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TOROIDAL AUTOMORPHIC FORMS FOR FUNCTION FIELDS
OLIVER LORSCHEID

ABSTRACT. The space of toroidal automorphic forms was introduceddyyiet in 1979. Lef”
be a global field. An automorphic form drL(2) is toroidal if it has vanishing constant Fourier
coefficients along all embedded non-split tori. The inteneghis space stems from the fact
(amongst others) that an Eisenstein series of weightoroidal if s is a non-trivial zero of the
zeta function, and thus a connection with the Riemann hygsighs established.

In this paper, we concentrate on the function field case. We she following results. The
(n — 1)-th derivative of a non-trivial Eisenstein series of weighand Hecke charactey is
toroidal if and only if L(x, s + 1/2) vanishes ins to order at least (for the “only if"-part
we assume that the characteristicfofis odd). There are no non-trivial toroidal residues of
Eisenstein series. The dimension of the space of derigtifainramified Eisenstein series
equalsh(g — 1) + 1 if the characterisitc is ndt; in characteristi@, the dimension is bounded
from below by this number. Hergis the genus and is the class number af. The space of
toroidal automorphic forms is an admissible represemaitd every irreducible subquotient is
tempered.
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INTRODUCTION

At the Bombay Colloquium in January 1979, Don Zagiéer ([3dserved that if the kernel of
certain operators on automorphic forms turns out to be aundtble representation, a formula
of Hecke implies the Riemann hypothesis.

We review this idea in classical language. [et= PSL,Z andl's, = {£(}7)|n € Z}.
These groups both act on the Poincaré upper half gtane {z € C|Imz > 0} by Mdbius
transformations. For € H ands € C, let

E(z,s) = 7 °T(s)((2s) Z Im(~yz)*

V€T \T

be the complete Eisenstein series whgfe = > ., n*® is the Riemann zeta function. We
note that all formulas only make senselars > 1, but admit a meromorphic continuation to all
s € C. Let E = Q[v/D] be an imaginary quadratic number field of discrima&nt 0. To each
positive binary quadratic forr@(m, n) = am? + bmn + cn? of discriminant? — 4ac = D, we
associate the roat) = % € H. Let{z,..., 2} be the inequivalent points [ (modTI")
that are of the formy, for a positive binary quadratic fori® of discriminantD. The following
formula is due to Heckel([12, p. 201]):

Do E(zs) = 5 DI (2m)7 Ts) Gels)

wherew is the number of the roots of unity containeddrand(z(s) is the Dedekind zeta func-
tion of E. Since(r(s) = ((s)L(xr, s) wherexy is the quadratic Hecke character associated

to £ by class field theory, we observe thal,_, E(z;, s) vanishes ifs is a zero of(s); more

generallyy ", %E(zi, s) = 0if sis a zero of{(s) of order at least.

Zagier’s observation i [30] is that an Eisenstein sefigs, s) lies in a unitarizable auto-
morphic representation &fSL, R if and only if s € (0,1) or Res = 1/2. Proper derivatives
%E(z, s) of Eisenstein series do not lie in a unitarizable represiemtaNote that((s) has
no zero in(0, 1) (cf. [22, Formula (2.12.4)]). Thus if the space of Blinvariant automorphic
forms f onH that satisfy) ;_, f(z;) = 0 is a unitarizable automorphic representation, then the
Riemann hypothesis follows ards) has no multiple zeros.

The adelic analogue of Hecke’s formula can be formulatedolisws. LetG = GL(2)
and Z its center. LetA be the adeles df). A choice of aQ-basis forE defines a non-split
torus7T'(F) = im(E* — G(Q)) of G. Note that there is a projectiod(A) — I'\ H such
that 7’(A) maps precisely to the pointz,, ..., z.}. Let E(g,s) be the spherical unramified
Eisenstein series of weight(note that the weight in the adelic language is usually stifiy
1/2 compared to classical Eisenstein series). Then the adatston of Hecke’s formula reads
as

/ E(tg,p,s)dt = ¢(g,0,8) T(s+1/2)(p(s+1/2)
T(F)Z(A)\T(A)
for some factor:(g, ¢, s) which is holomorphic irs.

This formula generalises to all global fieldsand all quadratic field extensiodsof F'. We
are concerned with the case tltats a function field in this paper. Following Zagier, we define
the spaceA,,.(F) of E-toroidal automorphic formss the space of automorphic forrfidor
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which the toroidal integrals

/ f(tg)dt
T(F)Z(A)\ T(4)

vanish for allg € G(A). Thespace of toroidal automorphic forthis Aior = [ Aior (E) Where
E varies through all separable field extensiong’ofZagier raises questions at the endlof [30]
for the function field case: Is the spectrumAyf,. discrete? What is the dimension of the space
of unramified automorphic forms id..? In particular, is it finite-dimensional?

In this paper we give answers to these questions (and momneparticular, we prove the
following statements.

(i) Let the characteristip be odd. Then thén — 1)-st derivatives of all Eisenstein series
of weights and Hecke characterare toroidal if and only if.(x, s + 1/2) vanishes in
s to order at least (Theoreni 8.R2). The “if"-part holds also fer= 2 (Theoreni 6.R).

(i) There are no non-trivial toroidal residues of Eiseisseries (Theroem 7.7).

(iii) The spaceA,,, is an admissible automorphic representation (Thedrem).1t2par-
ticular, the spectrum a#,,, is discrete and the space of unramifieetoroidal auto-
morphic forms is finite-dimensional.

(iv) Let g be the genus of' andh the class number. |§ is odd, then the dimension of the
space of unramified toroidal derivatives of Eisensteineseigh(g — 1) + 1. If p = 2,
thenh(g — 1) + 1 is a lower bound for the dimension (Theorem 12.5).

(v) Every irreducible subquotient oA, is a tempered automorphic representation (The-
orem[10.1). In particular, every irreducible subquotieh#lg,. is unitarizable.

We briefly review the developments after the appearance giera paper([30]. The work
of Waldspurger on the Shimura correspondenice ([24], [Z8] &nd [27]) includes a formula
connecting toroidal integrals of cusp forms (nowadays alted Waldspurger periods) with
the value of the.-function of the corresponding cuspidal representatioryat In [29] Franck
Wielonsky worked out Zagier’s ideas and obtained a gersattin to a limited class of Eisen-
stein series oL, (A). Lachaud tied up the spaces with Connes’ view on the zetdiamcf.
[13] and [14]. Clozel and Ulimo [(3]) used both Waldspurgeahd Zagier's works to prove a
equidistribution result for tori irGL,, and Lysenko {[20]) translated certain Waldspurger peri-
ods into geometric language. In a joint work with Cornelisgd]), we calculated the space of
unramified toroidal automorphic forms for global functioeldis with a rational point of genus
g < 1 and class numbaer. In another joint paper with Cornelissenl([5]), we desctieespace
of toroidal automorphic forms in the number field case.

The paper is divided in four parts, each of which containfedght sections. In Pad 1, we
give notations and definitions. In Sectioh 1, we introduceiorphic forms forGL(2), the
Hecke algebra and cusp forms. In Secfibn 2, we ddfifteroidal automorphic forms for every
separable quadratic algebra extenstbaf F'. In particular, we include a definition for the split
torus, which corresponds to the algelita= F' & F.

In Parf2, we draw conclusions about the space of toroid&rsigin series by various meth-
ods. In Sectiofil3, we review the definitions of and some resldbutL-series and Eisenstein
series. In Sectiohl4, we review the adelic version of Heck@'sula in detail and give, in

1This definition differs slightly from the definition in the rimatext since we will also make sense of toroidal
integrals with respect to split tori, which will contribute the definition ofA;.,. A posteriori, however, it will
follow for odd characteristic that these two definitionsnmde (cf. Remark 8]7).
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particular, non-vanishing results for the factor appeammthe equation. This yields a precise
description of the space df-toroidal Eisenstein series. In Sectidn 5, we establistctnees-
ponding formula for split tori, which is analogous to the &€ad the non-split torus, though,
proven differently. In Sectiof] 6, we draw conclusions atliotidality of derivatives of Eisen-
stein series. In Sectidd 7, we determine which residuess#ristein series arg-toroidal and
show that there are no non-trivial toroidal residues of Es$ein series. In Sectidh 8 we employ
Double Dirichlet series to show that in odd characterigtie, quadratic twistd.(yx g, s) do
not vanish simultaneously for a given Hecke charagtand a givens € C whenyy varies
through all non-trivial quadratic Hecke characters. Thédds a precise description of toroidal
derivatives of Eisenstein series.

In Part’3, we consider the properties.4f,. as a representation. In Sectidn 9, we formulate
the implication of temperedness on the Riemann hypothesis.fin particular, we formulate a
sufficient condition on the eigenvalue of a single Hecke afmeron unramified toroidal Hecke-
eigenforms, which can be verified in examples (§ée [4] anp).[17 Sectio 1D, we show that
every irreducible subquotient of;,, is a tempered automorphic representation and.thatis
admissible.

In Part{4, we establish a dimension formula for the space atéeves of unramified Eisen-
stein series. In Sectidnl1, we establish a basis for theespfamramified automorphic forms,
which consints in generalised Hecke eigenforms. In pdeicuve investigate all linear de-
pendencies between derivatives of (residual) Eisenstgiass In Sectioh 12, we use this basis
to show that the dimension of the space of derivatives ofifiad Eisenstein series equals
h(g — 1) + 1 (resp. is bounded by, in characteris?icwhereg is the genus and is the class
number ofF'.

Acknowledgements: This paper as well as [18] and [|19] are extracted from my thEsi]
(except for Sectiofl8, which follows]|[5]). First of all, | wililike to thank my thesis advisor
Gunther Cornelissen who guided and helped me in in my stodigsroidal automorphic forms.

| would like to thank Don Zagier and Glnter Harder for expilagto me their ideas on the topic.
| would like to thank Roelof Bruggeman and Frits Beukers Fait comments on many lectures
and drafts that formed the blueprint of my thesis. | woule lik thank Gerard Laumon, Laurent
Clozel and Jean-Loup Waldspurger for their hospitality avadhematical help during a fruitful
month in Paris.

Part 1. Notations and Definitions

This first part introduces the notation used throughout #pepand sets up the definition of the
space of toroidal automorphic forms.

1. AUTOMORPHIC FORMS FORGL(2)

1.1. Letg be a prime power and’ be a global function field with constarnFs. Let X be the
set of all places of'. We denote by, the completion off” atz € X and byO, the integers
of F,. We choose a uniformizer, € I for every placer. Let deg = be the degree of and let
¢ = ¢%°¢” be the cardinality of the residue field 6,. We denote by | the absolute value on
F, resp.F such thatr,| = ¢,
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Let A be the adele ring of” and A* the idele group. Pu®, = [] O, where the product
is taken over all places of F. Let g be the genus of". Let ¢ be a differental idele, i.e. a
representative of the canonical divisor in the divisorslgupA* /F* O, which is of degree
2g — 2. The idele norm is the quasi-charactér A* — C* that sends an idelg:,) € A* to
the product [ |a,|, over all local norms. By the product formula, this defines asifcharacter
on the idele class groufp™ / F’*.

Let = be the group of all quasi-characters on the the idele claasgpgi.e. the group of all
continuous group homomorphisms: A* / F* — C. LetZ, be the subgroup of unramified
qguasi-characters, i.e. the group of those quasi-chasaittat are?, -invariant. Note that every
quasi-charactey is of the formy = x| |® for a complex numbes modulo2ri/Inq and a
charactery of finite order; in particulaim xy, C S'. Though there are different choices for
such a decomposition into a finite character and a principasigcharacter, the real part ofs
independent of the decomposition and we deRre as the real part of.

Let G = GL(2) be the algebraic group of invertibex 2-matrices and le¥ be the center of
(. Following the habit of literature about automorphic forme will often writeG, instead of
G(A) for the group of adelic points andy instead ofZ(F") for the group ofF'-valued points,
et cetera. Lei, = G(O,) andK = [[ K, = G(O,), which is a maximal compact subgroup
of G,. The adelic topology turn&, into a locally compact topological group with maximal
compact subgroug.

1.2. LetH be theHecke algebra for~,, which is the vector space of all compactly supported
locally constant function : G, — C together with the convolution product

Dy x Dy g /(I)l(gh_l)(l)g(h) dh,
A Hecke operato® € # acts on the spac€’(G,) of continuous functiong : G, — C by
the formula
. f:g— /q)(h)f(gh)dh
G

Afunction f € C°(G,) is calledsmoothif it is locally constant and it is called -finite if the
set of all rightK -translates’, : ¢ — f(gk) generates a finite-dimensional subspac€f=y, ).

An automorphic form orG, (with trivial central character)is a smooth K -finite and left
G rZ-invariant functionf : G, — C such that for every Hecke operatbre H, the functions
®i. f for i > 0 generate a finite-dimensional subspac€®fG,). We denote the space of all
automorphic forms byAd. The groupG, acts onA via theright-regular representationi.e.
g.f : h — f(hg). The action ofH restricts to the subspacgéof C°(G,).

There is a one-to-one correspondence betweggmodules and{-modules. In particular, a
subspace a#l is aG ,-module if and only if it is arf{-module. In the following, we will often
speak of subrepresentationsdfvithout specifyingz, or H explicitly.

1.3. LetB be a Borel subgroup af and N C B its unipotent radical. Theonstant termfy
(with respect taV) of an automorphic fornf € A is the functionfy : G, — C defined by

fn(g) == vol(Np\ Na)~ / f(ng) dn.



6 OLIVER LORSCHEID

The constant ternfiy is left BpZ,-invariant. If fx(g) vanishes for aly € G, the automorphic
form f is called acusp form We denote the space of all cusp formsMy. If e € G, denotes
the identity matrix, then we have the alternative desquipsn

Ao ={f € A[V® e H, O(f)n(e) = 0}.

The approximation by constant terngf21, 1.2.9]) states that for every € A, the function
f — fn has compact support as a functionBpZ, \ G,.

2. TOROIDAL AUTOMORPHIC FORMS

2.1. LetT be a maximal torus off. Then eitherl" is split, i.e. T'(F') is isomorphic to the units
of F @ F, orT is non-split i.e. T'(F') is isomorphic to the units of a separable quadratic field
extensionE of F'. This establishes a bijection between the conjugacy dasismaximal tori
in G and the isomorphism classes of separable quadratic algetaasions of.

If T"is an split torus, thefi=Z, \ T, ~ F*\ A*. If T is a non-split torus, i.€['(F) ~ E*
for a separable quadratic field extensiBiF’, thenTrZ, \ Ty ~ E*A*\ A} is a compact
abelian group. In this casé, splits overE.

2.2. LetT be a non-split torus, and endo¥y, and7), with Haar measures such tHat ~ A7
and7, ~ Aj, as measure spaces. Enddw with the discrete measure. This defines a Haar
measure off’ =7, \ T, as quotient measure. We call

frlg) = [ fieg)a
TrZy\Ta

thetoroidal integral of 7" (evaluated ayy). Since the domain is compact, the integral converges
forall f € Aandg € G,.

If T is a split torus, then endo®j, ~ A* & A* with the product measure @f*. Further
let Z, carry the same measure as before and’jetarry the discrete measure. This defines a
quotient measure dfi=Z, \ 7). Let B and B’ be the two Borel subgroups that contdinand
let N and N7, respectively, be their unipotent radicals. Note thaf, \ 7 is not compact,
but due to approximation by constant terms (cf. paragtaph doth f — fy and f — fyr
have compact support as functions BpZ, \ G, and B.Z, \ G, respectively. Theoroidal
integral of 7" (evaluated iry) is

frig) = [ (£= 50+ fn) tg).
TrZu\Ty

which converges for alf € A and any choice of Haar measure iz, \ 7.

2.3.Definition. Let T be a maximal torus aff corresponding to a separable quadratic algebra
extension¥ / F'. Then define

Awor(E) = {f € A|Vg € Gy, fr(g) =0},
the space ofJ-toroidal automorphic formsand

Ator - m AtOF(E) )

separable quadratic
algebra extension®&'/ F’
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the space oforoidal automorphic forms

2.4. The spacesl (F) do not depend on the choice of torus in the conjugacy clasesor
ponding toE. Indeed, for a conjugaté, = v~ 'Ty with v € Gp, we havefr. (9) = fr(g,),
whereg, = ~vg. Note that the definition is also independent of the choi¢¢taar measures.

As in the case of cusp forms, the correspondence bet@¢én- and7{-modules yields the
following alternative descriptions. For dllandE' as above,

Ai(E) = {f € A|VP e H,2(f)r(e) =0}  and
Aior = {f € A|VmaximaltoriT C G, VP € H, (f)r(e) =0} .

Part 2. Toroidal Eisenstein series

In this part of the paper we review Zagier's translation otckies formula, which connects
a sum of Eisenstein series to @nseries, into adelic language. Additionally we show non-
vanishing results for the factors occuring in the formulde Tase of split tori was not treated
in adelic language yet and the proof is somewhat differerthéocase of the non-split torus;
the result, however, is analogue to the non-split case. \Wmlvéth overviews ofL-series and
Eisenstein series to provide the reader with the resulis insthe latter.

3. REVIEW OF L-SERIES ANDEISENSTEIN SERIES

3.1. We give the necessary backgroundeseries that is used throughout the paper.Far=
andS = {zx € X | da, € OF, x(a,) # 1}, let

LF(X?‘S): H 1_X !

reX—8 (m2) ||

be theL-series ofy in s. If no confusion arises, we omit the subsctpand writeL(x, s). This
series converges fdtes > 1 — Re x and it has a meromorphic continuation to alE C. It
has poles in thosefor which x | |* equals |” or | |' (i.e. L(x, s) has poles only ify has to be a
principal character), and these poles are of otdéi satisfies a functional equation

L(x,1/2+5) = e(x,s)L(x ", 1/2 — 5)
for a certain non-zero factef y, s). If x € =, thene(x, s) = x(¢) |¢|” wherec is a differental
idele.

3.2. We review the result known as Tate’s thesis [28, YHm. 2 and 886-7]). Let :
A — C be a Schwartz-Bruhat function, i.e. a locally constant fiomcwith compact support.
Choose a Haar measure art and define th&ate integral

L@, x. 5) / la)x(a) ol da

which converges foRes > 1 — Rey. For every Schwartz-Bruhat functian and for every
X € Z, L(v, x, s) is a holomorphic multiple of.(y, s) as function ofs € C. For everyy € =,
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there is a Schwartz-Bruhat functian such thatl(vy, x,s) = L(x,s). In particular if x is
unramified, ther.(vy, x, s) = L(x, s) for

o = h(q— 1)_1 (VOIOA)_l charp, .

3.3. We collect some statements from class field theory.FL/gt be a finite Galois extension
andNg/r : A — Ap the norm map. The reciprocity homomorphisgy, : Gal(E/F) —
F*Ng/p(Af) \ Ay induces an isomorphism

rgr s Hom(F"*Ng/p(AL) \ AL, S') — Hom(Gal(E/F), S") .

If wis a character oGal(E/F), then denote by the corresponding character &f: that is
trivial on /7 and Ng,r(Ay). In particular, sincels/F' is unramified if and only ifO; C
Ng/r(Aj), we see thab is unramified if £/ F unramified is so.

Let F'/F be a finite abelian Galois extension apd =. Then

LE(XONE/F,S) = H LF(X(:),S)
weHom(Gal(E/F),S1)

as meromorphic functions &f
Let y € = be of finite ordem. Then there is an abelian Galois extensiof/' of ordern
such thaty(Ng,r(Af)) =1, and

[I  Zelxos) =sls)

we€Hom(Gal(E/F),S1)

as meromorphic functions &f If x is an unramified character, théfy F' is an unramified field
extension.

Since zeta functions have simple pole$ snd1, the L-series occuring in this product cannot
have zeros dt and1 if x is ramified. This means thatif € = is of finite order and not of the
form | |° for somes € C, thenL(x,0) # 0 andL(x, 1) # 0.

3.4. We introduce principal series representations aneihstein series and review some well-
known statements. For reference, cf. [L], [9] and [16].

Let B be the standard Borel subgroup of upper triangular mateoéds € =. Theprincipal
series representatio () is the space of all smooth arid-finite functionsf € C°(G,) that
satisfy for all(* %) € B, and allg € G, the equation

f((“2)9> = ’% mx(%) f(9).

The right-regular representation 6f, restricts fromC?(G,) to P(), or, in other wordsP ()

is a subrepresentation 6f°(G,). We haveP(x’) ~ P(x) as representations if and only
if either y’ = y or Y’ = x ' andx® # ||*". The principal series representati®{y) is
irreducible unlesg? = | [*'.

A flat sectionis a mapf, : C — C°(G,) that assigns to each e C an elementf, (s) €
P(x| I’) such thatf,(s)|x is independent of. For everyf € P(x), there exists an unique
flat sectionf, such thatf = f,(0). We sayf is embedded in the flat sectigf). Note that
f € P(x) is uniquely determined by its restriction fo.
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3.5. For the remainder of this section, fixc =, f € P(x), andg € G4. Sincey is trivial on
F*, f € P(x) is left Bp-invariant, and we define

E(g,f) == LOC 1) - Y fvg)
YyeEBr \Gp

If fis embedded in the flat sectigi, then put
E(g, f,s) = E(g, x(s)),

an expression that converges for everye G, andRes > 1/2 — Rex. In the domain of
cenvergencel(g, f, s) is analytic as a function of and has a meromorphic continuation to all
s € C. It has simple poles in thosefor which y2 | |** = | |*'. The meromorphic continuation
E(-,f)=E(-,f,0)ins = 0is called theEisenstein series associatedftoAs a function in
the first argumentf( -, f) is an automorphic form, and we have a morphism

Plx) — A

of H-modules.

If x € Zpandy? # | |©', thenP(x)¥ is 1-dimensional and contains thus a unigyherical
vector, i.e. anf® such thatf°(k) = 1 forall k € K. We putE(g, x, s) = E(g, f°, s) and define
the Eisenstein series associated{@sE (g, x) = E(g, x,0).

3.6. Lety : A? — C be a Schwartz-Bruhat function, i.e. a locally constant fiomcwith
compact support. Choose a Haar measur& pand define

fox(s):g— /w((O,l)zg)x(detzg) [det 29|/ d-.
Zn

This is a Tate integral and converges fars > 1/2 — Re y (cf. paragraph 312). The function
fx(s) is smooth and{-finite, and because

For($((8)g) = x(ad™) |ad™ "™ £, (5)(9),
we havef, ,(s) € P(x]|).

3.7.Proposition. LetRe y > 1.

(i) For all f € P(x), there exists a Schwartz-Bruhat functipn: A?> — C such that

f = fox(0).
(ii) If x € Zpand f° € P(x) is the spherical vector, thef,, , (0) = L(x?,2s + 1) f° for
the Schwartz-Bruhat functiopy = h (¢ — 1)~ (vol OF )~ chare.

Proof. In [28, VII.6-VII1.7], Weil constructs for everyy € = a Bruhat-Schwartz functiop
such thatf,, (0) is nontrivial. For a proof ofi{ji) observe that fgr= e,

mmmw>:/¢d&nﬁnwmnwmﬁ”ﬂm

Zn

which is the Tate integral fok(y?, 2s + 1) (cf. paragraph3]2).
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For a proof of (i) observe thap, = ¢( - g) is still a Schwartz-Bruhat function for every
g € Gu, andyg.f,,(0) = f,,,(0) is still a function inP(x). As explained in paragraph 3.4,
Re x > 1 implies thatP(x) is irreducible, and thu&,. f,, , (0) = P(x). O

3.8. Define
E(g,0,%,5) = > fox(s)(19)

’\/GBF\GF

for Res > 1/2 — Rey. This definition extends to a meromorphic functionsoE C. Put
E(g,¢,x) = E(g,9,x,0). The last proposition implies that the class of Eisensteiies of
the form E( -, ¢, x) is the same as the class of Eisenstein series of the fofm f). For
X € Ep, We obtain the equality( - , o, x,s) = E( -, X, s).

4. THE NON-SPLIT TORUS CASE

4.1. LetFE be a separable quadratic field extensionfofConsider a non-split torué c G,
whose F'-rational points are the image &> under an injective homomorphism of algebras
Op : E — Maty(F) given by the choice of a basis &f over F. This homomorphism extends
t0Op : A, = Ga,.. LetNg,p : Ay — Af be the norm. We have thdtt(©g(t)) = Ng/p(t)

([15, Prop. V1.5.6]).
Let hr denote the class number gfand letgx be the cardinality of the constant field 6t

Consider thé\ p-linear projection

pr: Maty Ap — A%
g — (0,1)g
The kernel obr is contained in the upper triangular matrices and does maagoany nontrivial
central matrix. The intersection of the upper triangulatrioas with7} is Z,. Thus©g(Ag)N
ker pr = {0} and theA g-linear map(:)E = pro©g : Ay — AZ is injective. This implies that
Op is an isomorphism of --modules.

In the natural topology as fre@-modules O is thus a iIsomorphism of locally compact
groups. Defineor : A% — C ashg(qe — 1) (vol O, )~ ! times the characteristic function of

(:)E((’)AE). Since©; is a homeomorphismy, and alsopr, = ¢r( - g) are Schwartz-Bruhat
functions for ally € G.

4.2.Lemma. ForRes > 1/2 — Re,

E(g,¢,x,s) = / > pluzg)x(det zg) [det zg|" " d .
Ze\ Za ueF2-{0}

Proof. Let G act onP! (F') by multiplication from the right. The® is the stabiliser of0 : 1],
and thus we have a bijection

Bp\Gp =5 PYF) = Zp\ (F?—{0}).
g — [0:1]g

Since}_ .\, f(79) is absolutely convergent for every € P(x | I’y andg € Gy, ([16,
Thm. 2.3]), the lemma follows by Fubini’s theorem. O
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The following is a refinement of Zagier’s translation of anfmla of Hecke into adelic lan-
guage ([30, pp. 298-299)).

4.3.Theorem. Let T be a non-split torus corresponding to a separable field esitenFE/ F.
For everyp : A2 — C that is a Schwartz-Bruhat functiop,€ G, andy € Z, there exists a
holomorphic functiorer (g, ¢, x, s) of s € C with the following properties.

(i) Forall s € Csuchthaty?| > # ||,

ET(g7S07X7S) - €T(g,§0,X,S> LE(XONE/Fus_'_l/Q) .

(i) Foreveryg € G, andy € =, there is a Schwartz-Bruhat functign: A? — C such
that

er(g,¢,x,5) = x(det g)|det g*"'/?
forall s € C.

Proof. For every Schwartz-Bruhat functign: A?> — C, g € G andy € =, bothEr(g, ¢, X, s)
andLg(x o Ng/p, s + 1/2) are meromorphic functions efc C. Defineer(g, ¢, x, s) as their
quotient. This is a meromorphic function inthat satisfies[{i). We postpone the proof that
er(g, ¢, x, s) iIs holomorphic ins to the very end and continue with showing thatg, ¢, x, s)
satisfies par{{ii).

Note that our choices of Haar measures fit the applicatiofsibini’s theorem in the follow-
ing calculations. LeRe s > 1/2 — Re x, then Lemm&4l2 applies, and we obtain

Erlgovs) = [ [ X lusty) x(et(etg)) [det(atg)| " dzdt
TrZp\Ty  Zp\Za u€F2—{0}
SinceTr \ Ty ~ (TrZs \Ts) x (Zr \ Z4), we can apply Fubini's theorem to derive

B9, 0. 5) / S plutg) x(det(tg)) |det(tg) "2 di
T\ Ts ueF2—{0}

The mapOy identifiesAj; with 7 ,.. The Ag-linear isomorphisn@E identifiesAz with A%
and restricts to a bijection betweéh® and /2 — {0}. Thus we can rewrite the integral as

s ~ s+1/2
X(det g) [det g|*"/? / > @(On(ut)g) X(Np/r(h) [Np/p(t)[ dt
EX\ A% uek

If we defineg, = gp((:)E( -)g) : Ag — C and apply Fubini’s theorem again, we get

Er(g, ¢, x:8) = x(det g) |det g™ / Bq(t) x o Nigyw(t) [t dt .
A

Note thatp, : A — C is a Bruhat-Schwartz function gsis one. Thus the integral is the Tate
integral L (¢4, xoNg/p, s +1/2). There is a Schwartz-Bruhat functign: Az — C such that

Lp(Y,x oNg/p,s+1/2) = Lg(xoNg/p,s+1/2)
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(paragraph3]2). If we define: A% — C to be the Schwartz-Bruhat function such thiat &,
thener(g, ¢, x, s) = x(det g) |det g|*"'/*. If y € =y, theny o N, is an unramified character
of Ay and
U= @rg1(08(-)g) =proOp
yields the desired as it adopts the role af,, in paragraph 312, and pakil (ii) is proven.
SinceLg(1), x o Ng/r, s + 1/2) equals a holomorphic multiple dfz(x o Ng/p, s + 1/2)

in s € C for any Schwartz-Bruhat functiop = ¢, (paragrapi_3]2), we finally see that the
functioner(g, o, x, s) is holomorphic ins. O

By the definition of £-toroidality, we obtain as an immediate consequence:

4.4.Corollary. Lety € = such thaty®> # | |*' and lety : A2 — C be a Schwartz-Bruhat
function. LetE/F' be a separable quadratic field extension. Then , ¢, x) is E-toroidal if
andonly if Lg(x o Ng/p, 1/2) = 0. O

5. THE SPLIT TORUS CASE

5.1. In this section, we establish the analogue of Thedaré&hfot.split tori, which is also the
adelic translation of a long-known formula([30, eq. (30)[p begin with, le” = {(*.,)} C G

be the diagonal torus. We writk for the adeles of". Define the Schwartz-Bruhat function
or : A2 — Cash(q — 1) (vol O4)~! times the characteristic function ¥, which is the
same asp, as defined in Propositidn 3.7. Py, = ¢r(-g), which is a Schwartz-Bruhat
function since multiplying withg from the right is an automorphism of the locally compact
groupAZ. Recall from paragragh 3.6 that we defined

f%X(S)(g> = /4,0((0,1)Zg)x(det(zg)) ‘det(zg)|s+1/2 dz

Zy
for Res > 1/2 — Rey. Pute = (1) andwy = (; ).

5.2.Lemma. LetT be the diagonal torus. For every : A> — C that is a Schwartz-Bruhat
function,g € G, and xy € =, there exists a holomorphic functiér (g, ¢, x, s) of s € C with
the following properties.

(i) Forall s € Csuchthaty?| > # ||,

/ (E(tg, 0% 5) — Fon(5)(tg) — Fon(s)(uotg)) dt
TrZy\Ta
= er(g, 9. x:5) (L(x,s +1/2))".

In particular, the left hand side is well-defined and conesrg
(i) Foreveryg € G, andy € =, there is a Schwartz-Bruhat functign: A? — C such
that

ér(g:¢.x:8) = x(detg)[det """/
forall s € C. If x € &, theny = ¢ ,-1 satisfies the equation.
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Proof. Let Res > 1/2 — Re x, and denote the left hand side of the equatiorijin (iY byNote
that our choices of Haar measures match with the followingiegtions of Fubini’s theorem.
We choose{e,wo, (i 1)} as a system of representatives Bf\G . By definition of

E(tg, ¢, X, 5),
E(tg, ¢, x,5) = fox(s)(tg) = fox(s)(woty) Z fox(s ( 1 tg)

ceFX

I = / > fonls (cltg>dt

TFZA \TA cGFX
Note that this is a well-defined expression since

For) (1) (")) = Fond) (o) (e 1)) = Lo (e )

for (Zt1 ZtQ) € TrZ,, so changing the representativetof 77, \ T, only permutes the set
{(%1)}.cpx Inserting the definition of . , (s) yields

I = / Z / (¢, 1)ztg) x(det(ztg)) \det(ztg)[*™/? dzdt .

TrZy\ Ty "7,
By writing ¢, for the Schwartz-Bruhat functiop( - ¢), applying Fubini’s theorem to
(TFZA\TA) X ZA ~ (TF\TA) X ZF

ceFX

Hence

s+1/2)

and observing that we havet z € F** C ker(y | | for a matrixz € Zp, we find

I = / Z / ©0y((zc, 2)t) x(det(tg)) |det(tg)|*™/? dz dt .
Tp\Ta ceFX P
We now replace by cz~!, replace the sum by the integral over the discrete spacand use
Te\Ta =~ (F*\A*)x (F*\A¥).
t = (t1,t2)
Then equals

y(det g) |det g|**/? / / / /cpg(ctl,atg)x(tltg) ltts|* ™2 dade dt; dt,

FX\AX FX\AX Fx FXx

~ x(detg) [det gl [ ( [ ettt x(e) dtl) X(ts) [tV

AX AX

LetU C A? be the compact domain ¢f,. Then{t, € A|({t:} x A) NU # 0} is compact.
For everyt,, the functiont; — ¢,(t1,t2) is locally constant o\ x {¢,} C A x A endowed
with the subspace topology. Consequently - , ;) is a Schwartz-Bruhat function for evety
and the expression in brackets that we see in the last equatoTate integral, which equals a
multiple of L(x, s+ 1/2) (cf. paragraph_3]2). Denote the factorgy(t,). For the same reasons
as before, but with the roles of andt, reversed, we see that, (¢, - ) is a Schwartz-Bruhat
function for everyt,. Hence the value of the Tate integral is locally constari i@nd vanishes
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at allt, outside a compact set. Sintéy, s+1/2) does not depend an, the factorp, is locally
constant and compact support. Hegge A — Cis a Schwartz-Bruhat function. Substituting
the Tate integral in the last equation Py(t2)L(x, s + 1/2) yields

I = x(detg) Idetg\8+1/2L(X,s+1/2)/<ﬁg(tz)x(detg) ta]**1/2 dt
AX

where we see again a Tate integral, which equals a multiplépfs + 1/2).

We end up with the right hand side of the equatiorlin (@)ifg, , x, s) is suitably defined. In
particular, the left hand side is a well-defined and conveygixpression, which is meromorphic
in s € C, andér(g, ¢, x, s) is meromorphic as the quotient of meromorphic functionsndgde
@ holds.

There is a Schwartz-Bruhat functianh : A — C such that we havé(y, x,s + 1/2) =
L(x, s+ 1/2) (cf. paragraph3]12). If we define: A*> — C to be the Schwartz-Bruhat function
such thatp,(t1,t2) = ¥(t1) - ¥(t2). Thenér(g, ¢, x, s) = x(det g) |det gl ™2 1f y € o, then
or 1 satisfies the equality (cf. paragrephl3.2). Hengde (i) hbidmeromorphic continuation.

The Tate integral (¢, x, s + 1/2) equals a holomorphic multiple df(x, s + 1/2)ins € C
for any Schwartz-Bruhat function (cf. paragrapli-312), thus-(g, ¢, x, s) is holomorphic in
s € C for an arbitrary Schwartz-Bruhat functign O

5.3. We state the functional equation for Eisenstein sefes reference, see [16]. L&t be
the standard Borel subgroup andits unipotent radical. The constant termfg, ¢, x, s) IS
given by

ENn(g,0,X,8) = fox(8)(g) + My(s) fox(s)(9)

()9 /fw )

Note that the operata¥/, (s ) isa morphlsm OCA-moduIesP(X\ "y = P(x '] |7%), whichis

defined for alls unlessy? | |**
Let £, be embedded in the flat sectign  (s) and letM,(0) f,, € P(x~') be embedded

in the flat sectiory,, 1 (s). Then there is a holomorphic functiefi, s) in s € C such that
M, (s) Jox = c(x;, s) ﬁp,x‘l(_s)

forall y € Zands € C unlessy?|[* = 1. If y € =, thene(y,s) = x(c) |¢|**. For
X2| |7 # | [, this yields the functional equation

E(-, forls)) = cx.8) E(-, fox-1(=5))-
By paragraph 318, there is a Schwartz-Bruhat funcfiguch that

ftp,x_l (S) = f@,x‘l(s) and E( . 7@7 X717 5) = E( : 7f<p,x_1(8)) .

Further recall from paragraph 8.1 the functional equation

L(x,1/2+ s) = e(x,s)L(x "', 1/2 = 5)
of L-series where(y, s) = x(¢) |¢|” if x is unramified.

with



TOROIDAL AUTOMORPHIC FORMS FOR FUNCTION FIELDS 15

5.4. LetT C G be a split torus. Theff- is given as the image &y : £ — Gp, where
E = F @ F. We recall the definition of for split tori (see paragraph 2.2), which is

o) = [ (F=5Un+ i) o) at

for f € A, where

fnr(g) = / f(ng)dn = / f(wonwog) dn = fn(wog) -
NI\ NT Np\ Ny
As remarked in paragraph 2.1, there is & G such thatl’ = 1Ty, whereTj is the
diagonal torus. We definegdy, for the diagonal torug; in paragraph 511. Defingr = o, .

Note that this definition does not depend-phecause the only matrices that le§yanvariant
by conjugation are andw,. But oz, (- wey) = @1, ( - v) by the definition ofor, .

5.5. Theorem. Let T' be a split torus. For every Schwartz-Bruhat function: A?> — C,
g € G, and x € E, there exists a holomorphic functian-(g, ¢, x, s) of s € C with the
following properties.

(i) Forall s € C suchthat® | |** # | |,

Er(g,¢,x:8) = er(g,%,x:5) (L(x,s +1/2))
(i) If x € =y, thener(e, o7, x,s) = 1forall s € C.

2

Proof. First, letT be the diagonal torus. Lat € Z, ands € C such thaty?| |** # | [*'. We
calculate:

2 ET(97 @5 X, S)

= / (2E(t97907X75) - EN(t97907X78) - ENT(tg,QD,X,S)) dt
TrZy\Ta

= [ (250009 — £alt) — M) fen(o)lt9)
e — Fond®)(wotg) — My(s) fonls)(uotg) ) dt

= [ ((Blgoxs) = foao)lt9) = fonts)(unts))

TrZy\ Ty

+c(x,s) (E(tg, ¢, x " —5) — fox1(—5)(tg) — f@,x—l(—s)(wotg)n dt,
where we applied the formulas of the previous paragraphtenflinctional equation (paragraph
£.3). By Lemma5sl]2, we can split the last integral into two ahthin:

er(g.¢.x:8) (L s +1/2))° + clx, ) ér(g. ¢, x " —s) (L(x ' —s +1/2))".

We apply the functional equation to(y !, —s + 1/2) and obtain[{i) for the diagonal torus if
we put

1 1 B o
er(g:9.x:8) = 5 ér(g:0.09) + 5 e(x9) 2e(x, 8) ér(g, X, —s) -
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This defines:r (g, ¢, x, s) as a holomorphic function of € C sincee(y, s) is non-vanishing as
a function ats.

If 7" is any split torus, definer(g, ¢, x,s) = er, (79, ¥, x, s). Since all split tori inG are
conjugated, there is@a € G such thatl' = vTyy !, whereT} is the diagonal torus. Recall
from paragraph 214 that-(g) = f1,(vg). This reduces the case of the general split torus to the
case of the diagonal torus. This (i) holds.

Regarding[{i), lety € =, ands € C be such thag? | |** # ||='. Since we may replace
x by x| |°, we assume that = 0 without loss of generality. Recall from paragrdphl 3.8 that
E( 73007X) — E( >X)' PUtfx = fcpo,x(o) = P(X) andf)(1 = fcpo,x*1(0) € P(Xil)' By
paragraph5]3, we have

En(g,x) = flg) +M(0)f(9) and Ex(g.x™") = fi-1(g) + My=1(0) f—1(9)

whereN is the unipotent radical of the standard Borel subgroup.

Observe that fofl' = v~ 'Tyy, we haveer(e, or, x,s) = er, (v, p1, -1, X, $). As in the
proof of (i), we may restrict to the diagonal torilis= T;, without loss of generality. We follow
the lines of the calculation in the proof &F (i), where we make of the functional equation for
E(-,x) (paragraphsl3), the functional equation fdry, 1/2) (paragraph3]1) and Lemrhab.2

2Fr(e,x) = / (2E(t,x) — Enx(t,x) — Enz(t,x))dt
TrZy\Ty
= [ (B - 20 - fwnn)
TrZy\Ty

) (Bt XTY) = fis(t) = fiswt)) ) d
er(e, o7, x.0) (L(x.1/2))" + érle,or.x7",0) x%(c) (L(x ", 1/2))”
= (L0 1/2)" + x*(0) x2(c) (L(x, 1/2))°
2 (L(x,1/2))*.
By holomorphic continuation, we fine-(e, o, x, s) = 1 for all s € C. O

For any Schwartz-Bruhat functian: A? — C and anyy € G, we have that the automorphic
formg.E( -, p, x)isanelement oP(y) (paragraph3]8). By the definition &f¢ F-toroidality,
we obtain as an immediate consequence:

5.6.Corollary. Lety € Z, such thaty? # | |*' and lety : A2 — C be a Schwartz-Bruhat
function. ThenE( -, p, x) is F' @ F-toroidal if and only if L(y, 1/2) = 0. O

6. TOROIDAL DERIVATIVES OF EISENSTEIN SERIES

6.1. Fix ani > 0, a Schwartz-Bruhat functiop : A2 — C and ay € = such thaty? # | |='.
We defineE™ (g, ¢, x, s) as thei-th derivative ofE(g, ¢, x, s) with respect tos. The function
E9 (-, ¢, x,s) is an automorphic form. We denote By" (, s) thei-th derivative ofL(y, s)
with respect tcs.
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Let 7' C G be a maximal torus defined by, : £ — Gp. If E is a field, then the
reciprocity map (cf. paragraph 3.3) assigns to the nomtroharacter ofzal( £/ F') a character
of A%, which we denote by = xg. This character is of order two and its kernel is precisely
Ng/r(Aj). Further
Lg(xoNg/p,s) = Lp(x,s) Lr(xxr,s) -
If £ = F @ F, then we definegr = g as the trivial character. For every maximal toief
G, we put

(g, 0, x) = Ie er(9,¢, X, 5) .

6.2. Theorem. Let T be a maximal torus itz andn a positive integer. For aly € G, and
X € Zo such thaty? # | [,

B (g o) = Y g o (00900 L9 (. 1/2) LW (o, 1/2)
itjtk=n Y
i3, k>0

In particular, ™=V (. ¢, x) is toroidal if L(x, s + 1/2) vanishes irs = 0 to order at least.

Proof. Observe that in both the case of a non-split torus and theafassplit torus, we are tak-
ing integrals over functions with compact support, so thiéveéves with respect te commute
with the integrals. Everything follows at once from applythe Leibniz rule to the formulas in
Theorem§ 4)3 arld 5.5. O

7. TOROIDAL RESIDUES OFEISENSTEIN SERIES

7.1. In this section, we prove that residues of Eisensteiesare not toroidal. Let € = with
Y2 = |, f € P(x), andg € G4. ThenE(yg, f,s) as a function ofs has a pole at = 0,
which is order ofl. Thus the Eisenstein series has a nontrivial residue

R(97 f) = R688:0 E(ga fa S) = qug% S E(ga fa S)a
which is an automorphic form in. Define
R(-,x) =Ress—g E(-,X,S5)
if x is unramified. The functional equation has a natural extent residues of Eisenstein
series. In particular, for unramified it becomes
R( . 7X) - Xz(c) R( : 7X_1)'
Letp : A2 — C be a Schwartz-Bruhat function. Then one can also define

R( ' 7307X) = Ress:o E( ' 7()07X>'
From the result for Eisenstein series, one obtains thatienyep, there is af € P(x) such that
R(-,¢,x) = R(-,f), and vice versa.
It turns out (see [10, Thm. 4.19]) that the residues are fanstof a particular simple form.
Let y = w| [*'/* be a quasi-character with? = 1 andf € P(x), then

R(g, f) = R(e, f) - w(det(g))

as functions ofy € G,4. This means that thé{-submodule{R( -, f)}epn) C Ais 1-
dimensional.
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If x2 = | |*', we define for every > 0
RO(g,6,%) = lm = 5 B(g,0,%,9)
) ) S—)O dSZ Y Y ) )

which defines an automorphic form gn

7.2.Lemma. LetT be a non-split torus corresponding to a separable quadriaid extension
E of Fandy € Z with 2 = ||™". For every Schwartz-Bruhat function : A2 — C and
g € Gy,

Rr(g,¢,x) = er(g, ¢, x,0) Ress—g Lp(x o Npg/p,s+1/2).

Proof. With help of Theoreri 413, we calculate
Rr(g,,x) = lim s Er(g, ¢, X, )
=lim s er(g,,x,8) Lu(x o Ngyr, s +1/2)
= er(9,9,X,0) Resemo L(x o Ngyp,s+1/2) . O

7.3.Lemma. Let T be a non-split torus andy = w||*/* € = with w? = 1. There is a

Schwartz-Bruhat functiop such thatRr (e, ¢, x) # 0 if and only ifw = 1 or w = x7.

Proof. Observe that the residuum of
Lg(xoNg/p,s+1/2) = Lp(w,s+1/24+1/2) Lp(wxr,s+1/2+1/2)
ats = 0 is nontrivial if and only if one of the two factors is the zetan€tion of ', and this
happens ifv = 1 orw = x;' = x7.
If Ress—o Le(xoNg/p,s+1/2) =0, thenRy (e, ¢, x) = 0 for all Schwartz-Bruhat functions

© by Lemmd.Z.P. If not, the®(e, o1, x) = 1- Ress—o Lp(xoNg/r, s+1/2) (Theorem 4.1 (i)
does not vanish. O

7.4.Lemma. Let T be a non-split torus andk € Z with x2 = | [*'. If Rp(e,¢,x) = 0
for all Schwartz-Bruhat functiong, then there exists a Schwartz-Bruhat functipsuch that

R (e.0.x) # 0.

Proof. By Lemmal7.8, we have thak;(g,p,x) = 0 for all ¢ andg € G, if and only if
Lg(woNgp, -) has no pole ab or 1. With the help of Theoremi 4.3, we calculate

d

Ry (e, pr,x) = lim — s Br(e.or, x. 9)

= lim
s—0

ds
a
ds
= lim ( e, o1, X,5) Le(x oNg/p,s 4+ 1/2)

s—0

ser(e,or,x,5) Le(x o Ng/p, s +1/2)

ds
= eT(e790T7X70) LE(WONE/F, 1/2:|: 1/2) ,

which does not vanish by Theordm M43 (ii) and by the non-vangsof L-functions of non-
trivial finite Hecke character it 1nd1 (cf. paragraph313). O

d
+ s —er(e,or, x,s) Le(xo Ng/p, s+ 1/2))
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7.5. LetT be a splittorus ang = w | |*'/* € = with w? = 1. Let N be the unipotent radical
of a Borel subgrou@® C G. Then

(wodet)n(g) = / wodet(ng) dn = wodet(g) .
Np\ Na
Consequently
Rr(e,o,x) = 0

for every Schwartz-Bruhat functiop by the definition of the toroidal integral for a split torus.
We summarise:

7.6.Theorem. Let £’ be a separable quadratic algebra extensiongfy  the character from
paragraph®.l andy = w | |[¥/% € Z withw? = 1.
(i) If wistrivial, thenR( -, x) € A (E) ifandonly ifE ~ F @ F.
(i) If wis nontrivial, thenR( -, x) € A (F) if and only ifw # xg.
(i) If Fisafield andr > 1, thenR™ (-, x) ¢ Ao (E). O

Since by class field theory every quadratic charactekof F'* is of the formy for some
guadratic separable field extensibrof F', we finally obtain:

7.7.Theorem. R, = {0}. O

8. NON-VANISHING FOR QUADRATIC TWISTS OFL-SERIES

Let ¢ be odd throughout this section. The goal of this section shtmw that not all quadratic
twists L(xxz, s) vanish simultaneous in a givarands. For the proof of this result, we employ
Double Dirichlet series, which are certain weighted sumer @i quadratic twists of.(y, s).
Essentially, we show that this series does not vanish foryaagd s (as a function in another
parameterv), which implies that at least one quadratic twist of fhseries in question is not
zero iny ands.

8.1. Theorem. Letq be odd. Then there is for evegye = and s € C a separable quadratic
field extensiorF of I’ such thatL(xxg, s) # 0.

This theorem together with Theorém15.5 implies that the ¢aéyivatives of) Eisenstein series
that are toroidal are those that correspond to zeros of thvisted) L-seriesL(x, s + 1/2).
More precisely:

8.2.Theorem. Letq be odd. Lety € =, s € Candn > 0. ThenE™~V( - ¢, x) is toroidal for
everyyp if and only if L(, s) vanishes irs = 1/2 to order at least. O

8.3. The rest of this section is devoted to prove Thedrem Bith the exception of some
conculding remarks in the end. Since the proof is similah®dnalogous statement for num-
ber fields (see |5]), we use the language of ideal classesefitrast to the paper|[7] where
Double Dirichlet series are introduced for function fieldamely, the latter paper the language
of divisors on the smooth projective curve correspondintheofunction fieldF' is used. All
background for Double Dirichlet series in the function fieltbe, however, can be foundn [7].
We review the definition of Double Dirichlet series.
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One difficulty in the definition for general global fields isatithey may have non-trivial class
number, which implies that the quadratic residue symbobtsdefined for every ideal in a ring
of integers. This lack can be circumvented in the followingywlLetS C X be a non-empty
finite set of places such th&ls = {a € F|ord,(a) > 0 Vo ¢ S} has class number. Let
C be the formal sum of all places € S and letH. = A*/F*O} (C) be the ray class group
of modulusC, whereO; (C) is the subgroup of alla,,) € O} such thabrd(1 — a,) > 1 for
allz € S. Let Re = He ® Z/27, which is a finite group. Choose a minimal $gt. .. b,
of generators fork- and choose a sé&}, of ideals inOg that represent these generators. For
everyEy in &, letmg, be an element o that generates the (principal) ideg} in Og. Let
£ denote a set of representativesiyf of the formE = [] E,™, Where theE, are elements
of & and theng, are natural numbers, and set accordingly = []m}.° with the convention
that the trivial element oR is represented b@)s and thatne, = 1. Note thatmy generates
E.

Let 7(S) denote the set of fractional ideals ©k. Ford € I(S), write d = (a)EG? with
E e & Gel(S)anda € F* witha = 1 (modC'). Definex, = xg for the quadratic field
extension® = F'[,/amg| of F', which should be thought of as the quadratic residue synaiol
d. This definition does not depend on the decomposifien(a) EG? of d ([7, Lemma 1.1])—it
only depends on the choices $fand them .

8.4. LetJ(S) C I(S) be the set of (integral) ideals @s. Let y € = be a character, i.e.
Rex = 0, ands € C. We define the weight factor to be

M €1 Xd 61)X(€1€§)
25—1

a(x,s,d) =

e1,e2€J(S) |61| |6 |

(ere2)? |d

wherey is the Mobius function. Fod € 1(S), denote byS, the set of primes abowé and let
Lsus,(xxa, s) be theL-series with the factors for primes §1U S; removed. Lep € = be a
character unramified outsideandw € C. TheDouble Dirichlet series of andp in s andw
is the series

Z LSUSd(XXdas)p(d) ) (X’S d)_

Z(s,w; x, p) = "

deJ(S)
This expression is absolute convergentfars > 1 andRew > 1 and has a meromorphic
continuation to alls andw ([7, Thm. 4.1]). It has a pole i = 1 (independent of). The
residuum ofZ (s, w; x, p) atw = 1 can be calculated precisely aslin [8, Section 4], which ¢reat
the case of Double Dirichlet series fofth order twists withn > 3. Namely,

) -1, 2 if o —
Resy—1 Z(s,w; X, p) = { OReSw:1 erl) Tlaes Crall)- s, 20) :I Z # 1

8.5. We describe two more series, which we shall need in eodanoof the theorem. Since the
characteristic function, of 0 € R equals(#R¢) ™ >_,cio p» We have that

T Lsus,(XXd; 5) 1 T
- Td|w 'a(Xa Sad) = #R Z(S,U};X,p),
deJ(S) @ perc

d principal
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is @ meromorphic function im andw, which we denote by°(s, w; x). This series converges
for everys if Rew is large enough. This is because of the Phragmén-Lindelishates in the
d-aspect of the form

’LSUSd <X7 S)CL(Xv S, dz)‘ < |d‘
(cf. [2, 3.3]). Sincey is odd, every squaré € (F*)? has two different roots. Note that: = S,
and thaty 2 is trivial. Thus

Lsus,(XXd, 5) 1 Lsus, (X, s)
Z S dd w ca(x,s,d) = - Z R T (s, dP),
deJ(S) ] deJ(S) |d|
de(F>)? principal d principal

a series, which we denote B (s, w; x). It converges foRew > 1/2 for the same reasons as
for Z°(s, w; x).

8.6. We can proceed with the proof of Theoriem 8.1. Sibge, s) = L(x| |~ "X, s + Re x),

we may assume thatis a character in order to prove the theorem. By the functieqaation
of L(x, s), we may further assume thBt s > 1/2. We fix y € = ands. The twistedL-series
occuring in the series

L
Z SUSdC(;EUXd’S) ' CL(X, S7d) = ZO(S,’UJ;X) - qu<57w7X)
deJ(95) | |
d principal
not a square

are all of the formL(xxg, s) (up to some non-vanishing factors for the places$'ia S,) for a
non-trivial quadratic characterz which corresponds to a separable quadratic field exterision
of F. If we can show that this series does not vanish (as a funatiar), then at least one of
the termsL(xxg, s) is not zero, and the theorem follows.

We do this by showing that(s,w; x) — Z(s,w; x) has a non-trivial residue im = 1.
Since the defining series féfy(s, w; x) converges inv = 1,

1
e Z Resy—1 Z(s,w; X, p),

PERC

which is a sum ovef’s except for the summand corresponding to the trivial ottarp = 1,
for which we obtain a term of the form- Ls(x?, 2s) for a non-zero constant as explained in
paragrapfi8l4. As the real partofvas assumed to be at leds®, neitherLs(y?, 2s) is zero.
This accomplishes the proof of the theorem. O

Resuy—1(Z°(s,w; x) — Zgy(s, w3 x)) = Resy—1 Z°(s, w; x) =

8.7.Remark. Note that the statement of Theoréml8.1 can be strengtherikd form that for
given xy ands, the termL(xxg, s) is not zero for infinitely many. This is because one can
substract a similar term tﬁgq(s, w; x) for the x p-twists of a given quadratic field extensiéh
from Z°(s, w; x), which does not change the residuum. In particular, for dddacteristic, we
could omit finitely many separable quadratic algebra exteiss” in the intersectiond;,, =

N Aior (E) without changingAs,.

8.8.Remark. As the formalism of Double Dirichlet series does not applgharacteristi,
the above proof does not say something about this case. hattalso in Ulmer’s papelr [23]
characteristi@ is excluded. Namely, Theorems 1.1 and 5.2 of [23] imply thaievery global
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function field /' of characteristic different frorg, there is integen, such that for every. > n,
the quadratic twistd.(yx g, s) do not vanish simultaneously ip and s for the constant field
extensiornt . F.

For low genug < 1 and unramified, we can, however, look at certain explicit extensions to
exclude a common zero (unless the class nurhlegjuals;+1). For genug = 0, all unramified
quasi-characters are principal, i.e. of the fdrfiv It suffices thus to consider the zeta funtion
of ', which is(r(s) = W It has no zero, and thus there is no unramifted F'-
toroidal Eisenstein series (notice the non-vanishingltésuthe split torus in the unramified
case in Theoremn 8.5). For genus= 1, the consideration of all unramified extensionsrof

yields the desired result as long/agt ¢ + 1, seel[18, Cor. 7.13].

Part 3. Toroidal representations

A toroidal representatiomns a subrepresentation gf;.. In this part, we investigate properties
of toroidal representation like temperedness and adnilisgikhe former notion being closely
related to the Riemann hypothesis for function fields asa®pt in the following section.

9. CONNECTION WITH THE RIEMANN HYPOTHESIS

9.1. In this section, we translate the observation of Donieta§30, pp. 295—-296]) that unit-
arizability of the space of toroidal automorphic forms imeplthe Riemann hypothesis to the
setting of global function fields.

We begin wth recalling some background in automorphic grations, by which we mean
subrepresentations gf. Every (infinite-dimensional) irreducible automorphipresentation”
decomposes into a restricted tensor pro@@g « P(x.) of the principal series representations
P(x.) of G(F,) (cf. [1] for details on restricted tensor products). Thenpipal seriesP(x,.) of
the quasi-charactey, is the space of smooth functiorison G(F,) that satisfy

(" %)) = 14 (3) 0

forall (¢4) andg in G(F,). If V ~ P(x), then the local charactefs, are the restrictions of
x to F,.. An irreducible subrepresentatidhis calledtemperedf it is isomorphic to®’ P (x.)
where ally, are characters.

Let theEisenstein parf be the vector space spanned by all Eisenstein series and ¢nist
atives, theesidual partR be the vector space spanned by the residues of Eisenstigis apd
their derivatives in the sense of paragraph 6.1, ancttispidal partA4, be the space of cusp
forms (see paragraph1.3). We shall refe€to= £ & R as thecompleted Eisenstein parf
theorem of Waldspurger and Moeglin in[21] says that

A=A D EDPR
as automorphic representation.

9.2. LetK be the standard maximal compact open subgroup,ofsee paragragh1.1). Then
we denote byH  the subalgebra of bis-invariant functions ofH, i.e. the algebra of locally

constant functiongd : G, — C with compact support such that(kgk') = ®(g) for all

k. k' € K. We define for every: € X the Hecke operatob, € Hy as the characteristic
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function of K’ (™ | ) K and the Hecke operatdr, as the characteristic function &f( ™ ., ) K.
ThenHy = C[®,, UE!, .y, in particularH x is commutative. Note that, and ¥, ! operate
trivial on the space4” of K-invariant automorphic forms. We denote by* the smallest
subrepresentation of that contains4”.

Let E( -, x) be the unramified Eisenstein series associatgd(see paragraph 3.5) ang =
q%&®, Then

®,.E(-,x) = ¢/ (x ' (m) + x(m)) E(-, x)
(cf. [9, 83 Lemma 3.7]), thud’( -, ) is an eigenfunction ofb, with eigenvalue),(y) =
@ (X () + x(m2).
9.3.Lemma. Lety € =, then the following are equivalent.

(i) P(x) is a tempered representation.

(i) Rex = 0.
(i) Ao(x) € [-2¢2"*,2¢2*] forall z € X
(iv) Ao(x) € [—2¢2"%, 2¢2/°] for onex € X.

Proof. We haveP(y) ~ ®' P(x.) with x, = x|, (see paragragh9.1). All, are characters
if and only if y is a character. This is the caseuif Y C S, or equivalently ifRe y = 0. Thus
the equivalence ofl(i) and{(ii).

Assumel(). Therim y C S, and),(y) = ¢/*(x"(m.) + x(m,)) for everyz € X. But
x"!(m,) is the complex conjugate of(r, ), thereforex ! (r,) + x(7.) € [-2, 2]; thus [ii). The
implication from [iii) to (iv) is trivial.

Converselyx~!(m,) + x(m.) € [=2,2] only if x~!(r,) is the complex conjugate of(r.),
thusy(m,) € S'. SinceA* /(F*O; (r,))) is a finite group, all values of are contained i’

andRe y = 0; thus [ii). O
9.4. Theorem (Zagier) If every irreducible subrepresentation gf, is a tempered repres-
entation, then all zeros ofr have real partl/2. If furthermore, Ay is itself a tempered

tor
representation, theg, has only simple zeros.

Proof. By Theorem 6.2, we know that every zet@2 + s of ordern of (r yields that all
the functionsE( -, | |*),..., B~V (-, | |°) are toroidal. It is well-known that only the zeroth
derivativeF( - , | |*) generates an irreducible representation (cf. Se€fibn déve detail). If
this representation is tempered, then the real pasrti®f by Lemmd9.B.

If furthermore A} is the direct sum of irreducible tempered subrepresemsitithen no

tor

proper derivative of an Eisenstein series can occur andeitus of( - must be of ordet. [

By Lemmd9.8, we obtain:

K
tor

9.5.Corollary. If there is a placer such that the eigenvalue of eveby-eigenfunction ind
1/2 4 1/2

lies in the interval—2¢,'*, 2¢;' °], then all zeros of » have real partl /2. O
9.6.Remark. By means of this corollary, it is possible to verify the Riemadypothesis for the
function field F' in certain cases. For the proofs for rational function fiéfg&l") and elliptic
function fields with class numbdr, see([4]. For other elliptic function fields, it is possibte t
tackle this problem by the theory of graphs of Hecke opesatiut by direct calculations it
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could only be shown that the irreducible subrepresentataind}. are unitarizable (seé 17,
section 8.4]).

10. TEMPEREDNESS AND ADMISSIBILITY OF TOROIDAL REPRESENTATIOS

The implication of Theorern 9.4 is of hypothetical naturelas Riemann hypothesis is proven
for global function fields, which is known as the Hasse-Wegldrem. Conversely, we can make
use of the Hasse-Weil theorem to prove that every irredeshbuotient of4,,, is tempered.
We further conclude that;,, is an admissible representation.

10.1.Theorem. Every irreducible subquotient of;,, is tempered.

Proof. The spaceA,,, inherits the decomposition ofl into a cuspidal, an Eisenstein and a
residual part, thus we can investigate these parts, wittendg.,, & andR.,,, Separately.

The Ramanujan-Petersson conjecture claims that all icibiucuspidal representations for
GL(2) are tempered. This conjecture was proven by Dridfal the function field casel([6]),
which implies the corresponding statement.fy;,.

Recall from paragraph 3.5 tha( - , ¢, x) generates a subrepresentation/that is iso-
morphic toP(x). Furthermore, if C A is generated by2( -, p,x),..., E™(-,¢,x) as
Gx-module, and/’ c A is generated byo( -, p,x),..., E™ Y (- », x), then also the quo-
tient representatiof” / V"’ is isomorphic toP(x) (or trivial). Thus the isomorphism types of
all irreducible subquotients @, are determined by the irreducible subrepresentatiod;of
and it suffices to investigate the irreducible subrepregmmts ofE;,. (F).

By Theoreni4.B, a non-trivial Eisenstein sergs- , ¢, ) is toroidal only if L(y,1/2) =0
or L(xx/,1/2) = 0 for some quadratic charactgf. By the Hasse-Weil theorenke y = 1/2
(note thatRe x’ = 0 for quadraticy’), andE( - , ¢, x) generates a tempered representation.

To conclude the proof, we observe tfiat,, = 0 by Theoreni 7J7. O

10.2.Theorem. For every separable quadratic field extensioof F', the representation;., (£)
is admissible. Consequently,,, is an admissible representation.

Proof. We have to show that for every compact open subgrGtpf K, the complex vector
space( A (E))X" is finite dimensional. Due to the decompositidn,.(E) = Ago(E) @
Eior(F) ® Rior(E), we can verify this condition for each of the summands seplreSinceA,
andR are admissible, the subrepresentatids,, (£) andR:..(E) are so, too.

The admissibility of,,.(F) can be seen as follows. Note thais trivial on NO, (where
N € O, is the ramification) if and only ifE(-,p,x) € EXV for Ky = {g € Kl|g =
e (mod N)}. Every compact open sét’ is contained inky for someN. So it suffices to
prove finite-dimensionality only for the spaces of the faffhy.

Every subrepresentatidn that containgz® ( - | ¢, x) for someyp and somey, contains also
EW (. ¢, x) forall j < i. This means that if a derivative of an Eisenstein seriesrsidal,
then all derivatives of lower order are also toroidal. Sihegeries have only finitely many zeros
(with finite multiplicities) and by the non-vanishing restor ¢\ (¢, ¢, x) (TheorenZBLIji),
the producer (g, ¢, x) L(x, 1/2) L(xxr, 1/2) vanishes only for finitely many that are trivial
on NO,, and it vanishes only with finite multiplicity.

Let y be a zero of multiplicityn of this product. TherfZ( -, o, x),..., E® V(. ¢, x) are
toroidal by Theoreri 612, but™ (- ¢, x) is not. Each of theZ)( - | ¢, x) corresponds to an
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irreducible subquotient of;.,(£) and each irreducible subquotient&f, (E) is of this form.
Consequenthy,,.(E) is admissible. O

Part 4. The space of unramified toroidal automorphic forms

In this part of the paper, we show that the dimensior£ff equals(g — 1)h + 1 for odd
characteristics whergis the genus and is the class number af. To carry out the proof of
this dimension formula, we first have to establish a basisiforthat allows us to determine the
dimension of€X . In the second section of this part, we will compare this disiens with the

tor"

number of zeros of (y, 1/2) (with multiplicity) in unramified characters.

11. ABASIS FOR THE SPACE OF UNRAMIFIED AUTOMORPHIC FORMS

11.1. We fix some terminology. Fore C, and® € H, define thespace ofb-eigenfunctions
with eigenvalue\ as

A@,A) = {f € A[®(f) =S},

and for a subrepresentatidhC A, defineV (®, \) = V N A(P, ). By anH x-eigenfunction,
we mean a simultaneous eigenfunction fordale Hx. Notice that it suffices to consider the
action of the Hecke operatofis, to determine the action o sinceHx is generated as an
algebra by®, and operators that act trivial o# (see paragragh 9.2). Note tidt acts onA*.

All spacesA(®, \) inherit the decomposition ofl into a cuspidal, an Eisenstein and a re-
sidual part. The unramified Eisenstein serl&s , x) are ®,-eigenfunctions with eigenvalue
() = @2 (x "\ (m) + x(m,)) unlessy? = | |*!, in which case the residuB( - , y) is an
®,-eigenfunction with eigenvalug, () (cf. paragraph 912). Note that none of these functions
is trivial and the only linear dependencies between thesetifons are given by the functional
equationsE(-,x) = x*(¢)E(-,x ") resp.R(-,x) = x*(c)R(-,x ") (cf. paragraph§5]3
and[Z.1). These functions atéx-eigenfunctions and generate tReinvariant parth of the
generalised Eisenstein part= € & R.

The Jordan decomposition implies that for every= X, the Hecke operatob, decom-
posesAX into a direct sum of subspaces that are the (typically irfidimensional) general-
ised eigenspaces, on whidh operates as a Jordan block in an appropriate basis. Sintteall
operatorsb, commute, these generalised eigenspaces coincide for tioeisé., .

Denote the derivatives df( -, x) in the sense of paragraph.1 BY( - , ). Define for all
X € Zo, z € X andl > 0 the value

AW = @ () + (=1)'x(m)) -
Note that)é”(x) only depends on the parity éf PutA,(x) = )\(ml)(x) if lisevenand\ (x) =
A (y) if 1 is odd.
11.2.Lemma. If y € Z, with x2 # | |=', then for every: € X,

7

®,EV(g,x) = ) (;) (Ing,) " AT (x) EW(g,x) .

k=0
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Proof. Observe that

d

A A) = (ng) ATV -

The formula is obtained by taking derivatives on both side® functional equation for Eis-
enstein series (cf. paragraphl5.3) and applying the Leitézto the right hand side. O

11.3.Lemma. Lety € Z,. Theny? = 1if and only if A (x) vanishes for all places.
Proof. Observe that for every,, we have
;' P00 =xHm) —x(m) =0 = x(m)=x"'(m) = X(m)=1.
Since ther,’s generatd™* \ A* / Of, the quasi-charactes® is determined by its values on the
m,'S. ]
11.4.Proposition. Lety € Z, with x2 ¢ {1,||='}. Then
{E( ' 7X)7 E(l)( ’ 7X)7 E(z)( ’ 7X)7 .. }

is linearly independent and spans a vector space on wHighacts. In particular none of these
functions vanishes.

Proof. By Lemmal1l.R, it is clear that the span of the functions istgprmodule. We do
induction onn = #{E(-,x), EY(-,x),...,E"V(-,x)}.
SinceE( -, x) is not zero, the case = 1 follows. Forn > 1, assume that there exists a
relation
EM( X)) = cast B V(- %) +...+ E(-, %) .
We derive a contradiction as follows. For every plag&e have on the one hand,
O, EM(-x) = a1 @ BV )+ @ E(- LX)

= o1 A(x) BE"V(-,x) + (termsin lower derivatives aE( -, X)) ,

and on the other hand,
O, EM (- x) = X)) E™ (- x) +n(lng) A (x) E™ V(- x) + (lower termg

= (cast Ae(x) +n(Ing) Ay (X)) E™V(-,x) + (lower terms .

By the induction hypothesig,E( -, x), EV (-, x),..., E"Y(-,x)} is linearly independent,
and therefore

Cn-1Aa(X) = o1 Ac(X) +n(Ings) AL (X)
which implies that\; () = 0 for every placer. But this contradicts Lemnia1l.3. O

11.5.Lemma. Lety € Z; such thaty? = 1. Then
EW(-.x) = (Ing) (29 —2) B(-,x) .
Proof. Sincey? = 1, the functional equation looks like

E(g7 X 8) = |C‘2S E(Qu X5 _8) :
Using|c| = ¢~*~2 and taking derivatives i of both sides yields

ED(g,x,5) = — [ EW(g,x,—s) + 2(Ing) (29 —2) || E(g,x, ),
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and filling in s = 0 results in the desired equation. O

11.6.Proposition. Lety € =, with x?> = 1. Both

{E('>X)v E<2)('>X)v E(4)('7X)>"'} and {E(l)('7X)> E(S)('7X)7 E(5)('7X)>"'}

span a vector space on whiét acts. Ifg # 1, then both are linearly independent, but they
span the same space.df= 1, then the former set is linearly independent and all funtio
the latter set vanish.

Proof. That both sets spaH -modules follows from Lemm@a_11.2 since by Lemma 11.3, the
value); (x) vanishes for alk € X.

The linear independence of the former set can be shown byathe salculation as in the
proof of Propositio 1114, provided one knows thaty) # 0 for somez € X. This holds
since otherwise

0= X)) — A (X) = 20 x(72)

for all x € X, which contradicts the nature gf

If g # 1, then Lemma&11]5 implies thd& ™" ( -, ) is a non-vanishing multiple of( - , x)
and spans thus the same vector spacg(as x). Consequently the latter set in the Proposition
is linearly independent for the same reasons as for the fosete Since ;- is commutative,
the two sets in question generate the same space.

If ¢ = 1, the vanishing of allE®( -, x) for odd i follows from thei-th derivative of the
functional equation at = 0, which looks like

ED( x) = (=1)'EY(-,x) + (2g — 2) (terms in lower derivatives [
=0
11.7.Lemma. If y € Z, with 2 = | |=', then

7

®.RV(g,x) = > <;) (Ing.)" " A (x) R¥) (g, x)

k=0
for everyz € X, whereA!" (y) are defined as in Lemnia11.2.

Proof. The proof is the same as for Lemifna 11.2. Note that the functiof( -, ) is holo-
morphic ats = 0, so the limit in the definition of the residue and the limit hetdefinition of
the derivative with regard te commute. O

11.8.Proposition. Lety € =, with x2 = | [*'. Then

{R< ' 7X)7R(1)< : 7X)7R(2)( . ,X),}

is linearly independent and spans a vector space on wWHiglacts. In particular, none of these
functions vanishes.

Proof. The proof is completely analogous to that of Propositio@l11emmdI18 ensures us
of the fact that\ [ (x) # 0 for somer € X. O
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11.9. We summarise the discussion as follows. yar =, define

» EO(-,x) ifx¢ {L]I},
E<Z)(7X) - R(l)<7X) if X2: ‘ |i17
ECI(- x) if =1

andE(-,x) = EO(-,x). LetE(x)X c £ = £ ® R be the space generated by all derivatives
EO(- x) withi > 0.

Note that by the functional equations for Eisenstein senmektheir residues, the linear spaces
spanned by the set

{E(O)( ’ 7X)7 R E(n)( ’ 7X)} and {E(O)( ' 7X_1)7 SREE) E(n)( ' 7X_1)}
are the same for al} € =,. In particular,(y)X = £(x)X.

11.10. Theorem. The spaced” of unramified automorphic forms decomposes astap
module into N
A = AF o P cF.
{xx"'} CEo
The vector spacegl¥ is finite-dimensional and admits a basis?f,-eigenfunctions. For every
X € Zpandn > 0, {E(-,x),... E® V(. x)} is a basis of the uniqué{-submodule of
dimensiom in £(x)¥.

Proof. Note that all the spaced’ and& () are indeedH x-modules, which follows for the
latter spaces from Lemmas I11.2 4nd 11.7. It is well-knowh #fa is finite-dimensional and
the multiplicity one theorem implies that it has a basigtgf-eigenfunctions (cf.[]1, Section
3.3]). SinceP(x) ~ P(x') only if x' = y or Y’ = x~!, there is no other linear relation of
Eisenstein series than the one that is given by the fundtemation.

LemmagI1J2 and 11.7 imply that for eveyye =, £(x)X is anH-module. Propositions
11.4[11.6 and 1118 ensure that the described bases arél ilivkaaly independent.

The uniqueness of the-dimensional subspaces in the theorem follows from theajod®-
composition theorem. We furthermore see that) ( -, )} x-11czo.i>0 IS linearly independ-
ent. Finally, it follows from Propositioris 114, 11.6 dnd8 fogether with the general remarks
from paragrapf 111 that the decomposition exhadsts O

12. THE DIMENSION OF THE SPACE OF UNRAMIFIED TOROIDALEISENSTEIN SERIES

12.1.Lemma. Let y € =, satisfyx? = 1. If L(x,1/2) = 0, then1/2 is a zero of even
multiplicity.

Proof. Since the canonical divisor, which is represented big a square in the divisor class
group (cf. [28, XII1.12, thm. 13])x(c) = 1. Let L()(y,s) vanish ats = 1/2 for all i =
0,...,n — 1, for some oddn. We will show that in this case the multiplicity df/2 as a
zero must be strictly larger than Taking into account the vanishing of lower derivatives and
x(¢) = 1, then-th derivatives of both sides of the functional equation gefragraph 311) are

L™ (x,1/2) = (-=1)" L™ (x ', 1/2).
ThusL™(x,1/2) = 0 as(—1)" = —1 for oddn. O
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12.2. TheH -moduleEX

tor

inherits a decomposition

&= P (ES nENS)
{x:x"1}CZo
x2#| [

from AKX (see TheoreI1.10). Only finitely many terf§ N £(y)* are nontrivial. Each of
these terms has a basis of the form

{E< 7X)7E(1)('7X>7"'7E~|(n71)<' 7X)} )

wheren is its complex dimension.
Thus it suffices to investigate Eisenstein series of the férm, y) and their derivatives
E® (. x) for unramified quasi-charactegsin order to determin€ . We will, however, state

and prove theorems for general quasi-charagters= where no additional effort is required.

12.3. Lety € =, such thaty? # | [*'. We say thaty is a zero ofL( -,1/2) of ordern if
L(x,s + 1/2) vanishes to orden ats = 0. By Theoren{ 6.2, we see thatfis a zero of
L(-,1/2) of ordern, then all the functiong( -, x),..., V(- x) are toroidal.

The functional equation foE-series (paragragh-3.1) implies that zeros come in pgiis:a
zero of ordem if and only if y~! is a zero of orden, and if y = !, theny is a zero of even
order (Lemma&I2]1). We cafly, x '} apair of zeros of order. if y is a zero of orden in case
x # x 1, orif yis azero of ordeen in casey = x L

Due to the definition of ()X (in particular, notice the difference whei = 1; see para-
graph11.B) and becaus:QX)K = g(xfl)K, we obtain that if{, x "'} is a pair of zeros of
ordern, thenE(-,x),..., E®1(. ) are toroidal and span andimensionalX{ x-module
provided that? # | [*'.

We summarise this discussion.

12.4.Lemma. Lety € Z, such thaty? # | |*' andi > 0.

(i) Let E/F be a separable quadratic algebra extension. TH&H( - , x) is E-toroidal if
and only if{x, x "'} isazero ofL(-,1/2)L(- xg, 1/2) thatis at least of ordet.

(i) If {x,x '} is a pair of zeros of.( - ,1/2) of ordern, thenE(-,),..., B D(- x)
are toroidal. 0

12.5.Theorem. If ¢ is odd, the dimension &% equals(g — 1)k + 1, whereg is the genus and
h the class number af'. If ¢ is even, therig — 1)k + 1 is a lower bound for the dimension of
gK

tor*

Proof. By TheorenT 8.2, we have to consider only zerod.ederiesL(y, s) in order to know
whetherE(x, s) resp. its derivatives are toroidaljfis odd. For every there might be more
toroidal derivatives of Eisenstein series, and the foltayvonly gives a lower bound for the
dimension ofAX .
Fix an idelea; € A* of degreel and letw,,...,w, € =, be the characters that are trivial
on (a;). Assume thatv; is the trivial character. Then for every € =, there is a unique

jeA{l,...,h}ands € C/(27i/Inq)Z such thaty = w; | |*. By class field theory, there is a
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finite abelian unramified extensidr{ / I of orderh (cf. paragraph3]3) such that
h
I] Lr(wis+1/2) = Co(s+1/2).
=1
In particular the zeros of both hand sides as functionsark in one-to-one correspondence.
By Weil’'s proof of the Riemann hypothesis for function figlde know that this zeta function
is of the form
Lr(q™)

)= T )

for some polynomial (T € Z[T] of degre€gy that has no zero & = 1 orT = ¢! (cf.
[28, Thms. VII.4 and VII.6]). This means that the orders ofairs of zeros of.( -, 1/2) sum
up to gz, and that we findyz linearly independent toroidal automorphic formsé&fi. Note
that for a quasi-charactar = w; | |* with x2 = | |*!, we have that (s + 1/2) # 0 because
£(T) has no zero df = ¢° or T = ¢~ . Hence ify is a zero ofL( - ,1/2), thenE( -, x) is not
a residuum.

Finally, we apply Hurwitz’ theorem|([11, Cor. 2.4]) to theramified extensior¥”/F and
obtain:

29 — 2 = h(2g —2) andthus g = (g —1)h+1. O

12.6.Remark. Waldspurger calculated toroidal integrals of cusp formsrawmber fields. So
assume for a moment thatis a number fields an irreducible unramified cuspidal represent-
ation andf € = an unramified cusp form. Lef(r, s) be theL-function of 7. LetT C G

be a torus corresponding to a separable quadratic field gstefy of F' and x, the character
corresponding t@” by class field theory. Then the square of the absolute value of

/ oL

TrZy\Ty

equals a harmless factor timé¢r, 1/2) L(7xr, 1/2), cf. [26, Prop. 7].
These integrals are nowadays called Waldspurger periods arfd it is translated in some
cases to global function fields, cf. [20]. This leads to thejecture:

12.7.Conjecture. A cusp formf of an irreducible unramified cuspidal subrepresentatioof
the space of automorphic forms is toroidal if and only.{fr, 1/2) = 0.

By the multiplicity one theorem, this conjecture implies

12.8.Conjecture. The dimension af{{',.. equals the number of isomorphism classes of irre-
ducible unramified cuspidal representationsvith L(m, 1/2) = 0.

12.9.Remark. In [18] one can find a proof of thad ', = {0} if ¢ = 1 by a different method.
Note that in this casd,(r, s) has no zero for any irreducible unramified cuspidal repriadiem.
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