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依时间在线的无界平行分批机器上的最小化

时间表长的研究综述
原晋江1

1 郑州大学数学系，郑州450001
摘要：在线排序是排序论中发展迅速的一个研究分支。在线排序的研究中，无界平行分批机器

上的最小化时间表长模型是一个富有成果性的研究领域。本文详细综述了依时间在线的无界平

行分批机器上的最小化时间表长的研究进展，并提出了若干进一步研究的问题。
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Abstract: Online scheduling is a rapidly developed branch in scheduling theory. In the
research of online scheduling, makespan minimization on unbounded parallel-batch machines
is a fruitful area. In this paper, we give a detail survey for the online over time scheduling on
unbounded parallel-batch machines to minimize the makespan. Some open problems are
proposed for the further research.
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0 Introduction

In the parallel-batch scheduling, we have n jobs J1, · · · , Jn and m parallel-batch machines
M1, · · · ,Mm. Each job Jj has a release date rj ≥ 0 and a processing time pj > 0. Each parallel-
batch machine Mi can process jobs simultaneously as a batch up to b jobs. Here a batch is a
subset of jobs and b is the capacity of the batches. If b = ∞, the model is called unbounded
batching. Otherwise (b < ∞), the model is called bounded batching. The processing time of a
batch is defined to be the maximum processing time of the jobs in the batch. A batch can be
started to processing at a time t if all the jobs in the batch are released by time t. Furthermore,
in a schedule π, the jobs in a batch have the same starting time and the same completion time,
respectively.
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A schedule for parallel-batch scheduling can be determined by partitioning the jobs into
batches and assigning the batches to the available time spaces of the m parallel-batch machines
without overlap. In a schedule π, the completion time of a job Jj is denoted by Cj = Cj(π).
A fundamental objective function is the makespan Cmax = Cmax(π), which is the maximum
completion time of all jobs. Using the standard scheduling classification scheme of Lawler et
al. [1], the makespan minimization problem on parallel-batch machines is written as

Pm|p-batch, b, rj |Cmax.

Parallel-batch scheduling is motivated by semiconductor manufacturing. Uzsoy et al. [2,
3], Avramids et al. [4] and Mathirajan and Sivakumar [5] described the application in the
semiconductor manufacturing process in detail. The fundamental model for bounded parallel-
batch scheduling was first introduced by Lee et al. [6]. For problem 1|p-batch, b < ∞|Cmax,
it was reported by Lee and Uzsoy [7] that the optimal schedule is given by the full batch
longest processing time (FBLPT ) rule proposed first by Bartholdi. An extensive discussion of
the unbounded parallel-batch scheduling problem was provided by Brucker et al. [8]. Recent
developments on this topic can be found in [9] and [10]. With dynamic job arrivals and the
capacity b being infinite, Lee and Uzsoy [7] presented a dynamic programming algorithm to
solve problem 1|p-batch, b = ∞, rj |Cmax in O(n2) time. For the same problem, Poon and
Zhang [11] presented an improved O(n log n)-time algorithm. For the bounded parallel-batch
scheduling problem 1|p-batch, b < ∞, rj |Cmax, Liu and Yu [12] showed that the problem with
only two arrival times is NP-hard, and gave a pseudo-polynomial-time algorithm in case of fixed
number of arrival times. Brucker et al. [8] proved that the general problem is NP-hard in the
strong sense.

Online scheduling is a relatively new topic of scheduling research and has been extensively
studied in the last decade. While there are different meanings of online scheduling, the term
“online” in this paper means that jobs arrive over time.

In the online over time environment, jobs arrive over time and we do not have any infor-
mation about the jobs in advance. The information of each job Jj can be known only at the
arrival time rj of the job. Hence, we must schedule the available jobs without the information
of the the future jobs. Usually, the information of a job Jj includes its release time rj , its
processing time pj , its delivery time dj , its weight wj , and its job family, etc. In the makespan
minimization, the necessary information of a job is its release time rj , its processing time pj ,
and its job family (when the jobs are partitioned into no compatible job families).

The quality of an online algorithm is measured by its competitive ratio. Suppose that we
are considering an online scheduling problem P to minimize a certain objective function. Let
Con(L) and Copt(L) denote, respectively, the objective value of an online algorithm H and of
an optimal off-line algorithm for an input job list L. The competitive ratio RH of algorithm H

is defined as
RH = sup

L
{Con(L)/Copt(L)}.

In this case, we also say that algorithm H is RH-competitive and RH is an upper bound of the
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competitive ratio of problem P
Given an online scheduling problem P, we say that the online algorithms for P has a lower

bound ρ, if every online algorithm for P has a competitive ratio at least ρ. Furthermore, if A
is an online algorithm for P such that the competitive ratio of A is exactly the lower bound ρ

for P, we say that A is a best possible online algorithm for P.
Some examples of studies on online scheduling problems (with jobs arriving over time) are

[13], [14], [15], [16] and [17], among others.
In general, the competitive ratio of an online algorithm will improve if some information on

the jobs is known in advance. This scenario is described as “semi-online” in the literature. In
the literature there are plenty researches concerning semi-online scheduling with jobs arriving
over a list. For example, Cheng et al. [18] studied the semi-online scheduling on parallel
machines with given total processing time. Seiden et al. [19] studied the semi-online scheduling
on parallel machines with decreasing job sizes. Tan and He [20] studied semi-online scheduling
on two parallel machines with combined partial information. In contrast, there are only a few
researches concerning semi-online scheduling with jobs arriving over time. The representative
publication is given by Hall et al. [21]. They studied the semi-online scheduling on a single
machine to minimize the sum of weighted completion time with known arrival times of the jobs.

In this survey, we report the developments on the online scheduling on the unbounded
parallel-batch machines to minimize the makespan. The scheduling models include the following
forms.

1|online, p-batch, b = ∞|Cmax,

1|online, p-batch, restart, b = ∞|Cmax,

1|online, p-batch, L-restart, b = ∞|Cmax,

1|online, p-batch, J∗(t), b = ∞|Cmax,

1|online, p-batch, p∗(t), b = ∞|Cmax,

1|online, p-batch, r∗(t), b = ∞|Cmax,

1|online, p-batch, families, b = ∞|Cmax,

Pm|online, p-batch, b = ∞|Cmax,

Pm|online, p-batch, families, b = ∞|Cmax.

The notations appearing in the above models are described as follows.
• “restart” means that a running task may be interrupted, losing all the work done on it.

The jobs in the interrupted task are then released and become independently unscheduled jobs.
Allowing restarts reduces the impact of a wrong decision.

• “L-restart” means that batches are only allowed limited restarts. If a batch has been
restarted one time, then all jobs in it are considered as interrupted jobs. Any new batch that
contains interrupted jobs cannot be restarted any more. That is, any job is allowed to restart
only once.
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• “J∗(t)” means that at time t the information of the first (equivalently, the last) longest
job arriving after time t is given.

• “p∗(t)” means that at time t the processing time of the first (equivalently, the last)
longest job arriving after time t is given.

• “r∗(t)” means that at time t the arrival time of the first (equivalently, the last) longest
job arriving after time t is given.

• “families” means that the jobs are partitioned into incompatible families so that the jobs
in different families cannot be processed in a common batch.

In the research of online scheduling on parallel-batch machines, the following notations are
widely accepted.

• U(t) is the set of available jobs at time t.
• p(t) is the processing time of U(t).
• J(t) is one of the last longest jobs in U(t).
• r(t) is the arrival time of J(t).

1 Problem 1|online, p-batch, b = ∞|Cmax

The known lower bound and the upper bound of the problem is given in the following
table.

lower bound upper bound situation
1.618 1.618 best possible

Zhang, Cai and Wong [17] and Deng, Poon and Zhang [14] independently provided the
following best possible online algorithm.

Algorithm 1 At time t, if U(t) 6= ∅ and t ≥ (1 + α)r(t) + αp(t), then start to processing
U(t) as a single batch at time t. Otherwise, do nothing but wait.

Poon and Yu [22] provided the following flexible online algorithm, which is also best pos-
sible.

Algorithm 2 At time t, if U(t) 6= ∅ and t ≥ λ(t), where λ(t) is an arbitrary value satis-
fying αp(t) ≤ λ(t) ≤ (1+α)r(t)+αp(t), then start to processing U(t) as a single batch at time
t. Otherwise, do nothing but wait.

The above two algorithms provided basic ideas for the research of online scheduling on
parallel-batch machines, which have been widely accepted in the onward research.
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2 Problem 1|online, p-batch, restart, b = ∞|Cmax

The known lower bound and the upper bound of the problem is given in the following
table.

lower bound upper bound situation
1.382 1.382 best possible

The lower bound was given by Fu, Tian, Yuan and Lin [23].

The following algorithm was given by Yuan, Fu, Ng and Cheng [24].

The following notations are used in the algorithm.
• For a batch Bk, Jk is the last longest job in Bk. We call Jk the key job of Bk.
• α = (3−√5)/2 ≈ 0.382. Note that α2 − 3α + 1 = 0.
• x = 1− α ≈ 0.618. Note that x2 + x− 1 = 0 and α = x/(1 + x) = 1/(2 + x).
• For i ≥ 0, f(i) =

∑
0≤j≤i−1 xj . Note that f(0) = 0 and f(i + 1) = f(i) + xi.

• For a job Jk and a time instant t ≥ rk, i(t, k) = max{i : f(i)pk ≤ t − rk}. When no
confusion may arise, we write i(t) for i(t, k) for brevity. Note that t − rk is the length of the
time period measured from the arrival of job Jk. So i(t) increases with t.

Algorithm H

Step 0: Set t = 0.

Step 1: At time t, if U(t) = ∅, go to Step 4. Otherwise schedule all the jobs in U(t) as a
single batch Bk = U(t) starting at time t. Find the key job Jk of Bk. Calculate i(t) = i(t, k).

Step 2: In time interval (t, t + pk), if no new job arrives, set t = t + pk and go to Step 1.
Step 3: If a new job Jh arrives at time r < t + pk, do the following:
(3.1) If ph ≥ pk, interrupt the running batch Bk and restart a new batch at time r: reset

t = r and go to Step 1.
(3.2) If ph < pk and r − rk − f(i(t))pk < xi(t)+1pk, do the following:
(3.2.1) If ph ≥ r− rk−f(i(t))pk, interrupt the running batch Bk and restart a new batch

at time r: reset t = r and go to Step 1.
(3.2.2) If ph < r − rk − f(i(t))pk, continue processing the present batch Bk and then go

to Step 2.
(3.3) If ph < pk and r − rk − f(i(t))pk ≥ xi(t)pk, continue processing the present batch

Bk and then go to Step 2.
(3.4) If ph < pk and xi(t)+1pk ≤ r − rk − f(i(t))pk < xi(t)pk, do the following:
(3.4.1) If ph < xi(t)+1pk, continue processing the present batch Bk and then go to Step 2.
(3.4.2) If ph ≥ xi(t)+1pk, interrupt the running batch Bk at time r, and do the following

(delay):
(3.4.2.1) If there is a new job J with processing time p ≥ pk arriving at time t∗ ∈

(r, rk + f(i(t) + 1)pk), restart a new batch at time t∗: reset t = t∗ and go to Step 1.
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(3.4.2.2) Otherwise restart a new batch at time rk + f(i(t)+1)pk: reset t = rk + f(i(t)+
1)pk and go to Step 1.

Step 4: If there still are some jobs arriving, set t as the arrival time of the first job and
go to Step 1; otherwise stop and complete the schedule at time t.

3 Problem 1|online, p-batch, L-restart, b = ∞|Cmax

The known lower bound and the upper bound of the problem is given in the following
table.

lower bound upper bound situation
1.5 1.5 best possible

Fu, Tian and Yuan [25] presented the following best possible algorithm.

Algorithm H

Step 0: Set t = 0, s = 0, δ = 0.

Step 1: At time t, if U(t) = ∅, go to Step 5. Otherwise, find the last longest job Jk in
U(t).

Step 2: If t ≥ 1
2
pk, then set s = t and schedule all jobs in U(s) as a single batch

immediately. Otherwise, t < 1
2
pk. Then reset t = 1

2
pk and go to Step 1.

Step 3: In the time interval (s, s + pk), if no new jobs arrive or δ = 1, set t = s + pk and
δ = 0, go to Step 1.

Step 4: If δ = 0 and a new job Jh arrives at time rh < s + pk, do the following:
4.1: If rh ≥ 5

4
pk, set t = s + pk and go to Step 1.

4.2: If ph ≤ 3
4
pk, go on processing the present batch Bk and go to Step 3.

4.3: If ph ≥ 3
2
pk, set t = s + pk and go to Step 1.

4.4: If pk ≤ ph < 3
2
pk, then do the following:

4.4.1: If rh ≥ ph, restart the running batch Bk at time moment rh: set t = rh and δ = 1,
go to Step 1.

4.4.2: If rh < ph, go on processing Bk in the time interval [rh, ph] unless a new job J∗

with p∗ ≥ ph arrives.
If there is a new job J∗ with p∗ ≥ ph arriving no later than time moment ph, set Jh = J∗

and go to Step 4.1.
Otherwise, no new job J∗ with p∗ ≥ ph arrives in the time interval (rh, ph]. Restart the

running batch Bk at time ph: set t = ph and δ = 1, go to Step 1.
4.5: If 3

4
pk < ph < pk, go on processing Bk in the time interval [rh, 5

4
pk] unless a new job

J∗ with p∗ ≥ ph arrives.
If there is a new job J∗ with p∗ ≥ ph arriving no later than time moment 5

4
pk, set Jh = J∗

and go to Step 4.1.
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Otherwise, no new job J∗ with p∗ ≥ ph arrives in the time interval [rh, 5
4
pk]. Restart the

running batch Bk at time 5
4
pk: set t = 5

4
pk and δ = 1, go to Step 3.

Step 5: If there still are some jobs arriving, set t as the arrival time of the first job and
go to Step 1; otherwise stop and complete the schedule at time t.

4 Problem 1|online, p-batch, J∗(t) (p∗(t)), b = ∞|Cmax

The known lower bound and the upper bound of the problem is given in the following
table.

lower bound upper bound situation
1.382 1.382 best possible

We in fact have two problems:
• 1|online, p-batch, J∗(t), b = ∞|Cmax.
• 1|online, p-batch, p∗(t), b = ∞|Cmax.

Yuan, Ng and Cheng [26] presented the following best possible algorithm for the both
problems.

The following notations are used.
• r0 is the release date of the first longest job.
• U(t) is the set of unprocessed jobs available at time instant t.
• J(t) is the first longest job in U(t). The arrival time and processing time of J(t) are

denoted by r(t) and p(t), respectively.
• J∗(t) is the first longest job arriving after time instant t. The arrival time and processing

time of J∗(t) are denoted by r∗(t) and p∗(t), respectively. If no job arriving after t, we set
p∗(t) = 0.

• pmax is the maximum processing time of all the jobs. Then pmax = p(r0).
• α = (3−√5)/2 ≈ 0.382. Note that α2 − 3α + 1 = 0.
• x = 1− α ≈ 0.618. Note that x2 + x− 1 = 0 and α = x/(1 + x) = 1/(2 + x).
• For i ≥ 0, f(i) =

∑
0≤j≤i−1 xj . Note that f(0) = 0.

• f(∞) =
∑∞

j=0 xj = 1/(1− x) = 1/α.
• For a time instant t with p(t) > 0, i(t) = max{i : f(i)p(t) ≤ t}. We define i(t) = ∞ if

t ≥ f(∞)p(t).

Note that when t < f(∞)p(t) = p(t)/α (equivalently, i(t) < ∞), we have f(i(t))p(t) ≤ t <

f(i(t) + 1)p(t).

Algorithm H
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Step 0: Set t := r0, D := {r0} and J := {J(r0)}.
Step 1: If U(t) = ∅, do the following.
(1.1) If p∗(t) = 0, terminate the algorithm.
(1.2) If p∗(t) > 0, reset D := D ∪ {r∗(t)}, J := J ∪ {J∗(t)} and t := r∗(t).
Step 2: If i(t) = ∞, then go to Step 6.
Step 3: If t ≥ f(i(t))p(t) + xi(t)+1p(t), reset D := D ∪ {f(i(t) + 1)p(t)} and t :=

f(i(t) + 1)p(t).
Step 4: If p∗(t) = 0, then schedule U(t) as a single batch starting at time t and terminate

the algorithm.
Step 5: Do the following.
(5.1) If t − f(i(t))p(t) < p∗(t) < xi(t)+1p(t), then wait for the first time instant t∗ ∈

(t, f(i(t))p(t) + p∗(t)] such that either t∗ = f(i(t))p(t) + p∗(t) or job J∗(t) arrives at time t∗.
Reset D := D ∪ {t∗}. In the later case, reset J := J ∪ {J∗(t)}. Reset t := t∗ and go back to
Step 4.

(5.2) If t−f(i(t))p(t) < xi(t)+1p(t) ≤ p∗(t), then reset D := D∪{r∗(t)}, J := J ∪{J∗(t)}
and t := r∗(t). Return to Step 2.

(5.3) If p∗(t) ≤ t− f(i(t))p(t) < xi(t)+1p(t), then schedule U(t) as a single batch starting
at time t. Reset D := D∪{t+p(t)}, t := t+p(t), and go to Step 6. (Note that, after updating,
if U(t) 6= ∅, we have i(t) = ∞.)

Step 6: Reset t as the first time instant t∗ ≥ t with p∗(t∗) = 0. Reset D := D ∪ {t∗}.
Then schedule U(t) as a single batch starting at time t and terminate the algorithm. ¤

5 Problem 1|online, p-batch, r∗(t), b = ∞|Cmax

The known lower bound and the upper bound of the problem is given in the following
table.

lower bound upper bound situation
1.442 1.5 unclosed

Yuan, Ng and Cheng [26] presented the following algorithm.

Algorithm Hr

• α = 3/2.
Step 0: Set t := 0, and D := {0}. Define r0 = 0. Here we assume that the first longest

job arrives at time 0.
Step 2: If r∗(t) = ∞, then schedule U(t) as the first batch starting at time t and

terminate the algorithm.
Step 3: If r∗(t) < t + αp0 and pt > α(r∗(t) + p0), then wait for time instant r∗(t). Reset

t := r∗(t). Reset D := D ∪ {t} and back to Step 2.
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Step 4: If either r∗(t) ≥ t + αp0 or pt ≤ α(r∗(t) + p0), then schedule U(t) as the first
batch starting at time t. Define t0 = t and r1 = r∗(t). Reset t := max{r∗(t), t + p0}. Reset
D := D ∪ {t}.

Step 5: Schedule U(t) as the second batch starting at time t. If r∗(t) = ∞, then
terminate the algorithm. Otherwise, reset D := D ∪ {t + pr1} and t := t + pr1 .

Step 6: Wait for the latest time instant t∗ ≥ t such that r∗(t∗) = ∞, schedule U(t∗) as
the third batch starting at time t∗, and terminate the algorithm. ¤

6 Problem 1|online, p-batch, families, b = ∞|Cmax

The known lower bound and the upper bound of the problem is given in the following
table.

m lower bound upper bound situation
f →∞ 2 2 best possible
f = 2 1.7808 1.7808 best possible

f arbitrary 1 +
√

4f2−1

2f
1 +

√
4f2−1

2f
best possible

• The first result was obtained by Nong, Yuan, Fu, Lin and Tian [27].
• The second result was obtained by Fu, Tian and Yuan [28].
• The third result was obtained by Fu, Cheng, Ng and Yuan [29].

Write αf =
√

4f2−1

2f
. The following is the algorithm for arbitrary f .

Algorithm A(αf )
At time t, if there exist some waiting batches, say, B1, · · · , Bi with p1 ≥ p2 ≥ · · · ≥ pi,

then start to processing B1 as a single batch if t ≥ αf (p1 + p2 + · · ·+ pi); otherwise, do nothing
but wait.

7 Problem Pm|online, p-batch, pj = 1, b = ∞|Cmax

Let βm be the positive solution of equation (1+βm)m+1 = βm +2. The known lower bound
and the upper bound of the problem is given in the following table.

lower bound upper bound situation
1 + βm, 1 + βm best possible

Zhang, Cai and Wong [30] presented the following best possible algorithm.
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Algorithm A∞(βm): At time t, if a machine is idle, U(t) 6= ∅, and t ≥ (1+βm)r(t)+βm,
then start U(t) as a single batch on the machine at time t. Otherwise, do nothing but wait.

8 Problem Pm|online, p-batch, b = ∞|Cmax

The known lower bound and the upper bound of the problem is given in the following
table.

lower bound upper bound situation
1 + (

√
m2 + 4−m)/2, 1 + (

√
m2 + 4−m)/2 best possible

Liu, Lu and Fang [31] and Tian, Cheng, Ng and Yuan [32] independently presented two
distinct best possible algorithms. Their result generalized the work of Nong, Cheng and Ng
[33] and Tian, Fu and Yuan [34] for the case of m = 2.

The algorithm of Liu, Lu and Fang [31] can be stated as follows.

Algorithm H∞
m (α): At time t, if a machine is idle, U(t) 6= ∅, and t ≥ (1 + α)r(t) + αp(t),

then start U(t) as a single batch on the machine at time t. Otherwise, do nothing but wait.

The algorithm of Tian, Cheng, Ng and Yuan [32] can be stated as follows.

Algorithm H(αm): At time t, if a machine is idle, U(t) 6= ∅, and t ≥ η(t) =
S∗(t) + αmpmax(t), then start U(t) as a single batch on the machine at time t; otherwise,
do nothing but wait.

9 Problem P2|online, p-batch, 2 families, b = ∞|Cmax

The known lower bound and the upper bound of the problem is given in the following
table.

lower bound upper bound situation
1.618 1.618 best possible

Fu, Cheng, Ng and Yuan [35] presented the following best possible algorithm.

Algorithm H2: At time t, if at least one machine is idle, U1(t) 6= ∅ and U2(t) = ∅, then
start U1(t) on an idle machine if and only if t ≥ αp1(t). If both machines are idle, U1(t) 6= ∅
and U2(t) 6= ∅, start U1(t) and U2(t) on different machines if and only if t ≥ αp1(t). If only one
machine is idle, U1(t) 6= ∅ and U2(t) 6= ∅, start U1(t) as a single batch on the machine if and

- 10 -



http://www.paper.edu.cn

only if t ≥ αp1(t) + p2(t). Otherwise, do nothing but wait.

10 Problem Pm|online, p-batch, m families, b = ∞|Cmax

The known lower bound and the upper bound of the problem is given in the following
table.

lower bound upper bound situation
1.618 1.707 uncloosed

The corresponding research was presented by Tian, Cheng, Ng and Yuan [36].

11 P2|online, p-batch, L-restart, b = ∞|Cmax

lower bound upper bound situation
1.298 1.366 uncloosed

The corresponding result was presented by Fu, Cheng, Ng and Yuan [37].
Let α =

√
3−1
2

. Then 2α(1 + α) = 1. The online algorithm is described as follows.

Algorithm AR

Step 0: Set t to be the first arrival time of the jobs and consider both machines at time
t.

Step 1: If both machines are idle, do the following: If t < αpt, set t as the minimum
value between αpt and the next arrival time, then update pt and go back to Step 1; if t ≥ αpt,
start processing Bt at once on any idle machine and go to Step 5.

Step 2: If one machine is idle and the other machine is processing some batch, say Ba,
do the following: If t < max{Sa + αpa, αpt}, set t = max{Sa + αpa, αpt}, update pt, and go to
Step 1; if t ≥ max{Sa + αpa, αpt}, start processing Bt at once on the idle machine and go to
Step 5.

Step 3: If there are two running batches, say Ba and Bb with Sa < Sb, do the following:
Step 3.1: If Bb is a restart-batch, go to Step 6.
Step 3.2: If either pb

pa
≥ (1 + α) or pb

pa
≤ 1

2+α
, go to Step 6.

Step 3.3: If pb

pa
∈ (1, 1 + α), do the following:

(3.3.1) If t < Sa + 1
2
pa, set t = Sa + 1

2
pa and go to Step 3.3.2;

(3.3.2) If t = Sa + 1
2
pa and pt ∈ ( 1

2
pa, pa), go to Step 4;

(3.3.3) Otherwise, go to Step 6.
Step 3.4: If pb

pa
∈ (1− α, 1], do the following:

(3.4.1) If t < Sa + 1
2
pa, set t = Sa + 1

2
pa and go to Step 3.4.2;

(3.4.2) If t = Sa + 1
2
pa and pt ∈ ( 1

2
pa,

1
1−α

pb), go to Step 4;
(3.4.3) Otherwise, go to Step 6.
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Step 3.5: If pb

pa
∈ ( 1

2+α
, 1− α], do the following:

(3.5.1) If t < max{Sa + 1
2
pa, pa − α2pb}, set t = max{Sa + 1

2
pa, pa − α2pb} and go to Step

3.5.2;
(3.5.2) If t = max{Sa + 1

2
pa, pa − α2pb} and pt ∈ (2α2pa + αpb,

1
1−α

pb), go to Step 4;
(3.5.3) Otherwise, go to Step 6.
Step 4: Restart the running batch Bb and start processing all the waiting jobs at once.
Step 5: Reset t as the arrival time of the next job and go to Step 1.
Step 6: Reset t as the next completion time and go to Step 1.

12 Open Problems

We present the following open problems for the further research.

(1) Pm|online, p-batch, f families, b = ∞|Cmax.

(2) Pm|online, p-batch, restart, b = ∞|Cmax.

(3) Pm|online, p-batch, L-restart, b = ∞|Cmax.

(4) Pm|online, p-batch, J∗(t), b = ∞|Cmax.

(5) Pm|online, p-batch, p∗(t), b = ∞|Cmax.

(6) Pm|online, p-batch, r∗(t), b = ∞|Cmax.

Furthermore, for problem 1|online, p-batch, b < ∞|Cmax, the known lower bound is 1.618
and the known upper bound is 2. Poon and Yu [38] presented an online algorithm of competitive
ratio 7/4 when b = 2. Foe general b, it remains a long standing and challenging open problem.
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