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Abstract: Generalized Nash Equilibrium problem is widely applied but hard to solve. In this paper, we transform the
generalized Nash game into a special bilevel programming with one leader and multi-followers by supposing a suppositional
leader, that is an upper decision maker. The relations between their solutions are discussed. We also discuss the further
simplification of the bilevel programming. Many conclusions and the further research are drawn at last..
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1 Introduction

Game theory is the study of problem of conflict and cooperation among independent decision-makers.
And it is a mathematical framework that describes interactions between multi-agents and allows for their
incomes(Newmann and Morgenstern, 1944; Osborne and Rubinstein, 1994; Samuelson, 1997). A game
defines an interaction between some agents. Each agent has a series of available strategies, where a
strategy determines an action of the agent in the game. Game theory has played a substantial role in
economics and has been applied to many application areas such as biology, transportation(Sun and Gao,
2006), sociology, political sciences(Schelling, 1960), psychology(Scharlemann et al., 2001), management
science(Patriksson and Rockafellar, 2002), warfare and so on.

Games appear in normal form(strategic form), extensive form and coalitional form. The first two
are close relatives, they constitute the basic paradigm of non-cooperative game theory. The coalitional
form is the basic paradigm of cooperative game theory(Nash, 1951). Most of the game researchers pay
their attentions to non-cooperative finite game with perfect information, i.e., each player in the game
enjoys complete information and he/she independently selects a strategy and receives a corresponding
payoff value that depends on the strategies selected by all players. Players choose their best strategies to
maximize their payoffs respectively.

In this paper, we will consider the static generalized Nash equilibrium game, a kind of non-cooperative
finite game with perfect information. It is also called social equilibrium game or pseudo-Nash equilibrium
game(Ichiishi, 1983). In this kind of game, players affect each other when they make decisions not only
on their utility functions but also on their feasible strategy sets. And it is a basic assumption that any
player, when taking his decision, either does so simultaneously or without knowing the choice of the other
players.

Researchers of game theory are generally aware that solving Nash equilibrium problem can be a
tedious, error-prone affair, even when the game is very simple, and they also know that the need to
solve a game arises with fair frequency. It is by now a well-known fact that the Nash equilibrium
problem where each player solves a convex parameter program can be formulated and solved as a finite-
dimensional variational inequality(Facchinei and Pang, 2003; Harker and Pang, 1990). The generalized
Nash game is a Nash game in which each player’s strategy set depends on the other players’ strategies. The
connection between the generalized Nash games and quasi-variational inequalities(QVIs) was recognized
by Bensoussan (Bensoussan, 1974) as early as 1974 who studies these problems with quadratic functions
in Hilbert space.

As for the generalized Nash equilibrium model, Ichiishi (Ichiishi, 1983) proved the existence of equilib-
rium point under the conditions that utility function ui is quasi-concave and the mapping Ki is continuous
for all i ∈ I . A general assumption is that the utility function is concave and even is quasi-concave in most
of the study. Similar to normal Nash equilibrium problem, the generalized Nash equilibrium problem
can be transformed into a quasi-variational inequality problem. But the calculation of quasi-variational
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inequality problem is intractable. Under some given conditions, Ichiishi (Ichiishi, 1983) calculated a
quasi-variational inequality problem in virtue of a general variational inequality problem equivalently.
Many effective algorithms(Pang and Yang, 1998; Daniele and Maugeri, 2002; Pang, 2002)have been es-
tablished to solve the general variational inequality problem such as Newton method and diagonalization
method and so on.

Bi-level programming has been the focus of hierarchical system for many years and many excellent
results have been founded (Vicente and Calamai, 1994; Zhu et al, 2004; Dussault et al, 2006; Shi et
al, 2006).In this paper, we transform the generalized Nash equilibrium problem into a special bi-level
programming with multi-follower.

The remainder of the paper is organized as follows. Section 2 introduces the basic concepts and nota-
tions, and the generalized Nash equilibrium problem is described. Section 3 deals with the transformation
between the generalized Nash equilibrium game and Bi-level programming. Section 4 presents another
equivalent form for GNEP, and some conclusions are drawn in the last section.

2 Concepts and properties

To describe a generalized Nash equilibrium game, we need to specify three factors, that is the number
of players, the set of strategies available to each player and their payoff functions which determine each
player’s payoff as a function of the strategies choosed by all players(Stinchcombe, 2005).

Consider a finite n-person generalized Nash game in normal form.
Let I denote the finite set of players, I = {1, 2, · · · , n}.
For any player i ∈ I , its strategy set Si = {si

1, s
i
2, · · · , si

ni
} , consisting of ni possible actions called

pure strategies. A player’s mixed strategy is a probability distribution over his space of pure strategies.
In other words, a mixed strategy consists of a random draw of a pure strategy. It can be represented by
a nonnegative vector xi = (xi

1, x
i
2, · · · , xi

ni
) , Where

∑ni

k=1 xi
k = 1 . Then the mixed strategy set of player

i is Xi = {xi = (xi
1, x

i
2, · · · , xi

ni
)|∑ni

k=1 xi
k = 1, xi

k ≥ 0, k = 1, 2, · · · , ni} . In particular, for some mixed
strategy Si = {si

1, s
i
2, · · · , si

ni
} , if there exists some component xi

k = 1 , this strategy is just the k th pure
strategy. So we can see the pure strategy is a special case of the mixed strategy and then we denote the
strategy set of player i as Xi ⊆ Rni and the feasible strategy space of the game as X =

∏
i∈I X

i ⊆ Rm,
where m =

∑
i∈I ni . And then we indicate X−i =

∏
i∈I\{i}X

i ⊆ Rm−ni as the Descartes product of all
players’ strategy sets except for the strategy set of player i.

Let Ki : X−i → Xi be a point-to-set mapping, that is, ∀x−i ∈ X−i , Ki(x−i) ⊆ Xi , where
x−i = (x1, · · · ,xi−1,xi+1, · · · ,xn) . Here the mapping may portray the influence ability of the other
n − 1 players to player i . Let ui : grKi × X−i → R be the utility (or payoff) function for player i ,
where grKi is the value region of mapping Ki .

Given the above factors, we can portray the generalized Nash equilibrium game as the ternary group
{Xi, Ki, ui}i∈I .

In game theory, what is emphasized is individual rationality (Cruz and Simaan, 2000). Every player
will choose the strategy which optimize his/her utility function under the condition of other players
fixed their strategies. That is, ∀i ∈ I, if other n − 1 players chosen their optimal strategies as x−i∗ =
(x1∗, · · · ,x(i−1)∗,x(i+1)∗, · · · ,xn∗), then player i should optimize his utility function ui(xi,x−i∗) on the
feasible strategy set Ki(x−i∗) . This course can be described as the following parameter programming
denoted as (EP(x−i∗)):

max
xi

ui(xi,x−i∗) (2.1)

s.t. xi ∈ Ki(x−i∗)

Then the generalized Nash equilibrium problem (GNEP) can be presented by the following series of
parameter programming, that is,

For i ∈ I , player i solves the parameter programming (2.2)
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max
xi

ui(xi,x−i∗) (2.2)

s.t. xi ∈ Ki(x−i∗)

wherex−i∗ is the optimal decisions of the players except for player i.
A Nash equilibrium point is a strategy profile such that there is no agent’s interest to deviate unilater-

ally. So is the generalized Nash equilibrium point. We may portray it with the mathematical formulation.
Definition 2.1 A Generalized Nash Equilibrium Point is defined as a point x∗ = (x1∗,x2∗, · · · ,xn∗)

such that ∀i ∈ I , the following conditions hold, xi∗ ∈ Ki(x−i∗)and ui(x∗) ≥ ui(yi,x−i∗), ∀yi ∈ Ki(x−i∗).
The generalized Nash equilibrium conditions show that no player can increase his/her expected reward

by unilaterally changing his/her strategy only. Here xi∗ ∈ Ki(x−i∗) means that the optimal strategy of
every player must be in the region decided by other players at the generalized Nash equilibrium point.
This is just the difference between the generalized Nash equilibrium game and the normal form game.

From the above model and definition we can see the calculation of generalized Nash equilibrium
point is hard enough. Because solving the parameter programming is not easy. An effective solution is
transforming the GNEP and using the known algorithm. In the next section, we transform the generalized
Nash equilibrium problem into a special bi-level programming problem and discuss the relations between
their solutions.

3 Equivalent Bilevel Programming Form for GNEP

In the game portrayed above, all the players is evenness but they influence each other by their decision
variables. So we must resolve all of the n parameter programmes at the same time in order to solve the
generalized Nash equilibrium point. We know there is another effective model to describe the complex
interactive influence among all the players, that is the multi-level programming. Bilevel programming
is the simplest multi-level programming and it describes the delicate hierarchical relations between the
upper leader and the lower follower.

Suppose there is an upper leader in the generalized Nash equilibrium problem, and it is endowed with
the corresponding decision variable, constraints and objective function. We get a bilevel programming. So
we may transform the transverse relations among all the decision-makers in the game into the lengthways
relationship between the upper leader and the lower follower.

Denote the upper leader’s decision variable as x = (x1,x2, · · · ,xn) ∈ Rm , where xi ∈ Rni , i ∈ I
and

∑
i∈I ni = m such that ∀i ∈ I the condition xi ∈ Ki(x−i) holds. His objective is to maximize the

function −(y− x)T (y− x) where y = (y1,y2, · · · ,yn) ∈ Rm, yi ∈ Rni , i ∈ I and
∑

i∈I ni = m .
Then we get the following bilevel programming:

max
(x,y)

f(x,y) = −(y− x)T (y− x)

(
BP1

)
s.t.





xi ∈ Ki(x−i) i ∈ I
and y is an efficient solution of the programming V (x):

V(x)
max

y

(
u1(y1,x−1), · · · , un(yn,x−n)

)

s.t. yi ∈ Ki(x−i) ∀i ∈ I

The relations between the generalized Nash equilibrium point of GNEP and the optimal solutions of
(BP1) is satisfied. We have the following conclusions to describe the equivalence.

Lemma 3.1 For the given x∗ ∈ Rm, the multi-objective programming V (x∗) has efficient solution
if and only if ∀i ∈ I, EP(x−i∗) has optimal solution.

Proof:
If for some given x∗ ∈ Rm, the multi-objective programming V (x∗) has efficient solution, there exists

some j ∈ I, such that the correspond EP(x−j∗) has no optimal solution.
Because the programming V (x∗) has efficient solution, we can see the feasible region EP(x−j∗), that is

the set Kj(x−j∗), is not empty. Since EP(x−j∗) has no optimal solution on Kj(x−j∗), we can know that
the function uj(yj , x−j∗) is not upper-bounded on the set Kj(x−j∗).
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Further, we suppose y∗ = (y1∗,y2∗, · · · ,yn∗) is an efficient solution of V (x∗). It is right to know
that yj∗ ∈ Kj(x−j∗). Because the function uj is unbounded on set Kj(x−j∗), we know there must exist
some ȳj ∈ Kj(x−j∗) such that uj(ȳj ,x−j∗) > uj(yj∗,x−j∗).

Let ȳ = (y1∗, · · · ,y(j−1)∗, ȳj ,y(j+1)∗, · · · ,yn∗). It is easy to know that ȳ is a feasible solution to
V (x∗) and we have the following inequalities:

ui(yi∗,x−i∗) = ui(yi∗,x−i∗), ∀i ∈ I, i 6= j, and uj(ȳj ,x−j∗) > uj(yj∗,x−j∗)

This is a contradiction to the existence of the efficient solution to V (x∗). So ∀i ∈ I, EP(x−i∗) has
optimal solution.

Conversely, if for every i ∈ I, the programming EP(x−i∗) has optimal solution, denoted as yi∗. Let y∗ =
(y1∗,y2∗, · · · ,yn∗). Then we have, ∀i ∈ I, yi∗ ∈ Ki(x−i∗). So the vector y∗ is a feasible solution to V (x∗).

Now we will prove it is an efficient solution to V (x∗).
In fact, for every feasible solution y = (y1,y2, · · · ,yn) to V (x∗), because yi∗ is the optimal solution

to EP(x−i∗), i ∈ I. So ,it is obviously that ∀i ∈ I, yi is a feasible solution to EP(x−i∗) and the following
inequalities hold:

ui(yi∗,x−i∗) ≥ ui(yi,x−i∗), ∀i ∈ I

So we can see y∗ is not only an effective solution but also an optimal solution to V (x∗).
Theorem 3.2 y∗ ∈ Rm is a generalized Nash equilibrium point to GNEP if and only if there exists

an x∗ ∈ Rm such that (x∗,y∗) solves (BP1) and the optimal value is zero.
Proof:
First, we must notice the fact that y∗ is a generalized Nash equilibrium point to GNEP shows that:

∀i ∈ I, yi∗ is an optimal solution to EP(y−i∗).
Let x∗ = y∗, then we have:

yi∗ ∈ Ki(x−i∗), ∀i ∈ I

To prove the conclusion, we must prove y∗is an effective solution to V (x∗) firstly.
If it is not right, then there exists some ȳ ∈ Rm such that

ȳi ∈ Ki(x−i∗) and ui(ȳi,x−i∗) ≥ ui(yi∗,x−i∗), ∀i ∈ I

and there at least one inequality is strictly, w.l.o.g., suppose the i0’s inequality is strictly.
It is easy to know that ȳi0 is a feasible solution to EP(y−i0∗ ). Moreover, according the above suppo-

sition, we have ui0(ȳi0 ,y−i0
∗
) > ui0(yi0

∗
,y−i0

∗
) It is a contradiction to yi0

∗
is the optimal solution to

EP(y−i0∗ ).
So the above supposition is not right and we can say y∗ is an efficient solution to V (x∗).
Because of x∗ = y∗, the fact (x∗,y∗) is a feasible solution to (BP1) is obvious.
So (x∗,y∗) is an optimal solution to (BP1), and the optimal value is zero, because of f(x,y) ≤

0, ∀(x,y) and f(x∗,y∗) = 0.
Conversely, if (x∗,y∗) is an optimal solution to (BP1), and the optimal value is zero, we can say x∗ = y∗

right now because of the special upper objective function f of (BP1). Also we have xi∗ ∈ Ki(x−i∗), ∀i ∈ I
and y∗ is an efficient solution to V (x∗).

Now we will prove y∗ is an generalized Nash equilibrium point to GNEP.
If it is not so, that means there exists an i ∈ I, such that yi∗ is not an optimal solution to EP(y−i∗).

According to Lemma 3.1, we know EP(y−i∗) has optimal solution, we denote it as ȳi. Then we get the
following conclusions, that is:

ȳi ∈ Ki(x−i∗) and ui(ȳi,x−i∗) > ui(yi∗,x−i∗)

Let ȳ = (y1∗, · · · ,y(i−1)∗, ȳi,y(i+1)∗, · · · ,yn∗). It is easy to know that ȳ is a feasible solution to
V (x∗) and we have the following inequalities:

uj(yj∗,x−j∗) = ui(yj∗,x−j∗), ∀j ∈ I, j 6= i, and ui(ȳi,x−i∗) > uj(yj∗,x−j∗)

This is a contradiction to yi∗ is an efficient solution to V (x∗). So the conclusion is right.
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4 Other equivalent forms for GNEP

Notice that the lower multi-objective programming probe V (x) of the bilevel programming problem
(BP1) is separable, that is, the decision variables of every programming are independent each other not
only in objective functions but also in the constrains (Chen and Craven, 1994; Mehrdad,1996). So we
know the effective solution to V (x) is just the aggregate of the optimal solution to every single-objective
programming, that is,

max
yi

ui(yi,x−i)

s.t. yi ∈ Ki(x−i)

Then, we can transform the problem V (x) into a single-objective programming problem equivalently
by combination the multi-objective programmes linearly. Without loss of generality, let all the weighting
coefficient be one (Ashry, 2006; Balbas and Guerrs, 1996). We get the transformed single-objective
programming P (x) as following:

max
y

n∑
i=1

ui(yi,x−i)

P(x)
s.t.yi ∈ Ki(x−i),∀i ∈ I

And the corresponding bilevel programming problem (BP1) is transformed into the following problem
(BP2) correspondingly:

max
(x,y)

f(x,y) = −(y− x)T (y− x)

(
BP2

)
s.t.





xi ∈ Ki(x−i) i ∈ I
and y is an optiaml solution of the programming P (x):

P(x)
max

y

(
u1(y1,x−1) + · · ·+ un(yn,x−n)

)

s.t. yi ∈ Ki(x−i) ∀i ∈ I

Similar to the above discuss in section 3, we have the following conclusions, we list them without
detail proofs.

Lemma 4.1 For the given x∗ ∈ Rm, P (x∗) has optimal solution if and only if ∀i ∈ I, EP(x−i∗)
has optimal solution.

Proof:We just need to prove that P (x∗) has optimal solution is equivalent with the multi-objective
programming V (x∗) has efficient solution.

If P (x∗) has optimal solution y∗, it is obviously that y∗ is an efficient solution to V (x∗).
Conversely, if V (x∗) has an efficient solution y∗, it means that∀y = (y1,y2, · · · ,yn) ∈ Rm such that

∀i ∈ I, yi ∈ Ki(x−i), the following inequalities hold:

ui(yi,x−i∗) ≤ ui(yi∗,x−i∗), ∀i ∈ I

By adding them up, we have the following inequality:

n∑

i=1

ui(yi,x−i∗) ≤
n∑

i=1

ui(yi∗,x−i∗)

It just shows that y∗ is an optimal solution to P (x∗). Thus we complete the conclusion.
Theorem 4.2 y∗ ∈ Rm is a generalized Nash equilibrium point to GNEP if and only if there exists

x∗ ∈ Rm such that (x∗,y∗) solves (BP2) and the optimal value is zero.

5 conclusion

In this paper, we consider the transforming form of generalized Nash equilibrium problem. We construct
a special bilevel programming model and establish some results about the relations between solutions of
the two models with strictly proof. Due to the special structure of the bilevel programming problem in
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this paper, the properties and the calculation of the general Nash equilibrium point becomes possible and
easy. Of course, much more research is needed in order to provide algorithmic tools to effectively solve
GNEP. In this regard we feel it deserves further investigations in the special bilevel programming (BP1)
and (BP2).
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