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Simple Formulas for Calculating Wave Propagation and Splitting in Anisotropic Media
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A general method for dealing with the propagation of waves in homogeneous anisotropic media is presented. The formulas
were derived and applied to determine the reflected and transmitted waves resulting from a plane wave obliquely incident at
an interface between two anisotroptic media with arbitrarily oriented principal axes. The validity of the formulas was also
demonstrated by calculating the reflection and refraction at a biaxial-biaxial interface.
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1. Introduction z

Novel optical devices made of optically anisotropic mate-
rials exhibit numerous attractive applications, such as polar-
ization sheets, biaxial compensation films, liquid-crystal dis-
plays, as well as polarization conversion systémksin or-
der to analyze and optimize these optical devices, efficient
simulation methods for investigating the light propagation in
anisotropic media are necessary. There exist a number of
well-known matrix methods developed to study the transmis-
sion and reflection characteristics of the uniaxially anisotropic
layered films or planar structurést? However, few methods
deal with polarization ray tracing of the general cases of biax-
ially anisotropic media~'%In this paper, a general formality Fig.- 1. Orientation of the principal axes( yp, zp) described by the
for systematically manipulating the propagation and splitting Eulerian anglesdy, o, vro)-
of light beams in homogeneous anisotropic materials with the
principal axes oriented in arbitrary directions is reported.

given by
2. Formulation R 0 0
2.1 Wave propagation in anisotropic media e=Q"|0 n2 0]|Q (3)
One of the most important phenomena within an 0 0 n?

anisotropic medium is that, in general, there are two nor-
mal modes of distinct refractive indices for a given propawheren;, n,, andns are the principal refractive indice® is
gation direction. Thecongruence transformation was em- a rotation matrix for describing the principal axes, (yp, ),
ployed to simplify the calculation of the refractive indices ofand the superscript T indicates the transpose of the matrix.
an anisotropic mediurtf) Consider a monochromatic planeAs shown in Fig. 1, the orientation of the principal axes
wave propagating in an anisotropic medium with neither fre€p, Yp, zp) with respect to the coordinate systex ¥, z) can
charge nor current. It is assumed that the medium is hombe specified in terms of the Eulerian anglef,, €p, ¥,), and
geneous, nonmagnetic and lossless. In an arbitrary choitteis the matrixQ is expressed as

of an orthogonal coordinate system, labeled yy( z), the

plane wave with the propagation direction= [uxuyuz]T and cosyp, sinyp, O

the electrical fieldE = [ExE,E,]" must obey the following Q= |-siny, cosy, O
wave equation: 0 0 1
LE = nzE, 1) 1 0 0
wheren = 1/n2, n s the refractive index to be determindd, x [0 cossp  sinGp
is the real symmetric matrix related to the propagation direc- 0 -—sing, cosH,
tion: _
co sin 0
WuZ  —uly  —Ul, _s¢,; P
_ ) 2 X | —singp, cosp, Of. 4)
L= -uux u2+uz —uy, |, 2)
, 7 0 0o 1
Uzl —UUy  UZ+uj -

andz is the dielectric tensor used to specify the optical char- Equation (1) is in the form of generalized eigen-equation
acteristics of the mediufh® For generality, the medium is containing the two matrix operators,andz, in whichn and
assumed to be biaxial and have the oriented principal axes.are the eigenvalue and eigenvector to be determined. In
The dielectric tensa# in the coordination systenx(y, z) is  order to simplify the calculation procedures in solving eq. (1),
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we employ the techniques of tltengruence transformation,  the following formulas of the refractive indices:

which is defined by the following transformation matt:
[V —+/VZ2 W
1/ng 0 0 Ninner = Tv (12)

C=Q"| o yn, 0 |. (5)
0 0 1/n3 V +4/V2—W

_ _ Nouter = T» (13)
By substitutingCF = C[FFyF,]" for E = [ExE,E,]",
eq. (1) is converted into the form ofstandard eigen-equation ~ WhereV and W are defined by egs. (10) and (11), respec-
for the single matrix operatak as follows tively. Consequently, there are two normal modes for each
_ _ propagation direction in an anisotropic medium: one prop-
AF =nlF, (6) agates with the refractive index,ne;, and the other propa-
wherel is the 3x 3 identity matrix, andA is the real sym- 9ates withnguer. It is clear from egs. (12) and (13) that the
metric matrix given by value OfNinner is less thamgyeer, thus the front is referred to as
_ e A the “inner-sheet” reflective index, and the latter as the “outer-
A=CLC sheet” refractive index. Once the refractive indiagg,er and
1/m 0 0 Nouter, &re determined, the corresponding polarization vectors
- can then be obtained from the eigenvectors of eq. (6) to com-
= 0 Ymz 0 Q plete the solutions.
0 0 1/n3
2.2 Reflection and refraction at interfaces

_uf, +U2  —uxUuy  —UyUz Th , i
e calculations of reflected and refracted waves at a pla

x| —uyux  uZ4ud o —ugu, QT nar interface between two generally oriented anisotropic me-
| —UzUy —UzUy u§ + uf, dia are other fundamental issues in the polarization ray trac-

_ ing. We apply formulas developed in 82.1 and impose bound-
1/m 0 0 ary conditions to obtain a general method for computing the

x| 0 1/n; 0o |, (7) propagation directions of these splitting waves. The coordi-
0 0 1/n; nation system and symbols used for our formulas are shown

in Fig. 2. For the sake of convenience, thaxis direction of
In addition, the vectoF = [Fx Fy FZ]T is related to the elec- the coordinate System, labeled b(y y, Z), is taken to be per-
trical field E = [ExEyE,]" and is written as pendicular to the interface and the polar and azimuth angles
of the wavevector are used to specify the propagation direc-

_— no 0 0 - Ex tion. Consider a plane wave incident upon the interface with
F=C"E=10 n 0|QIEy|. ®)  the following wavevector:
0 0 ng E,

_ _ _ _ ki = 2—ﬂni[sin@i cosgi sinéising  cosl’,  (14)

Apparently, this transformation matrf gives another choice A

for the coordinate system, which is a combination of a purgherex is the wavelengthy; is the refractive index given by

rotation and scaling, such that eq. (1) is reduced into a simpleg. (12) or (13)¢; is the polar angle, angk is the azimuth an-

equation for solving the associated eigen problems. gle. Similarly, the wavevectors of the reflected and refracted
For nontrivial solutions of eq. (6) to exist, the characterwaves k, andk;, are expressed as

istic polynomial of the matrixA must vanish, leading to the

following cubic polynomial equation: ki = %n,[sm@, cosp, sind;sing;, coso]", (15)

Ini = CTLC| = n(n* = 2Vy + W) =0, 9) o
o _ ki = —n[sin6;cosg;  sind;sing, coss]’. (16)
whereV andW are the coefficients of the polynomial equa- A

tion. In eq. (9), the constant term is zero becausg pf= 0.
On the other hand, the constanté,andW, are determined
by the matrix elementa , (U, v = X, y, z) of the matrixA,

N

5
and are given by g
E 47 Refracted waves
1 ° !
V= E(Axx + Ayy + AZZ)a (10) (_Cu
o 6,
W = AyAz + AzAx + AxAyy — Ay imertace T | ) VN
— Az — Ay Ay (11) <] W% o
It should be noted that the zero root of eq. (9) corresponds to . x Tk &
the theoretical solution with = oo, and should be dropped. Incident waves ¥ K
While the other two nonzero root¥, + +/V2 — W, lead to \\ e

Fig. 2. Propagation directions of the incident, reflected, and refracted
waves specified by the angles (6;), (¢r, 6r), and ¢, 6;).
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Here the subscripts r, and,t in the above equations denote
the components of the incident, reflected and refracted waves,
respectively. Note that the azimuth angles of the reflected and
refracted waves are identical to the valuegpf while their
polar angles¢, andé;, are the unknown variables to be de-
termined. The boundary condition requires that the phases of
the fields on both sides of the interface must match. Applying
the boundary condition, together with egs. (12) and (13) for
the refractive indices, we obtain the following four equations
that determine the polar anglésandé;:

Vi — V2 =W,
——F—  sin( 17
| \ m sin(6r) 7)
n; sin(6;) = Inner-sheet
Vi + V12 -W .
T sin(6r), (18) Xy
(a)
z
Vo — / V2 —Ws 7
\ sin(6y) (19) P
n; sin(;) =
Vs, + V22 - W, ) 20 y
- r &) , c7p
m sin(6y) (20) p o
where\/(vp + . /V2—=W,)/W, (p = 1,2) are the refrac- « | /] / /f /
tive indices of the media. The subscripts 1 and 2 denote / ////
the parameters in medium 1 and medium 2, respectively. In
addition, it should be noted that the values\gf and W,

(p = 1,2), in general, vary with the propagation direction

of the wave and the dielectric tensor of the medium. For the

incident wave with the specified angleg;,(6;) and refrac- Inner-sheet

tive indexn;, the polar angles of the reflected waves and the

refracted wavesg, and 6;, can be solved numerically from

egs. (17)—(20), respectively. Equations (17)—(20) are in a (b)
form similar to Snell’s law, and yet allow systematic manipu-

lation of light splitting at the interface between two biaxiaIIyFig- 3. 'Surface plots of the inner- and outer-sheet normal (wavevector) sur-
facesin (@) mediumIng = 1.2,n; = 1.7,n3 = 2.2, ¢p = 9C°, 6p = 7C°,

anisotropic media. p = —90°) and (b) medium 2rfy = 1.2,n, = 1.7,n3 = 2.2; ¢ = 30,
fp = 30°, Yp = 30°).

Outer-sheet

3. Numerical Results

Applying the formulas developed in the preceding sections,
we analyzed the general case of an oblique plane wave in#ig €ds. (17)—(20) numerically. According to the description
dent upon a biaxial-biaxial interface. Figure 2 is a schematif §2.1, there exist two normal modes (inner-sheet or outer-
diagram of the arrangement and the chosen coordination sy¥leet) of the incident wave for a specified propagation di-
tem. In the calculation, the optical parameters of the twkection, thus two cases were analyzed separately. First, we
biaxial media are taken from ref. 9, in which medium 1€xamined the reflection and refraction of a plane wave with

and medium 2 have the same principal refractive indiced?€ inner-sheet refractive index given by eq. (12). The po-
n, = 1.2,n, = 1.7, andng = 2.2, but their principal axes lar angles of the reflected and refracted waves are shown in

are oriented differently, = 90, 6, = 70°, andy, = —90° Figs. 4(a) and 4(b), where the dashed and solid curves denote
for medium 1, andp, = 30°, 6, = 30°, andyp, = 30° the inner- and outer-sheet solutions, respectively. As the inci-
for medium 2. The normal (wavevector) surfaces of mediurfiénce anglé; varies from 0 to 90", egs. (17)—(20) yield two

1 and medium 2 were calculated using egs. (12) and (13)ackward-propagating waves and two forward-propagating
and are shown in Figs. 3(a) and 3(b), respectively. It is sed¥gves, resulting in the familiar phenomena of double reflec-

that each normal surface of the medium is composed of tvi9n and refraction at the boundary.
sheets, in which the inner-sheet given by eq. (12) is entirely Next, we calculated the reflected and refracted waves ex-

contained by the outer-sheet given by eq. (13). cited by the incidence of a plane wave with the outer-sheet
Considering the polar angle of incidenéeto vary from refractive index given by eq. (13). The polar angles of these

0° to 9C° and the azimuth anglé; = 0°, we calculated the Waves are shown in Figs. 5(a) and 5(b). Again, the double

polar angles of the reflected and refracted waves by sol{eflection and refraction occur, as the incidence asdgle-
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Fig. 4. Polar angles of (a) the reflected and (b) refracted waves versus thig. 5. Polar angles of (a) the reflected and (b) refracted waves versus the
incidence angle of the inner-sheet wave. incidence angle of the outer-sheet wave.

creases fromOto 49°. Notice that when the incidence angleproposed simulation method, the output splitting angles, re-
6; is around 50, egs. (17) and (19) have multiple roots, leadtardations, and interference fringes caused by this prism can
ing to “triple” reflection and “triple” refraction at the bound- be analyzed. Additionally, we are planning to fabricate the bi-
ary. In this special case, three waves propagate backwatgial prisms and develop the cement technology. The analysis
and three waves propagate forward. If the incident afigle and experimental results will be reported in the near future.
increases further, there exist one reflected wave in medium 1,
and one refracted wave in medium 2. 4. Conclusions

To illustrate the latter two special cases, the wavevectors

for the incidence angles of 5@and 60 are plotted in Figs. We have developed a general formality for investigating the

eropagation of light in homogeneous anisotropic media. By
sing the congruence transformation, simple formulas were
erived to calculate the propagation modes associated with a
gecified propagation direction. In addition, the equations for
etermining the reflection and refraction waves at a plane in-
rface between two biaxially anisotropic media were also ob-
'ped. The formulas were demonstrated by the general case

surfaces on the plane of incidence. As shown in Fig. 6(a

the inner-sheet of medium 1 yields two backward-propagatio
wavevectors, and the outer-sheet yields one, thus giving rig
to three reflected waves. In medium 2, the inner-sheet pr

vides two forward-propagation wavevectors, and the outelS
sheet causes one, thus leading to three refracted waves. . L L RO
the special case shown in Fig. 6(b), the tangential compone (2 plane wave obliquely incident at a biaxial-biaxial inter-

of the incident wavevector exceeds those of the inner-shedfs®’ showing that the procedure works well for an arbitrary

of medium 1 and medium 2, and, consequently, the waves r%r)gle of incidence. The proposed approach provides a gen-

lated to the inner-sheets do not exist. Thus, only the reflect&’ial and systematic way to analyze the propagation pf pl'ane
wes, so that the results should be useful for calculating light

and refracted waves associated with the outer-sheets are : . . . ;
tained paths through optical systems containing anisotropic media.

In order to investigate the phenomena at the biaxial-biaxial
interfaces, a prism assembly that consists of two triangul
wedges of biaxial materials is suggested to be used in carryingThe authors acknowledge Drs. Hugo Cornelissen, Saskia
out the associated experiméatThe two triangular wedges Blom, Dick de Boer, and Jos van Haaren of Philips Research
are cemented together with their optical axes oriented to eachboratories, Eindhoven, Netherlands, for useful discussions.
other for providing the biaxial-biaxial interface. Using thewe gratefully appreciate the generous support from Philips
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