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Improved relaxed CQ methods for solving the split
feasibility problem

LI Min
(School of Economics and Management, Southeast University, Nanjing 210096)

Abstract: This paper presents some improved relaxed CQ methods to solve the split feasibility
problem. These new methods, which are based on the modified relaxed CQ algorithm, generate the new
iterate by searching the optimal step size along the descent direction. Global convergence of these new
methods is proved under mild assumptions. Preliminary numerical results verify the computational
preferences of the new methods.
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0 Introduction

Let C and Q be nonempty closed convex sets in R™ and R™, respectively, and A an
M x N real matrix. The problem,
tofind xeC with AxeQ, if such X exists, (1)

was called the split feasibility problem (SFP) by Censor and Elfving [1]. The SFP (1) is equivalent
to the following variational inequality (see Section 3 in [2])

X eC, <F(x*),x—x*>20, vxeC )
where
F(x)=A"(l1 -R,)AXx, ©)
I and PQ denote the identity operator and the orthogonal projections onto Q, respectively. In
this paper, we always assume that the solution set of (1), denoted by C”, is always nonempty.

To solve the SFP (1), Byrne [3] proposed the CQ algorithm, which generates the new iterate
as follows

Xt =P [X = yF(x)], (4)
where 7 €(0,2/L), L denotes the largest eigenvalue of the matrix AT A . However,

sometimes the projections onto C and Q are difficult to calculate. If this case appears, the
efficiency of the CQ algorithm, will be seriously affected. In [4], Yang presented a relaxed CQ
algorithm for solving the SFP, where at K -th iteration, the projections onto C and Q were

replaced with the halfspaces C, and Q,, respectively.
Note that the step length of the CQ algorithm and the relaxed version relies on the largest
eigenvalue of the matrix ATA.In [2], Qu and Xiu proposed a modified relaxed CQ algorithm
X = P, [X -, F (X)], (5)
where

F(X)=AT(1-R )AX,  a|F(x)-F(E)|<ulx-%|. o<u<i, (@

and the new iterate X**' is updated by
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Xt = P, [X -, F, (%)) ()

This modified algorithm adopted a self-adaptive strategy in (6), which was in the manner of
Armijo’s rule, to determine the step length. Thus, the estimation of the largest eigenvalue of the

matrix A" A is avoided.
This paper is to develop some improved relaxed methods for solving the SFP (1) based on the

modified relaxed CQ algorithm in [2]. In particular, let x* be the current iterate of SFP (1) and
X = X“ be generated by (5), then add an optimal step length S, to —c, F, (X) in (7) to

*|12
produce X . We may prove that —(x* —x) is a descent direction of HX—X H /2 at x*,

where X eC”. Hence, two iterative methods are motivated to be presented. The first method

sets X“** = x;' . The second method produces the new iterate X*** by
k+1 k k k
X = Pck[x =P (X" =x)]

where p, is the optimal step length along the direction —(Xk - X,k,) . Global convergence of the

new methods is proved under the same mild assumptions as in [2].

The rest of this paper is organized as follows. In Section 1, we summarize some preliminaries.
In Section 2, some improved relaxed CQ methods are presented, followed by some remarks. Then
some contractive properties of the new methods are first analyzed. In particular, the strategy of
determining the optimal step length of the new methods is investigated. Then, in Section 3, the
global convergence of the new methods is proved. In Section 4, we apply the new methods to
solve some numerical problems, and compare it with the algorithm in [2]. The numerical results
are therefore reported. Finally, some conclusions are made in Section 5.
1 Preliminaries
First, we summarize some basic properties related to variational inequalities. Let () denote the

given nonempty closed convex setin R" and P,(x) the projection of X onto Q, thatis,
P, (x) = Argmin {||x - y|” ye Q}
From the above definition, it follows that
<PQ(X)—x,z—PQ(x)>20, VxeR", VzeQ. (8)
Consequently, we have
2
((=P)x=(1 =Py, x=y) 2 [ =P)x=(1=P)Y|",  vxyeR" (9
and
2 2 2 n
1P, () —2|" <|x-2| =[P, (x)— x|, VxeR", VzeQ. (10)
Let F beamapping from R" into R".Forany XxeR" and a >0, define
X(a) =P, [x—aF(x)], e(x,a) =x—x(a). (12)
Note that e(X,«) is a continuous function of X because the projection mapping is

non-expansive. The next lemma states a useful property of ||e(x, a)|| .

Lemma 1: ([2] Lemma 2.2) Let F be a mapping from R" into R". For any xeR" and
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a >0, we have

min {1, o} |e(x,1)] <[le(x, @) < max {1, &} |fe(x,1)| (12)
In this paper, we assume that the projections P. and PQ are not easily calculated.

Carefully speaking, the convex sets C and Q satisfy the following assumptions:
(H1) Theset C s given by

C ={XE RN‘C(X)SO},
where ¢:R" — R is a convex (not necessarily differentiable) function and C is nonempty.
Theset Q is given by
Q={yeR"|a(y)<0},

where (: R" — R isa convex (not necessarily differentiable) functionand Q is nonempty.

(H2) For any X e R" | at least one subgradient & € dc(X) can be calculated, where Oc(X) is
a generalized gradient of c(x) at X and is defined as follows:
oc(x) ={§e RN‘c(z) 2c(x)+<§, z—-x), forall ze RN} .

Forany ye R at least one subgradient n €oq(y) can be calculated, where

aq(y) = {77 eR" ‘q(u) >q(y)+(nu-y), forall ueR" }
The following lemma provides an important boundedness property of the subdifferential, see, e.g.,
[5].
Lemma 2: Suppose h:R" — R is a convex function, then it is subdifferentiable everywhere

and its subdifferentials are uniformly bounded on any bounded subset of R".
Denote

C = {x eR" ‘c(xk)+<§k, X — xk> < 0},
where &£ isanelementin oc(x"), and
Q, :{ye RM‘q(Axk)+<77k, y—Axk>§0} ,
where 77* is an element in o¢(AX*).
Remark 1: By the definition of subgradient, it is clear that the halfspaces C, and Q, contain
C and Q, respectively. From the expressions of C, and Q, , the orthogonal projections onto
C, and Q, may be directly calculated and then we have the following proposition (see [6,7]).

Proposition 1: Forany z e R".

) +(z=x)
Z— > &Y ife(X)+ (<&, z—x")>0;
R, (2)- B ]
z, otherwise,

and
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q(Ax ) +<77k Az - Axk>

Z—- 2

Po (A2) = a
Az, otherwise,

n, ifq(Axk)+<77k,Az—Axk> >0;

Forevery k,using Q, we define the function F, :R" —R" by

F (x)=A"(1 -PR, )AX.
Although the function F, depends on Kk, it has nice properties as shown in the following
lemma.
Lemma 3: ([2], Lemma 4.2) For all k=0,12,---, F_ is Lipschitz continuous on RN with
constant L and co-coercive on R with modulus 1/L,where L isthe largest eigenvalue of
the matrix A"A.

2 Improved relaxed CQ methods

In this section, we will propose two improved relaxed CQ methods and show how to determine the
optimal step length. The detailed procedures of the new methods are presented as below:

Algorithm 1. Initialization: Choose € (0,1), >0, x>eR" and k=0.
Step 1. Prediction: Choose an o, > 0, such that
X =P, [X — e, F (X)), (13)
and
a |Fe(X) =R ()] < s =i (14

Step 2. Stopping Criterion: Compute

& (X, o) =x" = x

If Hek(xk,ak)H <&, terminate the iteration with the approximate solution X< Otherwise, go to

Step 3.
Step 3. Correction: The new iterate X s updated by
Xt =x) = P [X - B F (x)] (15)
where
. . <xk—x,k,dk(xk,x,k,ak)>
/Bk = 5k18k ' /Bk = . X 2 ) 5k € [5|_75U] . (16)
Ja, (i )
and
dk(Xk,Xr,ak)=Xk—Xlk—ak[Fk(Xk)—Fk(X.k)]- (7)

Set k:=k+1 and go to Step 1.
Algorithm 2. Initialization: Choose € (0,1), >0, x>eR" and k=0.
Step 1. Prediction: Choose an o, > 0, such that
Xlk = Pck [Xk — O Fk(xk)] : (18)

and



|I| E ﬂ- H iE -x.- Eﬁ http://www.paper.edu.cn

o | F () R (x| < = x. (19)

Step 2. Stopping Criterion: Compute

e (X a)=x =X’

If Hek(xk,ak)H <&, terminate the iteration with the approximate solution X< Otherwise, go to

Step 3.
Step 3. Correction: The corrector X,kI is updated by
Xlkl = Pck [x" - By (X|k )] (20)
where
. . <xk—x,k,dk(xk,x,k,ak)>
B =B By = . X 2 : O € [5|_15U 1=(0,2), (21
Jo.0¢ 5t )]
and
dk(Xk,Xr,ak)=Xk—Xlk—ak[Fk(Xk)—Fk(X.k)]- (22)
Step 4. Extension: The new iterate X s updated by
X\ = Pck [Xk ~ P (Xk - X|k| )] (23)
where
2
c ] B (=X RO9))
P =P Pr = . e €lrr1<(0,2) . (24)

kK k|2
< -
Set k:=k+1 and go to Step 1.
Remark 2: In the prediction step, if the selected ¢, satisfies 0 <ea, < u/L (L is the largest
eigenvalue of the matrix A’ A), then from Lemma 3, we have
o, HFk(xk)— Fk(x,k)H < osz”xk —x,kH < nyk - x,kH (25)
and thus Condition (14) or (19) is satisfied. Without loss of generality, we can assume that
inf {&, } =&, >0. Since we do not know the value of L >0 but it exists, in practice, a
self-adaptive scheme is adopted to find such a suitable ¢, >0. For given x* and a trial
a, >0, along with the value of F, (x*), we set the trial X as follows:
X =P [X — e, B (x)].
Then calculate
. ay HFk(Xk)_ Fk(xlk)H
el

if r<u , the trial X,k is accepted as predictor; Otherwise, reduce ¢, by

a, =0.9ua, min(L,1/r,) togetanew smaller trial ¢, and repeat this procedure. In the case

that the predictor has been accepted, a good initial trial ¢, ,, for next iteration is prepared by the

following strategy:
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09 o ifr <v,
o, =1 K (usually v €[0.4,0.5]). (26)

a, otherwise,

Condition (14) or (19) ensures that o, H F (x) - Fk(X,k)H is smaller than ka —X,kH, however,

too small ¢, H F. (x*) - F. (X,k)H leads to slow convergence. The proposed adjusting strategy (26)
is intended to avoid such a case as indicated in [8,9]. Actually, it is very important to balance the

quantity of «, HFK(XK)— Fk(X,k)H and ka —X,kH in practical computation. Note that there are

at least two times to utilize the value of function in the prediction step: one is Fk(Xk), and the
other is Fk(xlk) for testing whether the Condition (14) or (19) holds. When ¢, is selected well

enough, X,k will be accepted after only one trial and in this case, the prediction step exactly
utilizing the value of concerned function twice in one iteration.

Remark 3: As X (and resulted F (X)) is determined by X“ and «, , the vector
d (X, x ) =X = xf = [F (X) = F (x)] in (22) is a function of X“ and «, at all.
In addition, the correction step does not require any new function evaluations.

Remark 4: In the extension step, we only use the function value F (/) which is obtained in

the prediction step. Therefore, the extension step also does not require any new function
evaluations.
For analysis, we consider the following general forms of correction step and extension step:

Xi(B) = Po [X* = B R (x)] and  x“*(p) = P, [X* = p(x = x)]. (27)
Lemma 4: Given x*, X" €C” and @, >0, let xf €C, be the predictor and X (/) be

given by the general form of the corrector. Then forany £ >0 we have

0, (8) =[x x| ~|xs(8)- x| 2@, (8) 2 Q.(B). (28)
where
@, (8) =X~ X (B + 280 (X (B) X, F (X)) (29)
and
Q(B) =28 (X X, d, (x* xf )= B (¥ )| (30)

Proof: SinceX" e C = C, and x(f8) = P, [X" - Ber F, ()], it follows from (10) that
[xs(8) - x| <|x* - Ber F () X[ =X - pa F ()~ xe(B) . (3
Consequently, using the definition of ®, (), we get
0, (B) = |x* = X[ +|x = x(8) - Bar R (x| =[x X" = B F (x)|]
=[x = x5 (B +2Be (Xs(B) X F(x0)).

It follows from AX € Q < Q, that

(32)

F.(x)=0.

-6-
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Since X,k € C, , using the monotonicity of F, and the above equality, we have

<x,k -, Fk(x,k)> 2<x,k -, Fk(x*)> >0,

and consequently

(X(B) =X R (D) =(X () — X F(x)) (33)
Applying (33) to the last term in the right hand side of (32), we obtain
0.(8) =[x =X (B + 2 (X (B~ X F (). (34)

The first assertion follows immediately. Since X = P, [X — ¢, F (X)] and x{(8) €C,,

it follows from (8) that for any £ >0,
02 28(xX\(B) X [X* ~ @ F (X)X ). (35
Adding (29) and (35) together and using the notation of d, (X*, X, ,) in (22), we obtain
O, (B) =[x = xS (B)| +28(XK(B)— % X~ X — e [ (¥) = R (x)])
=[x x| + 28 (B - ¢ X ).

Regrouping the first two terms of the right hand side of (36), we get
[x =X (B[ +28(xs(8) —xE.d, (x* X))

=[x =X (A +28{0xh () =X+ (X = x0). 6, (6" ! )

:ka —x,k,(,B)H2 +2,6’<x,k,(,6’)—xk,dk(xk,x,k,ozk)>+2,8<xk — X/ ,dk(Xk,X,k,ak)>

=[x = X< (8) — B, (¢ X )| +28(0 —xE,dy (¢ xE )~ B2 (X X )|
Substituting this into (36), we obtain

®, () 2 28X ~ Xt d, (¢ X))~ B (¢, X )|

and the second assertion is proved. O

Note that Q, (f) is a quadratic function of £ and it reaches its maximum at

. <xk - X, (XX )
i CHCSTIEN] . 7

with
Qu(B)) = B (X =Xt d (0 X)) (39)
We set the step length B, by B, =6, /3, where &, €[5,,5,]1<(0,2) is a relaxation factor.

Lemma 5: The step length /3, in the prediction step satisfies:

Qu()> LM e @

forall k>0.

Proof: See (2.15), (5.5) and Theorem 2 in [9]. O
By simple manipulations we obtain



|I| E ﬂ- H iE -x.- Eﬁ http://www.paper.edu.cn

& * [k k k ok 2 *\( 2*

Q(SB7) = 26,8 (X =x,d, (X, X', )~ (5L BB,
37) * 2 n* k k k k

= (26,8 =25 (X" =, d, (X X @) (40)

2 5.(2-6)Qu(8).

Lemma 6: Given X* and X" eC”, let the corrector X,kI be given by (20), then we have

HERN

2<xk—x*,xk—x,k|>2d)k(,6’k)+uxk—x,kluz. (41)
Proof: Note that
X =X = (X =x)-(x*=x).
Substituting this into (28), we have
2<xk X, x —x,k,>—ka - x,k,H2 >®,(8,)
and the proof is complete. O

Remark 5: Since @, () >Q,(3.)>0, —(x—xJ) is a descent direction of HX—X*HZ/Z

at x, where X" is any solution point.

Theorem 1: Given x* and X €C”, let the corrector X,kI be generated by (20), and the new

k+1

iterate X"~ (p) be given by the general form (27). Then for any p >0, we have
M) =[x =X =[x o) =X 2w (o), “2)
where
¥, (p) = o, (B) +[x —xe 3= o2 |x =X (@3)
B and @, (f,) aredefined in (21) and (29), respectively.
Proof: Since
e = = ot x| 2 ()], )

it follows that

Aoz X =X =x = pt )

: (45)
:2,o<xk —x X = x,k|>—,o2 ka - x,‘]” :
Inequality (42) follows from Lemma 6 and (43) directly and the proof is complete. O
Since ¥, (p) is aquadratic function of 2, it reaches its maximum at
- ®,(B,)+[x" Bl [ e|x x| + Ba <x.k.2— X, Fo (X)) o
2| - [ =i
with
(o) =3 {0 B+ X x| 2 %, @), ()

It follows from Lemma 4, Lemma 5 and (46) that
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T T S T ™

for some constant 7,>0 . For fast convergence, we propose a relaxation factor

7. €l7.,7,1<(0,2) and set the step length p, by p, =, p. - By simple manipulations we
obtain

o @ - K k|| 2 vy ok k|2
Y () = 7epr {q)k(ﬁk)"'ux _XIIH }_(7kpk)(pk HX _XIIH )
(46) 1 N )
= (%P _E}/kzpk){q)k(ﬁk)—i_uxk _X|k|H } (49)
(47) X
= 1.2-r)¥ (p)
It follows from Theorem 1 that

kaﬂ ~ X*HZ < ka P _@{% ka — X/ “2 +ka _ XIKIHZ} . (50)

3 Convergence

It follows from (28) and (39) that for Algorithm 1, there exists a constant 7, >0, such that
K+1 *[|2 K *||2 K k|12
e e R (1
From (50), we have for Algorithm 2, there exists a constant 7, > 0, such that
ki1 o) ko2 kK ok kK ok|?
e IR I ) I Lo B
The convergence result of the proposed methods in this paper is based on the following theorem.

Theorem 2: Let {Xk} be a sequence generated by the proposed methods (Algorithms 1 and 2),
o, be a positive sequence and inf{e, } =, > 0. If the solution set of the SFP is nonempty,
then {x*} converges to a solution point of the SFP.

Proof: First, from (51) or (52) we get

Iimek—x,kH=0. (53)

k—o0

Again, it follows from (51) or (52) that the sequence {Xk} is bounded. Let X* be a cluster

point of {x*} and the subsequence {x“} convergesto X*.We are ready to show that X” is
a solution point of the SFP.

First, we show that x* e C . Since X,k € Cki , then by the definition of Cki , Wwe have

c(xki)+<§ki,x,ki —xki>§0, Vi=12,--.
Passing onto the limit in this inequality and taking into account (53) and Lemma 1, we obtain that
c(x”)<0.
Hence, we conclude X” eC.
Next, we need to show AX” € Q. Note that
e (X, @) =x-R; [x—aF (x)], k=0,12,--.



|I| E ﬂ- H iE -x.- Eﬁ http://www.paper.edu.cn

Then from Lemma 1, Remark 2 and (53), we have

e o ol < gim
lim e, (x,2)| < lim --——
ki > i ki >0 min {1’ ak- }

<lim e x| (54)
k= min {1, &, |
=0.
Using (8) and X" € C, . we have forall Vi=1,2,-
<xki —F () =By XS = Fy ()], =Py, [ —F (x)]) <0,
that is,
<eki (% D= F (X9),X5 =X —e, (% ,1)> >0. (55)

It follows from (9) and AX" € Q,  that
<Fki (x4), x" —x*>
:<Fki (x9) =R, (x),x" - x*>
:<AT(I -PR, YAXS — AT (I - Po. YAX, X —x*>

_ <(| Py, JAXS — (1 =P, )AX', AXS — AX')

2

>(1-P, YAXS —(1 =P, JAX"
H Q Q

2

:Hu Py )AXK

From (55) and the above inequality we know forall 1=1,2,---,
<xki -x', e (X ,1)>
2 *
>[e, (0] - (F, (X )., (64 D)+ (R, (), x5 =x) (56)

2

> o, 040 = (F, ()., (4. ) +](1 = By JAXE

Since

|F, )] =[| R, )= )| < L|xE = x| vi=12,-
and {in} is bounded, the sequence {Fki (xki )} is also bounded. Therefore, from (54) and (56)
we get

kliing(l P, )AXS| =0,

that is,
kliigl Pa, (AXS)—AxS =0. (57)

Since PQki (AX) e Q, , we have

-10 -
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q(AX") +<77ki Py, (AXS)— Ax" > <0.
Letting k; — oo from Lemma 1 and (57), we deduce that
q(Ax*) <0,
that is, AX” € Q. Therefore, X” is a solution of the SFP. Because the subsequence {x"}

converges to X”, for an arbitrary scalar & > 0, there exists a kI >0 such that
ka' - x°°H <e.
On the other hand, since X* is a solution point, it follows from (51) or (52) that
HXK—X“’HSHXK' —x‘”HSg vk >k,

and thus the sequence {Xk} converges to X”, which is a solution point of the SFP. O

4 Numerical results

In this section, we apply the proposed methods to solve the following split feasibility problems
(Examples 1 and 2), which were tested in [10], to verify the effectiveness and computational
superiority compared to the modified relaxed CQ algorithm in [2].

All the codes were written in Matlab and run on an HP Compaq 6910p notebook. For the CQ

algorithm in [2], Algorithms 1 and 2, we take ¢=10", o, =1, 4=09, v=04,
0, =1.8,and y, =1.8. Since the test problems are from [10], we also list the original results by

the halfspace-relaxation projection method in [10]. The numerical results for Examples 1 and 2 are
reported in Tables 1-8.

Example 1 (A convex feasibility problem). Let C={XeR3‘X§+X§—4SO} :

Q:{xe R?"Xs—l—xfSO}.Findsomepoint x in CNQ.

Tab. 1 Results for Example 1 using Qu and Xiu method in [10]

Starting points Number of iterations CPU(s) Approximate solution

(1,2,3,0,0,0)" 43 0.0500 (0.3213, 0.2815, 0.1425)"
(11,1,1,1,1) 67 0.0910 (0.8577, 0.8577, 1.3097)"
(1,2,3,4,5,6)" 85 0.1210 (1.1548, 0.8518, 1.8095)"

Tab. 2 Results for Example 1 using Qu and Xiu method in [2]

Starting points Number of iterations CPU(s) Approximate solution
1,2,3)7 5 0.1250 (1.0000, 1.1094, 1.6641)"
1,1,1)7 0 0.0320 (1.0000, 1.0000, 1.0000)"

rand(3,1)*10 130 0.0780 (0.8665, 0.6369, 1.7508)"

Tab. 3 Results for Example 1 using Algorithm 1

Starting points Number of iterations CPU(s) Approximate solution
1,2,3)7 5 0.1870 (1.0000, 1.1094, 1.6641)"
1,1,1)7 0 0.0310 (1.0000, 1.0000, 1.0000)"

rand(3,1)*10 2 0.0940 (1.0748, 0.6630, 1.6190)"

-11 -
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Tab. 4 Results for Example 1 using Algorithm 2

Starting points Number of iterations CPU(s) Approximate solution
1,2,3)7 1 0.1560 (1.0000, 0.7538, 1.1308)"
1,1,1)7 0 0.0310 (1.0000, 1.0000, 1.0000)"

rand(3,1)*10 2 0.1100 (0.6778, 0.4818, 1.3998)"

Example 2 (A split feasibility problem). Let

2
0

C={XeR3‘X1+X22+2X3£0}, Q={XER3‘X12+X2—X3§0}. Find some point X eC

with AxeQ.
Tab.5 Results for Example 2 using Qu and Xiu method in [10]

Starting points Number of iterations CPU(s) Approximate solution

(1,2,3,0,0,0)" 1890 2.7740 (-0.1203, 0.0285, 0.0582)"

(11,1,1,1,1) 2978 4.2860  (0.8603, -0.1658, -0.5073)"

(1,2,3,4,5,6)" 3317 4.8570  (3.6522, -0.1526, -2.3719)"

Tab. 6 Results for Example 2 using Qu and Xiu method in [2]

Starting points Number of iterations CPU(s) Approximate solution
1,2,3)7 64 0.1570 (-0.4019, 0.0674, 0.1967)"
11,17 81 0.0940  (0.3568, 0.0343, -0.2652)"

rand(3,1) *10 105 0.0940 (0.8747,0.0795,-0.6876)"

Tab. 7 Results for Example 2 using Algorithm 1

Starting points Number of iterations CPU(s) Approximate solution
1,2,3)7 4 0.1410 (-0.4024, 0.0658, 0.1958)"
1,1,1)7 5 0.0940 (0.3532, 0.0392, -0.2707)"

rand(3,1)*10 8 0.0940  (0.8768, 0.0604, -0.6844)"

Tab. 8 Results for Example 2 using Algorithm 2
Starting points Number of CPU(s) Approximate solution
iterations
1,2,3)7 6 0.1720  (-0.4305, 0.0774, 0.1048)"
1,1,1)7 1 0.1090  (0.2000, -0.6000, -0.6000)"
rand(3,1)*10 7 0.1090  (0.7984, -0.0384, -0.9042)"

These numerical data justify the computational superiority of the proposed methods over the
modified relaxed CQ algorithm in [2] and the halfspace-relaxation projection method in [10].

5 Conclusion

For solving the split feasibility problem, this paper presents some improved relaxed CQ methods
which are based on the modified relaxed CQ algorithm in [2]. The additional computational load
resulted by the new methods is negligible, compared to the algorithm in [2]. The preliminary
numerical tests show that the proposed methods are attractive in practice.
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