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Abstract
As we know that, in stochastic finance, each pricing mechanism corresponds to a well-defined

BSDE. The behaviors of g exert an influence to this mechanism. In some circumstances, to
regulate or to design a pricing mechanism is in fact to find a suitable generating function g. By
a technical result on the local limit of solutions to backward stochastic differential equations
(BSDEs for short), this note gives necessary and sufficient conditions on g for positive and
negative solutions of BSDEs with continuous coefficients, which implies that there is no arbitrage
to the pricing mechanism characterized by these BSDEs.
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1 Introduction

Backward stochastic differential equations which arise in stochastic finance were first formulated
by Pardoux-Peng [1] and Duffie-Epstein [2]. The first part of the solution to a BSDE represents
the dynamical price of a financial position. If for a nonnegative position, the dynamical price
is always nonnegative, then there is no arbitrage in this market. Thus an interesting question
comes naturally, to what pricing mechanism, there will be no arbitrage for a financial position.
In fact, each well-defined BSDE with a fixed generating function g forms a dynamic pricing
mechanism. The behaviors of this mechanism are perfectly characterized by the behaviors of g.
So in some circumstances, to regulate or to design a pricing mechanism is in fact to find a suitable
generating function g. This note proves first a technical result on the local limit of solutions to
BSDEs with continuous coefficients. This result is theoretically important because it can be used
to test the generating function g by associated solutions. By this technical result, necessary and
sufficient conditions on g are given for positive and negative solutions of BSDEs with continuous
coefficients, which implies that there is no arbitrage in a financial market. Specially, for BSDEs
with Lipschitz continuous coefficients, we prove that the unique solution is nonnegative if and
only if for the generator g, we have dP × dt− a.s., g(t, 0, 0) ≥ 0.
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2 Preliminaries

Let (Bt)t∈[0,T ] be a standard d-dimensional Brownian motion on a probability space (Ω,F ,P)
and (Ft)t∈[0,T ] be the augmented Brownian filtration generated by (Bt)t∈[0,T ]. T < 0 is a fixed

time. For x ∈ Rd , we define its norm |x| =
∑d

i=1 |xi|. We denote by H2
F (0, T ;Rd) the space of

all Ft-progressively measurable Rd -valued processes s.t. E
[∫ T

0 |ψt|2dt
]
<∞.

Consider the following one dimensional BSDE:

yt = ξ +
∫ T

t
g (s, ys, zs) ds−

∫ T

t
zsdBs, 0 ≤ t ≤ T, (2.1)

where the terminal variable ξ ∈ L2(Ω,F ,P) and the function g :Ω × [0, T ] ×R×Rd 7−→ R is
Ft-progressively measurable. We call (ξ, g, T ) the standard parameters of BSDE(2.1).

We assume that
(H1) P − a.s., ∀t, g(t, y, z) is continuous in (y, z).
(H2) for any (y, z) ∈ R×Rd, there exists a constant K > 0 such that dP × dt− a.s.,

|g(t, y, z)| ≤ K(1 + |y|+ |z|).

Under (H1) and (H2), Lepeltier and San Martin [3] proved that BSDE(2.1) has a minimal
solution (Y

¯ t,Z¯t)t∈[0,T ] ∈ H2
F (0, T ;R) ×H2

F (0, T ;Rd); In the same way, it is easy to know that

it also has a maximal solution
(
Yt, Zt

)
t∈[0,T ]

∈ H2
F (0, T ;R)×H2

F (0, T ;Rd).

Briand et al.[4, Proposition 2.2] gave a priori estimate for BSDEs with Lipschitz continuous
generators. When using the Lipschitz condition in proof of the estimate, they in fact need the
linear growth property from the Lipschitz condition. Thus by Briand et al.[4, Proposition 2.2],
we immediately have the following estimate for BSDEs with linear growth generators.

Lemma 2.1. Let (H1), (H2) hold for g and ξ ∈ L2 (Ω,FT , P ), then the solution (yt, zt)t∈[0,T ]

of BSDE (2.1) satisfies

E

[
sup

t≤s≤T

(
eβs|ys |2

)
+

∫ T

t
eβs|zs |2ds|Ft

]
≤ CE

[
eβT |ξ|2 +

(∫ T

t
ϕse(β/2)sds

)2

|Ft

]
,

where β = 2
(
K +K2

)
, C is a universal constant, K is the linear growth coefficient.

The following lemma is from Hewitt and Stromberg [5, Lemma 18.4].

Lemma 2.2. Assume that the function f is Lebesgue integrable on [a, b]. ∀α ∈ R, for almost
all t ∈ [a, b], we have

lim
ε→0+

1
ε

∫ t+ε

t
|f (s)− α| = |f (t)− α|.

Similarly to Lepeltier and San Martin [3, Lemma 1], we have

Lemma 2.3. Let (H1) and (H2) hold for g, then the following sequence

gn (t, y, z) = inf(a,b)∈Q1+d {g(t, a, b) + n|y − a|+ n|z − b|} , n ≥ K, (2.2)

is well defined for n ≥ K, dP × dt− a.s., and we have dP × dt− a.s.,
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(i) Linear growth. ∀ (y, z) ∈ R×Rd, |gn(t, y, z)| ≤ ϕt +K(|y|+ |z|).
(ii) Monotonicity in n. ∀ (y, z) ∈ R×Rd, gn(t, y, z) ↗.
(iii) Lipschitz condition. ∀yi, zi, i = 1, 2., |gn

(
t, y1, z1

)
−gn

(
t, y2, z2

)
| ≤ n

(
|y1 − y2|+ |z1 − z2|

)
.

(iv) Strong convergence. if (yn, zn) → (y, z) as n→∞, then gn (t, yn, zn) → g(t, y, z).

3 A technical result

Briand et al.[4] and Jiang [6] proved a local limit theorem for lipschitz continuous generator of a
BSDE which has a unique solution. This section generalizes the limit theorem to the case where
the coefficient is only continuous.

Proposition 3.1. Suppose that the function g : Ω × [0, T ] × R×Rd 7−→ R satisfies (H1)
and (H2). Let

(
Y
¯

t
s

)
s∈[0,t]

and
(
Ys

t
)

s∈[0,t]
be the minimal and maximal solutions of the following

BSDE:

yt
s = y + z · (Bt −Bs) +

∫ t

s
g

(
r, yt

r, z
t
r

)
dr −

∫ t

s
zt
rdBr, 0 ≤ s ≤ t. (3.1)

where the terminal time t ∈ [0, T ]. Then we have, for each (y, z) ∈ R×Rd , dt− a.e.,

L2 − lim
s→t−

1
t− s

[
Ys

t
−y

]
= g (t, y, z) , (3.2)

and

L2 − lim
s→t−

1
t− s

[
Y
¯

t
s − y

]
= g (t, y, z) , (3.3)

Proof . We only prove (3.2). For each given triplet (t, y, z) ∈ [0, T ] × R × Rd, let(
yt

s, z
t
s

)
s∈[0,t]

denote the maximal solution of BSDE(3.1). Note that BSDE(3.1) is not a fixed
BSDE since the terminal datum ξ = y+ z · (Bt −Bs) varies as s varies. However we can convert
it into a fixed BSDE.

Set ỹt
s = yt

s − y, z̃t
s = zt

s − z, and g̃
(
s, ỹt

s, z̃
t
s

)
= g

(
s, ỹt

s + y, z̃t
s + z

)
, then obviously we get

the following fixed BSDE:

ỹt
s = 0 +

∫ t

s
g̃

(
r, ỹt

r, z̃
t
r

)
dr −

∫ t

s
z̃t
sdBr, 0 ≤ s ≤ t. (3.4)

One can easily check that g̃(t, ·, ·) is continuous dP × dt − a.s. and satisfies the following
linear growth: ∣∣g̃ (

s, ỹt
s, z̃

t
s

)∣∣≤ ϕ̃s +K(ỹt
s + z̃t

s).

with ϕ̃s = ϕs+K(|y|+ |z|).
Then by Lemma 2.1 and Schwartz’s inequality, we have, for BSDE(3.4),

E[
∫ t
s |ỹ

t
r|2 +

∫ t
s |z̃

t
r|2dr] ≤ CE

[(∫ t
s ϕ̃re(β/2)rdr

)2
]
≤ C eβT (t− s)E

[∫ t
s |ϕ̃r|2dr

]
. Thus

lim
s→t−

1
t− s

∫ t

s
E[|ỹt

r|2 + |z̃t
r|2]dr ≤ lim

s→t−
C eβTE

[∫ t

s
|ϕ̃r|2dr

]
= 0. (3.5)
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Taking conditional expectation of (3.4) with respect to Fs, we get

yt
s − y = E

[∫ t

s
g

(
r, yt

r, z
t
r

)
dr|Fs

]
. (3.6)

Then thanks to (3.6), we only need to prove that dt− a.e.,

L2 − lim
s→t−

[E
[

1
t− s

∫ t

s
g

(
r, yt

r, z
t
r

)
dr|Fs

]
− g(t, y, z)] = 0.

By Jensen’s inequality of conditional expectation, Schwartz’s inequality, Fubini’s theorem and
Lemma 2.2, we have dt− a.e.,

lim
s→t−

E
∣∣∣∣E [

1
t− s

∫ t

s
g

(
r, yt

r, z
t
r

)
dr|Fs

]
− g(t, y, z)

∣∣∣∣2
= lim

s→t−

1
(t− s)2

E
∣∣∣∣E[

∫ t

s
[g

(
r, yt

r, z
t
r

)
− g(t, y, z)]dr|Fs]

∣∣∣∣2
≤ lim

s→t−

1
(t− s)2

E
∣∣∣∣∫ t

s
[g

(
r, yt

r, z
t
r

)
− g(t, y, z)]dr

∣∣∣∣2
≤ lim

s→t−

1
(t− s)

E
∫ t

s

∣∣g (
r, yt

r, z
t
r

)
− g(t, y, z)

∣∣2 dr
≤ 2 lim

s→t−

1
t− s

∫ t

s
E

∣∣g (
r, yt

r, z
t
r

)
− g(r, y, z)

∣∣2 dr
+2 lim

s→t−

1
t− s

∫ t

s
E |g (r, y, z)− g(t, y, z)|2 dr

= 2 lim
s→t−

1
t− s

∫ t

s
E

∣∣g (
r, yt

r, z
t
r

)
− g(r, y, z)

∣∣2 dr
≤ 8

(
I(n)
1 + I(n)

2 + I(n)
3

)
, ∀n ≥ K,

where we denote

I(n)
1 = lim

s→t−

1
t− s

∫ t

s
E

∣∣gn

(
r, yt

r, z
t
r

)
− gn(r, y, z)

∣∣2 dr,
I(n)
2 = lim

s→t−

1
t− s

∫ t

s
E

∣∣g (
r, yt

r, z
t
r

)
− gn

(
r, yt

r, z
t
r

)∣∣2 dr,
I(n)
3 = lim

s→t−

1
t− s

∫ t

s
E |gn(r, y, z)− g(r, y, z)|2 dr,

where gn is defined as in Lemma 2.3.
By Lemma 2.3 and limit (3.5), we deduce that

I(n)
1 ≤ 2n2 lim

s→t−

1
t− s

∫ t

s
E(

∣∣yt
r − y

∣∣2 +
∣∣zt

r − z
∣∣2)dr

= 2n2 · 0
= 0.
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Therefore, we now conclude that

lim
s→t−

E
∣∣∣∣E [

1
t− s

∫ t

s
g

(
r, yt

r, z
t
r

)
dr|Fs

]
− g(t, y, z)

∣∣∣∣2 ≤ 8
(
I(n)
2 + I(n)

3

)
, ∀n ≥ K, (3.7)

Take limit as n→∞ on both sides of the above inequality, we only need to prove that lim
n→∞

I(n)
2 =

0, lim
n→∞

I(n)
3 = 0 to complete the proof.

By Lemma 2.3 and the well known control convergence theorem, we obtain that dt − a.e.,
E

∣∣g (
r, yt

r, z
t
r

)
− gn

(
r, yt

r, z
t
r

)∣∣2 converges to zero strongly as n → ∞. Thus for any r, there
is a Lebesgue integrable sequence {εn(r)}∞n≥K such that εn(r) → 0 as n → ∞ and dt − a.e.,

E
∣∣g (

r, yt
r, z

t
r

)
− gn

(
r, yt

r, z
t
r

)∣∣2 ≤ εn(r). Then by Lemma 2.2, we have dt − a.e., lim
n→∞

I(n)
2 ≤

lim
n→∞

lim
s→t−

1
t−s

∫ t
s εn(r)dr = lim

n→∞
εn(t) = 0. Similarly we can get that dt − a.e., lim

n→∞
I(n)
3 = 0.

This completes the proof.�

4 Necessary and sufficient conditions for positive and negative
solutions of BSDEs

we now give necessary and sufficient conditions for positive and negative solutions of BSDEs
with continuous coefficients.

Theorem 4.1. Let (H1) and (H2) hold for g, ∀t ∈ [0, T ], for any ξ ∈ L2 (Ω,Ft, P ), Let
(Y
¯ s)s∈[0,t] and

(
Ys

)
s∈[0,t]

be the minimal solution and maximal solution of the following BSDE:

ys = ξ +
∫ t

s
g (r, yr, zr) du−

∫ t

s
zrdBr, 0 ≤ s ≤ t, (4.1)

respectively,
(i) ∀t ∈ [0, T ], for any ξ ∈ L2 (Ω,Ft, P ), such that ξ ≤ 0, we have ∀s ∈ [0, t], P − a.s.,

Y
¯ s ≤ 0,

if and only if dP × dt− a.s.,
g(t, 0, 0) ≤ 0.

(ii) ∀t ∈ [0, T ], for any ξ ∈ L2 (Ω,Ft, P ), such that ξ ≥ 0, we have ∀s ∈ [0, t], P − a.s.,

Ys≥ 0,

if and only if dP × dt− a.s.,
g(t, 0, 0) ≥ 0.

(iii) Assume moreover that there exists a constant K ≥ 0 s.t. ∀(y, z) ∈ R×Rd, dP×dt−a.s.,

g (t, y, z) ≥ g (t, 0, 0)−K (|y|+ |z|) . (4.2)

5

http://www.paper.edu.cn  



Then ∀t ∈ [0, T ], for any ξ ∈ L2 (Ω,Ft, P ), such that ξ ≥ 0, we have ∀s ∈ [0, t], P − a.s.,

Y
¯ s ≥ 0,

if and only if dP × dt− a.s.,
g(t, 0, 0) ≥ 0.

Proof . (i) Lepeltier and San Martin [3] showed that the unique solution (Y n, Zn) of BSDE
(ξ, gn, T ) converges to (Y

¯ t,Z¯t)t∈[0,s] in H2
F (0, T ;R) × H2

F (0, T ;Rd) where gn is defined as in
Lemma 2.3. Observe that gn (t, 0, 0) ≤ g (t, 0, 0) ≤ 0 and by Lemma 2.3(iii) we have

gn (t, y, z) ≤ gn (t, 0, 0) + n|y|+ n|z| (4.3)

Compare solutions of the following two BSDEs:

yn
s = ξ +

∫ t

s
(gn (r, 0, 0) + n|yn

r |+ n|zn
r |) dr −

∫ t

s
zn
r dBr, 0 ≤ s ≤ t, (4.4)

Y n
s = ξ +

∫ t

s
gn (r, Y n

r , Z
n
r ) dr −

∫ t

s
Zn

r dBr, 0 ≤ s ≤ t, (4.5)

by the comparison theorem for Lipschitz continuous BSDE in EPQ[7, Theorem 2.2], we have
yn

s ≤ 0 and Y n
s ≤ yn

s , therefor Y
¯ s = lim

n→∞
Y n

s ≤ 0.

The converse is a sequence of taking y = z = 0 in (3.3).
(ii) Observe that the following sequence

gn (t, y, z) = sup(a,b)∈Q1+d {g(t, a, b)− n|y − a| − n|z − b|} , n ≥ K, (4.6)

is decreasing and converges to g dP × dt− a.s. and satisfies the Lipschitz condition, similarly to
(i), we can prove (ii).

(iii) Obviously if Y
¯ s ≥ 0, Ys≥ Y

¯ s ≥ 0, thus by (ii) we get that dP×dt−a.s., g(t, 0, 0) ≥ 0.
Conversely, consider the following two BSDEs:

Y
¯ s = ξ +

∫ t

s
g (r,Y

¯ r,Z¯r) dr −
∫ t

s
Z
¯rdBr, 0 ≤ s ≤ t, (4.7)

ys = ξ +
∫ t

s
(−K |yr| −K |zr|+ g(r, 0, 0)) dr −

∫ t

s
zrdBr, 0 ≤ s ≤ t, (4.8)

by the comparison theorem in Liu and Ren [8] and (4.2), we obtain that ∀s ∈ [0, t], Y
¯ s ≥

ys , P − a.s. and by the well known comparison theorem (see EPQ[7, theorem 2.2]) for BSDEs
with Lipscitz continuous generators, if ξ ≥ 0, P − a.s. and g(t, 0, 0) ≥ 0, dP × dt − a.s., then
∀s, ys ≥ 0, P − a.s., thus ∀s, Y

¯ s ≥ 0, P − a.s..�
It is just a sequence of Theorem 4.1 that,

Corollary 4.1. Assume that there exists a constant K ≥ 0 s.t. ∀y1, y2, z1, z2, dP × dt − a.s.,∣∣g (
t, y1, z1

)
− g

(
t, y2, z2

)∣∣ ≤ K
(∣∣y1 − y2

∣∣ +
∣∣z1 − z2

∣∣) and |g(t, 0, 0)| ≤ K. Then
(i) ∀t ∈ [0, T ], for any ξ ∈ L2 (Ω,Ft, P ), such that ξ ≥ 0, we have ∀s ∈ [0, t], P − a.s., for

the unique solution of BSDE(4.1),
Ys ≥ 0,

6

http://www.paper.edu.cn  



if and only if dP × dt− a.s.,
g(t, 0, 0) ≥ 0.

(ii) ∀t ∈ [0, T ], for any ξ ∈ L2 (Ω,Ft, P ), such that ξ ≤ 0, we have ∀s ∈ [0, t], P − a.s., for
the unique solution of BSDE(4.1),

Ys ≤ 0,

if and only if dP × dt− a.s.,
g(t, 0, 0) ≤ 0.
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