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0 Introduction 
For theoretical and practical purposes, the theory of stochastic orderings generates considerable 

interest in actuarial science (see books by Goovaerts et al. (1990), Kaas et al. (1994), Shaked and 
Shanthikumar (1994), De Vylder (1996) and Hürlimann (1998)). Especially, it is established that 
stochastic order relations constitute an important tool in the analysis of various actuarial problems. For 
example, they can be used to compare complex models with more tractable ones which are risker, thus 
leading to more conservative decisions. Quite recently, various discrete stochastic orderings have been 
introduced to compare random variables that are discrete by nature as counts. Such as, Fishburn and 
Lavalle(1995), Lefèvre and Utev(1996), and so on. A remarkable class investigated by Denuit and 
Lefèvre(1997) is the class of the discrete s-convex orderings among arithmetic random variables valued 

in some set {0,1,2, , },nN n n= ∈ , here s is any nonnegative integer smaller or equal to n. It is 

worth mentioning that these orderings have been generalized by Denuit et al.(1999), using the concept 
of divided difference operator, to compare any pairs of discrete random variables. The discrete 
s-convex extremal distribution have been derived for s = 1; 2; 3; 4 in Courtois et al.(2006). 

Our purpose is to obtain the minimum and the maximum in the 5-convex sense for random variables 

valued in nN . The paper is organized as follows: section 2 gives some basic notions and its 

propositions about the discrete s-convex order. Section 3 recall the cut-criterion. In section 4, we use 
the ideal from Courtois and Denuit et al.(2006) to find the 5-convex extrema. Finally, section 5 deals 
with applications of this theory. We also improve lower and upper bounds for the probability of 
extinction in a branching process and for the Lundberg’s coe_cient in the classical insurance risk 
model . 

1 Preliminaries 
Given some class U of real-valued functions, which is often a convex cone in a function space, 
the random variable X  is said to be smaller than Y if  

[ ( )] [ ( )]E X E Yν ν≤ ,  for all Uν ∈ , 

such that the expectations exist, where U denotes a class of real-valued functions ν , satisfying 
some desirable properties. As announced, random variables are assumed to take on values in the 

state space {0,1,2, , },nN n=  for some n∈ . Now let s be any fixed positive integer in 
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nN . Discrete s-convex orderings have been defined in Denuit and Lefèvre (1997). We denote by 

∆  the usual forward difference operator which is defined, for any function : nNν →  

by ( ) ( 1) ( )v i v i v i∆ = + −  for all ni N∈ , such that 1 ni N+ ∈ . Let ,k
nk N∆ ∈ be the kth 

order forward difference operator defined recursively by 0v v∆ = and when 
1 11, ( ) ( 1) ( )k k kk v i v i v i− −≥ ∆ = ∆ + − ∆ , for all ni N∈ , such that ni k N+ ∈ . 

Definition 1.1  Let X and Y be two random variables valued in nN , X is said to be smaller than 

Y in the s-convex sense (written as nN
s cxX Y−≤ ) if [ ( )] [ ( )]E X E Yν ν≤ , for all s-convex real 

function v  on nN , that is within the class 

{ : | ( ) 0, }nN s
s cx n n sU v N v i for all i N− −= → ∆ ≥ ∈  

Especially, since the power function ( ) kv x x= and ( ) kv x x= − both belong to nN
s cxU − ， for 

1,2, , 1k s= − . We get the necessary condition for nN
s cx−≤ : 

[ ] [ ]nN k k
s cxX Y E X E Y−≤ ⇒ = ,  for 1,2, , 1k s= −  

Theorem 1.1  (Denuit and Lefèvre,1997)  Let X and Y be two random variables valued in nN , 

[ ] [ ], 1,2, , 1,
[ ] [ ], .

n

k k
N
s cx k k

E X E Y k s
X Y

E X E Y for all k s−

⎧ = = −⎪≤ ⇒ ⎨
≤ ≥⎪⎩

 

That is to say, if nN
s cxX Y−≤  , then the s-1 first moments of X and Y necessarily match. 

Consequently, the ordering relation nN
s cx−≤  can only be used to compare the random variable with 

the same first s-1 moments. So we introduce the moment space 1 2 1( ; , , , )s n sD N µ µ µ −  which 

contains all random variables valued on nN ， such that the s-1 first moments are fixed 

to [ ] , 1, 2, , 1k
kE X k sµ= = − , where s is a prescribed nonnegative integer. 

2 Main results 
Now we consider the class 1 2 1( ; , , , )s n sD N µ µ µ − of all the random variables X valued 

in nN with prescribed s-1 first moments, [ ] , 1, 2, , 1k
kE X k sµ= = − . Our purpose is to 

determine in 1 2 1( ; , , , )s n sD N µ µ µ − the minimum and the maximum with respect to the 

s-convex orderings, namely, there exist random variables ( )
min
sX  and ( )

max
sX that belong to 

$ 1 2 1( ; , , , )s n sD N µ µ µ − and such that 
( ) ( )
min max

n nN Ns s
s cx s cxX X X− −≤ ≤   for all  1 2 1( ; , , , )s n sX D N µ µ µ −∈ . 

In order to derive random variables ( )
min
sX and ( )

max
sX  belong to 1 2 1( ; , , , )s n sD N µ µ µ −  such 

that ( ) ( )
min max

n nN Ns s
s cx s cxX X X− −≤ ≤ , for all 1 2 1( ; , , , )s n sX D N µ µ µ −∈ , Courtois et al.(2006) 

constructed the following random variables that achieve the bounds 

1 2 1( ; , , , )
[ ]

s n s

s

X D N
MIN E X

µ µ µ −∈
 and 

1 2 1( ; , , , )
[ ]

s n s

s

X D N
MAX E X

µ µ µ −∈
 

the extrema ( )
min
sX and ( )

max
sX  necessarily achieve the above bounds. To find the random variables 
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that realize the above bounds, they gave the following results. 

Theorem 2.1 ( Courtois et al., 2006)  (1) A random variable 1 2 1( ; , , , )s n sX D N µ µ µ −∈  

achieves the maximum in (1) if and only if X is sup-admissible, that is, X  is concentrated on 
the set 

2 1
0 1 2 1{ : }s s

n si N i c c i c i c i −
−∈ = + + + +  

Where the '
ic s  are real constants such that  

2 1
0 1 2 1

s s
si c c i c i c i −
−≤ + + + + ,  for all  ni N∈  

(2)A random variable 1 2 1( ; , , , )s n sX D N µ µ µ −∈  achieves the minimum in (1) if and only if 

X is sub-admissible, that is, X is concentrated on the set 
2 1

0 1 2 1{ : }s s
n si N i c c i c i c i −

−∈ = + + + +  

where the '
ic s are real constants such that  

2 1
0 1 2 1

s s
si c c i c i c i −
−≥ + + + + , for all  ni N∈ . 

Theorem 2.2  (Courtois and Denuit et al., 2006)  Let X be some random variable in 

1 2 1( ; , , , )s n sD N µ µ µ − , then X is the s-convex minimum (respectively, maximum) if and only 

if 
1 2 1( ; , , , )

[ ]
s n s

s

Z D N
X MIN E Z

µ µ µ −∈
=  ( respectively, 

1 2 1( ; , , , )
[ ]

s n s

s

Z D N
X MAX E Z

µ µ µ −∈
= ). 

 
Using the cut-criterion , Courtois et al.(2006) verified that the possible structure of the 

supports of the 5-convex discrete extrema takes the form 1 1 2 2{0, , 1, , 1}ξ ξ ξ ξ+ + or 

1 1 2 2{ , 1, , 1, }nη η η η+ + , then this is done by computing the explicit probabilities associated with 

the support and by checking that the resulting probabilities are positive. 

Theorem 2.3  Consider a moment space 1 2 1( ; , , , )s n sD N µ µ µ − with a given sequence of 

moments 1 2 3 4, , ,µ µ µ µ .  

(1) If 1 2, nNξ ξ ∈  are such that 1 1 2 20 1 1 nξ ξ ξ ξ< < + < < + ≤  and define: 

1 4 1 2 3 1 2 1 2 1 2 1 2 2 1 2 1

1 2 1 2 1 2 2 1 1 1 2 2

2 4 1 2 3 1 2 1 2 2 2 2 1 2 2 1

3 4

2( 1) [( 1)( 1) ( 1) ( 1) ] [ ( 1)
( 1)( 1)( ) ( 1)] ( 1) ( 1)

( 2 2) [( 1) ( 1)( 1) ( 1)] ( 1) ( 1)
(

α µ ξ ξ µ ξ ξ ξ ξ ξ ξ ξ ξ µ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ µ ξ ξ ξ ξ

α µ ξ ξ µ ξ ξ ξ ξ ξ ξ µ ξ ξ ξ µ
α µ

= − + + + + + + + + + + + − +
+ + + + + + + + +

= − + + + − + + + + + + + + +
= − 1 2 3 1 2 1 2 2 2 2 1 2 2 1

4 4 1 2 3 1 1 1 2 1 2 2 1 1 2 1

5 4 1 2 3 1 1 1 2 1 2 2 1 1 2 1

2 1) [ ( 1) ( 1)] ( 1)
(2 2) [ ( 1) ( 1) ( 1)( 1)] ( 1)( 1)

(2 1) [ ( 1) ( 1) ] ( 1)

ξ ξ µ ξ ξ ξ ξ ξ ξ µ ξ ξ ξ µ
α µ ξ ξ µ ξ ξ ξ ξ ξ ξ µ ξ ξ ξ µ
α µ ξ ξ µ ξ ξ ξ ξ ξ ξ µ ξ ξ ξ µ

+ + + + + + + − +
= − + + + − + + + + + + + + +
= − + + + + + + + − +

that are positive , then the discrete 5-convex minimal distribution of 1 2 1( ; , , , )s n sD N µ µ µ −   

is given by 

1 1 1 1 2 2

1 2 2 1 2 1 2 1
(5)
min 1 3 3 1 2 1 2 1

2 4 4 2 2 1 2 1

2 5 5

0 with probability ( 1) ( 1)
with probability ( )( 1 )

1 with probability ( 1)( 1)( )
with probability ( )( 1)

1 with probability

p
p

X p
p
p

α ξ ξ ξ ξ
ξ α ξ ξ ξ ξ ξ
ξ α ξ ξ ξ ξ ξ
ξ α ξ ξ ξ ξ ξ
ξ α

= + +
= − + −

= + = + − − −
= − − −

+ = 2 2 1 2 1( 1)( 1 )( )ξ ξ ξ ξ ξ

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪ + + − −⎩
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 (2)  If 1 2, nNη η ∈  are such that 1 1 2 20 1 1 nη η η η≤ < + < < + <  and define: 

1 4 1 2 3 2 1 2 1 2 2 2

1 2 2 2 1 2 1 1 2 2

2 4 1 2 3 1 2 1 2 2 2 1 2

1 2 2 2 1 2

( 2 2 ) [( )( 2) ( 1)( 1) ]
[( 1)( 1)( ) ( 2)] ( 1) ( 1)

( 2 1 ) [ ( 1) ( )( 1) ( )]
[( ( 1) ( 1)( )]

n n n
n n n

n n n
n n

β µ η η µ η η η η η η µ
η η η η η η µ η η η

β µ η η µ η η η η η η η µ
η η η η η η µ

= − + + + + + + + + + + +

− + + + + + + + + +
= − + + + + − + + + + + + +

+ + + + + + 1 1 2 2

3 4 1 2 3 1 2 1 1 2 1 2 2

1 2 1 1 1 2 1 1 1 2

4 4 1 2 3 1 1 2 1 2 1 1 2 2

1 1

( 1)
(2 2 ) [ ( 2) ( 1)( 1) ( 1 )]

[( 1)( 1)( ) ( 2)] ( 1)( 1)
(2 1 ) [ ( 1) ( 1) ( 1) ]

[ ( 1)(

n
n n n

n n n
n n n

n

η η η
β µ η η µ η η η η η η η µ

η η η η η η µ η η η
β µ η η µ η η η η η η η η µ

η η

− +
= − + + + + + + + + + + + + +

+ + + + + + + − + +
= − + + + + − + + + + + + + +

+ + 2 2 1 1 1 1 2

5 4 1 2 3 1 2 1 2 1 2 1 2 2

1 1 2 2 2 1 1 1 1 2 2

) (2 1)] ( 1)
2( 1) [( )( 2) ( 1)( 1) ]

[ ( 1)(2 1) ( 1)(2 1)] ( 1) ( 1)

n nη η η µ η η η
α µ η η µ η η η η η η η η µ

η η η η η η µ η η η η

+ + + − +
= − + + + + + + + + + +

+ + + + + + − + +

 

that are positive, then the discrete 5-convex maximum distribution of 1 2 1( ; , , , )s n sD N µ µ µ −  

is given by 

1 1 1 2 1 2 1 1

1 2 2 2 1 2 1 1
(5)
max 2 3 3 2 1 2 1 2

2 4 4 2 1 2 1 2

with probability ( )( 1 )( )
1 with probability ( )( 1)( 1)

with probability ( )( 1)( )
1 with probability ( )( 1 )( 1)

wit

p n
p n

X p n
p n

n

η β η η η η η
η β η η η η η
η β η η η η η
η β η η η η η

= − + − −
+ = − − − − −

= = − − − −
+ = − + − − −

5 5 1 1 2 2h probability ( )( 1)( )( 1)p n n n nβ η η η η

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪ = − − − − − −⎩

Proof  (1)  In Courtois and Denuit et al.(2006), we obtain the possible support of 5-convex 

extrema  (5)
minX , so we need check it . By Theorem 4.1 and Theorem 4.2,  we just compute the 

polynomials 
2 3 4

0 1 2 3 4( )i c c i c i c i c iΡ = + + + +  of degree 4 ( 0 1 2 3, , ,c c c c  and 4c ∈ ) such that 
(5)
min 5 1 2 3 4( ; , , , )nX D N µ µ µ µ∈  is concentrated on the set 

5 2 3 4
0 1 2 3 4 1 1 2 2{ : } {0, , 1, , 1}ni N i c c i c i c i c i ξ ξ ξ ξ∈ = + + + + = + +  

1 1 2 2(0 1 1 )nξ ξ ξ ξ< < + < < + ≤  

and  5 2 3 4
0 1 2 3 4i c c i c i c i c i≤ + + + +  for all ni N∈ . 

The only polynomial of degree 4 that fulfills the conditions: 

0

5 2 3 4
1 0 1 1 2 1 3 1 4 1

5 2 3 4
1 0 1 1 2 1 3 1 4 1

5 2 3 4
2 0 1 2 2 2 3 2 4 2

5 2 3 4
2 0 1 2 2 2 3 2 4 2

0

( 1) ( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

c

c c c c c

c c c c c

c c c c c

c c c c c

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

=

= + + + +

+ = + + + + + + + +

= + + + +

+ = + + + + + + + +

 

By computing , we get 
2

1 2 1 2 1 2 2 1 1 2
3 4

1 1 2 1 2 2 2 1 2

( ) ( 1)( 1) [(2 1) ( 1) ( 1)(2 1)]
[ ( 2 2) ( 1)(2 1) ( 1)] 2( 1)

i i i
i i

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ

Ρ = − + + + + + + + +

− + + + + + + + + + +
 

The zeroes of the polynomial 5 ( )i i− Ρ are of course 1 1 2 20, , 1, , 1ξ ξ ξ ξ+ + are always 
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positive on nN . So we have checked that 5 ( )i i≥ Ρ on nN , the random variable with support 

1 1 2 2{0, , 1, , 1}ξ ξ ξ ξ+ +  1 1 2 2(0 1 1 )nξ ξ ξ ξ< < + < < + ≤  has to be (5)
minX  . 

Finally, we have to fix conditions on the support points to assure the non-negativity of their 
associated probabilities. We can not get explicit conditions on the support points, but we can 

easily obtained the distribution on the support points by testing each admissible pair 1 2( , )ξ ξ of 

nN satisfying  

1 2 3 4 50, 0, 0, 0, 0.α α α α α≥ ≥ ≥ ≥ ≥  

 (2) Similarly, we just compute the polynomials 2 3 4
0 1 2 3 4( )i c c i c i c i c iΡ = + + + +  of degree 4 

( 0 1 2 3, , ,c c c c  and 4c ∈ ) such that (5)
max 5 1 2 3 4( ; , , , )nX D N µ µ µ µ∈  is concentrated on the set 

5 2 3 4
0 1 2 3 4 1 1 2 2{ : } { , 1, , 1, }ni N i c c i c i c i c i nη η η η∈ = + + + + = + +  

1 1 2 2(0 1 1 )nη η η η≤ < + < < + <  

and  5 2 3 4
0 1 2 3 4i c c i c i c i c i≥ + + + +  for all ni N∈ . 

The only polynomial of degree 4 that fulfills the conditions: 
5 2 3 4
1 0 1 1 2 1 3 1 4 1

5 2 3 4
1 0 1 1 2 1 3 1 4 1

5 2 3 4
2 0 1 2 2 2 3 2 4 2

5 2 3 4
2 0 1 2 2 2 3 2 4 2

5 2 3 4
0 1 2 3 4

( 1) ( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

c c c c c

c c c c c

c c c c c

c c c c c

n c c n c n c n c n

η η η η η

η η η η η

η η η η η

η η η η η

= + + + +

+ = + + + + + + + +

= + + + +

+ = + + + + + + + +

= + + + +

 

By computing , we get 

1 2 1 2( ) ( 1)( 1)i nη η η ηΡ = + +  

2 1 1 1 2 2 1 1 2 1 2[ ( 1)[ ( 1) ( 1)] ( 1)( 1)]n n iη η η η η η η η η η η− + + + + + + + + +  
2

2 1 2 1 1 2 2 1 2[ ( 1)(2 1) ( 1)( 2 1) (2 1)( 1)]n n n iη η η η η η η η η+ + + + + + + + + + + +  
3

1 2 1 1 2 2 2 2[ ( 2 2) ( 1)( 2 1) ( 1) ( 1)]n n n n iη η η η η η η η− + + + + + + + + + + + +  
4

1 2(2 2 2 )n iη η+ + + +  

The zeroes of the polynomial 5 ( )i i− Ρ are of course 1 1 2 2, 1, , 1,nη η η η+ +  are always 

positive on nN . So we have checked that 5 ( )i i≤ Ρ on nN , the random variable with support 

1 1 2 2{ , 1, , 1, }nη η η η+ +  1 1 2 2(0 1 1 )nη η η η≤ < + < < + <  has to be (5)
maxX  . 

Finally, we have to fix conditions on the support points to assure the non-negativity of their 
associated probabilities. We can not get explicit conditions on the support points, but we can 

easily obtained the distribution on the support points by testing each admissible pair 1 2( , )η η of 

nN satisfying  

1 2 3 4 50, 0, 0, 0, 0.β β β β β≥ ≥ ≥ ≥ ≥  
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3  Applications  

In Courtois and Denuit et al.(2006), they gave theoretical background for the discrete s-convex 
stochastic ordering, now we simply recall it as follows: assumed a random variable X valued 

in nN , being a positive integer, a classical problem consists in solving the equation   

( ) ( )N kz P zϕ =                                                                  

in the unknown z , where 
0

( ) [ ] [ ],0 1,nN k
N k

z E z z P N k zϕ
=

= = = ≤ ≤∑  is the probability 

generating function of N .  When all that is only known about N  is that it belongs 

to 1 2 1( ; , , , )s n sD N µ µ µ − , then (2) can not be solved explicitely. To show that the s-convex 

extrema described previously allow accurate approximations for the solution of (2).  The idea is 

to construct two function  ( )
min ( )sϕ ⋅ and ( )

max ( )sϕ ⋅  such that 

( ) ( )
min max( ) ( ) ( )s s

Nz zϕ ϕ ϕ≤ ≤ ⋅             for all 0 1z≤ ≤ . 

3.1 Probability of ultimate extinction in a branching process 

In a branching process, we assume that time 0t = , there exists an initial 
population 0 0, 1M M ≥ . During its life span, every individual gives birth to a 
random number of children and these children give birth to a random number of 
children, and so on. The reproduction rules are :  (1) all individuals give birth 
according to the same probability law, independently of each other; (2) the number of 
children produced by an individual is independent of the number of individuals in 
their generation.                                                                       

Let us assume that 0 1M = . For 1k ≥ , let kM  be the number of individuals in 
generation k  and let N  be random variable valued in nN  representing the 
number of children obtained by the individuals, [ 1] 1P N = < . If we denote by α  the 
probability of ultimate extinction of this process, [ 0kP Mα = = , for some ]k , then 
α  is the smallest non-negative root of the equation ( )Nz zϕ= ; 1α =  for [ ] 1E N <  
and 1α <  for [ ] 1E N > . Because the sequence { , }kz k N∈ is completely monotonic 
for 0 1z≤ ≤ ,when s is even, ( )

min

( )
min ( ) ( )s
s

N
ϕ ϕ⋅ = ⋅ and ( )

max

( )
max ( ) ( )s
s

N
ϕ ϕ⋅ = ⋅ , while s is odd, 

( )
max

( )
min ( ) ( )s
s

N
ϕ ϕ⋅ = ⋅ and ( )

min

( )
max ( ) ( )s
s

N
ϕ ϕ⋅ = ⋅ ,where ( )

min
sN and ( )

max
sN are the stochastic extrema 

in 1 2 1( ; , , , )s n sD N µ µ µ − with respect to the discrete versions of the s-convex 
stochastic orderings. In order to illustrate the use of the s-convex extrema up to the 
order five, we also consider the following example from Guttorp (1991). 

Example 1 Let us take n=10, [ 0] 0.4982, [ 1] 0.2103,  [ 2] 0.1270,  P N P N P N= = = = = =  

 [ 3] 0.0730,  [ 4] 0.0418,  [ 5] 0.0241,  [ 6] 0.0132,  
[ 7] 0.0069,  [ 8] 0.0035, [ 9] 0.0015,  [ 10] 0.0005.

P N P N P N P N
P N P N P N P N

= = = = = = = =
= = = = = = = =
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The exact extinction probability is α =0.879755. The 5-convex discrete extrema are as 

follows: (5)
minX and (5)

maxX have respective supports {0,2,3,6,7} and {0,1,4,5,10}, associated 

probabilities {0.5551,0.3757,0.01120,0.0432,0.01410}and {0.4470,0.3742,0.1432,0.0316,0.0040}. 
The bounds obtained with the discrete s-convex extrema are displayed in the below Table 1. 

 
Table 1:  Bounds on the probability of ultimate extinction α  

s  ( )
min
sα  ( )

max
sα  

3 0.8414716  0.8868653

4 0.8791374 0.8807095

5 0.8796994 0.8797986

 

It shows that the bounds obtained with s=5 are remarkably accurate(the bounds for s=3 and 
s=4 can be found in Courtois et al.(2006)).  

3.2  Ruin probability---Binomial risk model 

In the classical discrete binomial risk model (see 1989,1993), the discrete claim amounts 

1 2, ,X X  recorded by an insurance company are assumed to be independent and identically 

distributed with common distribution function F having finite 1s − moments, such that (0) 0F = . 

The number of claims in the time interval[0, ]t  is assumed to be independent of the individual 

claim amounts and to form a binomial process ( ),N t t ∈  with parameter ,0 1q q< < (in any 

time period there occur 1 or 0 claims with probabilities q  and 1 q− , respectively, and 

occurrences of claims in different time intervals are independent events). We assume that the 
premium received in each period is equal to 1 and is larger than the net premium, which means 

that 1[ ] 1qE X < .  

Let ( )ψ κ be the ultimate ruin probability with an initial capital κ ; that is to say, the 

probability that the process 
( )

1
( ) ,N t

ii
Z t t X tκ

=
= + − ∈∑ , describing the wealth of the 

insurance company, ever falls below zero. If the moment generating function of X exists, 

Lundberg's inequality provides an exponential upper bound on ( )ψ κ ，that is , ( ) ze κψ κ −≤ , 

where z is Lundberg's adjustment coefficient satisfying the integral equation  

( ) [ ]zN z
N z E e eφ = = with N denoting the aggregate claim amount in the t-th time interval. As we 

are dealing with a compound binomial model, it comes out easily that z is the solution of the 

equation 1 [ ]zX zq qE e e− + = where [ ]zXE e is the moment generating function of the discrete 

claim amounts 1 2, ,X X .Since the sequence { , }kze k N∈  is absolutely monotonic, 
( ) ( ) ( )
min max( ) ( ) ( )s s s

Nφ φ φ⋅ ≤ ⋅ ≤ ⋅  with ( )
min

( )
min ( ) ( )s

s
N

φ φ⋅ = ⋅ and ( )
max

( )
max ( ) ( )s

s
N

φ φ⋅ = ⋅  

Example Let us take n = 11, [ 0] 0.4982, [ 1] 0.2103,  [ 2] 0.1270,  P N P N P N= = = = = =  
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 [ 3] 0.0730,  [ 4] 0.0418,  [ 5] 0.0241,  [ 6] 0.0132,  
[ 7] 0.0069,  [ 8] 0.0035, [ 9] 0.0015,  [ 10] 0.0005.

P N P N P N P N
P N P N P N P N

= = = = = = = =
= = = = = = = =

 

Thus, the first moments of the discrete claim amounts are fixed at 

1 2.145,µ = 2 7.1454,µ = 3 433.4896, 195.4362.µ µ= = Let 0.4q = , Lundberg's adjustment 

coefficient is equal to 0.1163z =  and the ruin probabilities ( )ψ κ for some initial surplus level 

κ are depicted in Table 2. The 5-convex discrete extrema are given as follows: 
(5)
minX and (5)

maxX have respective supports {0, 1, 2, 6, 7} and {1, 2, 5, 6, 11} and associated 

probabilities {0.1266, 0.0400, 0.7372, 0.0429, 0.0533} and {0.4470, 0.3742, 0.1432, 0.0316, 
0.0040}. The extremal 5-convex adjustment coefficients are respectively equal to 

(5)
min 0.11628z =  and (5)

max 0.11634z =  . The exponential upper bounds obtained using these 

extrema are displayed in Table 2(the first five columns datas see Courtois et al.(2006) ). 

 
Table 2: Ruin probabilities and Lundberg's bounds when n = 11, q =0.4. 

Initial surplus 
level   κ  

    ( )ψ κ  ze κ−  
(3)
minze κ−  

( 4)
minze κ−  

(5)
minze κ−  

0 0.7633 1 1 1 1 
1 0.6842 0.8902 0.9003 0.8906 0.8902 
2 0.6117 0.7925 0.8101 0.7933 0.7925 
3 0.5461 0.7054 0.7291 0.7066 0.7055 
4 0.4869 0.6280 0.6562 0.6294 0.6281 
5 0.4338 0.5590 0.5906 0.5606 0.5591 
6 0.3862 0.4977 0.5315 0.4993 0.4977 
7 0.3438 0.4430 0.4784 0.4447 0.4431 
8 0.3060 0.3944 0.4306 0.3961 0.3945 
9 0.2724 0.3511 0.3875 0.3528 0.3512 
10 0.2425 0.3125 0.3488 0.3142 0.3126 
15 0.1355 0.1747 0.2060 0.1761 0.1748 
20 0.0758 0.0977 0.1217 0.0987 0.0977 
30 0.0237 0.0305 0.0425 0.0310 0.0305 
40 0.0074 0.0095 0.0148 0.0097 0.0096 
50 0.0023 0.0030 0.0052 0.0031 0.0030 
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离散的 5 阶凸随机序的极值分布及其应用 
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摘要：本论文受 Courtois 和 Denuit 等人（2006）思想的启发，我们获得了离散的 5 阶凸随

机序的极值分布。作为应用，我们改进了分支过程中灭绝概率的上下界以及经典的离散风险

模型中 Lundberg’s 系数的上下界 
关键词： s 阶凸随机序；矩空间；极值分布；分支过程；Lundberg’s 系数 
中图分类号：O211.6 
 




