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0 Introduction 
Let C  and Q  be nonempty closed convex sets in NR  and MR , respectively, and A  an 

M N×  real matrix. The problem,  
to find x C∈  with Ax Q∈ ,     if such x  exists,              (1) 

was called the split feasibility problem (SFP) by Censor and Elfving [1]. The SFP (1) is equivalent 
to the following variational inequality (see Section 3 in [2]) 

*x C∈ ,   * *( ), 0F x x x− ≥ ,   x C∀ ∈                 (2) 

where 

( ) ( )T
QF x A I P Ax= − ,                    (3) 

I  and QP  denote the identity operator and the orthogonal projections onto Q , respectively. In 

this paper, we always assume that the solution set of (1), denoted by *C , is always nonempty. 
To solve the SFP (1), Byrne [3] proposed the CQ algorithm, which generates the new iterate 

as follows  
1 [ ( )]k k k

Cx P x F xγ+ = − ,                           (4) 

where (0, 2 / )Lγ ∈ , L  denotes the largest eigenvalue of the matrix TA A . However, 

sometimes the projections onto C  and Q  are difficult to calculate. If this case appears, the 
efficiency of the CQ algorithm, will be seriously affected. In [4], Yang presented a relaxed CQ 
algorithm for solving the SFP, where at k -th iteration, the projections onto C  and Q  were 

replaced with the halfspaces kC  and kQ , respectively. 

Note that the step length of the CQ algorithm and the relaxed version relies on the largest 

eigenvalue of the matrix TA A . In [2], Qu and Xiu proposed a modified relaxed CQ algorithm 

[ ( )]
k

k k k
C k kx P x F xα= − ,                        (5) 

where  

( ) ( )
k

k T k
k QF x A I P Ax= − ,   ( ) ( )k k k k

k F x F x x xα µ− ≤ − ,   0 1µ< < ,    (6) 

and the new iterate 1kx +  is updated by  
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                              1 [ ( )]
k

k k k
C k kx P x F xα+ = − .                   (7) 

This modified algorithm adopted a self-adaptive strategy in (6), which was in the manner of 
Armijo’s rule, to determine the step length. Thus, the estimation of the largest eigenvalue of the 

matrix TA A  is avoided. 
This paper is to develop some improved relaxed methods for solving the SFP (1) based on the 

modified relaxed CQ algorithm in [2]. In particular, let kx  be the current iterate of SFP (1) and 

I
k kx x=  be generated by (5), then add an optimal step length kβ  to I( )k

k kF xα−  in (7) to 

produce II
kx . We may prove that II( )k kx x− −  is a descent direction of 

2* / 2x x−  at kx , 

where * *x C∈ . Hence, two iterative methods are motivated to be presented. The first method 

sets 1
II

k kx x+ = . The second method produces the new iterate 1kx +  by  
1

II[ ( )]
k

k k k k
C kx P x x xρ+ = − −  

where kρ  is the optimal step length along the direction II( )k kx x− − . Global convergence of the 

new methods is proved under the same mild assumptions as in [2]. 
The rest of this paper is organized as follows. In Section 1, we summarize some preliminaries. 

In Section 2, some improved relaxed CQ methods are presented, followed by some remarks. Then 
some contractive properties of the new methods are first analyzed. In particular, the strategy of 
determining the optimal step length of the new methods is investigated. Then, in Section 3, the 
global convergence of the new methods is proved. In Section 4, we apply the new methods to 
solve some numerical problems, and compare it with the algorithm in [2]. The numerical results 
are therefore reported. Finally, some conclusions are made in Section 5.  

1 Preliminaries 
First, we summarize some basic properties related to variational inequalities. Let Ω  denote the 

given nonempty closed convex set in nR  and ( )P xΩ  the projection of x  onto Ω , that is, 

                         { }( ) Arg minP x x y yΩ = − ∈Ω  

From the above definition, it follows that 

( ) , ( ) 0P x x z P xΩ Ω− − ≥ ,  nx R∀ ∈ , z∀ ∈Ω .                (8) 

Consequently, we have 

       
2( ) ( ) , ( ) ( )I P x I P y x y I P x I P yΩ Ω Ω Ω− − − − ≥ − − − ,   , nx y R∀ ∈       (9)    

and 
2 2 2( ) ( )P x z x z P x xΩ Ω− ≤ − − − ,     nx R∀ ∈ , z∀ ∈Ω .        (10) 

Let F  be a mapping from nR  into nR . For any nx R∈  and 0α > , define 

( ) [ ( )]x P x F xα αΩ= − ,         ( , ) ( )e x x xα α= − .             (11) 

Note that ( , )e x α  is a continuous function of x  because the projection mapping is 

non-expansive. The next lemma states a useful property of ( , )e x α . 

 

Lemma 1: ([2] Lemma 2.2) Let F  be a mapping from nR  into nR . For any nx R∈  and 
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0α > , we have 

{ } { }min 1, ( ,1) ( , ) max 1, ( ,1)e x e x e xα α α≤ ≤               (12) 

In this paper, we assume that the projections CP  and QP  are not easily calculated. 

Carefully speaking, the convex sets C  and Q  satisfy the following assumptions: 

(H1) The set C  is given by 

{ }( ) 0NC x R c x= ∈ ≤ ,   

where : Nc R R→  is a convex (not necessarily differentiable) function and C  is nonempty. 
The set Q  is given by 

{ }( ) 0MQ y R q y= ∈ ≤ , 

where : Mq R R→  is a convex (not necessarily differentiable) function and Q  is nonempty. 

 

(H2) For any Nx R∈ , at least one subgradient ( )c xξ ∈∂  can be calculated, where ( )c x∂  is 

a generalized gradient of ( )c x  at x  and is defined as follows: 

 { }( ) ( ) ( ) , , for allN Nc x R c z c x z x z Rξ ξ∂ = ∈ ≥ + − ∈ . 

For any My R∈ , at least one subgradient ( )q yη∈∂  can be calculated, where 

{ }( ) ( ) ( ) , , for allM Mq y R q u q y u y u Rη η∂ = ∈ ≥ + − ∈  

The following lemma provides an important boundedness property of the subdifferential, see, e.g., 
[5]. 

Lemma 2: Suppose : nh R R→  is a convex function, then it is subdifferentiable everywhere 

and its subdifferentials are uniformly bounded on any bounded subset of nR . 
Denote 

{ }( ) , 0N k k k
kC x R c x x xξ= ∈ + − ≤ , 

where kξ  is an element in ( )kc x∂ , and 

                     { }( ) , 0M k k k
kQ y R q Ax y Axη= ∈ + − ≤ , 

where kη  is an element in ( )kq Ax∂ . 

Remark 1: By the definition of subgradient, it is clear that the halfspaces kC  and kQ  contain 

C  and Q , respectively. From the expressions of kC  and kQ , the orthogonal projections onto 

kC  and kQ  may be directly calculated and then we have the following proposition (see [6,7]). 

Proposition 1: For any Nz R∈ .  

2

( ) ,
, if ( ) , 0;

( )

, otherwise,
k

k k k
k k k k

k
C

c x z x
z c x z x

P z

z

ξ
ξ ξ

ξ

⎧ + −
⎪ − + − >⎪= ⎨
⎪
⎪⎩

 

and 
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2

( ) ,
, if ( ) , 0;

( )

, otherwise,
k

k k k
k k k k

k
Q

q Ax Az Ax
Az q Ax Az Ax

P Az

Az

η
η η

η

⎧ + −
⎪ − + − >⎪= ⎨
⎪
⎪⎩

 

For every k , using kQ  we define the function : N N
kF R R→  by 

( ) ( )
k

T
k QF x A I P Ax= − . 

Although the function kF  depends on k , it has nice properties as shown in the following 

lemma. 

Lemma 3:  ([2], Lemma 4.2) For all 0,1, 2,k = , kF  is Lipschitz continuous on NR  with 

constant L  and co-coercive on NR  with modulus 1/ L , where L  is the largest eigenvalue of 

the matrix TA A . 

2 Improved relaxed CQ methods 
In this section, we will propose two improved relaxed CQ methods and show how to determine the 
optimal step length. The detailed procedures of the new methods are presented as below: 

Algorithm 1. Initialization: Choose (0,1)µ ∈ , 0ε > , 0 Nx R∈  and 0k = . 

Step 1. Prediction: Choose an 0kα > , such that  

I [ ( )]
k

k k k
C k kx P x F xα= − ,                          (13) 

and  

I I( ) ( )k k k k
k k kF x F x x xα µ− ≤ − .                     (14) 

Step 2.  Stopping Criterion: Compute 

                        I( , )k k k
k ke x x xα = −  

If ( , )k
k ke x α ε≤ , terminate the iteration with the approximate solution kx . Otherwise, go to 

Step 3. 

Step 3.  Correction: The new iterate 1kx +  is updated by 

                        1
II I[ ( )]

k

k k k k
C k k kx x P x F xβ α+ = = −                      (15) 

where 

             *
k k kβ δ β= ,    

I I*
2

I

, ( , , )

( , , )

k k k k
k k

k k k
k k

x x d x x

d x x

α
β

α

−
= ,    [ , ]k L Uδ δ δ∈ ,    (16) 

and 

I I I( , , ) [ ( ) ( )]k k k k k k
k k k k kd x x x x F x F xα α= − − − .                (17) 

Set : 1k k= +  and go to Step 1. 

Algorithm 2. Initialization: Choose (0,1)µ ∈ , 0ε > , 0 Nx R∈  and 0k = . 

Step 1. Prediction: Choose an 0kα > , such that  

I [ ( )]
k

k k k
C k kx P x F xα= − ,                          (18) 

and  
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I I( ) ( )k k k k
k k kF x F x x xα µ− ≤ − .                     (19) 

Step 2.  Stopping Criterion: Compute 

                          I( , )k k k
k ke x x xα = − . 

If ( , )k
k ke x α ε≤ , terminate the iteration with the approximate solution kx . Otherwise, go to 

Step 3. 

Step 3.  Correction: The corrector II
kx  is updated by 

                          II I[ ( )]
k

k k k
C k k kx P x F xβ α= −                          (20) 

where 

        *
k k kβ δ β= ,    

I I*
2

I

, ( , , )

( , , )

k k k k
k k

k k k
k k

x x d x x

d x x

α
β

α

−
= ,   [ , ] (0, 2)k L Uδ δ δ∈ ⊆ ,   (21) 

and 

I I I( , , ) [ ( ) ( )]k k k k k k
k k k k kd x x x x F x F xα α= − − − .                (22) 

Step 4.  Extension: The new iterate 1kx +  is updated by 

                        1
II[ ( )]

k

k k k k
C kx P x x xρ+ = − −                           (23) 

where 

    *
k k kρ γ ρ= ,  

2

II II I I*
2

II

, ( )k k k k k
k k k

k k k

x x x x F x

x x

β α
ρ

− + −
=

−
,  [ , ] (0, 2)k L Uγ γ γ∈ ⊆ . (24) 

Set : 1k k= +  and go to Step 1. 

Remark 2: In the prediction step, if the selected kα  satisfies 0 /k Lα µ< <  ( L  is the largest 

eigenvalue of the matrix TA A ),  then from Lemma 3, we have  

                 I I I( ) ( )k k k k k k
k k k kF x F x L x x x xα α µ− ≤ − ≤ −               (25) 

and thus Condition (14) or (19) is satisfied. Without loss of generality, we can assume that 

{ } mininf 0kα α= > . Since we do not know the value of 0L >  but it exists, in practice, a 

self-adaptive scheme is adopted to find such a suitable 0kα > . For given kx  and a trial 

0kα > , along with the value of ( )k
kF x , we set the trial I

kx  as follows: 

                        I [ ( )]
k

k k k
C k kx P x F xα= − . 

Then calculate 

                        
I

I

( ) ( )
:

k k
k k k

k k k

F x F x
r

x x

α −
=

−
, 

if kr µ≤ , the trial I
kx  is accepted as predictor; Otherwise, reduce kα  by 

: 0.9 min(1,1/ )k k krα µα=  to get a new smaller trial kα  and repeat this procedure. In the case 

that the predictor has been accepted, a good initial trial 1kα +  for next iteration is prepared by the 

following strategy: 
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                1

0.9 if ,

otherwise,

k k
kk

k

r
r
µ α ν

α
α

+

⎧ ≤⎪= ⎨
⎪⎩

     (usually [0.4,0.5]ν ∈ ).       (26) 

Condition (14) or (19) ensures that I( ) ( )k k
k k kF x F xα −  is smaller than I

k kx x− , however, 

too small I( ) ( )k k
k k kF x F xα −  leads to slow convergence. The proposed adjusting strategy (26) 

is intended to avoid such a case as indicated in [8,9]. Actually, it is very important to balance the 

quantity of I( ) ( )k k
k k kF x F xα −  and I

k kx x−  in practical computation. Note that there are 

at least two times to utilize the value of function in the prediction step: one is ( )k
kF x , and the 

other is I( )k
kF x  for testing whether the Condition (14) or (19) holds. When kα  is selected well 

enough, I
kx  will be accepted after only one trial and in this case, the prediction step exactly 

utilizing the value of concerned function twice in one iteration. 

Remark 3: As I
kx  (and resulted I( )k

kF x ) is determined by kx  and kα , the vector 

I I I( , , ) [ ( ) ( )]k k k k k k
k k k k kd x x x x F x F xα α= − − −  in (22) is a function of kx  and kα  at all. 

In addition, the correction step does not require any new function evaluations. 

Remark 4: In the extension step, we only use the function value I( )k
kF x  which is obtained in 

the prediction step. Therefore, the extension step also does not require any new function 
evaluations. 

For analysis, we consider the following general forms of correction step and extension step: 

II I( ) [ ( )]
k

k k k
C k kx P x F xβ βα= −   and  1

II( ) [ ( )]
k

k k k k
Cx P x x xρ ρ+ = − − .        (27) 

Lemma 4:  Given kx , * *x C∈  and 0kα > , let I
k

kx C∈  be the predictor and II ( )kx β  be 

given by the general form of the corrector. Then for any 0β >  we have 
2 2* *

II( ) ( ) ( ) ( ),k k
k k kx x x x Qβ β β βΘ = − − − ≥ Φ ≥               (28) 

where 
2

II II I I( ) ( ) 2 ( ) , ( )k k k k k
k k kx x x x F xβ β βα βΦ = − + −                 (29) 

and 
22

I I I( ) 2 , ( , , ) ( , , )k k k k k k
k k k k kQ x x d x x d x xβ β α β α= − − .           (30) 

Proof: Since *
kx C C∈ ⊆  and II I( ) [ ( )]

k

k k k
C k kx P x F xβ βα= − , it follows from (10) that 

2 2 2* *
II I I II( ) ( ) ( ) ( )k k k k k k

k k k kx x x F x x x F x xβ βα βα β− ≤ − − − − − .    (31) 

Consequently, using the definition of ( )k βΘ , we get 

     

2 2 2* *
II I I

2 *
II II I

( ) ( ) ( ) ( )

( ) 2 ( ) , ( ) .

k k k k k k
k k k k k

k k k k
k k

x x x x F x x x F x

x x x x F x

β β βα βα

β βα β

Θ ≥ − + − − − − −

= − + −
     (32) 

It follows from *
kAx Q Q∈ ⊆  that 

*( ) 0kF x = . 
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Since I
k

kx C∈ , using the monotonicity of kF  and the above equality, we have 

* * *
I I I, ( ) , ( ) 0k k k

k kx x F x x x F x− ≥ − ≥ , 

and consequently 
*

II I II I I( ) , ( ) ( ) , ( )k k k k k
k kx x F x x x F xβ β− ≥ − .                  (33) 

Applying (33) to the last term in the right hand side of (32), we obtain 
2

II II I I( ) ( ) 2 ( ) , ( )k k k k k
k k kx x x x F xβ β βα βΘ ≥ − + − .            (34) 

The first assertion follows immediately. Since I [ ( )]
k

k k k
C k kx P x F xα= −  and II ( )k

kx Cβ ∈ , 

it follows from (8) that for any 0β > , 

II I I0 2 ( ) ,[ ( )]k k k k k
k kx x x F x xβ β α≥ − − − .                  (35) 

Adding (29) and (35) together and using the notation of I( , , )k k
k kd x x α  in (22), we obtain 

         

2

II II I I I

2

II II I I

( ) ( ) 2 ( ) , [ ( ) ( )]

( ) 2 ( ) , ( , , ) .

k k k k k k k k
k k k k

k k k k k k
k k

x x x x x x F x F x

x x x x d x x

β β β β α

β β β α

Φ ≥ − + − − − −

= − + −
  (36) 

Regrouping the first two terms of the right hand side of (36), we get          
2

II II I I

2

II II I I

2

II II I I I

2

II I I I

( ) 2 ( ) , ( , , )

( ) 2 ( ( ) ) ( ), ( , , )

( ) 2 ( ) , ( , , ) 2 , ( , , )

( ) ( , , ) 2 , ( , ,

k k k k k k
k k

k k k k k k k k
k k

k k k k k k k k k k
k k k k

k k k k k k k k
k k k k

x x x x d x x

x x x x x x d x x

x x x x d x x x x d x x

x x d x x x x d x x

β β β α

β β β α

β β β α β α

β β α β α

− + −

= − + − + −

= − + − + −

= − − + −
22

I) ( , , ) .k k
k kd x xβ α−

Substituting this into (36), we obtain 

              
22

I I I( ) 2 , ( , , ) ( , , )k k k k k k
k k k k kx x d x x d x xβ β α β αΦ ≥ − −   

and the second assertion is proved.     □ 

Note that ( )kQ β  is a quadratic function of β  and it reaches its maximum at 

I I*
2

I

, ( , , )

( , , )

k k k k
k k

k k k
k k

x x d x x

d x x

α
β

α

−
= ,                      (37) 

with 
* *

I I( ) , ( , , )k k k k
k k k k kQ x x d x xβ β α= − .                (38) 

We set the step length kβ  by *
k k kβ δ β= , where [ , ] (0, 2)k L Uδ δ δ∈ ⊆  is a relaxation factor. 

Lemma 5: The step length kβ  in the prediction step satisfies: 

2

I
(2 )(1 )( )

2
k kL U

k kQ x xδ δ µβ − −
≥ − ,              (39) 

for all 0k ≥ . 
Proof: See (2.15), (5.5) and Theorem 2 in [9].        □ 

By simple manipulations we obtain 
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(30) 2* * 2 * *
I I I

(37)
* 2 *

I I

(38)
*

( ) 2 , ( , , ) ( )( ( , , ) )

(2 ) , ( , , )

(2 ) ( ).

k k k k k k
k k k k k k k k k k k k

k k k k
k k k k k k

k k k k

Q x x d x x d x x

x x d x x

Q

δ β δ β α δ β β α

δ β δ β α

δ δ β

= − −

= − −

= −

  (40) 

Lemma 6: Given kx  and * *x C∈ , let the corrector II
kx  be given by (20), then we have 

2*
II II2 , ( )k k k k k

k kx x x x x xβ− − ≥ Φ + − .                 (41) 

Proof: Note that 
* *

II II( ) ( )k k k kx x x x x x− = − − − . 

Substituting this into (28), we have 
2*

II II2 , ( )k k k k k
k kx x x x x x β− − − − ≥ Φ  

and the proof is complete.        □ 

Remark 5: Since ( ) ( ) 0k k k kQβ βΦ ≥ ≥ , II( )k kx x− −  is a descent direction of 
2* 2x x−  

at kx , where *x  is any solution point. 

Theorem 1: Given kx  and * *x C∈ , let the corrector II
kx  be generated by (20), and the new 

iterate 1( )kx ρ+  be given by the general form (27). Then for any 0ρ > , we have 

                
2 2* 1 *( ) ( ) ( )k k

k kx x x xρ ρ ρ+Λ = − − − ≥ Ψ ,                  (42) 

where 

                  
2 22

II II( ) { ( ) }k k k k
k k k x x x xρ ρ β ρΨ = Φ + − − − ,             (43) 

kβ  and ( )k kβΦ  are defined in (21) and (29), respectively. 

Proof: Since 
* 1 *

II( ) ( )k k k kx x x x x xρ ρ+− − − ≥ − ,                  (44) 

it follows that 
2 2* *

II

2* 2
II II

( ) ( )

2 , .

k k k k
k

k k k k k

x x x x x x

x x x x x x

ρ ρ

ρ ρ

Λ ≥ − − − − −

= − − − −
              (45) 

Inequality (42) follows from Lemma 6 and (43) directly and the proof is complete.       □ 

Since ( )k ρΨ  is a quadratic function of ρ , it reaches its maximum at 

 

22
(29) II II I III*

2 2

II II

, ( )( )

2

k k k k kk k
k k kk k

k k k k k

x x x x F xx x

x x x x

β αβ
ρ

− + −Φ + −
= =

− −
   (46) 

with 

{ }2* *
II

1( ) ( ) (1)
2

k k
k k k k k kx xρ ρ βΨ = Φ + − ≥ Ψ .               (47) 

It follows from Lemma 4, Lemma 5 and (46) that 
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            * 1
2kρ ≥       and     { }2 2*

0 I II
1( )
4

k k k k
k k x x x xρ τΨ ≥ − + −         (48) 

for some constant 0 0τ > . For fast convergence, we propose a relaxation factor 

[ , ] (0, 2)k L Uγ γ γ∈ ⊆  and set the step length kρ  by *
k k kρ γ ρ= . By simple manipulations we 

obtain 

{ }
{ }

(43) 2 2* * 2 * *
II II

(46) 2* 2 *
II

(47)
*

( ) ( ) ( )( )

1( ) ( )
2

(2 ) ( ).

k k k k
k k k k k k k k k k

k k
k k k k k k

k k k k

x x x x

x x

γ ρ γ ρ β γ ρ ρ

γ ρ γ ρ β

γ γ ρ

Ψ = Φ + − − −

= − Φ + −

= − Ψ

    (49) 

It follows from Theorem 1 that 

{ }2 2 2 21 * *
0 I II

(2 )
4

k k k k k kL Ux x x x x x x xγ γ τ+ −
− ≤ − − − + − .    (50) 

3 Convergence 
It follows from (28) and (39) that for Algorithm 1, there exists a constant 1 0τ > , such that 

2 2 21 * *
1 I

k k k kx x x x x xτ+ − ≤ − − − .                  (51) 

From (50), we have for Algorithm 2, there exists a constant 2 0τ > , such that 

{ }2 2 2 21 * *
2 I II

k k k k k kx x x x x x x xτ+ − ≤ − − − + − .      (52) 

The convergence result of the proposed methods in this paper is based on the following theorem. 

Theorem 2: Let { }kx  be a sequence generated by the proposed methods (Algorithms 1 and 2), 

kα  be a positive sequence and mininf{ } 0kα α= > . If the solution set of the SFP is nonempty, 

then { }kx  converges to a solution point of the SFP. 
Proof: First, from (51) or (52) we get 

Ilim 0k k

k
x x

→∞
− = .                               (53) 

Again, it follows from (51) or (52) that the sequence { }kx  is bounded. Let x∞  be a cluster 

point of { }kx  and the subsequence { }ikx  converges to x∞ . We are ready to show that x∞  is 

a solution point of the SFP. 

First, we show that x C∞ ∈ . Since I i

k
kx C∈ , then by the definition of 

ikC , we have 

I( ) , 0i i i ik k k kc x x xξ+ − ≤ ,   1,2,i∀ = . 

Passing onto the limit in this inequality and taking into account (53) and Lemma 1, we obtain that 

( ) 0c x∞ ≤ . 

Hence, we conclude x C∞ ∈ . 

Next, we need to show Ax Q∞ ∈ . Note that 

                    ( , ) [ ( )]
kk C ke x x P x F xα α= − − ,    0,1, 2,k = . 
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Then from Lemma 1, Remark 2 and (53), we have 

                          

{ }

{ }

I
I

I

min

lim ( ,1) lim
min 1,

lim
min 1,

0.

i i

i

i
i i

i

i i

i

k k
k

kk k
k

k k

k

x x
e x

x x

α

α

→∞ →∞

→∞

−
≤

−
≤

=

                   (54) 

Using (8) and *
ikx C∈ , we have for all 1,2,i∀ =  

*( ) [ ( )], [ ( )] 0i i i i i i

i k i k ii i

k k k k k k
k C k C kx F x P x F x x P x F x− − − − − ≤ , 

that is, 
*

I I( ,1) ( ), ( ,1) 0i i i i

i i i

k k k k
k k ke x F x x x e x− − − ≥ .                (55) 

It follows from (9) and *
ikAx Q∈  that 

*

* *

* *

* *

2
*

2

( ) ,

( ) ( ),

( ) ( ) ,

( ) ( ) ,

( ) ( )

( ) .

i i

i

i i

i i

i i

k ki i

i i

k ki i

i

k ki i

i

ki

k k
k

k k
k k

k kT T
Q Q

k k
Q Q

k
Q Q

k
Q

F x x x

F x F x x x

A I P Ax A I P Ax x x

I P Ax I P Ax Ax Ax

I P Ax I P Ax

I P Ax

−

= − −

= − − − −

= − − − −

≥ − − −

= −

 

From (55) and the above inequality we know for all 1, 2,i = , 

                

*
I

2 *
I I

22

I I

, ( ,1)

( ,1) ( ), ( ,1) ( ),

( ,1) ( ), ( ,1) ( ) .

i i

i

i i i i i

i i i i

i i i i

i i i ki

k k
k

k k k k k
k k k k

k k k k
k k k Q

x x e x

e x F x e x F x x x

e x F x e x I P Ax

−

≥ − + −

≥ − + −

         (56) 

Since 
* *( ) ( ) ( )i i i

i i i

k k k
k k kF x F x F x L x x= − ≤ − ,  1,2,i∀ =  

and { }ikx  is bounded, the sequence { }( )i

i

k
kF x  is also bounded. Therefore, from (54) and (56) 

we get 

lim ( ) 0i

kii

k
Qk

I P Ax
→∞

− = , 

that is, 

lim ( ) 0i i

kii

k k
Qk

P Ax Ax
→∞

− = .                     (57) 

Since ( )i

k ii

k
Q kP Ax Q∈ , we have 
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( ) , ( ) 0i i i i

ki

k k k k
Qq Ax P Ax Axη+ − ≤ . 

Letting ik →∞  from Lemma 1 and (57), we deduce that 

( ) 0q Ax∞ ≤ , 

that is, Ax Q∞ ∈ . Therefore, x∞  is a solution of the SFP. Because the subsequence { }ikx  

converges to x∞ , for an arbitrary scalar 0ε > , there exists a 0lk >  such that 

                              lkx x ε∞− ≤ . 

On the other hand, since x∞  is a solution point, it follows from (51) or (52) that 
lkkx x x x ε∞ ∞− ≤ − ≤      lk k∀ ≥ , 

and thus the sequence { }kx  converges to x∞ , which is a solution point of the SFP.     □ 

4 Numerical results 
In this section, we apply the proposed methods to solve the following split feasibility problems 
(Examples 1 and 2), which were tested in [10], to verify the effectiveness and computational 
superiority compared to the modified relaxed CQ algorithm in [2]. 

All the codes were written in Matlab and run on an HP Compaq 6910p notebook. For the CQ 

algorithm in [2], Algorithms 1 and 2, we take 1010ε −= , 0 1α = , 0.9µ = , 0.4ν = , 

1.8kδ ≡ , and 1.8kγ ≡ . Since the test problems are from [10], we also list the original results by 

the halfspace-relaxation projection method in [10]. The numerical results for Examples 1 and 2 are 
reported in Tables 1-8. 

Example 1 (A convex feasibility problem). Let { }3 2 2
2 3 4 0C x R x x= ∈ + − ≤ , 

{ }3 2
3 11 0Q x R x x= ∈ − − ≤ . Find some point x  in C Q∩ . 

 
Tab. 1  Results for Example 1 using Qu and Xiu method in [10] 

Starting points Number of iterations CPU(s) Approximate solution 
T(1,2,3,0,0,0)  43 0.0500 T(0.3213, 0.2815, 0.1425)  
T(1,1,1,1,1,1)  67 0.0910 T(0.8577, 0.8577, 1.3097)  
T(1,2,3,4,5,6)  85 0.1210 T(1.1548, 0.8518, 1.8095)  

 
Tab. 2  Results for Example 1 using Qu and Xiu method in [2] 

Starting points Number of iterations CPU(s) Approximate solution 
T(1,2,3)  5 0.1250 T(1.0000, 1.1094, 1.6641)  
T(1,1,1)  0 0.0320 T(1.0000, 1.0000, 1.0000)  

rand(3,1)*10  130 0.0780 T(0.8665, 0.6369, 1.7508)  
 
 

Tab. 3  Results for Example 1 using Algorithm 1 
Starting points Number of iterations CPU(s) Approximate solution 

T(1,2,3)  5 0.1870 T(1.0000, 1.1094, 1.6641)  
T(1,1,1)  0 0.0310 T(1.0000, 1.0000, 1.0000)  

rand(3,1)*10  2 0.0940 T(1.0748, 0.6630, 1.6190)  
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Tab. 4  Results for Example 1 using Algorithm 2 
Starting points Number of iterations CPU(s) Approximate solution 

T(1,2,3)  1 0.1560 T(1.0000, 0.7538, 1.1308)  
T(1,1,1)  0 0.0310 T(1.0000, 1.0000, 1.0000)  

rand(3,1)*10  2 0.1100 T(0.6778, 0.4818, 1.3998)  
 

Example 2 (A split feasibility problem). Let  

2 1 3
4 2 5
2 0 2

A
−⎛ ⎞

⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

{ }3 2
1 2 32 0C x R x x x= ∈ + + ≤ , { }3 2

1 2 3 0Q x R x x x= ∈ + − ≤ . Find some point x C∈  

with Ax Q∈ . 
Tab. 5  Results for Example 2 using Qu and Xiu method in [10] 

Starting points Number of iterations CPU(s) Approximate solution 
T(1,2,3,0,0,0)  1890 2.7740 T(-0.1203, 0.0285, 0.0582)  
T(1,1,1,1,1,1)  2978 4.2860 T(0.8603, -0.1658, -0.5073)  
T(1,2,3,4,5,6)  3317 4.8570 T(3.6522, -0.1526, -2.3719)  

 
Tab. 6  Results for Example 2 using Qu and Xiu method in [2] 

Starting points Number of iterations CPU(s) Approximate solution 
T(1,2,3)  64 0.1570 T(-0.4019, 0.0674, 0.1967)  
T(1,1,1)  81 0.0940 T(0.3568,  0.0343, -0.2652)  

rand(3,1)*10  105 0.0940 T(0.8747, 0.0795,-0.6876)  

 
Tab. 7  Results for Example 2 using Algorithm 1 

Starting points Number of iterations CPU(s) Approximate solution 
T(1,2,3)  4 0.1410 T(-0.4024, 0.0658, 0.1958)  
T(1,1,1)  5 0.0940 T(0.3532, 0.0392, -0.2707)  

rand(3,1)*10  8 0.0940 T(0.8768,  0.0604, -0.6844)  

 
Tab. 8  Results for Example 2 using Algorithm 2 

Starting points Number of 
iterations 

CPU(s) Approximate solution 

T(1,2,3)  6 0.1720 T(-0.4305,  0.0774,  0.1048)  
T(1,1,1)  1 0.1090 T(0.2000,  -0.6000, -0.6000)  

rand(3,1)*10  7 0.1090 T(0.7984,  -0.0384, -0.9042)  
 

These numerical data justify the computational superiority of the proposed methods over the 
modified relaxed CQ algorithm in [2] and the halfspace-relaxation projection method in [10].  

5 Conclusion 
For solving the split feasibility problem, this paper presents some improved relaxed CQ methods 
which are based on the modified relaxed CQ algorithm in [2]. The additional computational load 
resulted by the new methods is negligible, compared to the algorithm in [2]. The preliminary 
numerical tests show that the proposed methods are attractive in practice. 
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求解分裂可行问题的改进的松弛 CQ 方法 
李敏

（东南大学，经济管理学院，南京 210096） 
摘要：本文提出求解分裂可行问题的改进的松弛 CQ 方法。这些新方法是基于修正的松弛

CQ 算法，沿着下降方向搜索最优步长产生新的迭代点。在适度的假设条件下，新方法是全

局收敛的。初步的数值结果显示了新方法在计算上的优越性。 
关键词：CQ 算法；分裂可行问题；步长 
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