l
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Take £ = 0% — S in Lemma 2. we get

RO
224y 2 ) 2 - o, . opVar(§)
|E[:gy ) o—yl = O-CIP{‘-: E[‘f) = O-y} = 1;(1‘,?"[:6:]4—0';
217
_ a;Va o
1";14—0;

Proof of Theorem 2.
On one hand, treat §% — o as € in (2.2) of Lemma 2, we get Var[(S? —od)T] <

Var(s? —o2) =V}, and

MSE(52) = B(S* — o2 —02)? = E[(S? — 02)* — (5% —02)” — o]
= E[(S* —0d)" — ay)® —2E[((S* — 0§)* — ay)(5* — 03) 7]
+E[(S* —og) |
= MSE(6%) +202E(5* — o) + E[(5* — 02)7)?

> f'»—fSE‘(dr;Jr).

On the other hand,

Var(62t) = E[(62%)%] - [B(624)]?
B E[-j l(zz‘zl(—’;—”g N o

+oo +o0
= O’SL [% — 1)2fn_l(tjdt — US[L (% — l)fn_L[t)dt]z
= opha(A).

Applying f,,_i(t) is independent of o2, it is easv to get

M) = ol [ hade s [ =D [t
_ _A%L+-m[1+m[%_1_(%_1)](tl_tgjfn_l(tljfn_l[tg)dhdtz
= —Aig [:% [:m (t1 — t2)? fuc1(t1) fros(ta2)dtrdts
< 0,



|I| E ﬂ H iE i E ﬁ http://www.paper.edu.cn

- F; D] " . . . . . . . . - . ~ 1
then 1 H:'{_(T;"'_,l is a decreasing funcrion of A, so it is an increasing function of o7,

O

Proof of Theorem 3.
B\' rlu- [;i\\‘ |>f [:11"-'1‘ 1111][1]11‘1’:\ we h;l\'v '\\.'hn‘u E[_\'g [ .5'2 —L- f'}'z, :':1](]

Te o=, P:l‘\'] — {T;T::I_ ~ f—: 1_’:‘\‘3 (T;‘H = 1—’:“\" B —rTf} — 4. Nare thar.

] 9 o 3 B ;oD - . > P > p \
{ o Jadite rTl“I __1+ — fT; = 5 —T7°“4 i\ S5 — :‘Tﬁ o Tl]('l‘q'inl‘(-_ r‘T;—'_ _ r'T;. i — 4 x ). On Tl]{'
other hand, when 0 < Var((X — p)?) < 4. and e = 0, P{ /(8% — a2)” = €} =

Pi.‘_{r < rTI-:} — 0. Henee,

Villaty — ol = u[S? = o+ (S —ap)T = Vi[S? - o+ o,(1),

By the central limit theorem. /7 S? g 4, N0 Var({X — )?)) asn — +x.
then,
\.';{(r;,':“L — r;f; ) L NOVar(iX — %)), O
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