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Abstract: The present paper considers online classification learning algorithms associated with convex
loss functions, and gives the error analysis of coefficient regularized online classification algorithms.
The goal of classification is to consruct, on the basis of independent and identically distribution
samples, a classifier which can predict the unknown distribution with small missclassification error. A
novel capacity independent approach based on a Eucliean Space is presented. It designs a gradient
descent online learning algorithm, which is suitable for large size samples. It shows how a local
Lipschitz condition on loss function at the origin and some restrictions on step size to ensure the
uniform boundedness of learning sequence, a crucial assumption for the convergence of the online
scheme states in the present paper. Explicit learning rates with respect to the misclassification error are
given in terms of the choice of step sizes and the regularization parameter. Error bounds associated
with the hinge loss is presented to illustrate the method.
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0 Introduction

Support vector machines (SVMs)™ classification was introduced by Boser. Now, SVMs and
related regularized methods have formed an important part of learning theory. They have been
applied successfully to various practical problem in science and engineering, especially for
classification problem. There are also many results and theories which can provide us to learn
more knowledge about this aspect. Binary classification is one of the central application for
machine learning methods in general and for SVMs in particular.

Let X be acompact metric spaceand Y ={1,-1}. Afunction C: X —Y iscalleda

classifier if it divides the input space X into two classes. A real valued function
f:X—>R
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can be used to generate a classifier C(x) =sgn(f(x)), where the sign function is defined
as

sgn(f(x))=1, if f(x)>0 and sgn(f(x))=-1 for f(x)<O0. For such a real
valued

function f, aloss function ¢:R — R, is often used to measure the error: @(yf (X))
which is the local error at the point (X,Y), while sgn(f(x))eY is assigned to the event
XeX.

A Reproducing Kernel Hilbert Space (RKHS) H, is defined as the completion of the span

of {K, =K{(,X):xe X} with the inner product <KX, K y>K = K(x,y),

where K is a Mercer kernel on X x X , which is continuous, symmetric, and positive

definite. The reproducing property f(X):<f,KX>K holds for every f eH, . For more
properties of H, see[2].
Assume that o is an unknown probability distributionon Z = X xY and z ={z,

=(X,Y,)}_, €Z" is a set of random samples independently drawn according to p . The
batch learning algorithms for classification is implemented by an off-line regularization scheme®®!

in a reproducing kernel space involving sample z and a loss function ¢:

f,, =arg min{—1 ET ¢(ytf(xt))+—/1||f||f<}, (0.1)
e T 2
K t=1

where A >0 is the regularizer parameter.

By [4, 5] we know faz . has changed into the form of

f, ()= aK(Xx) xez
' t=1

(0.1) then becomes an infinite dimensional optimization problem on R™ . In particular, now
we considered the following coefficient regularized algorithmt®

C1d A
a,, =arg m;q{;2¢(yt f, (%)) +E”a”§}' (0.2)
ae =1

where f_(X)= Zm:atK(X, X,) and ||a||§ = Zm:af .
t=1 t=1

Since f_(X) is determined by its coefficients and the penalty is imposed on these
coefficients. We call this regularization technique the coefficient regularization. 1t was first
introduced by Vapnik to design linear programming support vector machines.

Online algorithm with linear complexity O(T) can be applied and provide efficient
classifier, when the sample size is large. It is known that there are many online algorithms to solve
the classification problems (0.1). For example, there is a kind of fully online algorithm!”? which
needs that the regularization parameters A, changes with the learning step t. These algorithms
require that the loss function is derivable near the origin to maintain the existence of the gradient.

The gradient descent algorithm for binary classification®® improves the learning rates by the
empirical covering number and Rademacher average. Yiming Ying and Dingxuan Zhou gave a
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online algorithms!® based on regularized schemes in reproducing kernel Hilbert space. In the

present paper, we shall design a gradient descent online learning algorithm in the space R™ to
show the error analysis for framework (0.2).

By the sample error analysis™ of learning theory, we know that @, , has an asymptotic
behavior to the regularization function @, € R™ defined by
_ . Ay 2
a, =arg Ergm{g(fa)+5||a||2}, (0.3)
where &(f )= jz #(yf (x))dp(x, y) . Define
a, =argmin{[l $(¥f, (0)do(x, y)}.

If we regard «, € R™ as a good learner of a,, then we can use the classical gradient

descent method to learn step by step. To explain this fact, we introduce the regularized loss
function @ definedfor ¢ € R™ and z=(x,y)€Z by

A
0le,2) = 0, (c,2) = 4(y1, () + [l
and the regularized generalization error F(cr) defined for ¢ € R™ as
A
F(a) = Fy(@) = [ 9(y1, 0)dp + el

oF , oF oF ). Then for
a, oOa, oa

Define the gradientof F(a) at ¢ as D, F(a)=(

m

aeR™ and z=(X,y)eZ, wehave
D,0(a,z) = ¢ (¥f, (X)) yK (X) + A,
where Ko (X) = (K(X,X),-+» K(X, X)), ¢ is the left derivative™ of ¢ at the point

(yf, (X)) with respect to ¢« . The Hilbert space valued random variable D, 6(c,z) plays the
role of the gradient of the functional & defined above. So

oF OF | OF

da, 0a,’ da,

= A+ [ ¢ (¥, (0) YKy ()dp

= (Aay + [ 26 (¥, (0) YK (%, x)dp(x, ), -+,
(A + [ 26 (Y, 0D YK (X X, )dp(%, ¥).

The classical gradient descent™ tells us that the following sequence {g,:0,€R",

D,F(a)=(

te N,,,} provides anapproximationto «, ,
g,=(0,---,0), VteN;,
Ois = 9, ~ (29, + | 4. (¥, (00)YK; ()dp(X, ¥))

Unfortunately, the use of this algorithm requires knowledge of the distribution. However, As
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we only have the random values ¢ (Y, fo (X))Y:K¢(X;). Then we can give the following
Stochastic Gradient Descent (SGD) online algorithm :
a,=(0,-,0),te Ny oy = — 1 (Aey + 4 (Y, T, (X))ViKz (%)) (0.4)
Foreach te N; |, the function ¢, isin general dependent on the inputs {Z, :te N;}.
Part of the paper deal with the expectation
o,y — |, with fixed A >0 (0.5)
over the random samples of regularized sample error.
Recall that for the online learning algorithm (0.4), we deal with the classifer sgn(f, )

produced by the real valued function fam from a sample z :{zt}thl. So the error analysis for

the classification algorithm (0.4) will aim at the excess misclassification error

R(sgn(f,, ,)) —R(sgn(f,)) (0.6)
which can often be bounded by the excess generalization error*?
e(t,, ) -e(f,), 0.7)

where fp is a minimizer of the generalization error

f,=arg fian {e(f): f is measurable on X}.

1 Results

The first result stated in the present is that the sequence {«,} defined by (0.4) converges in
expectationto «, in R™ as long as the sequence is uniformly bounded.

Definition 1. We say that ¢:R — R, is an admissible loss function if it is convex and
differentiableat 0 with ¢ < 0. The convexity of ¢ tells us that the left derivative ¢ (X)

=1lim,_,(@(X+0) —4(x))/ 5 exists and equals SUP;_,(#(X+ ) —@(X))/S. It is the
sameas ¢ (X) when it coincides with the right derivative

$.(x) = lim, , (#(x+8)— $(x))/ 5 =inf. (F(x+ )~ $(x) /5.
Theorem 1. Let A >0 and the sequence of positive step sizes {7,} satisfy

> =+, limp, =0. (L1)

t=1

If #(X) is an admissible loss and the learning sequence ¢, defined by (0.4) is uniformly
bounded on R™, then

E - (
zeZ
Theorem 1 will be proved in Section 5. The assumption of uniform boundedness is mild and

am—aﬂuz)—)O as T —+o. (1.2)

will be studied in Section 3. In particular, we shall verify that ||0:t ||2 is uniformly bounded when
SUp‘¢'(X)—¢'(0)‘/|X|<oo forany R and 7, <C, for some constant C, .
[x<R

Our second result is the following relation between the excess regularized generalization
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error and the R™ metric which plays an essential role in proving Theorem 1.

Theorem 2. Let ¢ be an admissible loss function and A >0. For any a € R™, there
holds

Za-alf <ge A+ 2L, + e 3 09

Theorem 2 will be proved in Section 4. It will be used to derive convergence rates of
EZEZT(

().
Definition 2. Define the regularization error with respect to (0.2) associated with the triple

(K., p) as

. A !
D(1) = :{gfm{g(fa)—g(fp)+5||a||§}:g(fa/_‘)—g(fp)+5||aﬂ||§, A>0.  (L4)

oy —aﬂ||2) when the step size decays in the form 7, =t~/ u(A) with a constant

then, we have
e(f, )—e(f)=e(f, )-e(f, )+e(f, )—e(f)
<e(f, )-e(f,)+D(1). (1.5)
The regularization error term D(A) in the error decomposition (1.5) is independent of the
sample z :{zt}thl. It can be estimated by the rich knowledge of approximation theory.

The firstterm &(f, )—e&(f, ) in(1.5) is called the sample error which may be bounded

f, —f

a1 7]

by . which will be bounded by [ar., — |, -

2 Bounding the Learning Sequence
Definition 3. We say that ¢; is locally Lipschitz at the origin if the local Lipschitz constant

{\¢‘(x) ~4.0) < kZ\i (0)\}

X

M (A) =sup (2.1)

is finite forany A >0, where K :=sup /K (x,t) <oo.

X,teX

The above local Lipschitz condition is equivalent to the existence of some & >0 and
L >0 such that ‘qﬁ;(x) —¢ (0)‘ < L(x) forevery xe[-¢,&]. In fact, the latter requirement
implies
M (2) < maxqL, | (kg (0)|/.2) - ¢ (O)|/ 2, (¢ (k°] (O)]/ )|+ | (O / 2}
Thus, when ¢ is twice continuously differentiable on R, ¢; is locally Lipschitz at the

originwith M (1) = H¢

ol o . Examples of loss functions will be discussed after
L[k ‘¢(0)‘/A,k \¢(0)\/,1]

the following theorem on the boundedness of the sequence {at }

Theorem 3. Assume that ¢; is locally Lipschitz at the origin. Define {at} by (0.4). If the
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step size 7, satisfies 77,(M (A)k? + 1) <1 for each t, then

L.
tly =7

Proof. We prove (2.2) by induction. It is trivial that ¢, = (0,---,0) satisfies the bound (2.2).
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VteN. (2.2)

Suppose that this bound holds true for &, € R™. Consider ¢, . It can be written as

@-nA) o =8 (Y f, (X)) YK (%),
that is,

W A)a — g (v F, ()~ ¢ O)yKy, (%)~ 1y QK (%)
Since yf =1, we can write the middle term as
[4.(y, £, (%)) =& O]y Ky (%) . (x)
¥i o, (%)
_ [4_(y, f, (x))—¢ (0)]
¥i fo, (X)
Since ¢ is nondecreasing, (¢ (U)—¢ (0))/u>0 forany ueR,we can have
¢ (v, f, (x))—¢(0) 0
yf,(x)

x K;(Xt) fg,T (%)

Therefore, it follows that

¢ (y.f, (x)-¢(0)
Y fo (%)

ot e
B P A AR OO
Yof., (x)

||at+1||2 = (1_77tﬁ“)at _77t(

x f, (x)K5 (%)) =76 Ki (%)

2

x £, (x)Ks (%)) =@ K (%)

2

+[mg @K (%),

Define an operator L, :R™ —R™ as L (9)=(9,K, (x))K;(x,), then, the middle
term can be written as
(¥, T, (x))-¢(0)
Y, fo (%)
here by means of the property for f, (X )K (%)= (a, K (X)K (%) . L is a

self-adjoint, rank-one, positive linear operator. The operator norm can be bounded as

[6-(y, T, (%)) = ¢ (O)]y. Ky (x) = xLi(a)

||L‘ R™—>Hy < kz'
Since (L.g,9) =‘(g, K;)‘2 =(f,(x))* < k2||g||§ for any g € R™. The local Lipschitz
(y, f -$(0
condition tell us that AAACYRUAC) is well defined (set as zero when f, (x,) =0). It

yt 1:01I (Xt)
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is bounded by M (k| (0)|/2) , since |y, f,, ()| = |(et., K (x))] < K[la]}, <k} (0) /2 by
our induction hypothesis.
Since ¢ is nondecreasing, (¢ (u)—¢(0))/u>0 forany ueR. Thus,

AVANCORIIVN
Yo f (%) -

Then,
|[@-n2)e = mld (v, 1., (%)) = ¢ O K; (%),

I PR AL :xt)) -4(0)
Y, f,, (%)

xLy(at)

< C-n A,

This in connection with the induction hypothesis on ||ez,|, implies that

”am” <A-nA)—— ‘¢( )‘ ‘¢ (0)‘ ‘¢( )‘

This completes the induction procedure and proves the theorem.
Corollary 1. Define a hypothesis space as

={f0, =Z:05iKXi caeR™,me N}
i=1

with the inner product <> - =<-,->K, satisfying <KX, KV>K =K(X,y), then for any

H

@ eR", |1 <Vl
Proof. Let @, B e€R™ Then,

<fa’ fﬁ>K =<Z::ainugﬁiKv > Za K(x.x;)

i,j=1

Thus,

ol =(t fo).
—ZaK(XI, i

i,j=1

<(Ya) (S K1) <]

i=1 j=1

3 Excess Generalization

In this section, we prove Theorem 2, a relation between ||a - 051”2 and

Ay e A 2
{ott, 21} - fott, )+ |

This relation is very important for the proof of the general convergence result, Theorem 1, as
well as for the error analysis done in the next section.
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Lemma 1. Assume ¢ is differentiable, then o, satisfies

[ 45, CNYE ) -, (0dp+Ale, a-a,)=0, YaeR".  @1)

Proof. As ¢, isa minimizer of the regularized generation error defined by (0.3), taking

a=(0,---,0) vyields g(fai)+§||aﬂ||§Sg(fo):¢(0), then for any aeR™ and

6 >0, we know that %{(5( fo on) +%||al + Ha”z) —(e(f,) +%||aﬂ||§)} is nonnegative

and equals

[ Hyfj 3 YOV 00 0D = 9O, CNYE, (VP + A, @) +§0||a||§ -

Let & — 0", by the Lebesgue Dominant Theorem, we see that,

[, 4 (s, 0ONYE, (\dp + Aer;, @) > 0.
It follows that

[ 4 (F,, YKy (), @)dp + Aa,,a) = ([, 6 (¥, ()YK; (0dp + Aa,, @) 20
This is true for every o € R™, which implies

[, # (5., 00K (\)dp + A, = (0,-,0). (3:2)
Taking product with a —«, in R™ proves the lemma.

Lemma 2. Let A >0 and ¢ be a differentiable convex loss function. Then for any

a € R™ there holds
A A A
Sle—aif, <Le(f) + Zlalre(f, ) + 5 e}
Proof. Let & € R™, define a univariate function G =G, by
A
G(e) = é‘( faﬂ-+6‘(a7aﬂ-)) +E||aﬂ, + e(a - aﬂ,)”z ' 9 € R .
Then
Ay 2 A 2
G =¢e(f)) +E||oz||2 ,G(0) =¢( faﬂ_) +E||ozﬂ||2 . (3.3)
Since ¢ is differentiable, as a function of &, G is differentiable. In fact, if we denote
a,=a,+0(a—-a,),then
' .1
G (0) =A|m10A—9{G(9+A9)—G(9)}
I y(f, ()=, (X))
zZAgy(f,(x)—f, (x))
X {¢(yfa0 ) +Ay(f,(x)- 1, (X)) —d(¥f,, (x))dp}.

The Lebegue Dominant Theorem ensures that

:/1(059,05—05,1)+A|;TO
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G (0)=Aa, a—a,)+ L ¢ (¥f,, )y (f, (x) - T, (x)dp.

The first term of G (6) can be written as l(aﬂ,a—al)wti@”a—aﬂ”z. This in

connection with Lemma 1 tells us that
Ma,a-a,)=- jz ¢ (v, f, (0)Y(f,(x)-f, (x)dp,and G'(6) equals
A0l —a[;+ [ 1 (¥, () +Oy(F,(x) - T, ()
—¢ (yf, ONY(f, (), (x)dp. (3.4)

Since ¢ isconvexin R, it satisfies

((%) = (X)X —X,) =0, Vx,X, eR.
Using this for x, = yf, (X) +&(f,(x)-f, (X)) and X, = yf, (X), we see from (3.4)

that for 6 € (0,1), G (6) > 16’”05 - aﬂ”z.

Therefore,

G(1)-G(0) = {g( f) +§||a||z}—{g( faﬂ_)+§||al||z}

- A
= [G'(6)d6 > e ~a.

This proves the desired result.

If ¢ is differentiable, we approximate it by ¢@_ which is convex, differentiable and defined

for 0<e<1 as
8,00 = [$(x- £6)d6 == [ gtdu.

The approximation

| c- ) - g0yau

<[e].. is  valid,

L*[x-¢,X]
hence for any R > 0, there holds
=0(¢) , &—0,. (3.5)

+

C[-R.R]

Now we can prove Theorem 2 for a general loss function.

Proof of Theorem 2. We define, forany 0< <1, (f )= L ¢.(yf (X))dp and

a ~arging {o (1) + 2all | @)

For ¢ =0, we have used the conventional notation £ (f )=¢(f,) and ¥ =, .

()

Since «;” is the minimizer of (3.6), by taking « = (0,---,0) we get

2O(F )+ 5|,

<£9(0) = 4,(0) <[#]o; 1y <

<o ig/A + VO<E<L. (3.7)

Since any closed ball Bg :{ae Rm,”oz”2 < R} of the Hilbert space R™ is weekly

which implies
()

1,

-9-
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compact, the estimate (3.7) tells us that there exists a sequence {gj >0}j_°=1 such that
!i_)rggj =0 and af") converges to some a;eRm weekly, that is,
!Ln;(agfj>,a)=(a;,a), Va eR™. (3.8)
In particular, Hai”j =(a,,a,)= Iji_r)g(afj),a;) < Hai”z Ijl_r)g al™ , and

Haﬁ” < lim|a
2 j—)oo

NG - @9

Let a =Ky (x) in(3.8). Thenby (a, K, (X)) = f,(x) onehas
limf (X)=!im(a§",K;(X)), then &(f,.)=1im [ g(yf _, (x))dp. The uniform
1 —>0 ay joo a;

jow «

bound (3.7) of ‘
i (¢5) N (&)
lim; &7 ( faifj) )= !I_)ﬂ; L ¢ (yfafi) (x))dp

=lim [ 4(yf ., (0)dp

=e(f.). (3.10)

12
2

af")u in connection with uniform convergence (3.5) of ¢, to ¢ ensures that
2

Therefore, by (3.9), we have

g(faf)+%‘a; ol

2 . () A
<lim {g (fagj)ﬁ\

—j—)oo

Taking o =, in(3.6), we know that

_ 21 @2 s A
“_mj_)w{é‘( J)(fa;‘j)_i_?‘a/(iJ)L}Sll_rTH—m{g( J)(fal)+5||aﬂ||§}

A
~a(t,)+ e,
which means

Ay -
g(fa;)+5\aﬂ

2 A 2
, <g( fal) JrE”ozﬂ”2 .
. - A 2 ) .
It tells us that o, is also a minimizer of &( fa‘)+5||aﬂ||2. The strict convexity of the

: A - : , :
functional &( fa‘)+E||aﬂ||§ on R™ verifies the uniqueness of ¢, whichleadsto o) =, .

That is, (3.8) and (3.9) hold with ¢« replaced by «,. Apply Lemma 2 to the modified loss

function @, , we have
J

A .
Hoat
2

afj)

2 (&) Ay 2 (e)) &
Lg{g (fa)+E||a||2}—{g (fagj)+2\

Apply (3.8)to (@, — ), we know that

E} (3.11)

-10 -
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2 @) - (&)
||a_a/1||2 :(aaa_az)_ljl_)rg(azéj ,a—aﬂ)zljm(a—a;’ a-a,),

which can be bounded by lim

j—)oo

— afj)uzua - ozﬂ”2 , hence,

A .
L <Zlimle —af?
2 2 j—)oo

A
2Ja-a|

2

This in connection with (3.11), (3.9) and (3.10) implies that %”a - aﬂ||§ is bounded by
() Ay 2 A 2
lime™(f)) +—||05||2 —s¢( fal) +—||ozﬂ||2 .
] 2 2
since lime™’(f ) =¢(f,), the conclusion of Theorem 2 is proved.
]

4 General Convergence Results
In this section we prove Theorem 1. The essential estimate in the proof will also be used in

the next section to give convergence rates. Note that the uniform boundedness of ||at|| ) by B

implies
6 (et XD YK () + e [, < kgl . o, + 4B
T T
For simplicity, we denote H(l— n;4)=1 and 2771.1 =0.
J=T+1 J=T+1
Lemma 3. Assume for some t, € N and 51 >0, that holds 77,4 <1,
. 2 ~
B, (I (o 0O)YK (1) + A ) < C, (4.2)
forany t>t,. Thenfor T >t,,
2 I 2
Ezl,n-,zT Oty _aﬂ”g < H(l_ntﬂ“)Ezl,m,zto,l( ato _aﬂuz)
t=t,
~ T , T
+C 2 [1a-n4), (4.2)

t=ty  j=t+1

which can be controlled further by

)
exp{— Zntl}Ezl,...,zm(

a —a,

t=t, t=t, j=t+1

z) +51i77t2 exp{— inlﬂ} (4.3)
Proof. Recall that «,, = &, — 1, where o = ¢ (yf,, (X)) Y. K (%) + e, .
Then
et - aA”; = e - aA”; + ntzuafuz +2n(a a, — 1) (4.4)
By taking (K (x,),@) = f,(X,), part of the last term of (4.4) equals
(@ (Y fo, (XD YK () )@, =) =4 (v, F, ()Y (F, () = T, (%)) (459)

Since ¢ isa convex function on R, we know that
¢ (a)(b—a) < g(b)—¢(a), Va, beR.

-11 -
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Applying this reactionto a =y, f, (x) and b=y, f, (x) together with (4.5) yields
(8- (v f,, (X)) Y K (%) @, —a) <oy, f,, (X)) =gy f, (x)).  (46)

The schviarz inequality (e, ¢,) < .|, < 2 a2+ [ imptes

A A
Mot ~) < 2o~ Lo

Putting this and (4.6) into the last term of (4.4), we know that (@;',a, —a,) can be

bounded by
{qﬁ(yt f, (x))%\\wﬂj—[ﬂyt f, (xt»%uatui]

Since ¢, depends on {zl,n-,ztfl}, but not on z, , It follows that

E, .. .(a  a,—a) canbe bounded by
E, ..., (B, ([#(y, T, (%) +i||a1||§] ~[g(y, ., (%) +§|Iat||§1»
(le(f,)+— ||0!A|| 1-[e(f, )+~ ||0! || D. (4.7)

This in connection with (4.1) and (4.4) gives

2 (||at+1 - aA”Z) < Ez

2

(

+Cl +2:mE, , ([a(f,)+= IIaAII] [e(f,)+ ||a ;1. (4.8)

2
a _a,1|| )

vl

By Theorem 2, this implies that E, (||0:t+1 —aﬂ||2) is bounded by

(

Applying this relation iteratively for t=T,T -1,---,t, , we see that E (

Lty

(-nA)E, a _a,1||2) +6,177t2- (4.9)

1l

||05T+1 - aA”;) is bounded by
Q- A)A-1744) E, oz, (”aT—l - az”i) + 6,177T2 +(1- ntﬂ“)éﬂ.?}?—l

T ~ « I
< <[Ta-nDE, .. (e, —%HEHCAZﬂfH(l—W)-
t=t,

t=ty  j=t+l

vzto -1

This proves the first statement.

The second statement follows from the inequality 1— gz <e™ forany u>0.

We are in a position to prove Theorem 1 stated in the introduction. For this purpose we use
(4.2) while the bound (4.3) will be used to derive explicit learning rates in the next section.

Proof of Theorem 1. By (1.1), there exists an integer such that 77,4 < 1/2 forall t> t,.

Since {&,} is uniformly bounded in R™, (4.1) is true for some constant C, . Applying Lemma

3, it is sufficient to estimate the right side of (4.2).
According to the assumption (1.1) on the step size, we have
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T T
[T1@-72) <exp{-> ni}—>0, as T > .

t=t, t=to
So forany & >0 there exists some T, € N such that the second term of (4.2) is bounded

by & whenever T >T,.

To deal with the first term, we use the assumption lim n, = 0 and know that there exists
t—w

T T
some t(g) suchthat 77, < Ae forevery t>t(g). Write 27731_[(1—77].1) as

t=t,  j=t+l
t(e) T

St [a-n,2)+ Zml_[(l n;A). (4.10)

t=t,  j=t+l t=t(s)+l  j=t+1

Since t(g) is fixed, we can find some T, € N such that for each T >T,, there holds

T T ( )
Zj:t(s)ﬂnj > Z eyl 2 l A Ps . It follows that for each t, <t <t(g), there holds

T T T AN
Hj=t+l (- 771-1) < eXp{_zjem 771'}“} < exp{_2j=t(5)+l 771'}“} < t(¢)

with the bound 77,4 <1/2 foreach t>t, tells us that the first term of (4.10) is bounded by

. This in connection

t(e) T 412 t(a)
dnt[[a-n,4)<
t=t, j=t+1 t( ) t to

The second term of (4.10) is dominated by ﬁ“‘gzt;(‘g)u”tnlm(l_”iﬁ“)'
nA=1-@0-nA). Then

2 Yalla-nn= Y [1a-n,4- H(l ]

t=t(e)+l j=t+1 t=t(e)+l j=t+1

=[1- H(l—nji)]él.

j=t(e)+l

Therefore, when T > max{T,,T,}, by Lemma 3, we have E(||0:T+1 - aﬂ”;) <1+ 261)5 :
This proves Theorem 1.
5 Convergence Rates

Now we can derive convergence rates for the error ||0:T+1 —aA”Z. The step size here is

often of the form 7, = for some &< (0,1] and x(A) > 0. So to apply Lemma 3 for

1
p(A°
getting error bounds, we need to estimate the summations in (4.3) and lead to the following
lemmas.

Lemma 4P, Forany t<T and 0< @, there holds

i179> 1 H[(T +1)77 - (t+1)"’] if 6<1,
=t log(T +1) — log(t +1) if 9=1.

(5.1)

-13-
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T+1
The proof follows from the simple inequality ZLM j*H > Iu’gdu.

t+1

The next lemma in a modified form was given in [13] for 1/2 < 8 < 1.

T-1 T
Lemma 5. Let 0<v<1 and 0<@<1. Then zt%exp{—Vng} is bounded
t=1 j=t+1
by
18 9T v(l 29 n
+ - +1 <1,
T sz P Ty T
8 rip, o-1.

1-v
We are in a position to state the convergence rates for the online algorithm (0.4). To this end,
we need the following constant depending on A:

—4k2

5.2
LKl O 27 @) 121 (5-2)

Theorem 4. Assume that ¢; is locally Lipschitz at the origin. Choose the step sizes as

n, = for some € (0,1] and u(A)>M(A)k® +A. Define {a,} by (0.4) and

1
p(A)’
C, by (5.2). Then there holds
(1) For 0<@<1,

2D(4) , 9C, T
A (1— 0)2"" (u(A))?

E .. -] < )

- (5.3)
6-1
xp{ @-2")1 Troy 19C, ~
(1=0)u(2) (AT
(2) For 6 =1, E(||aT+l—aﬂ||§) can be bounded by
g A
(ZD(’I) - %, )T #4, (5.4)

A u(A)(u(2)-4)
Proof. The condition on the step size tells us that 77, (M (A1)k® + 2) <1 foreach t.By

kl¢ (0) k?[¢'(0)
e O £

Theorem 3, this yields ||05t ||2 < , and hence Hyt f,, (X, )HZ < for each t.

Consequently, both y, f, (x,) and O lieinthe interval I, =[—k2‘¢'(0)‘/1,k2‘¢'(0)‘/1].

It follows that H;é (Y, f,, (X)) Y. Ky and

“le=qy)

4., )], <Kl ] <

“leay”

Then (4.1) holds with t; =1 and C,. This in connection with (4.3) of Lemma 3 tells us

that E(||0:T+1 —aﬂ”;) <I,+1,, where

-14 -
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e Wy LR AN o e S S

t=1
Since a, =(0,---,0), (1.4) gives ||0:1 —al”Z <2 D(i)/l. By Lemma 4, we know that
-1
2D—M)exp{—ﬁl_z—i)ﬁ +1)”}, if 0<6<1,
A (1-6)u(2)

2D(2) (7 gy a0 it 6=1.

1, <

By Lemma5, |, can be bounded by

iy 1-6 6-1
C, {(191_ exp{— (1—2 2 (T +1)19}+18ﬂ(1)/1+ 1 } if 0<@<1

(u(2)) |@-06)2"" 1-0)u(A) T T2
6,1 8 41 _
(u@»fL—Mﬁ@%T+”MM+?7} if 6=1.

This proves Theorem 4.
To apply Theorem 4 for deriving rates for the misclassification error, we need the constant

61 and y(i). They depend on the loss function ¢ and play an essential role in getting

learning rates. When ¢; satisfies the following increment condition with some p >0, C, > 0:
' p
‘¢7(X)‘ <c X" V[ =1 (5.5)

we can find 61 and ,u(l) explicitly and then derive learning rates for the total error from

Theorem 4. Denote C,, asa constant depending onlyon ¢ and k satisfying

k”pf g,

-1’

1+kﬁ¢

(5.6)

ekl ) + K2l )|+ 1.

Corollary 2. Assume that ¢ satisfies (5.5) and ¢; is locally Lipschitz at the origin. Let

lmax{ p-1,0}

0 < A <1. Choose the step sizes as 77, = with some 0<@<1 and C,, given

1
.k

by (5.6). Define «, by (0.4). Then

2D(i) g maxdp-2.-piT 1-0

(1-6)2"° )

E (Jorr.s —ax, ) < (

(1- Zgil)lma)({p'l} 1-6 19C¢ K
x exp{— T +—P
p{ (l . 9)C¢,k } lm|n{p+1,2}-|- 4

Proof. The increment condition (5.5) for ¢; tells us that

(5.7)
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¢, (K*[¢'(0)|/2)"},

which implies Cﬁfﬂ < C;kﬁfp ,V A <1. Also, the local Lipschitz constant can be bounded as

¢.(x) ¢ (0)
X

C, <4k’ max{ﬂg/ﬂ

L7 [-1,1],

» ¢ (K2 |(0) /1) +[¢ (O

L°[-1.1]

M (A1) < maxq

Choose  p(4)=C, A ™% Then, M(A)k®+2<p(A) YA<1, and our

conclusion follows from Theorem 4.

6 Error Bounds and Learning Rates
Applying the above mentioned techniques, we can derive the learning rates of the excess

misclassification error for the online algorithm (0.4) from our analysis on |, — ||, together

with the regularization error D(A).
The prediction power of classification algorithms are often measured by the misclassification
error which is defined for a classifier C: X — Y to be the probability of the event

{C(x)#Y}:R(C) =Prob{C(x) # y}= [P(y 2C(x) [ X)dpx,  (61)

Here p, denotes the marginal distribution of p on X, and P(-|X) the conditional
probability measure. The best classifier minimizing the misclassification error is called the Bayes
rule™™ and can be expressed as f_ = sgn( f,),where f isthe regression function

fp(X)=fydp(YI X) =P(y =1[x) - P(y = -1[ x). (6.2)
Y
In particular for the SVM 1-norm soft margin classifier with the hinge loss ¢(x) = (1—X), ,
we have an important relation™ was given as
R(sgn(f,)) —R(sgn(f,)) < &(f,) —&(f,). (6.3)

Such a relation is called a comparison theorem. For the general loss function, a simple
comparison theorem was established in [10, 14].

Proposition A. Let ¢ be an admissible loss function such that ¢ (0) exists and is

positive. Then there is a constant C, such that for any measurable function f , there holds

R(sgn(,)) ~ RGaN(f,) < ¢, fa(f,) - &(f,). 64)

If moreover, for some 7 €[0.1] and ¢ >0, p satisfies a Tsybakov noise condition: for

any measurable function f

px (san(f,) = f.) <cfR(san(f,)) - R(f,)}". (6.5)
then (6.4) can be improved as
R(sgn(f,))—R(f.) <{2c,c(e(f,) —e(f, )} (6.6)

The Tsybakov noise condition (6.5) was introduced in [15] where the reader can find more
details and explanation. The greater z is, the smaller the noise of o is. In particular, any

distribution p satisfies (6.5) with 7 =0 and c=1.
With a comparision theorem, it is sufficient for us to estimate the excess generalization error
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(0.7). In order to do so, we need the regularization error between f_  and fp.

Let us present an example to illustrate the learning rates of (0.6) from suitable choices of the
regularization parameter A = A(T) and the step size 7,.

Now, we see an example corresponds to the classical support vector machine (SVM) with ¢
being the hinge loss @#(X) = (1—X), . For this loss, the online algorithm (0.4) can be expressed
as a, =(0,--+,0) and

_ (1_ ntﬁ“)aﬂ if Y fo:1 (Xt) >1, 67)
“ - A, + 7Y K (%), if oy f, (x)<Ll. :

Corollary 3. Let ¢(X) = (1+ X), . Assume for some 0 < £ <1, the pair (p,K) satisfies
inf {|f, - . +24|a}=00). (6.8)

aeR™ PX
,8 e 1 (2p)s  2p+1
Forany 0<é&<—-—— choose 1=(T)=T7 ¥ and 5, = -t /2

2(5+1) 2+k
then
. B

E(R(sgn(f,, ) —R(f.))=0(T **). (6.9)

In (6.9), the expectation E is taken with respect to the random sample z € Z". We shall
use this notion throughout the paper, if the random variable for E is not specified. The condition

(6.8) concerns the approximation of the function f_ in the L' space LlpX by functions from
the RKHS H . It can be characterized by requiring f_ to lie in an interpolation space of the pair
(Llpx,HK) an intermediate space between the metric space LlpX and the much smaller

approximation space H, . For details, see the discussion in [10]. The assumption (6.8) is

satisfied when we use the Gaussian kernels with flexible variances and the distribution satisfies
some geometric noise condition.

Assumptions like (6.8) are necessary to determine the regularization parameter for achieving
the learning rates (6.9). This can be seen from the literature [12] about the off-line algorithm (0.2),

learning rates are obtained by suitable choices of the regularization parameter A = A(T),
according to the behavior of the approximation error estimated from a priori condition on the
distribution p and the space H .

Proof of corollary 3. Consider the hinge loss @(X) = (1—X), . Recall the relation (6.3)
between the excess misclassification error and the excess generalization error. Then
R(sgn(f,)) —R(f)<e(f,)—e(f,,)<e(f,)-e(f, )+ D). (6.10)

Using the uniform Lipschitz continuity of hinge loss, we know that
g( fam )—¢&( faﬂ_ ) <

faT+l @,

Lo
Combined with the assumption on the regularization error D(l)ﬁcﬁlﬁ for some

Cp > 0 and Corollary 1, it follows from (6.9) that
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— f

faT+l a;

R(sgn(f, ) -R(f,)<

<k

B
+cﬁl

1
L/’X

f, —f

a1 ay

g
+
. cﬁi

< k\/ﬂnoznl—%”2 +c, . (6.11)

Now we apply Corollary 2. It is easy to see that ¢ satisfies (5.5) with p =0, Cp =1 and

C¢'k =2+k?. Forany O<e< B , choose @ = 2fp+1 - (25 +De in Corollary 2.
2(8+)) 2(8+)) B
We know that E(||0:T+l - aA”;) is bounded by
1-0 __nb6-1 2
[2D(l) N 9T _Ixexp{ @a-2 )12 Tl,g}jL19(2 +9k ) |
A 1-0)2 @-0)(2+k*) AT

Select A=T7 with O0<y<min(l-6,0) . Since the asymptotic behavior
exp{—cT°} =O(T°) holds for any ¢ >0,5>0 and ¢ > 0. We know that there exists a

constant C,,_, dependingonlyon 6,k and y suchthat E(lety,, — e, [2) <C, , T 7.
Putting this back into (6.11), we have

_(0-1)
E(RGsgn(f, ) -R(f,)) <k/mkC,,, T 2 +c,T7.
Now take y = ! —ﬁ. We know that the following holds
2p+1) B
. P
E(R(sgn(f,, ) —R(f))=0(T *).

This proves our conclusion.
Corollary 4. Let ¢ be anadmissible loss functionand f_ € H, . There holds

e(t)—e(f,) <wlf,~ £ maxle]. o)., }
<kJmk e -], max{] é. ,Hg/ﬁ; o
where 1, istheinterval |, =[-C,,,C,, | with
C.., = maxti] |, kDT 73
- max{c e, 2B U 23

Proof. Since &(f, )—¢&(f,)=0, the definition for D(1) tells us that

f . <\2mx D(1)/ A . (6.12)

(1)

Note the elementary inequality
|#(u)—4(s)| < max{lp", ., o8] o, Hu—5.

where | is an interval containing U and S. Applying this inequality with u = yf_(X)

and s=yf, (X), we know that for any yeY, xe X, ‘¢(yfa(x))—¢(yfaﬁ(x))‘ can be
bounded by
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f, (0= T, 00| maxqlg . (D.Jg" [l (103,
where | is an interval containing yf,(x) and yf,(x). But |f,| <k|f,[, implies
V00l f ], <k|f ] and |y, (| <k|f], <kyJ2mkD(2)/2 . where
|f.l <vVmkfaf, . In connection with the fact  &(f,)-e(f,)<

fo—f

, connectting

a;

[ |y, 00 =g(yf,, ()] dp and the inequality | f, —f, | <k

with Corollary 1, this proves our conclusion.

7 Conclusion

In this paper, we provided an online generalized gradient classification algorithms for the
coefficient regularized classification algorithm. Different from the off-line algorithm, it’s also
suitable when the sample size or data becomes very large. It is based on regularization schemes in

the space R™ associated with general convex loss functions. For each t € N, the function ¢, is

in general dependent on the inputs {Z, :te N;} and we investigated explicit capacity
independent learning rates of the excess misclassification error for the hinge loss. Throughout the
paper a novel relation between ¢, and «, played animportant role in the excess regularized

generalization error. That is to say, the expectation ||0:T+1 -, ||2 over the random samples of
regularized sample error is aim at the excess misclassification error R(sgn(f, ))-

R(sgn(f,)), which is bounded by the excess generalization error &(f, )—e&(f)).
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