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摘要：文章研究基于凸损失函数的系数正则化在线分类学习算法问题，给出了基于欧式空间

的一种不依赖于样本容量的方法并且详细给出了该算法的误差分析过程。该分类算法的目的

是构造一个不依赖于样本容量和样本概率分布的分类器来学习未知概率分布的样本空间。文

章给出了基于欧式空间的梯度下降算法的具体产生过程，该方法的优点是对于样本容量较大

的样本空间同样可以有效的构造分类器进行分类。文章对由梯度下降算法产生的学习序列进

行了界的限定，在此过程中要求损失函数在原点是满足李普希茨条件的，并且对步长的具体

形式也做了要求，再次基础上明确的给出了其错分类误差。最后，以铰链损失函数为例给出

了该算法的误差界的分析. 
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Abstract: The present paper considers online classification learning algorithms associated with convex 
loss functions, and gives the error analysis of coefficient regularized online classification algorithms.  
The goal of classification is to consruct, on the basis of independent and identically distribution 
samples, a classifier which can predict the unknown distribution with small missclassification error. A 
novel capacity independent approach based on a Eucliean Space is presented. It designs a gradient 
descent online learning algorithm, which is suitable for large size samples. It shows how a local 
Lipschitz condition on loss function at the origin and some restrictions on step size to ensure the 
uniform boundedness of learning sequence, a crucial assumption for the convergence of the online 
scheme states in the present paper. Explicit learning rates with respect to the misclassification error are 
given in terms of the choice of step sizes and the regularization parameter. Error bounds associated 
with the hinge loss is presented to illustrate the method. 
Key words: Classification algorithm; online learning; coefficient regularization; error analysis 

 

0 Introduction 
Support vector machines (SVMs)[1] classification was introduced by Boser. Now, SVMs and 

related regularized methods have formed an important part of learning theory. They have been 
applied successfully to various practical problem in science and engineering, especially for 
classification problem. There are also many results and theories which can provide us to learn 
more knowledge about this aspect. Binary classification is one of the central application for 
machine learning methods in general and for SVMs in particular.  

Let X  be a compact metric space and {1,-1}Y = . A function :C X Y→  is called a  

classifier if it divides the input space X  into two classes. A real valued function 
RXf →:  
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can be used to generate a classifier ))(sgn()( xfxC = , where the sign function is defined 
as  

1))(sgn( =xf , if 0)( ≥xf  and 1))(sgn( −=xf  for 0)( <xf . For such a real 
valued  

function f , a loss function +→ RR:φ  is often used to measure the error: ))(( xyfφ ，

which is the local error at the point ),( yx ，while Yxf ∈))(sgn(  is assigned to the event 

Xx∈ . 

A Reproducing Kernel Hilbert Space (RKHS) KH  is defined as the completion of the span 

of }:),({ XxxKKx ∈⋅=  with the inner product ),(, yxKKK
Kyx = , 

where K  is a Mercer kernel on XX × , which is continuous, symmetric, and positive 

definite. The reproducing property 
KxKfxf ,)( =  holds for every KHf ∈ . For more 

properties of KH  see [2]. 

Assume that ρ  is an unknown probability distribution on YXZ ×=  and tzz {=  
TT

ttt Zyx ∈= =1)},(  is a set of random samples independently drawn according to ρ . The 

batch learning algorithms for classification is implemented by an off-line regularization scheme[3] 
in a reproducing kernel space involving sample z  and a loss function φ : 

}
2

))((1{minarg
1

2
, ∑

=
∈

+=
T

t
KttHfz fxfy

T
f

K

λφλ ,             (0.1) 

where 0>λ  is the regularizer parameter. 

By [4, 5] we know 
λα ,z

f  has changed into the form of 

,,),()(
1

,
zxxxKxf

m

t
ttz

∈=∑
=

α
λα  

(0.1) then becomes an infinite dimensional optimization problem on mR . In particular, now 
we considered the following coefficient regularized algorithm[6] 

}
2

))((1{minarg
1

2

2, ∑
=∈

+=
T

t
ttRz xfy

Tm
αλφα α

α
λ ,              (0.2) 

where ∑
=

=
m

t
tt xxKxf

1
),()( αα  and ∑

=

=
m

t
t

1

22

2 αα . 

Since )(xfα  is determined by its coefficients and the penalty is imposed on these 

coefficients. We call this regularization technique the coefficient regularization[3]. It was first 
introduced by Vapnik to design linear programming support vector machines. 

Online algorithm with linear complexity )(TO  can be applied and provide efficient 
classifier, when the sample size is large. It is known that there are many online algorithms to solve 
the classification problems (0.1). For example, there is a kind of fully online algorithm[7] which 

needs that the regularization parameters tλ  changes with the learning step t . These algorithms 

require that the loss function is derivable near the origin to maintain the existence of the gradient. 
The gradient descent algorithm for binary classification[8] improves the learning rates by the 
empirical covering number and Rademacher average. Yiming Ying and Dingxuan Zhou gave a 
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online algorithms[9] based on regularized schemes in reproducing kernel Hilbert space. In the 

present paper, we shall design a gradient descent online learning algorithm in the space mR  to 
show the error analysis for framework (0.2). 

By the sample error analysis[10] of learning theory, we know that λα ,z  has an asymptotic 

behavior to the regularization function mR∈λα  defined by 

}
2

)({minarg: 2

2
αλεα ααλ +=

∈
f

mR
，                   (0.3) 

where ∫= Z
yxdxyff ),())((:)( ρφε αα . Define 

}),())(({minarg: ∫∈
=

ZR
yxdxyf

m
ρφα α

α
φ . 

If we regard mR∈λα  as a good learner of φα , then we can use the classical gradient 

descent method to learn step by step. To explain this fact, we introduce the regularized loss 

function θ  defined for mR∈α  and Zyxz ∈= ),(  by 

2

22
))((:),(),( αλφαθαθ αλ +== xyfzz  

and the regularized generalization error )(αF  defined for mR∈α  as 

∫ +==
Z

dxyfFF 2

22
))(()()( αλρφαα αλ . 

Define the gradient of )(αF  at α  as ),,,()(
21 m

FFFFD
ααα

αα ∂
∂

∂
∂

∂
∂

= . Then for 

mR∈α  and Zyxz ∈= ),( , we have  

λαφαθ αα += − )())((:),( ' xyKxyfzD X , 

where )),(),,(()( 1 mX xxKxxKxK ，= , '
−φ  is the left derivative[8] of φ  at the point 

))(( xyfα  with respect to α . The Hilbert space valued random variable ),( zD αθα  plays the 

role of the gradient of the functional θ  defined above. So 

),,,()(
21 m

FFFFD
ααα

αα ∂
∂

∂
∂

∂
∂

=  

       ρφλα α dxyKxyf XZ )())(('
−∫+=  

                          ,),,(),())((( 1
'

1 yxdxxyKxyfZ ρφλα α−∫+=  

                        )),(),())((( ' yxdxxyKxyf mZm ρφλα α−∫+ . 

The classical gradient descent[11] tells us that the following sequence ,:{ m
tt Rgg ∈  

}1+∈ tNt  provides an approximation to λα , 

)0,,0(1 =g , TNt∈∀ , 

)),()())((( '
1 yxdxyKxyfggg XgZtttt t

ρφλη ∫ −+ +−= . 

Unfortunately, the use of this algorithm requires knowledge of the distribution. However, As 
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we only have the random values )())(('
tXttt xKyxfy

tα
φ− . Then we can give the following 

Stochastic Gradient Descent (SGD) online algorithm : 

)0,,0(1 =α , TNt ∈ , ))())((( '
1 tXttttttt xKyxfy

tαφλαηαα −+ +−= .    (0.4) 

For each TNt ∈  , the function tα  is in general dependent on the inputs }:{ Tt NtZ ∈ . 

Part of the paper deal with the expectation 

21 λαα −+T  with  fixed 0>λ                     (0.5) 

over the random samples of regularized sample error. 

Recall that for the online learning algorithm (0.4), we deal with the classifer )sgn(
1+T

fα  

produced by the real valued function 
1+T

fα  from a sample T
ttzz 1}{ == . So the error analysis for 

the classification algorithm (0.4) will aim at the excess misclassification error 

   ))(sgn())(sgn(
1 ρα fRfR

T
−

+
                     (0.6) 

which can often be bounded by the excess generalization error[12] 

)()(
1 ρα εε ff

T
−

+
,                          (0.7) 

where ρf  is a minimizer of the generalization error 

}:)({infarg Xonmeasurableisfff
KHf
ερ ∈

= . 

1 Results 
The first result stated in the present is that the sequence }{ tα  defined by (0.4) converges in 

expectation to λα  in mR  as long as the sequence is uniformly bounded. 

Definition 1. We say that +→ RR:φ  is an admissible loss function if it is convex and 

differentiable at 0  with 0' <φ . The convexity of φ  tells us that the left derivative )(' x−φ  

δφδφδ /))()((lim 0 xx −+= <  exists and equals δφδφδ /))()((sup 0 xx −+< . It is the 

same as )(' xφ  when it coincides with the right derivative 

δφδφδφδφφ δδ /))()((inf/))()((lim)( 00
' xxxxx −+=−+= >→+ +

. 

Theorem 1. Let 0>λ  and the sequence of positive step sizes }{ tη  satisfy 

             ∑
∞

=

+∞=
1t

tη , 0lim =
∞→ tt
η .                        (1.1) 

If )(xφ  is an admissible loss and the learning sequence tα  defined by (0.4) is uniformly 

bounded on mR , then 

0)(
21T →−+∈ λααTZzE    as  +∞→T .                (1.2) 

Theorem 1 will be proved in Section 5. The assumption of uniform boundedness is mild and 

will be studied in Section 3. In particular, we shall verify that 
2tα  is uniformly bounded when 

∞<−
≤

xx
Rx

/)0()(sup '' φφ  for any R  and λη Ct ≤  for some constant λC . 

Our second result is the following relation between the excess regularized generalization 
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error and the mR  metric which plays an essential role in proving Theorem 1. 
Theorem 2. Let φ  be an admissible loss function and 0>λ . For any mR∈α , there 

holds 

}
2

)({}
2

{
2

2

2

2

2

2

2 λαλαλ αλεαλεααλ
+−+≤− ff ）（ .           (1.3) 

 
Theorem 2 will be proved in Section 4. It will be used to derive convergence rates of 

)(
21T λαα −+∈ TZzE  when the step size decays in the form )(/ λµη θ−= tt  with a constant 

)(λµ . 
Definition 2. Define the regularization error with respect to (0.2) associated with the triple 

( )ρφ ,,K  as 

2

2

2

2 2
)()(}

2
)()({inf)( λραραα

αλεεαλεελ
λ

+−=+−=
∈

ffffD
mR

, 0>λ .     (1.4) 

then, we have 

)()()()()()(
11 ραααρα εεεεεε

λλ
ffffff

TT
−+−=−

++
 

)()()(
1

λεε
λαα Dff

T
+−≤

+
.                  (1.5) 

The regularization error term )(λD  in the error decomposition (1.5) is independent of the 

sample T
ttzz 1}{ == . It can be estimated by the rich knowledge of approximation theory. 

The first term )()(
1 λαα εε ff

T
−

+
 in (1.5) is called the sample error which may be bounded 

by 
K

ff
T λαα −
+1

, which will be bounded by 
21 λαα −+T . 

2 Bounding the Learning Sequence 
Definition 3. We say that '

−φ  is locally Lipschitz at the origin if the local Lipschitz constant 

}
)0(

:
)0()(

sup{)(
'2''

λ
φφφ

λ
k

x
x

x
M ≤

−
= −−

                (2.1) 

is finite for any 0>λ , where ∞<=
∈

),(sup:
,

txKk
Xtx

. 

The above local Lipschitz condition is equivalent to the existence of some 0>ε  and 

0>L  such that )()0()( '' xLx ≤−− φφ  for every [ ]εε ,−∈x . In fact, the latter requirement 

implies 

}/))0()/)0(((,/)0()/)0((,max{)( ''2'''2' εφλφφεφλφφλ +−−≤ −− kkLM . 

Thus, when φ  is twice continuously differentiable on R , '
−φ  is locally Lipschitz at the 

origin with 
]/)0(,/)0([

''
'2'2)(

λφλφ
φλ

kkL
M

−∞
= . Examples of loss functions will be discussed after 

the following theorem on the boundedness of the sequence { }tα . 

Theorem 3. Assume that '
−φ  is locally Lipschitz at the origin. Define { }tα  by (0.4). If the 



 http://www.paper.edu.cn 

- 6 - 

中国科技论文在线

step size tη  satisfies 1))(( 2 ≤+ λλη kMt  for each t , then 

,
)0('

2 λ
φ

α
k

t ≤   Nt∈∀ .                      (2.2) 

Proof. We prove (2.2) by induction. It is trivial that )0,,0(1 =α  satisfies the bound (2.2). 

Suppose that this bound holds true for m
t R∈α . Consider 1+tα . It can be written as  

)1( ληt− )())(('
tXttttt xKyxfy

tαφηα −− , 

that is, 

[ ] )()0()()0())(()1( '''
tXtttXtttttt xKyxKyxfy

t
φηφφηαλη α −−−− − . 

Since 12 =ty , we can write the middle term as 

)(
)()()]0())(([ 2''
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tttXttt

xfy
xfxKyxfy

t

t

α

αα φφ −−  

)()(
)(

)]0())(([ ''

ttX
tt

tt xfxK
xfy

xfy
t

t

t
α

α

α φφ
×

−
= − . 

Since '
−φ  is nondecreasing, 0))0()(( '' ≥−− uu φφ  for any Ru∈ , we can have 

0
)(

)0())(( ''

≥
−−

tt

tt

xfy
xfy

t

t

α

α φφ
. 

Therefore, it follows that 

2

'
''

21 )())()(
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)0())((
()1( tXttXt
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tt
tttt xKxKxf

xfy
xfy

t

t

t φη
φφ

ηαληα α
α

α −×
−

−−= −
+  

     
2

'
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)0())((
()1( tXttXt
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xfy

t

t

t φη
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ηαλη α
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α −×
−

−−≤ −  

2

' )()0( tXt xKφη+ . 

Define an operator mm
t RRL →:  as )())(,()( tXtXt xKxKggL = , then, the middle 

term can be written as 

)(
)(

)0())((
)()]0())(([

''
''

tt
tt

tt
tXttt L

xfy
xfy

xKyxfy
t

t

t
α

φφ
φφ

α

α
α ×

−
=− −

− ， 

here by means of the property for )())(,()()( tXtXttXt xKxKxKxf
t

αα = . tL  is a 

self-adjoint, rank-one, positive linear operator. The operator norm can be bounded as 
2kL

K
m HRt ≤
→

. 

Since 
2

2
222

))((),(),( gkxfKgggL tgXt ≤==  for any mRg∈ . The local Lipschitz 

condition tell us that 
)(

)0())(( ''

tt

tt

xfy
xfy

t

t

α

α φφ −−  is well defined (set as zero when 0)( =txf
tα

). It 
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is bounded by ))0(( '2 λφkM , since λφααα )0())(,()( '2
2 kkxKxfy tXttt t
≤≤=  by 

our induction hypothesis.  

Since '
−φ  is nondecreasing, 0))0()(( '' ≥−− uu φφ  for any Ru∈ . Thus, 

0
)(

)0())(( ''

≥
−−

tt

tt

xfy
xfy

t

t

α

α φφ
. 

Then, 

2

'' )()]0())(([)1( tXtttttt xKyxfy
t

φφηαλη α −−− −  

2
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)(

)0())((
()1( tt
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tt
ttt L

xfy
xfy

t

t α
φφ

ηαλη
α

α ×
−

−−= −  

2
)1( tt αλη−≤ . 

This in connection with the induction hypothesis on 
2tα  implies that 

λ
φ

φη
λ
φ

ληα
)0(

)0(
)0(

)1(
'

'
'

21

k
k

k
ttt =+−≤+  . 

This completes the induction procedure and proves the theorem. 
Corollary 1. Define a hypothesis space as 

⎭
⎬
⎫

⎩
⎨
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i
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2
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j
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i
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= ==
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3 Excess Generalization 
In this section, we prove Theorem 2, a relation between 

2λαα −  and  

⎭
⎬
⎫

⎩
⎨
⎧ +−

⎭
⎬
⎫

⎩
⎨
⎧ +

2

2

2

2 2
)(

2
)( λαα αλεαλε

λ
ff . 

This relation is very important for the proof of the general convergence result, Theorem 1, as 
well as for the error analysis done in the next section. 
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Lemma 1. Assume φ  is differentiable, then λα  satisfies 

∫ =−+−
Z

dxfxfyxf ,0),())()(())((' λλααα αααλρφ
λλ

 mR∈∀α .      (3.1) 

Proof. As λα  is a minimizer of the regularized generation error defined by (0.3), taking  

)0,,0(=α  yields )0()(
2

)( 0
2

2
φεαλε λαλ

=≤+ ff , then for any mR∈α  and 

0>θ , we know that 
⎭
⎬
⎫

⎩
⎨
⎧ +−+++ )

2
)(()

2
)((1 2

2

2

2 λαλθαα αλεθααλε
θ λλ

ff  is nonnegative 

and equals 

{ } 2

22
),()())(())((

)(
1 αθλααλρφφ

θ λααθαα
α

λλ∫ ++−+Z
dxyfxyfxyf

xyf
. 

Let +→ 0θ , by the Lebesgue Dominant Theorem, we see that, 

∫ ≥+
Z

dxyfxyf 0),()())((' ααλρφ λααλ
. 

It follows that 

.0),)())(((),()),(())(( ''∫ ∫ ≥+=+
Z Z XX dxyKxyfdxKyxyf αλαρφααλραφ λαλα λλ

 

This is true for every mR∈α , which implies 

∫ =+
Z X dxyKxyf )0,,0()())((' λα λαρφ

λ
.              (3.2) 

Taking product with λαα −  in mR  proves the lemma. 

Lemma 2. Let 0>λ  and φ  be a differentiable convex loss function. Then for any 
mR∈α  there holds 

}
2

)({)}
2

)({(
2

2

2

2

2

2

2 λααλ αλεαλεααλ
λ
+−+≤− ff . 

Proof. Let mR∈α , define a univariate function αGG =  by 

2

2)( )(
2

)()( λλααθα ααθαλεθ
λλ

−++= −+fG , R∈θ . 

Then 

2

22
)()1( αλε α += fG ,

2

22
)()0( λα αλε

λ
+= fG .            (3.3) 

Since φ  is differentiable, as a function of θ , G  is differentiable. In fact, if we denote 

)( λλθ ααθαα −+= , then 

{ })()(1lim)(
0

' θθθ
θ

θ
θ

GGG −∆+
∆

=
→∆

 

            ∫ −∆

−
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→∆ Z xfxfy
xfxfy
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lim),(
0

λ

λ

αα

αα

θλθ θ
αααλ  

              { }ρφθφ
θλθ αααα dxyfxfxfyxyf )))(())()(()(( −−∆+× . 

The Lebegue Dominant Theorem ensures that 
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ρφαααλθ
λθ αααλθ dxfxfyxyfG

Z
))()(())((),()( '' −+−= ∫ . 

The first term of )(' θG  can be written as 
2

2
),( λλλ ααλθαααλ −+− . This in 

connection with Lemma 1 tells us that 

 ∫ −−=−
Z t dxfxfyxfy ρφαααλ

λλ αααλλ ))()(())((),( ' , and )(' θG  equals 

∫ −++−
Z

xfxfyxyf )))()(()(([ '2

2 λλ αααλ θφααλθ  

ρφ
λλ ααα dxfxfyxyf ))()(())]((' −− .             (3.4) 

Since φ  is convex in R , it satisfies 

0)))(()(( 212
'

1
' ≥−− xxxx φφ , Rxx ∈∀ 21, . 

Using this for ))()(()(1 xfxfyxyfx
λλ ααα θ −+=  and )(2 xyfx

λα
= , we see from (3.4) 

that for )1,0(∈θ , 
2

2
' )( λααλθθ −≥G . 

Therefore, 

⎭
⎬
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⎭
⎬
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⎩
⎨
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2

2
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1

0

' )( θθ dG 2

22 λααλ
−≥ . 

This proves the desired result. 

If φ  is differentiable, we approximate it by εφ  which is convex, differentiable and defined 

for 10 ≤< ε  as 

∫∫ −
=−=

x

x
duudxx

εε φ
ε

θεθφφ )(1)(:)(
1

0
. 

The approximation εφφεφφφ
εε ],[

'1

0
)()()()(

xxL
udxuxxx

−− ∞
≤−−=− ∫  is valid, 

hence for any 0>R , there holds 

)(
],[

εφφε O
RRC
=−

−
 ,   +→ 0ε .                  (3.5) 

Now we can prove Theorem 2 for a general loss function. 

Proof of Theorem 2. We define, for any 10 ≤≤ ε , ∫= Z
dxyff ρφε αεα

ε ))(()()(  and 

⎭
⎬
⎫

⎩
⎨
⎧ +=

∈

2

2
)()(

2
)(infarg αλεα α

ε

α

ε
λ f

mR
.              (3.6) 

For 0=ε , we have used the conventional notation )()()0(
αα εε ff =  and λλ αα =)0( . 

Since )(ε
λα  is the minimizer of (3.6), by taking )0,,0(=α  we get 

∞<≤=≤+
− ]0,1[

)(2

2

)()( )0()0(
2

)( )( C
f φφεαλε ε

εε
λα

ε
ε
λ

 

which implies 

λφα ε
λ ]0,1[2

)( 2
−

≤
C

  , 10 ≤≤∀ ε .               (3.7) 

Since any closed ball { }RRB m
R ≤∈=

2
, αα  of the Hilbert space mR  is weekly 
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compact, the estimate (3.7) tells us that there exists a sequence { }∞
=

>
1

0
jjε  such that 

0lim
j

=
∞→ jε  and )( jε

λα  converges to some mR∈*
λα  weekly, that is, 

),(),(lim *)( αααα λ
ε
λ =

∞→

j

j
,  mR∈∀α .               (3.8) 

In particular, 
2

)(

2

**)(**2

2

* lim),(lim),( jj

jj

ε
λλλ

ε
λλλλ ααααααα

∞→∞→
≤==  and 

λφαα ε
λλ ]0,1[2

)(

2

* 2lim
−∞→

≤≤
Cj

j .               (3.9) 

Let )(xK X=α  in (3.8). Then by )())(,( xfxK X αα =  one has 

))(,(lim)(lim xKxf
Xjj

j
j

ε
λα

αε
λ ∞→∞→

= ,  then ρφε ε
λλ αα

dxyff
Zj j∫∞→

= ))((lim)( * . The uniform 

bound (3.7) of 
2

)( jε
λα  in connection with uniform convergence (3.5) of εφ  to φ  ensures that 

ρφε ε
λ

ε
λ α

ε

α

ε dxyff
Zjj j

j
j

j ∫∞→∞→ = ))((lim)(lim )()(
)()(

 

( )lim ( ( ))jZj
yf x dε

λα
φ ρ

→∞
= ∫  

)( *
λα

ε f= .                                    (3.10) 

Therefore, by (3.9), we have 

⎭
⎬
⎫

⎩
⎨
⎧ +≤+ ∞→

∗
∗

2

2

)()(2

2 2
)(lim

2
)( j

j
j ff j

ε
λα

ε
λα

αλεαλε ε
λλ

. 

Taking λαα =  in (3.6), we know that 

⎭
⎬
⎫

⎩
⎨
⎧ +≤

⎭
⎬
⎫

⎩
⎨
⎧ + ∞→∞→

2

2
)(2

2

)()(

2
)(lim

2
)(lim λα

εε
λα

ε αλεαλε
λε

λ
ff jj

j
j

jj  

          
2

22
)( λα αλε

λ
+= f , 

which means 

2

2

2

2

*

2
)(

2
)( λαλα

αλεαλε
λλ
+≤+∗ ff . 

It tells us that *
λα  is also a minimizer of 

2

22
)( λα αλε

λ
+f . The strict convexity of the 

functional 
2

22
)( λα αλε

λ
+f  on mR  verifies the uniqueness of λα  which leads to λλ αα =∗ . 

That is, (3.8) and (3.9) hold with ∗
λα  replaced by λα . Apply Lemma 2 to the modified loss 

function 
jε

φ , we have 

⎭
⎬
⎫

⎩
⎨
⎧ +−

⎭
⎬
⎫

⎩
⎨
⎧ +≤−

2

2

)()(2

2
)(2

2

)(

2
)(

2
)(

2
j

j
jjj ff ε

λα

ε
α

εε
λ αλεαλεααλ

ε
λ

.    (3.11) 

Apply (3.8) to ),( λααα − , we know that 
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),,(lim),(lim),( )()(2

2 λ
ε
λλ

ε
λλλ αααααααααααα −−=−−−=−

∞→∞→

jj

jj
 

which can be bounded by 
22

)(lim λ
ε
λ αααα −−

∞→

j

j
, hence,  

2

)(
2

lim
22

j

j

ε
λλ ααλααλ

−≤−
∞→

. 

This in connection with (3.11), (3.9) and (3.10) implies that 
2

22 λααλ
−  is bounded by 

⎭
⎬
⎫

⎩
⎨
⎧ +−

⎭
⎬
⎫

⎩
⎨
⎧ +

∞→

2

2

2

2
)(

2
)(

2
)(lim λαα

ε αλεαλε
λ

ffj

j
. 

Since )()(lim )(
αα

ε εε ffj

j
=

∞→
, the conclusion of Theorem 2 is proved. 

4 General Convergence Results 
In this section we prove Theorem 1. The essential estimate in the proof will also be used in 

the next section to give convergence rates. Note that the uniform boundedness of 
2tα  by B  

implies 

BkxKyxfy
kBkBLttXttt t

λφλαφ α +≤+
−−− ∞ ],[

'

2

' )())(( . 

For simplicity, we denote ∏
+=

=−
T

Tj
j

1

1)1( λη  and ∑
+=

=
T

Tj
j

1

0λη . 

Lemma 3. Assume for some Nt ∈0  and 0~
>λC , that holds 1<ληt , 

 λα λαφ CxKyxfyE ttXtttzz tT

~))())(((
2

2

'
,,1

≤+−                  (4.1) 

for any 0tt ≥ . Then for 0tT > ,  

∏
=

+ −−≤−
−

T

tt
tzztTzz tT

EE
0

01011
)()1(

2

2,,
2

21,, λλ ααληαα  

,)1(~

0 1

2∑ ∏
= +=

−+
T

tt

T

tj
jtC ληηλ                  (4.2) 

which can be controlled further by 

∑ ∑∑
= +== ⎭

⎬
⎫

⎩
⎨
⎧
−+−

⎭
⎬
⎫

⎩
⎨
⎧
−

−

T

tt

T

tj
jttzz

T

tt
t CE

t

0

0101

0 1

22

2,, exp~)(exp ληηααλη λα    (4.3) 

Proof. Recall that λαηαα tttt −=+1  where ttXtttt xKyxyf λαφα α
λ += − )())((' . 

Then 

),(2
2

2

22

2

2

21 ttttttt αααηαηαααα λ
λλ

λλ −++−=−+ .         (4.4) 

By taking )()),(( ttX xfxK αα = , part of the last term of (4.4) equals 

))()(())(()),())((( ''
tttttttXttt xfxfyxfyxKyxfy

ttt αααλα λ
φααφ −=− −− .    (4.5) 

Since φ  is a convex function on R , we know that 

)()())((' ababa φφφ −≤−− , Rba ∈∀ , . 



 http://www.paper.edu.cn 

- 12 - 

中国科技论文在线

Applying this reaction to )( tt xfya
tα

=  and )( tt xfyb
λα

=  together with (4.5) yields 

))(())(()),())((( '
ttttttXttt xfyxfyxKyxfy

tt ααλα φφααφ
λ

−≤−− .    (4.6) 

The schwarz inequality 
2

2

2

222 2
1

2
1),( λλλ αααααα +≤≤ ttt  implies 

2

2

2

2 22
),( ttt αλαλαααλ λλ −≤− . 

Putting this and (4.6) into the last term of (4.4), we know that ),( tt ααα λ
λ −  can be 

bounded by 

⎥⎦
⎤

⎢⎣
⎡ +−⎥⎦

⎤
⎢⎣
⎡ + 2

2

2

2 2
))((

2
))(( ttttt xfyxfy

t
αλφαλφ αλαλ . 

Since tα  depends on { }11 ,, −tzz , but not on tz , It follows that 

),(,, 21 ttzzz t
E ααα λ

λ −  can be bounded by 

]))
2

))(([]
2

))((([( 2

2

2

2,, 11 tttttzzz xfyxfyEE
ttt

αλφαλφ αλαλ
+−+

−
 

     ])
2

)([]
2

)(([ 2

2

2

2,, 11 tzz tt
ffE αλεαλε αλαλ

+−+=
−

.                    (4.7) 

This in connection with (4.1) and (4.4) gives 

)()( 2

2,,
2

21,, 111 λλ αααα −≤−
−+ tzztzz tt

EE  

]
2

)([]
2

)(([2~ 2

2

2

2,,
2

1 tzztt tt
ffEC αλεαλεηη αλαλ λ

+−+++ .        (4.8) 

By Theorem 2, this implies that )( 2

21,,1 λαα −+tzz t
E  is bounded by 

22

2,,
~)()1(

11 ttzzt CE
t

ηααλη λλ +−−
−

.                    (4.9) 

Applying this relation iteratively for 0,,1, tTTt −= , we see that (,,1 TzzE  

)2

21 λαα −+T is bounded by 

2
1

22

21,,1
~)1(~)()1)(1(

21 −−− −++−−−
− TtTTzzTT CCE

T
ηληηααληλη λλλ  

∑ ∏∏
= +==

−+−−≤≤
−

T

tt

T

tj
jt

T

tt
tzzt CE

t

00

0101
1

22

2,, )1(~)()1( ληηααλη λλ . 

This proves the first statement. 

The second statement follows from the inequality µµ −≤− e1  for any 0≥µ . 
We are in a position to prove Theorem 1 stated in the introduction. For this purpose we use 

(4.2) while the bound (4.3) will be used to derive explicit learning rates in the next section. 

Proof of Theorem 1. By (1.1), there exists an integer such that 21≤ληt  for all 0tt ≥ . 

Since }{ tα  is uniformly bounded in mR , (4.1) is true for some constant λC . Applying Lemma 

3, it is sufficient to estimate the right side of (4.2). 
According to the assumption (1.1) on the step size, we have 
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  .Tas ,0}exp{)1(
0 0

∞→→−≤−∏ ∑
= =

T

tt

T

tt
tt ληλη  

So for any 0>ε  there exists some NT ∈1  such that the second term of (4.2) is bounded 

by ε  whenever 1TT ≥ . 

To deal with the first term, we use the assumption 0lim =
∞→ tt
η  and know that there exists 

some )(εt  such that λεη ≤t  for every )(εtt ≥ . Write ∑ ∏
= +=

−
T

tt

T

tj
jt

0 1

2 )1( ληη  as 

∏∑ ∏ ∑
+== += +=

−+−
T

tj
j

t

tt

T

tj

T

tt
tjt

1

)(

1 1)(

22 )1()1(
0

ληηληη
ε

ε

.                 (4.10) 

Since )(εt  is fixed, we can find some NT ∈2  such that for each 2TT ≥ , there holds 

ελ
ε

λ
ηη

ε ε 21)( 1)( 4
)(log12 tT

tj

T

tj jj∑ ∑+= +=
≥≥ . It follows that for each )(0 εttt ≤≤ , there holds 

)(
4}exp{}exp{)1(

2

1)(11 ε
ελληληλη

ε t
T

tj j
T

tj j
T

tj j ≤−≤−≤− ∑∑∏ +=+=+=
. This in connection 

with the bound 21≤ληt  for each 0tt ≥  tells us that the first term of (4.10) is bounded by 

εη
ε
ελληη

εε

≤≤− ∑∑ ∏
== +=

)(
2

2)(

1

2

00
)(

4)1(
t

tt
t

t

tt

T

tj
jt t

. 

The second term of (4.10) is dominated by ∑ ∏−

+= +=
−

1

1)( 1
)1(T

tt

T

tj jtε
ληηλε . But 

)1(1 ληλη tt −−= . Then 

∏∑
+=+=

−
T

tj
j

T

tt
t

11)(

)1( ληηλ
ε

∑ ∏∏
+= =+=

−−−=
T

tt

T

tj
j

T

tj
j

1)( 1

])1()1([
ε

ληλη  

1])1(1[
1)(

≤−−= ∏
+=

T

tj
j

ε

λη . 

Therefore, when },max{ 21 TTT ≥ , by Lemma 3, we have εαα λλ )~21()( 2

21 CE T +≤−+ . 

This proves Theorem 1. 

5 Convergence Rates 
Now we can derive convergence rates for the error .

21 λαα −+T  The step size here is 

often of the form θλµ
η

tt )(
1

=  for some ]1,0(∈θ  and 0)( >λµ . So to apply Lemma 3 for 

getting error bounds, we need to estimate the summations in (4.3) and lead to the following 
lemmas. 

Lemma 4[9]. For any Tt <  and θ<0 , there holds 

⎪⎩

⎪
⎨
⎧

=+−+

<+−+
−≥

−−

+=

−∑
.1)1log()1log(

,1])1()1[(
1

1 11

1 θ

θ
θ

θθ
θ

iftT

iftT
j

T

tj

(5.1) 
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The proof follows from the simple inequality ∫∑
+

+

−
+=

− ≥
1

1
1

.
T

t

T

tj
duuj θθ   

The next lemma in a modified form was given in [13] for 12/1 << θ .  

Lemma 5[9]. Let 10 ≤≤ v  and .10 ≤< θ  Then }exp{1
1

1

1
2 ∑∑

+=

−
−

=

−
T

tj

T

t

jv
t

θ
θ  is bounded 

by 

　　　

⎪
⎪
⎩

⎪⎪
⎨

⎧

=+
−

<+
−
−

−
−

+

−

−
−

−

−

.1,)1(
1

8

,1},)1(
1

)21(exp{
2)1(

918 1
1

1

1

θ

θ
θθ

θ
θ

θ

θ

θ

VT
v

TvT
vT  

We are in a position to state the convergence rates for the online algorithm (0.4). To this end, 
we need the following constant depending on λ : 

.4~ 2

]/)0(,/)0([

'2
'2'2 λφλφλ φ

kkL
kC

−− ∞
=                 (5.2) 

Theorem 4. Assume that '
−φ  is locally Lipschitz at the origin. Choose the step sizes as 

θλµ
η

tt )(
1

=  for some ]1,0(∈θ  and .)()( 2 λλλµ +≥ kM  Define }{ tα  by (0.4) and 

λC~  by (5.2). Then there holds  

(1) For 10 <<θ , 

.
)(

~19}
)()1(

)21(exp{

)
))((2)1(

~9)(2()(

1
1

21

1
2

21

θ
λθ

θ

θ

θ
λ

λ

λλµλµθ
λ

λµθλ
λαα

T
CT

TCDE T

+
−
−

−×

−
+≤−

−
−

−

−

+

(5.3) 

(2) For 1=θ , )( 2

21 λαα −+TE  can be bounded by  

.)
))()((

~9)(2( )(λµ
λ

λ

λλµλµλ
λ −

−
+ TCD

                 (5.4) 

Proof. The condition on the step size tells us that 1))(( 2 ≤+ λλη kMt  for each t . By 

Theorem 3, this yields ,
)0('

2 λ

φ
α

k
t ≤  and hence 

λ

φ
α

)0(
)(

'2

2

k
xfy tt t

≤  for each t . 

Consequently, both )( tt xfy
tα

 and 0  lie in the interval ])0(,)0([ '2'2 λφλφλ kkI −= . 

It follows that 
2

)(

'

2
)())((

λ

φφ α ILtXttt kxKyxfy
t ∞−− ≤‘  and 

.)0()(
2

)(

''

2 λ

φφλ α ILt kkxf
t ∞−≤≤  

Then (4.1) holds with 10 =t  and λC~ . This in connection with (4.3) of Lemma 3 tells us 

that ,)( 21
2

21 IIE T +≤−+ λαα  where  
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( ) ( )( ) ( ) ⎭
⎬
⎫

⎩
⎨
⎧
−=−−= ∑∑∑

=

−

==

T

t

T

t

T

t
j

t
C

I
t

I
11

222
2

21
1

1 exp1
~

,}exp{ θ
θ

λ
λθ λµ

λ
λµ

αα
λµ
λ

. 

Since )0,,0(1 =α , (1.4) gives λλαα λ )(22

21 D≤− . By Lemma 4, we know that 

( )
( ) ( ) ( )

( ) ( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+

<<
⎭
⎬
⎫

⎩
⎨
⎧

+
−
−

−
≤

−

−
−

.1,)1(2

,10,1
1

21exp)(2 1
1

1

θ
λ
λ

θ
λµθ
λ

λ
λ

λµ
λ

θ
θ

ifTD

ifTD

I  

By Lemma 5, 2I  can be bounded by  

( )( ) ( )
( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

++
−

<<
⎭
⎬
⎫

⎩
⎨
⎧

++
⎭
⎬
⎫

⎩
⎨
⎧

+
−
−

−
−

−

−
−

−

−

.1,11
1

8~

,10,1181
1

21exp
21

9
~

22

2
1

1

1

1

2

θ
λµλλµ

θλλµ
λµθ
λ

θλµ

λµ
λ

λ

θθ
θ

θ

θ

θ
λ

if
T

T
C

if
TT

TTC

 
This proves Theorem 4. 
To apply Theorem 4 for deriving rates for the misclassification error, we need the constant 

λC~  and ( )λµ . They depend on the loss function φ  and play an essential role in getting 

learning rates. When '
−φ  satisfies the following increment condition with some :0,0 >≥ pcp  

,1,)(' ≥∀≤− xxcx p
pφ                     (5.5) 

we can find λC~  and ( )λµ  explicitly and then derive learning rates for the total error from 

Theorem 4. Denote kC ,φ  as a constant depending only on φ  and k  satisfying 

}.1)0()0(

,])0()([1

,)0(2,2max{

'21'2

]1,1[

''2

2'121

]1,1[

'
,

++

−+

≥

−

−−

+

−−

∞

∞

φφ

φφ

φφφ

kkc

xxk

ckkC

pp
p

L

p

p
p

Lk

            (5.6) 

Corollary 2. Assume that φ  satisfies (5.5) and '
−φ  is locally Lipschitz at the origin. Let 

.10 ≤< λ  Choose the step sizes as θ
φ

λη
tC k

p

t
,

}0,1max{ −

=  with some 10 << θ  and kC ,φ  given 

by (5.6). Define tα  by (0.4). Then 

)
2)1(

9)(2()( 1

1},2max{
2

21 θ

θ

λ θ
λ

λ
λαα −

−−−

+ −
+≤−

TDE
pp

T  

( ) .
19

}
1

)21(exp{ }2,1min{
,1

,

}1,max{1

θ
φθ

φ

θ

λθ
λ

T
C

T
C p

K

k

p

+
−

−

+
−

−
−×    (5.7) 

Proof. The increment condition (5.5) for '
−φ  tells us that 
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}))0((max{4~ '2

],1,1[

'2 p
pL

kckC λφφλ −− ∞
≤ , 

which implies .1,~ 2
, ≤∀≤ − λλφλ

p
kCC  Also, the local Lipschitz constant can be bounded as 

}.)0())0(()0()(max{)( '1'2

]1,1[

''

φλφφφλ +
−

≤ −

−

−

∞

p
p

L

kc
x

xM ，  

Choose ( ) { }0,1max
,

−−= p
kC λλµ φ . Then, ( ) 1,)( 2 ≤∀≤+ λλµλλ kM , and our 

conclusion follows from Theorem 4. 

6 Error Bounds and Learning Rates 
Applying the above mentioned techniques, we can derive the learning rates of the excess 

misclassification error for the online algorithm (0.4) from our analysis on 
21 λαα −+T together 

with the regularization error )(λD . 

The prediction power of classification algorithms are often measured by the misclassification 
error which is defined for a classifier YXC →：  to be the probability of the event 

,)|)((})({Pr)(:})({ X
X

dxxCyPyxCobCRYxC ρ∫ ≠=≠=≠     (6.1) 

Here Xρ  denotes the marginal distribution of ρ  on X , and )|( xP ⋅  the conditional 
probability measure. The best classifier minimizing the misclassification error is called the Bayes 

rule[13] and can be expressed as )sgn( ρff c = , where ρf  is the regression function 

).|1()|1()|()( xyPxyPxyydxf
Y

−=−=== ∫ ρρ             (6.2) 

In particular for the SVM 1-norm soft margin classifier with the hinge loss +−= )1()( xxφ , 
we have an important relation[12] was given as 

)()())(sgn())(sgn( ραρα εε fffRfR −≤− .                (6.3) 

Such a relation is called a comparison theorem. For the general loss function, a simple 
comparison theorem was established in [10, 14]. 

Proposition A. Let φ  be an admissible loss function such that )0(''φ  exists and is 

positive. Then there is a constant φc  such that for any measurable function f , there holds 

)()())(sgn())(sgn( ραφα εε ffcfRfR c −≤− .               (6.4) 

If moreover, for some ]1.0[∈τ  and 0>c , ρ  satisfies a Tsybakov noise condition: for 

any measurable function f , 

      τ
ααρ )}())(sgn({))(sgn( ccX fRfRcff −≤≠ ,           (6.5) 

then (6.4) can be improved as 
)1/(1))}()((2{)())(sgn( τ

ραφα εε −−≤− ffccfRfR c .         (6.6) 

The Tsybakov noise condition (6.5) was introduced in [15] where the reader can find more 
details and explanation. The greater τ  is, the smaller the noise of ρ  is. In particular, any 

distribution ρ  satisfies (6.5) with 0=τ  and 1=c . 
With a comparision theorem, it is sufficient for us to estimate the excess generalization error 



 http://www.paper.edu.cn 

- 17 - 

中国科技论文在线

(0.7). In order to do so, we need the regularization error between 
λα

f  and ρf . 

Let us present an example to illustrate the learning rates of (0.6) from suitable choices of the 

regularization parameter )(Tλλ =  and the step size tη . 

Now, we see an example corresponds to the classical support vector machine (SVM) with φ  

being the hinge loss +−= )1()( xxφ . For this loss, the online algorithm (0.4) can be expressed 

as )0,,0(1 =α  and 

⎪⎩

⎪
⎨
⎧

≤+−

>−
=+ .1)(),()1(

,1)(,)1(
1

tttXtttt

tttt
t xfyifxKy

xfyif

t

t

α

α

ηαλη

αλη
α        (6.7) 

Corollary 3. Let ++= )1()( xxφ . Assume for some 10 ≤< β , the pair ),( Kρ  satisfies  

).(}{inf 2

21
β

α
α

λαλ
ρ

Off
Xm Lc

R
=+−

∈
            (6.8) 

For any 
)1(2

0
+

<<
β
βε , choose )1(2

1

)( +
−

== ββ
ε

λ TT  and )1(2
12)12(

22
1 +

+
−

+

+
= β

β
β

εβ

η t
kt , 

then 

).())())(sgn(( )1(2
1

+
−

=−
+

β
β

ε

α TOfRfRE cT
                (6.9) 

In (6.9), the expectation E  is taken with respect to the random sample TZ∈z . We shall 
use this notion throughout the paper, if the random variable for E  is not specified. The condition 

(6.8) concerns the approximation of the function cf  in the 1L  space 1
X

Lρ  by functions from 

the RKHS KH . It can be characterized by requiring cf to lie in an interpolation space of the pair 

),( 1
KHL

Xρ
 an intermediate space between the metric space 1

X
Lρ  and the much smaller 

approximation space KH . For details, see the discussion in [10]. The assumption (6.8) is 

satisfied when we use the Gaussian kernels with flexible variances and the distribution satisfies 
some geometric noise condition. 

Assumptions like (6.8) are necessary to determine the regularization parameter for achieving 
the learning rates (6.9). This can be seen from the literature [12] about the off-line algorithm (0.2), 
learning rates are obtained by suitable choices of the regularization parameter )(Tλλ = , 
according to the behavior of the approximation error estimated from a priori condition on the 

distribution ρ  and the space KH . 

Proof of corollary 3. Consider the hinge loss +−= )1()( xxφ . Recall the relation (6.3) 

between the excess misclassification error and the excess generalization error. Then 

).()()()()()())(sgn( λεεεε
λ

φ
ρ

ααααα DfffffRfR c +−≤−≤−   (6.10) 

Using the uniform Lipschitz continuity of hinge loss, we know that  

111
)()(

X
TT L

ffff
ρ

λλ αααα εε −≤−
++

. 

Combined with the assumption on the regularization error β
β λλ cD ≤)(  for some 

0>βc  and Corollary 1, it follows from (6.9) that 
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β
βααα λ

ρ
λ

cfffRfR
X

TT Lc +−≤−
++ 111

)())(sgn(  

β
βαα λ

λ
cffk

KT
+−≤

+1
 

.
21

β
βλ λαα cmkk T +−≤ +         (6.11) 

Now we apply Corollary 2. It is easy to see that φ  satisfies (5.5) with 1,0 == pcp  and 

2
, 2 kC k +=φ . For any 

)1(2
0

+
<<

β
βε , choose 

β
εβ

β
βθ )12(

)1(2
12 +
−

+
+

=  in Corollary 2. 

We know that )( 2

21 λαα −+TE  is bounded by 

θ
θ

θ

θ

θ

λθ
λ

θλ
λ

T
kT

k
TD )2(19}

)2)(1(
)21(exp{]

2)1(
9)(2[

2
1

2

1

1

1 +
+

+−
−

−×
−

+ −
−

−

−

. 

Select γλ −= T  with ),1min(0 θθγ −<< . Since the asymptotic behavior 

}exp{ εcT−  )( sTO −=  holds for any 0,0 >> sε  and 0>c . We know that there exists a 

constant kC ,,γθ  depending only on k,θ  and γ  such that .)( 2

21
γθ

γθλαα +−
+ ≤− TCE kT ，，  

Putting this back into (6.11), we have  

.))())(sgn(( 2
)(

,,1

βγ
β

γθ

γθα
−

−
−

+≤−
+

TcTmkCkfRfRE kcT
 

Now take  .
)1(2

1
β
ε

β
γ −

+
=  We know that the following holds 

).())())(sgn(( )1(2
1

+
−

=−
+

β
β

ε

α TOfRfRE cT
 

This proves our conclusion. 

Corollary 4. Let φ  be an admissible loss function and Kf H
λα
∈ . There holds 

' '

( ) ( )
( ) ( ) max{ , }

K L I L I
f f f f

λ λ λ
α α α λε ε κ φ φ

∞ ∞+ −− ≤ −  

                  ' '
2 ( ) ( )

max{ , },
L I L I

k mk
λ λ

λα α φ φ
∞ ∞+ −≤ −  

where Iλ  is the interval , ,,f fI C C
α αλ λ λ⎡ ⎤= −⎣ ⎦  with 

 , : max{ , 2 ( ) / }KfC f m D
αλ ακ κ κ λ λ=  

      2max{ , 2 ( ) / }.m mDκ κ α κ λ λ=  

Proof. Since ( ) ( ) 0f f
λα ρε ε− ≥ ,  the definition for ( )D λ  tells us that 

2 ( )
K

f m D
λα

κ λ λ≤ .                    (6.12) 

Note the elementary inequality 

( ) ( )
( ) ( ) max{ ' , ' } ,

L ILI
u s u sφ φ φ φ∞ ∞−+− ≤ −  

where I  is an interval containing u  and s . Applying this inequality with ( )u yf xα=  

and ( )s yf x
λα

= , we know that for any y Y∈ , x X∈ , ( ) ( )( ) ( )yf yfx x
λα αφ φ−  can be 

bounded by 
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( ) ( ) max{ ' ( ), ' ( )}L Lf x f x I I
λα α φ φ∞ ∞−+− , 

where I  is an interval containing ( )yf xα  and ( )yf xλ . But 
K

f k fα α∞
≤  implies 

( )
K

yf x f k fα α α∞
≤ ≤  and ( ) 2 ( )Kyf x k f k mkD

λα α λ λ≤ ≤ , where 

2Kf mkα α≤ . In connection with the fact ( ) ( )f f
λα αε ε− ≤  

( ( )) ( ( ))
Z

yf x yf x d
λα αφ φ ρ−∫  and the inequality f f

λα α ∞
−  

K
k f f

λα α≤ − , connectting 

with Corollary 1, this proves our conclusion. 

7 Conclusion 
In this paper, we provided an online generalized gradient classification algorithms for the 

coefficient regularized classification algorithm. Different from the off-line algorithm, it’s also 
suitable when the sample size or data becomes very large. It is based on regularization schemes in 

the space mR associated with general convex loss functions. For each TNt ∈ , the function tα  is 

in general dependent on the inputs }:{ Tt NtZ ∈  and we investigated explicit capacity 

independent learning rates of the excess misclassification error for the hinge loss. Throughout the 

paper a novel relation between 1+Tα  and λα  played an important role in the excess regularized 

generalization error. That is to say, the expectation 
21 λαα −+T  over the random samples of 

regularized sample error is aim at the excess misclassification error −
+

))(sgn(
1T

fR α  

))(sgn( ρfR , which is bounded by the excess generalization error )()(
1 ρα εε ff

T
−

+
.  
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