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Abstract: In recent years, many authors investigated the systems of stochastic difference equations 
with discrete time or the systems of numerical solution for stochastic difference equations with 
continue time. Lyapunov functionals are used to study the hereditary systems about problems of 
stability and optimal control. Besides, Lyapunov functionals construction has been widely used to 
discuss the stability for stochastic differential equations with delay and for stochastic difference 10 
equations with discrete time. Based on the general method of Lyapunov functionals construction, the 
stability of nonlinear stochastic Volterra difference equations is studied here. Particularly, the system 
considered here have continuous time. Sufficient conditions are obtained not only to ensure the mean 
square stability to nonlinear stochastic Volterra difference equations with continuous time but also the 
asymptotical mean square quasi-stability for this system. Furthermore, it is easy to know the considered 15 
system is mean square integrable when the system here is asymptotical mean square quasi-stable. 
Keywords: Nonlinear stochastic difference equations; Stability; Lyapunov functional construction; 
Continuous time. 

 

0 Introduction 20 

The general method of Lyapunov functional construction, that was proposed by 
Kolmanovskii and Shaikhst and successfully used already for functional differential equations, 
difference equations with discrete time, difference equations with continuous time.  

Difference equations with continuous time are difference equations in which the unknown 
function is a function of continuous time. In practice, time is often involved as the independent 25 
variable in difference equations with continuous time. In view of this fact, we may refer to them as 
difference equations with continuous time. Difference equations with continuous time appear as 
natural descriptions of observed evolution phenomena in many branches of natural science, see 
[1,2] and references therein. Deterministic and stochastic difference equations with continuous 
time are very popular with researchers, see [3,4,5,6] and references therein.  30 

Motivated by the results in Shaikhet [6], concerning the mean square stability and 
asymptotically mean square quasistable of solutions of linear stochastic difference equations with 
continuous time, and in Luo [7], concerning the stability in probability of solutions of nonlinear 
stochastic Volterra difference equations with continuous time, in the present paper, we will be 
interested in the mean square stability and asymptotically mean square quasistable of solutions of 35 
nonlinear stochastic Volterra difference equations with continuous time. 

1 Preliminaries 
Let { }F PΩ, ,  be a probability space and 0{ }t tF ≥  be a nondecreasing family of 

sub-σ -algebras of F , i.e., 
1 2t tF F⊆  for 1 2t t< . 

Consider a stochastic Volterra difference equation with unbounded delay 40 
( ) ( )
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( ) ( ) ( ) ( )
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( ) 0( ( ) ( ))m tg t x t x t h t t τ+ , ,..., − , > − ,                (2.1) 

with the initial condition 

0 ( ) 0( ) ( ) [ ]m tx t h tθ ψ θ θ τ= , ∈Θ := − − , .                  (2.2) 

Here 45 

0( ) [ ]t tm t m
τ
−

= + ,                                  (2.3) 

m is a given nonnegative integer, [ ]t  denotes the largest integer less than or equal to t  

when 0t ≥ , and [ ]t  is the smallest integer greater than or equal to t  when 0t < . The time 

increment τ  per iteration step is a positive constant, the delays 0 1ih i, = , , ...,  are constants 

satisfying the rational relation ih iτ= , ia , ib , 0 1i = , , ...  are known constants. The functional g  50 

satisfies the condition 
( )

( ) 0
0

( ( ) ( )) ( ) 0 1 0 1i

m t
v

m t i i i i
i

g t x t x t h x t h t t v iγ τ γ
=

| , ,..., − |≤ | − | , > − , ≥ , > , = , ,...∑        

(2.4) 

( )ψ θ θ, ∈Θ , is a 
0t

F -measure function, the perturbation ( )t Rξ ∈  is a tF  measurable 

stationary stochastic process with conditions 55 
2

0( ) 0 ( ) 1E t E t t tξ τ ξ τ τ+ = , + = , > − .                     (2.5) 

Furthermore, let 
( ) ( ) ( )

2 2

0 0 0
( )

m t m t m t

i i i
i i i

a a b b A a bγ γ γ
= = =

= | |, = | |, = , = + + ,∑ ∑ ∑            (2.6) 

we assume A < ∞  and a solution of problem (2.1)-(2.2) is a tF -measurable process 

0( ) ( )x t x t t ψ= ; , , which is equal to the initial function ( )tψ  from (2.2) for 0t t≤  and with 60 

probability 1 is defined by Eq.(2.1) for 0t t> . 

Definition 1. The trivial solution of Eq.(2.1)-(2.2) is called p -stable, 0p > , if for any 

0ε >  and 0 0t ≥  there exists a 0( )tδ δ ε= ,  such that 0( ) pE x t t ψ ε| ; , | <  for all 0t t≥  if 

sup ( )p pEθψ ψ θ δ∈Θ= | | < . 

Definition 2. The trivial solution of Eq.(2.1)-(2.2) is called asymptotically p -stable, 0p > , 65 

if it is p -stable and for all initial functions ψ  

0lim ( ) 0p

t
E x t t ψ

→∞
| ; , | = .                         (2.7) 

Definition 3. The trivial solution of Eq.(2.1)-(2.2) is called asymptotically p -quasistable, 

0p > , if it is p -stable and for each 0 0 0[ )t t t h∈ , +  and all initial functions ψ  

0 0lim ( ) 0p

j
E x t jh t ψ

→∞
| + ; , | = .                     (2.8) 70 

Definition 4. The solution of Eq.(2.1) with initial condition (2.2) is called p -integrable, 

0p > , if for all initial functions ψ  

0
0( ) p

t
E x t t dtψ

∞
| ; , | < ∞.∫                           (2.9) 
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If in Definitions 2.1-2.4 p =2, then the solution is called correspondingly mean square stable, 
asymptotically mean square stable, asymptotically mean square quasistable, mean square 75 
integrable. 

2 The general theorem 
Theorem 1.  Let there exist a nonnegative functional ( )( ) ( ( ) ( ))m tV t V t x t x t h= , , ..., −  

and positive numbers 1 2c c, , such that 
2

1 0 0( ) sup ( ) [ )
s t

EV t c E x s t t t τ
≤

≤ | | , ∈ , + ,                       (3.1) 80 

and 
2

2 0( ) ( )E V t c E x t t tΔ ≤ − | | , ≥ ,                        (3.2) 

if 

( ) { 1}x s U x x s tε ε∈ = :| |≤ ≤ , ≤ ,  

where 85 
( ) ( ) ( )V t V t V tτΔ = + − .                        (3.3) 

Then the trivial solution of Eq.(2.1)-(2.2) is asymptotically mean square quasistable. 
Proof. From condition (3.2), we can easily get 

2
2 0

0 0

( ) ( ) ( )
i i

j j

E V t j c E x t j t tτ τ
= =

Δ + ≤ − | + | , ≥ ,∑ ∑  

which together with (3.3) yields 90 

2
2 0

0

( ) ( ) ( ( 1) ) ( )
i

j

c E x t j EV t EV t i EV t t tτ τ
=

| + | ≤ − + + ≤ , ≥ .∑  

Let i →∞  , then 

2
2 0

0

( ) ( )
j

c E x t j EV t t tτ
∞

=

| + | ≤ , ≥ .∑                      (3.4) 

From (3.2) we also obtain 

0( ) ( )EV t EV t t tτ+ ≤ , ≥ ,                              (3.5) 95 

and 
2

2 0( ) ( )c E x t EV t t t| | ≤ , ≥ .                         (3.6) 

(3.5) implies that 

0( ) ( ) ( 2 ) ( )EV t EV t EV t EV s t tτ τ≤ − ≤ − ≤ ... ≤ , ≥ ,                  (3.7) 

where 0
0 0[ ] [ )t ts t t tτ τ τ−= − ∈ , + . Besides, from (3.1) it follows 100 

0 0 0

2
1

[ )
sup ( ) sup ( )

s t t t t
EV s c E x t

τ τ∈ , + ≤ +
≤ | | .                                (3.8) 

Using (2.1)-(2.5), for 0t t τ≤ +  we obtain 
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( ) ( )
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Then by (2.6) and Cauchy inequality we have 
( ) ( )

2 2

0 0

( ) ( )
2 2

0 0

( )
2 2

( )
0

[ ( )] ( )

[ ( )] ( )

[ ( ( ) ( ))] ( )

m t m t

i i i i
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m t m t

i i i i
i i
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m t i i
i
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τ τ

τ τ
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= =

= =

=

− − ≤ | | − − ,

− − ≤ | | − − ,

− , − ,..., − − ≤ − − .

∑ ∑

∑ ∑

∑

 105 

On the other hand, it is easy to derive that 
( )

( )
0

( ) ( )
1 2 2

0 0

( )
2

0

2 ( ) ( ( ) ( ))

[ ( ) ( )]

( ) ( )

k

m t

i i m t
i

m t m t
v

i k k i
i k

m t

i i i
i

a x t h g t x t x t h

a x t h x t h

a a x t h

τ τ τ τ

γ ε τ τ

γ γ τ

=

−

= =
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− − − , − ,..., − −

≤ | | − − + − −

≤ | | + − − .

∑

∑ ∑

∑

 

Hence 

2( )E x t| | ≤
( )

2

0

{( ) ( ) } ( )
m t

i i i i
i

E a a b b a x t hγ γ γ τ
=

+ | | + | | + + − −∑ 2
0A t tψ≤ , ≥ .     (3.9) 

By using this fact and (3.4)-(3.8) we have 110 

0 0 0

22 2
2 1 1 0

[ )0

( ) ( ) ( ) sup ( ) sup ( )
s t t t tj

c E x t j EV t EV s EV s c Ex t c A t t
τ τ

τ ψ
∞

∈ , + ≤ +=

| + | ≤ ≤ ≤ ≤ ≤ , ≥ ,∑  

i.e., 

22 1
0

0 2

( ) ( )
j

cE x t j A t t
c

τ ψ
∞

=

| + | ≤ , ≥ ,∑                  (3.10) 

and also we can get 
22

2 1 0( ) ( )c Ex t EV t c A t tψ≤ ≤ , ≥ ,                        (3.11) 115 

which means the trivial solution of Eq.(2.1)-(2.2) is mean square stable. Combing (2.6) and 

(3.10) we have that for each 0t t≥ , 2lim ( ) 0j E x t jτ→∞ | + | = . Therefore, the trivial solution 

of Eq.(2.1)-(2.2) is asymptotically mean square quasistable. This completes the proof of Theorem 
1.   

Remark 2. If the conditions of Theorem 1 hold then the solution of Eq.(2.1) for each initial 120 

function (2.2) is mean square integrable. Really, integrating (3.2) from 0t t=  to t T= , by 

virtue of (3.3) we have 
0

0 0

2
2( ) ( ) ( )

T t T

T t t
EV t dt EV t dt c E x t dt

τ τ+ +
− ≤ − | | .∫ ∫ ∫                       (3.12) 
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From here, (2.6), (3.8) and (3.9) it follows 
0

0 0

22
2 1( ) ( )

T t

t t
c E x t dt EV t dt c A

τ
ψ τ

+
| | ≤ ≤ < ∞,∫ ∫                 (3.13) 125 

and by T →∞  we obtain (2.8). 

Corollary 3. Let there exist a functional 1 ( )( ) ( ( ) ( ) ( ))m tV t V t x t x t h x t h= , , − ,... −  and 

positive numbers 1c , 2c , p , such that conditions (3.1) and (3.6) and ( ) 0E V tΔ ≤  hold. Then 

the trivial solution of Eq.(2.1) is mean square stable. 

3 Conclusion 130 

In our paper, based on the general method of Lyapunov functional construction, we mainly 
study the stability of nonlinear stochastic Volterra difference equations. Especially, the considered 
system in this paper have continuous time. 
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非线性随机连续 Volterra 差分方程的 
稳定性 

陈玲，郭利芳，陈旻 
（宁波大学数学系，浙江 宁波 315211） 155 

摘要：近几年来，很多科研工作者研究了离散时间型的随机差分方程系统以及连续时间型随

机差分方程系统的数值解。李雅普诺夫函数法通常用来研究遗传系统的稳定性和最优控制。

此外，李雅普诺夫函数构造法已经广泛地用于研究时滞随机微分方程的稳定性以及离散时间

型的随机差分方程的稳定性。基于一般的李雅普诺夫函数构造法，在这里研究了非线性随机

Volterra 差分方程的稳定性，特别地，所研究的方程是带有连续时间的。得到了充分的条160 
件不仅保证了非线性随机 Volterra 差分方程的均方稳定性，也确保了非线性随机 Volterra

差分方程的渐近均方拟稳定性。此外，当这个所研究的系统是渐近均方拟稳定的，那么很容

易知道这个所考虑的系统也是均方可积的。 
关键词：非线性随机差分方程；稳定性；李雅普诺夫函数构造法；连续时间 
中图分类号：O211.63 165 

 


