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Stability of nonlinear stochastic Volterra difference

equations with continuous time

CHEN Ling, GUO Lifang, CHEN Min
(Department of Mathematics, Ningbo University, ZheJiang NingBo 315211)

Abstract: In recent years, many authors investigated the systems of stochastic difference equations
with discrete time or the systems of numerical solution for stochastic difference equations with
continue time. Lyapunov functionals are used to study the hereditary systems about problems of
stability and optimal control. Besides, Lyapunov functionals construction has been widely used to
discuss the stability for stochastic differential equations with delay and for stochastic difference
equations with discrete time. Based on the general method of Lyapunov functionals construction, the
stability of nonlinear stochastic Volterra difference equations is studied here. Particularly, the system
considered here have continuous time. Sufficient conditions are obtained not only to ensure the mean
square stability to nonlinear stochastic Volterra difference equations with continuous time but also the
asymptotical mean square quasi-stability for this system. Furthermore, it is easy to know the considered
system is mean square integrable when the system here is asymptotical mean square quasi-stable.
Keywords: Nonlinear stochastic difference equations; Stability; Lyapunov functional construction;
Continuous time.

0 Introduction

The general method of Lyapunov functional construction, that was proposed by
Kolmanovskii and Shaikhst and successfully used already for functional differential equations,
difference equations with discrete time, difference equations with continuous time.

Difference equations with continuous time are difference equations in which the unknown
function is a function of continuous time. In practice, time is often involved as the independent
variable in difference equations with continuous time. In view of this fact, we may refer to them as
difference equations with continuous time. Difference equations with continuous time appear as
natural descriptions of observed evolution phenomena in many branches of natural science, see
[1,2] and references therein. Deterministic and stochastic difference equations with continuous
time are very popular with researchers, see [3,4,5,6] and references therein.

Motivated by the results in Shaikhet [6], concerning the mean square stability and
asymptotically mean square quasistable of solutions of linear stochastic difference equations with
continuous time, and in Luo [7], concerning the stability in probability of solutions of nonlinear
stochastic Volterra difference equations with continuous time, in the present paper, we will be
interested in the mean square stability and asymptotically mean square quasistable of solutions of
nonlinear stochastic Volterra difference equations with continuous time.

1 Preliminaries
Let {Q,F,P} be a probability space and {F.}., be a nondecreasing family of
sub- o -algebrasof F ,ie, K <k for t <t,.

Consider a stochastic Volterra difference equation with unbounded delay
m(t) m(t)

X(t+7) =), ax(t-h)+ Y bx(t-h)&t+7)
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+g(t x(t), ..., x(t—h, ) )t >t -7, (2.1)

with the initial condition

X(0)=w(0),00 =[t,—7—h %] (2.2)
Here

m(t) =m+[—], @3

Mmis a given nonnegative integer, [t] denotes the largest integer less than or equal to t
when t>0, and [t] is the smallest integer greater than or equal to t when t < 0. The time

increment 7 per iteration step is a positive constant, the delays h,i=0,1..., are constants

satisfying the rational relationh. =iz, a,,b., i =0,1... are known constants. The functional g

satisfies the condition
m(t)
| gt x(t), ... X(t =Py ) IS z 7i | x(t—=h)[",t>t,—7,7,20,v. >1i=0,1...
i=0
(2.4)
w(0),0€0, isa F_-measure function, the perturbation £(t) e R isa F, measurable

stationary stochastic process with conditions

EE(t+7)=0,EE(t+7) =Lt >t —7. (2.5)
Furthermore, let
m(t) m(t) m(t) , )
a=> |alb=>|bly=> n.A=(@+y) +b% (2.6)
i=0 i=0 i=0

we assume A<oo and a solution of problem (2.1)-(2.2) is a F, -measurable process
X(t) = x(t;t,,y), which is equal to the initial function y(t) from (2.2) for t<t, and with
probability 1 is defined by Eq.(2.1) for t>t,.

Definition 1. The trivial solution of Eq.(2.1)-(2.2) is called p -stable, p >0, if for any
£>0 and t, >0 thereexistsa o =0d(e,t;) suchthat E |x(t;t,,y)[P<e forall t>t if
v =sup,e0 Elw (@) <5

Definition 2. The trivial solution of Eq.(2.1)-(2.2) is called asymptotically p -stable, p >0,
ifitis p -stable and for all initial functions

!I_[E E|x(t;t,,p)|°=0. (2.7)

Definition 3. The trivial solution of Eq.(2.1)-(2.2) is called asymptotically p -quasistable,
p>0,ifitis p-stableand for each te[t,,t, +h,) andall initial functions w

Iji_[gE|x(t+jh0;t0,1,y)|p:0. (2.8)

Definition 4. The solution of Eq.(2.1) with initial condition (2.2) is called p -integrable,

p > 0, if for all initial functions

f E | X(t;t,, ) |P dt < oo. (2.9)
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If in Definitions 2.1-2.4 p =2, then the solution is called correspondingly mean square stable,

asymptotically mean square stable, asymptotically mean square quasistable, mean square
integrable.

2 The general theorem
Theorem 1. Let there exist a nonnegative functional V (t) =V (t,X(t),..., X(t—h, )

and positive numbers C,,C,, such that

EV(t) <c,supE|x(s) .t e[t,,t, +7), (3.1)
s<t

and

EAV (t) <—C,E | x(t) |, t > t,, (3.2)

if

X(s)eU, ={x:| x|<e<1}s<t,

where

AV )=V (t+7)-V(1). (3.3)

Then the trivial solution of Eq.(2.1)-(2.2) is asymptotically mean square quasistable.
Proof. From condition (3.2), we can easily get

D EAV(t+ jr) <D (—C,)E [ X(t+ jo) FLt > t,,
j=0 j=0

which together with (3.3) yields

Czi E|x(t+jr) PFSEV(t)-EV(t+(i+1)7r) <EV(t),t >t,.

j=0

Let i > o |, then

Czi E|x(t+ jr) P<SEV(t),t >t,. (3.4)

j=0

From (3.2) we also obtain

EV({t+7)<EV(),t>t, (3.5)

and

C,E|X(t) FSEV(t),t >t,. (3.6)

(3.5) implies that

EVH)<EV(-7)<EV({-27)<..<EV(s),t>t,, (3.7)

where s =t—[22]r e[t,,t, + 7). Besides, from (3.1) it follows

T

sup EV(s)<c, sup E|x(t)[. (3.8)

sefty,ty+7) t<ty+7

Using (2.1)-(2.5), for t<t,+7 we obtain
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m(t) m(t)

Ex(t) |2: E[z axt-r- hi)]2 + E[Z bx(t—7 - hi)]2
+E[g(t—7,X(t-7),....x(t—7—, ) )

+2 E[nf ax(t-r-h)g(t-zx(t-7),..x(t=z-h, )]

Then by (2.6) and Cauchy inequality we have

m(t) m(t)

[Z ax(t—z-h)y SaZ|ai | X*(t—7—h),

m(t)

m(t)
105 [> bxt—z—h)F<b> |b|x’(t—z-h),
i=0 i=0

m(t)

[g(t—7,X(t—7),.., x(t—7 =, ) < 72 yx2(t—7—h).

On the other hand, it is easy to derive that
m(t)

2> ax(t-r-h)gt-r,x(t-7),..x(t—7—h )
i=0
m(t) m(t)

<Da Y ne  DeEt-r—h)+ X (t-7-h)]
i=0 k=0
m(t)

< Z(7| 8| +ay,) X (t—z—hy).

i=0
Hence

m(t)
EIX(t)P<ED {(a+7)|a|+b|b [+(@+ )y P t-7-h) <Ayl t2t. (39
i=0

110 By using this fact and (3.4)-(3.8) we have

czi EIx(t+ jr) PSEV()<EV(s)< sup EV(s)<c, sup Ex*(t) <c,Aly

j=0 sety.ty+7) t<ty+7

2 t>t,,

i.e.,

S E|x(t+ jr) P< (XA y] 2t (3.10)
i=0 C,

and also we can get
115 C,EX(t) <EV (1) <cAly[ ,t>t, (3.11)
which means the trivial solution of Eq.(2.1)-(2.2) is mean square stable. Combing (2.6) and

(3.10) we have that for each t>ty, lim,_ E|[X(t+ jr) |>=0. Therefore, the trivial solution

of Eq.(2.1)-(2.2) is asymptotically mean square quasistable. This completes the proof of Theorem
1.
120 Remark 2. If the conditions of Theorem 1 hold then the solution of Eqg.(2.1) for each initial

function (2.2) is mean square integrable. Really, integrating (3.2) from t=t;, to t=T, by
virtue of (3.3) we have

T+ ty+7 T 2
jT EV(t)dt—L EV(t)dtS—czjt E | x(t) [ dt. (3.12)



125

130

135

140

145

150

155

160

165

|I| E ﬂ- H iE -x.- Eﬁ http://www.paper.edu.cn

From here, (2.6), (3.8) and (3.9) it follows
T 2 to+7 2
c,[ Elx@®)Fdt<[" EV@®dt<cAly| 7 <o, (3.13)

andby T — oo we obtain (2.8).
Corollary 3. Let there exist a functional V (t) =V (t, x(t),x(t—h,),..x(t—h,,)) and

positive numbers C;, C,, P, such that conditions (3.1) and (3.6) and EAV (t) <0 hold. Then

the trivial solution of Eq.(2.1) is mean square stable.

3 Conclusion

In our paper, based on the general method of Lyapunov functional construction, we mainly
study the stability of nonlinear stochastic Volterra difference equations. Especially, the considered
system in this paper have continuous time.
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