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Simple Formulas for Calculating Wave Propagation and Splitting in Anisotropic Media
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A general method for dealing with the propagation of waves in homogeneous anisotropic media is presented. The formulas
were derived and applied to determine the reflected and transmitted waves resulting from a plane wave obliquely incident at
an interface between two anisotroptic media with arbitrarily oriented principal axes. The validity of the formulas was also
demonstrated by calculating the reflection and refraction at a biaxial–biaxial interface.

KEYWORDS: polarization, anisotropic media, biaxial media, compensation films, ray tracing

1. Introduction

Novel optical devices made of optically anisotropic mate-
rials exhibit numerous attractive applications, such as polar-
ization sheets, biaxial compensation films, liquid-crystal dis-
plays, as well as polarization conversion systems.1–3) In or-
der to analyze and optimize these optical devices, efficient
simulation methods for investigating the light propagation in
anisotropic media are necessary. There exist a number of
well-known matrix methods developed to study the transmis-
sion and reflection characteristics of the uniaxially anisotropic
layered films or planar structures.4–12) However, few methods
deal with polarization ray tracing of the general cases of biax-
ially anisotropic media.11–13)In this paper, a general formality
for systematically manipulating the propagation and splitting
of light beams in homogeneous anisotropic materials with the
principal axes oriented in arbitrary directions is reported.

2. Formulation

2.1 Wave propagation in anisotropic media
One of the most important phenomena within an

anisotropic medium is that, in general, there are two nor-
mal modes of distinct refractive indices for a given propa-
gation direction. Thecongruence transformation was em-
ployed to simplify the calculation of the refractive indices of
an anisotropic medium.14) Consider a monochromatic plane
wave propagating in an anisotropic medium with neither free
charge nor current. It is assumed that the medium is homo-
geneous, nonmagnetic and lossless. In an arbitrary choice
of an orthogonal coordinate system, labeled by (x , y, z), the
plane wave with the propagation directionu = [ux uyuz]T and
the electrical fieldE = [Ex Ey Ez]T must obey the following
wave equation:

L̄ E = ηε̄E, (1)

whereη = 1/n2, n is the refractive index to be determined,L̄
is the real symmetric matrix related to the propagation direc-
tion:

L̄ =

u2

y + u2
z −uxuy −ux uz

−uyux u2
z + u2

x −uyuz

−uzux −uzuy u2
x + u2

y


 , (2)

andε̄ is the dielectric tensor used to specify the optical char-
acteristics of the medium.5,6) For generality, the medium is
assumed to be biaxial and have the oriented principal axes.
The dielectric tensor̄ε in the coordination system (x , y, z) is

zp
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Fig. 1. Orientation of the principal axes (xp, yp, zp) described by the
Eulerian angles (φp, θp, ψp).

given by

ε̄ = Q̄T


n2

1 0 0

0 n2
2 0

0 0 n2
3


 Q̄, (3)

wheren1, n2, andn3 are the principal refractive indices,̄Q is
a rotation matrix for describing the principal axes (xp, yp, zp),
and the superscript T indicates the transpose of the matrix.
As shown in Fig. 1, the orientation of the principal axes
(xp, yp, zp) with respect to the coordinate system (x , y, z) can
be specified in terms of the Eulerian angles, (φp, θp, ψp), and
thus the matrixQ̄ is expressed as

Q̄ =

 cosψp sinψp 0

− sinψp cosψp 0

0 0 1




×

1 0 0

0 cosθp sinθp

0 − sinθp cosθp




×

 cosφp sinφp 0

− sinφp cosφp 0

0 0 1


 . (4)

Equation (1) is in the form of ageneralized eigen-equation
containing the two matrix operators,L̄ andε̄, in whichη and
E are the eigenvalue and eigenvector to be determined. In
order to simplify the calculation procedures in solving eq. (1),
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we employ the techniques of thecongruence transformation,
which is defined by the following transformation matrix:14)

C̄ ≡ Q̄T


1/n1 0 0

0 1/n2 0

0 0 1/n3


 . (5)

By substitutingC̄ F = C̄[Fx Fy Fz]T for E = [Ex Ey Ez]T,
eq. (1) is converted into the form of astandard eigen-equation
for the single matrix operator̄	 as follows

	̄F = η Ī F, (6)

where Ī is the 3× 3 identity matrix, and	̄ is the real sym-
metric matrix given by

	̄ = C̄T L̄C̄

=

1/n1 0 0

0 1/n2 0

0 0 1/n3


 Q̄

×

u2

y + u2
z −ux uy −ux uz

−uyux u2
z + u2

x −uyuz

−uzux −uzuy u2
x + u2

y


 Q̄T

×

1/n1 0 0

0 1/n2 0

0 0 1/n3


 , (7)

In addition, the vectorF = [Fx Fy Fz]T is related to the elec-
trical field E = [Ex Ey Ez]T and is written as

F = C̄−1E =

n1 0 0

0 n2 0

0 0 n3


 Q̄


Ex

Ey

Ez


 . (8)

Apparently, this transformation matrix̄C gives another choice
for the coordinate system, which is a combination of a pure
rotation and scaling, such that eq. (1) is reduced into a simpler
equation for solving the associated eigen problems.

For nontrivial solutions of eq. (6) to exist, the character-
istic polynomial of the matrix	̄ must vanish, leading to the
following cubic polynomial equation:

|η Ī − C̄T L̄C̄ | = η(η2 − 2Vη + W ) = 0, (9)

whereV andW are the coefficients of the polynomial equa-
tion. In eq. (9), the constant term is zero because of|L̄| = 0.
On the other hand, the constants,V and W , are determined
by the matrix elements	uv (u, v = x, y, z) of the matrix	̄,
and are given by

V = 1

2
(	xx +	yy +	zz), (10)

W = 	yy	zz +	zz	xx +	xx	yy −	yz	zy

−	zx	xz −	xy	yx. (11)

It should be noted that the zero root of eq. (9) corresponds to
the theoretical solution withn = ∞, and should be dropped.
While the other two nonzero roots,V ± √

V 2 − W , lead to

the following formulas of the refractive indices:

ninner =
√

V − √
V 2 − W

W
, (12)

nouter =
√

V + √
V 2 − W

W
, (13)

whereV and W are defined by eqs. (10) and (11), respec-
tively. Consequently, there are two normal modes for each
propagation direction in an anisotropic medium: one prop-
agates with the refractive indexninner, and the other propa-
gates withnouter. It is clear from eqs. (12) and (13) that the
value ofninner is less thannouter, thus the front is referred to as
the “inner-sheet” reflective index, and the latter as the “outer-
sheet” refractive index. Once the refractive indices,ninner and
nouter, are determined, the corresponding polarization vectors
can then be obtained from the eigenvectors of eq. (6) to com-
plete the solutions.

2.2 Reflection and refraction at interfaces
The calculations of reflected and refracted waves at a pla-

nar interface between two generally oriented anisotropic me-
dia are other fundamental issues in the polarization ray trac-
ing. We apply formulas developed in §2.1 and impose bound-
ary conditions to obtain a general method for computing the
propagation directions of these splitting waves. The coordi-
nation system and symbols used for our formulas are shown
in Fig. 2. For the sake of convenience, thez-axis direction of
the coordinate system, labeled by (x , y, z), is taken to be per-
pendicular to the interface and the polar and azimuth angles
of the wavevector are used to specify the propagation direc-
tion. Consider a plane wave incident upon the interface with
the following wavevector:

ki = 2π

λ
ni[sinθi cosφi sinθi sinφi cosθi]T, (14)

whereλ is the wavelength,ni is the refractive index given by
eq. (12) or (13),θi is the polar angle, andφi is the azimuth an-
gle. Similarly, the wavevectors of the reflected and refracted
waves,kr andkt, are expressed as

kr = 2π

λ
nr[sinθr cosφr sinθr sinφr cosθr]T, (15)

kt = 2π

λ
nt[sinθt cosφi sinθt sinφi cosθt]T. (16)
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Fig. 2. Propagation directions of the incident, reflected, and refracted
waves specified by the angles (φi , θi ), (φr, θr), and (φt, θt).
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Here the subscriptsi , r , and,t in the above equations denote
the components of the incident, reflected and refracted waves,
respectively. Note that the azimuth angles of the reflected and
refracted waves are identical to the value ofφi , while their
polar angles,θr andθt, are the unknown variables to be de-
termined. The boundary condition requires that the phases of
the fields on both sides of the interface must match. Applying
the boundary condition, together with eqs. (12) and (13) for
the refractive indices, we obtain the following four equations
that determine the polar angles,θr andθt:

ni sin(θi) =




√√√√ V1 −
√

V 2
1 − W1

W1
sin(θr) (17)

√√√√ V1 +
√

V 2
1 − W1

W1
sin(θr), (18)

ni sin(θi) =




√√√√ V2 −
√

V 2
2 − W2

W2
sin(θt) (19)

√√√√ V2 +
√

V 2
2 − W2

W2
sin(θt), (20)

where

√
(Vρ ±

√
V 2
ρ − Wρ)/Wρ (ρ = 1, 2) are the refrac-

tive indices of the media. The subscripts 1 and 2 denote
the parameters in medium 1 and medium 2, respectively. In
addition, it should be noted that the values ofVρ and Wσ

(ρ = 1, 2), in general, vary with the propagation direction
of the wave and the dielectric tensor of the medium. For the
incident wave with the specified angles (φi , θi ) and refrac-
tive indexni , the polar angles of the reflected waves and the
refracted waves,θr and θt, can be solved numerically from
eqs. (17)–(20), respectively. Equations (17)–(20) are in a
form similar to Snell’s law, and yet allow systematic manipu-
lation of light splitting at the interface between two biaxially
anisotropic media.

3. Numerical Results

Applying the formulas developed in the preceding sections,
we analyzed the general case of an oblique plane wave inci-
dent upon a biaxial–biaxial interface. Figure 2 is a schematic
diagram of the arrangement and the chosen coordination sys-
tem. In the calculation, the optical parameters of the two
biaxial media are taken from ref. 9, in which medium 1
and medium 2 have the same principal refractive indices:
n1 = 1.2, n2 = 1.7, andn3 = 2.2, but their principal axes
are oriented differently:φp = 90◦, θp = 70◦, andψp = −90◦
for medium 1, andφp = 30◦, θp = 30◦, andψp = 30◦
for medium 2. The normal (wavevector) surfaces of medium
1 and medium 2 were calculated using eqs. (12) and (13),
and are shown in Figs. 3(a) and 3(b), respectively. It is seen
that each normal surface of the medium is composed of two
sheets, in which the inner-sheet given by eq. (12) is entirely
contained by the outer-sheet given by eq. (13).

Considering the polar angle of incidenceθi to vary from
0◦ to 90◦ and the azimuth angleφi = 0◦, we calculated the
polar angles of the reflected and refracted waves by solv-

Fig. 3. Surface plots of the inner- and outer-sheet normal (wavevector) sur-
faces in (a) medium 1 (n1 = 1.2, n2 = 1.7, n3 = 2.2; φp = 90◦, θp = 70◦,
ψp = −90◦) and (b) medium 2 (n1 = 1.2, n2 = 1.7, n3 = 2.2; φp = 30◦,
θp = 30◦, ψp = 30◦).

ing eqs. (17)–(20) numerically. According to the description
in §2.1, there exist two normal modes (inner-sheet or outer-
sheet) of the incident wave for a specified propagation di-
rection, thus two cases were analyzed separately. First, we
examined the reflection and refraction of a plane wave with
the inner-sheet refractive index given by eq. (12). The po-
lar angles of the reflected and refracted waves are shown in
Figs. 4(a) and 4(b), where the dashed and solid curves denote
the inner- and outer-sheet solutions, respectively. As the inci-
dence angleθi varies from 0◦ to 90◦, eqs. (17)–(20) yield two
backward-propagating waves and two forward-propagating
waves, resulting in the familiar phenomena of double reflec-
tion and refraction at the boundary.

Next, we calculated the reflected and refracted waves ex-
cited by the incidence of a plane wave with the outer-sheet
refractive index given by eq. (13). The polar angles of these
waves are shown in Figs. 5(a) and 5(b). Again, the double
reflection and refraction occur, as the incidence angleθi in-
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Fig. 4. Polar angles of (a) the reflected and (b) refracted waves versus the
incidence angle of the inner-sheet wave.

creases from 0◦ to 49◦. Notice that when the incidence angle
θi is around 50◦, eqs. (17) and (19) have multiple roots, lead-
ing to “triple” reflection and “triple” refraction at the bound-
ary. In this special case, three waves propagate backward,
and three waves propagate forward. If the incident angleθi

increases further, there exist one reflected wave in medium 1,
and one refracted wave in medium 2.

To illustrate the latter two special cases, the wavevectors
for the incidence angles of 50◦ and 60◦ are plotted in Figs.
6(a) and 6(b), along with the cross sections of the normal
surfaces on the plane of incidence. As shown in Fig. 6(a),
the inner-sheet of medium 1 yields two backward-propagation
wavevectors, and the outer-sheet yields one, thus giving rise
to three reflected waves. In medium 2, the inner-sheet pro-
vides two forward-propagation wavevectors, and the outer-
sheet causes one, thus leading to three refracted waves. For
the special case shown in Fig. 6(b), the tangential component
of the incident wavevector exceeds those of the inner-sheets
of medium 1 and medium 2, and, consequently, the waves re-
lated to the inner-sheets do not exist. Thus, only the reflected
and refracted waves associated with the outer-sheets are ob-
tained.

In order to investigate the phenomena at the biaxial–biaxial
interfaces, a prism assembly that consists of two triangular
wedges of biaxial materials is suggested to be used in carrying
out the associated experiment.15) The two triangular wedges
are cemented together with their optical axes oriented to each
other for providing the biaxial–biaxial interface. Using the
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Fig. 5. Polar angles of (a) the reflected and (b) refracted waves versus the
incidence angle of the outer-sheet wave.

proposed simulation method, the output splitting angles, re-
tardations, and interference fringes caused by this prism can
be analyzed. Additionally, we are planning to fabricate the bi-
axial prisms and develop the cement technology. The analysis
and experimental results will be reported in the near future.

4. Conclusions

We have developed a general formality for investigating the
propagation of light in homogeneous anisotropic media. By
using the congruence transformation, simple formulas were
derived to calculate the propagation modes associated with a
specified propagation direction. In addition, the equations for
determining the reflection and refraction waves at a plane in-
terface between two biaxially anisotropic media were also ob-
tained. The formulas were demonstrated by the general case
of a plane wave obliquely incident at a biaxial–biaxial inter-
face, showing that the procedure works well for an arbitrary
angle of incidence. The proposed approach provides a gen-
eral and systematic way to analyze the propagation of plane
waves, so that the results should be useful for calculating light
paths through optical systems containing anisotropic media.
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