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UNIQUENESS OF THE FOLIATION OF
CONSTANT MEAN CURVATURE SPHERES
IN ASYMPTOTICALLY FLAT 3-MANIFOLDS

Shiguang Ma

Abstract

In this paper I study the constant mean curvature surface in asymp-
totically flat 3-manifolds with general asymptotics. Under some weak
condition, I prove that outside some compact set in the asymptotically
flat 3-manifold with positive mass, the foliation of stable spheres of con-
stant mean curvature is unique.

1 Introduction

A three-manifold M with a Riemannian metric g and a two-tensor K is called
an initial data set (M, g, K) if g and K satisfy the constraint equations

Ry — |K|} + (try(K))? = 16mp
divg(K) — d(try(K)) = 8nJ (1.1)
where R, is the scalar curvature of the metric g, try(K) denotes g% K;;, p is the
observed energy density, and J is the observed momentum density.
Definition 1.1. Let g € (1,1]. We say (M, g, K) is asymptotically flat (AF) if

it is a initial data set, and there is a compact subset K C M such that M \ K
is diffeomorphic to R?\ B1(0) and there exists coordinate {z‘} such that

9ij () = i + hij(z) (1.2)
hij(z) = O5(|2[77)  Kij(a) = Ox(|z]7179) (1.3)

Also, p and J satisfy
p(z) = O(|z|72720)  J(2) = O(|z|7*7) (1.4)
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Here, f = Op(|z|™7) means 8'f = O(|z|7"49) for | = 0,--- k. M\ K is
called an end of this asymptotically flat manifold.
We can define mass for the asymptotically flat manifolds as follows:

1 ;
m = hm —/ (hij)j —hjj)i)’l)gdug (15)

r—oo 167

where v, and djiy are the normal vector and volume form with respect to the
metric g. From [I],we know the mass is well defined when ¢ > 1/2.

Definition 1.2. We say (M, g, K)is asymptotically flat satisfying the Regge-
Teitelboim condition (AF-RT) if it is AF, and g, K satisfy these asymptotically
even/odd conditions

hetd() = Oa(|2|179) K™ (x) = Ox(|2|7279) (1.6)

Also, p and J satisfy

pU(w) = Oal 5721)  JH(z) = O(|a|~521) (17)

where f%(z) = f(x) — f(—z) and f"(z) = f(2) + f(-z).
For (AF-RT) manifolds, the center of mass C' is defined by

1 . .
o _ ; alp. b gyl _ IS NP
e = 167m TILIEO(/z_Tx (hiji—hii.j )vgdig /z_r(hwtvg hiivg )dpig). (1.8)
From [3], we know it is well defined.
The constant mean curvature surface is stable means the second variation
operator has non-negative eigenvalues when restricted to the functions with 0
mean value, i.e.

[0AP + Rictwy.v,)) P < [ (94 a (1.9)
by >

for function f with fz fdu = 0, where A is the second fundamental form, and
Ric(vg,vg) is the Ricci curvature in the normal direction with respect to the
metric g.

We discuss the existence and uniqueness of constant mean curvature spheres
that separate the origin from the infinity in the AF-RT manifolds. The following
two theorems are due to Lan-Hsuan Huang [2]:

Theorem 1.3. (Existence) If (M, g, K) is the AF-RT with ¢ € (3,1], there
exists a foliation by spheres {¥g} with constant mean curvature H(Xg) =
% +O(R™179) in the exterior region of M. Each leaf ¥ is a co R'~9-graph over
Sr(C) and is strictly stable.

Set r(z) = (X(z;)?)*/2. For the constant mean curvature sphere ¥ which
separates infinity from K, we define

ro(X) = inf{r(z)|x € £}
r1(X) = sup{r(z)|z € &} (1.10)



Theorem 1.4. (Uniqueness) Assume that (M, g, K) is AF-RT with ¢ € (3,1]
and m > 0. There exists o1 and C; so that if ¥ has the following properties:

3 is topologically a sphere

e ¥ has constant mean curvature H = H(X ) for some R > oy

e Y is stable
1
o 11 < Cyrg for some a satisfying % <a<l1
then ¥ = Xg.

Our main uniqueness result is

Theorem 1.5. Suppose (M, g, K) is AF-RT 3-manifold with positive mass, and
g can be expressed on the end M \ K as follows:

Gij :5ij+h3j(9)/r+Q (111)

where § = (61,62) is the coordinate on S? C R3. If g satisfies the following
properties:

) hb—(@) € C°(5?)
o Q=0s(z"?)

Then for any k > 2, there exists some € > 0 depending on k such that if

(135 (0) = 055(0)[lwr2(s2) < &, (1.12)

there is a compact domain K such that if a foliation {X} of stable constant
mean curvature spheres which separates infinity from K have

_ log(r1(2))
r(}l—{noo TO(E)1/4

then this foliation is the same one as in TheoremI .3}

=0 (1.13)

Remark 1.6. If we replace || hi; (0) =85 (6) lwr.2 < € by |[hij (0)—Cdi;(0)||we.2 <
¢ for any constant C' > 0, we can also get this theorem, but ¢ will depend on k
and C.

Remark 1.7. RT condition is needed to apply the theorems of Huang and if
we assume the scalar curvature satisfies R = O(r=37¢) for some ¢ > 0, then we
do not need the constraint equation.

Remark 1.8. Here I can only deal with the case when ¢ = 1. When ¢ € (1/2,1)
it seems that ||h;;(60) — 04;(0)|lw2(s2) < € is not a proper condition.

The above theorem is about the uniqueness of the foliation. For the unique-
ness of a single CMC sphere we have:



Corollary 1.9. We assume the same condition on the metric as the above

Theorem. Then for any constants C' > 0 and § > 0, there exist some compact

set K(C,8) C M, such that any stable sphere ¥ that separates K(C, () from
the infinity with

(og(r (£ _

To (2)1/4 -

belongs to the foliation in Theorem [[L3

The paper is organized much like [9]: In Section 2 we do apriori estimate
on the stable constant mean curvature sphere based on the Simon’s identity. In
Section 3, we introduce blow-down analysis in three different scales. In Section
4 we recall the asymptotic analysis from [I0] and prove a technical lemma. In
Section 5 we introduce the asymptotically harmonic coordinate. In Section 6
we introduce a sense of the center of mass and prove the theorem.

(1.14)

2 Curvature estimates

From now on let ¥ be a constant mean curvature sphere in the asymptotically
flat end (M, g)which separates the origin from the infinity. First we have the
following estimate as Lemma 5.2 in [5].

Lemma 2.1. Let X = z* 621' be the Euclidean coordinate vectorfield and r =
(2(2)?)"/? and with respect to the metric g, v is the outward normal vector
field , du is the volume form of ¥. Then we have the estimate:

/ < X,v>2r 4du < H*Y| (2.1)
b
Moreover for each a > ag > 2 and r¢ sufficiently large , we have:

/ r%dp < Clag)ry “H?|2| (2.2)
b

Proof. Because the mean curvature H is constant, then for some smooth
vector field Y on ¥ , we have the divergence formula:

/ divsYdp = H/ <Y,v > dpu. (2.3)
) )

We choose Y = Xr™® | a > 2 and e, is the orthonormal basis on ¥ | a = 1,2.

Suppose e, = ag%, it is obvious that a’, is bounded because the manifold is

asymptotically flat. Then we have:

divsY = divs(X17) =< Ve (X179, eq >
=r *dive X — ar " ?a’,al x'2? + O(r—*79)
=7 divg X —ar 2| X2+ O(r779) (2.4)



where X7 is the tangent projection of X.

\divs X — 2| = O(r~%) (2.5)

Note that|X7|? = 72— < X,v >2 +0(r?7%) , then combine all of these we
have:

[(2 — a)/ rfadu—i-a/ < X,v>2r v 2dy — H/ < X,v>r %yl
b b b
< C/ r " dp (2.6)
b
Choosing a = 2 , from Holder inequality , we have:

1
/ < X,v>2r tdu < ZH2|Z| + C/ r—2dy (2.7)
b )

then choose a =2+ ¢,

/ 27 9dy < 47“6‘1(/ < X,v>%r Y du+ H* S| + C’/ rm3 ) (2.8)
) by by
then combine this with (Z7),we have:
/ < X,v>%r74du < H*Y| (2.9)
by
then again from (2.6]), we have for a > a¢ > 2, we derive:
/ r= < Clag — 2) " trd " H?|Y| (2.10)
)

Then we can derive the integral estimate for |A| from the stability of the
surface as in [5] Proposition 5.3, i.e. we have

Lemma 2.2. Suppose ¥ is a stable constant mean curvature sphere in the
asymptotically flat manifold. We have for r( sufficiently large

/ |A|2dp < Cry @ (2.11)
b))
HA¥|<C (2.12)
/ H?dp =167 + O(ry 1) (2.13)
b))

Proof. Since X is stable , we have

[ 1Vsdnz [ (AP + Ricto,0) fdu (2.14)
> >



for any function f , with fz fdu = 0, where A is the second fundamental form

of ¥ and Ric is the Ricci curvature of M

Choose 1 to be a conformal map of degree 1 from ¥ to the standard S? in
R3. Each component v; of ¢ can be chosen such that [ ¢;du =0, see [§] . We

have for each ;

8
[ vuan =5
5 3

since > 1? = 1 we conclude that
/ |A|? + Ric(v,v)du < 87
b
From Gauss equation

1, 5 . 1 i et
2|A| + Ric(v,v) 2R—|—K— 2H

we have:

1., 3 1
|A]?> + Ric(v,v) = §|A|2 + ZH2 +oR-K

where K is the Gauss curvature of ¥ and A is defined as A;; = A;; —

Then we have:
Lige 3pe —q 172
§|A| +ZH |X| <127+ ry THZ| X
b
because R = O(r—2729).

So we have H?|Z| < 16m7.
Using the Gauss equation in a different way, we have

2
[ aPa= [ 147 - 2
b > 2

1 1
=— / |A]? + Ric(v,v)du + = / R — 3Ric(v,v) — 2Kdu
2 s 2Js

< / 27y
b

= O(ry ).

Then from Gauss equation [2.I7) again, we have:

/ H?dp = 4/ Kdp+O(rg %) = 167 + O(ry 7)
b)) b))

(2.15)

(2.16)

(2.17)

(2.18)

H
2 Yij

(2.19)

(2.20)

(2.21)



Lemma 2.3. Suppose that M is a constant mean curvature surface in an asymp-
totically flat end (R?\ B1(0),g). Then

/ZHfdue =16m+ O(ry 1) (2.22)
Proof. We follow the calculation of Huisken and Ilmanen [4],
Gij = 045 + hyj (2.23)
Suppose
Gijls = fij, 6ijls = €45 (2.24)

f% and €¥ are the corresponding inverse matrices. v,w, A, H, dy represents the
normal vector , the dual form of v, the second fundamental form , the mean
curvature and the volume form of ¥ in the metric g. And ve,we, Ac, He, e TEp-
resents the corresponding ones in Euclidean metric. Through easy calculation,
we have

fi — e = —fkhy, fY £ C|n? (2.25)
g7 — 0 = —g"*hy gl £ C|h? (2.26)
We i ij

(We)i =w; £CIP| vi=0v"+Clh| 1-—|we|= ihijvlvj (2.28)

1 — — — —
T3 = 59" (Vihj + Vjha = Vihij) £ C|h| & CVh| (2.29)

and Ffjis the Christoffel symbol for V — V. ,where we denote the gradient for

the metric g and § by V and V..
‘We have the formula:

|We|gAij = (Ae)ij - (we)krfj (2.30)
So we have
H — He = f,LJA,LJ — EU(Ae)fLJ
= (f7 — ") Ay + €7 Aij(1 — Jwelg) + € (|welg Aij — (Ac)ij) (231)
from (225) (226]) 22]), we have
£ A (1 = |wel,) = %Hvivjhij + ClhP2IA| (2.32)

and using (2:25]) (2:26]) (Z28) 229) (Z30) we have:



5ij(|w‘e‘|Aij — (Ae)ij)
= —g¥ (we)kl"fj

1 .. _ _ _ _
= _gfuwkgkl(vihjl + Vjhii — Vihij) £ C|h||Vh|

= P _
= —f9u'V;hj + §f%lvlhij + C|h|[Vh| (2.33)
At last , we have
, 4 1. o

H—He=—f%hy f94;; + §Hv’v3hij — fUu!V,hy

1 .. _
+§f”vlvlhij + C|h||[Vh| £ C|h?|A] (2.34)

/H2due— 1+ O(r /H2du
<(140(ry /HQdqu/(H H)? +2|H(H, — H)|du)
< (1+0(rg‘1))(167r+0(rg")+/2(H8—H)

/H%zu )2 ( / (H. — H)%dp)?) (2.35)

/(He —H)?dp < /O(Irfsl‘”)lAl2 + H?0(|z|7%1) + O(|a| 229 du
< /0(|w|‘2q)H2 + O(|z|729)|A]2 + O(Jz| =272 dp

=0(ry*") (2.36)

so we have

/ HZdp. < 167+ O(rg ?) (2.37)
b
On the other hand, by Euler formula,
1 1, .
K.=-H? - Z|A % 2.38
T2 = 5lAd (239)
So we have
/deue > 16w (2.39)
which implies:
/ HZdp. = 167+ O(rg ) (2.40)
b

Based on Michael and Simon, we have the following Sobolev inequality.



Lemma 2.4. Suppose that X is a constant mean curvature surface in an asymp-
totically flat end(R*\ B1(0), g) with r¢(X) sufficiently large, and that [, H* < C.
Then

2,0}
( / Pt < / I fldu + / H]| fldu). (2.41)

Proof. Note that it is valid for the surface in Euclidean Space. So by the uniform
equivalence of the metric g and § , we have:

([1Pawt < o [ 1Pt < ([ 1901+ H1F + 1 - B\ fldw) (242)
To bound the last term on the right , we have:
/IH—HeIIfIdu < /O(III"’)IAIIfI+0(III"’)H|f|
+0(III’1*q)|f|du

05") [ =11+ ([ 14Pd) 0 ) e
+O0(rg )| fll 22 (2.43)

IN

So we can choose rg sufficiently large and get the desired result.

Lemma 2.5. Suppose that ¥ is a constant mean curvature surfaces in an
asymptotically flat end (R?\ B1(0),g) with ro(2) sufficiently large, then:

CiH™ ' < diam(X) < CoH™* (2.44)

In particular, if the surface ¥ separates the infinity from the compact part,
then:

CiH™' <r (%) <CoH™! (2.45)
Proof. We already know that:
/ HZdp. =167+ O(rg ) (2.46)
b
Then from [7] Lemma 1.1, we know that

218l _ .
o) < diam(X) < C/|Z]F(X) (2.47)

where F(X) = [, H? is the Willmore functional and |S|. is the volume of ¥
with respect to the Euclidean metric. But the Euclidean metric is uniformly
equivalent to g, so we get the result.

Now to get the pointwise estimate for A ,we use the Simons identity and the
Moser’s iteration argument.



Lemma 2.6. (Simons identity [I1]) Suppose N is a hypersurface in a Rieman-
nian manifold (M, g) , then the second fundamental form satisfies the following
identity:

AAj; =V, V;H + HAj Aji, — |APAij + HR3i3; — AijRarar + Ajp Riaa
+ Ak Ryt — 2AuRiji + Vi Rakir + Vi Rsijk (2.48)
where R;ji; and V are the curvature and gradient operator of (M, g), then from

this we easily deduce for constant mean curvature surface we have the next
inequality for A :

—|A|AJA| < |A|* + CH|A]P + CH?|A|? + C| A x| 274
+CH|A||z|7277 + O|Al|x| 31 (2.49)

We also need an inequality for VA because we also want to estimate the
higher derivative:

—|VA|IA|VA| < CIVAP(JA]? + H|A| + H? + O(|z|277)) (2.50)
HVA|((|AP + HIA| + H*)O(|z|7277) + (|A] + H)O(|z|7>77) + O(|z|~*71))
Lemma 2.7.
1A% (2 + V1Al 2 + [IVA] L2 + | H| Al 2 < Crg ™ (2.51)
Proof. See [2] Lemma 4.5 ) )
Then we can get the pointwise estimates for A and VA .

Theorem 2.8. [9]Suppose that (R3\ B1(0),g) is an asymptotically flat end.
Then there exist positive numbers o, dy such that for any constant mean cur-
vature surface in the end, which separates the infinity from the compact part,
we have:

|A](z) < C|$|72/ |A|Pdp + Clz| 72727 < Clz| 2y (2.52)
Béo\t\(z)
IVAR() < C’|a:|_2/ VAPdp+ Cla| 2 < Cla| 2522 (2.53)
Bsg)x| ()

provided that ro > og.
Proof. In the Sobolev inequality (241) we take f = u? , then we get:

([ wtan < c@ [ plvalau+ [ o)
<o wy([ [vupdn? + o /Supp(u) want([ wtdw? (259

=

10



Lemma 2.9. For any € > 0, we can find a uniform Jy sufficiently small such
that if for any € X , we have that:

/ H?*<e¢ (2.55)
Bsg el ()

Proof. In fact we need only to prove that there exist C
| Bsolei ()] < CO5 | (2.56)
because then,
H?|Bs, o (2)] < C83|lz|?H? < C8; (2.57)

From [7] the proof of lemma 1.1, we know that, for any = € ¥, B, (z) denotes
the Euclidean ball of radius ¢ with center z in R3, ¥, = ¥ N B, (z), then there
exists C' such that for 0 <o < p < o0

0728 < C(pT2 8, + F(Z,)) (2.58)

where F(X,) is the Willmore functional. C' doesn’t depend on X, o, p.
Let p — oo, p~2|%,| — 0, so we have:

oY%, <CF(Z)<C (2.59)

so we prove the lemma.
So if supp(u) C Bs,|z|(x), we have the following scaling invariant Sobolev

inequality:
( / u'dp)
b

Lemma 2.10. [9] Suppose that a nonnegative function v € L? solves

[V

el / ) / V) (2.60)

“Av<futh (2.61)
on Bag(xzg), where
/ fPdu < CR™? (2.62)
Bar(zo)
and h € L?(Bar(7o)). And suppose that
([atant <[ w)i [ [wupdw? (2.63)
) ) )
holds for all v with support inside Bag(z¢). Then
Bs1(1p ) v < CR™ Ml 12(Byr (w0)) + CRID 2By ) (2.64)
RrR(To

See [9] Lemma 2.6 for the proof of this lemma.

11



Then we find that:

~AJA| < (AP + H? + H|A| + Cla|™7)|A] + CHlal 1+ Claf >~
— AlAl (2.65)

—A|VA| < CIVA|(JA]> + H|A| + H? + O(|z|7%))
+((1AP + HIA| + H*)O(|[7%) + (|A] + H)O(|2| ™) + O(|=| =)
= f2|VA| + hs. (2.66)
We need to prove that ||f1||%2(3250‘z‘(%))7 ||f2”%2(3250\m\(m)) < Clz|? , see [9]
Theorem 2.5 for the proof. and it is easy to show that ||h1||%2(325 (@) =
olx

O(|z|=*729) and ||h2||%2(3250‘w‘( )y = O(lz|~6729).

x

Remark 2.11. We can also do the same kind of estimate for V24, where we
need the third derivative of curvature. It is needed by the C%*® convergence of
the surface in the next section. This is the reason why we require the metric g
to be smooth up to 5th order.

3 Blow down analysis
Now like [9], we blow down the surface in three different scales. First we consider
~ 1 1

Suppose that there is a sequence of constant mean curvature surfaces {V;}
such that

lim ro(N;) = o0 (3.2)
1— 00
we have known that
lim H2do = 167 (3.3)
71— 00 N’L

Hence, by the curvature estimates established in the previous section com-
bining the proof of Theorem 3.1 in [7], we have

Lemma 3.1. Suppose that {IV;} is a sequence of constant mean curvature
surfaces in a given asymptotically flat end (R3\ B1(0),g) and that

lim ro(N;) = 0. (3.4)

71— 00

And suppose that N; separates the infinity from the compact part. Then, there
is a subsequence of {N;} which converges in Gromov-Hausdorff distance to a

12



round sphere S7(a) of radius 1 and centered at a € R3. Moreover,the conver-
gence is in C%“ sense away from the origin.
Then, we use a smaller scale ry to blow down the surface

]\A]:ro(N)_lN:{ralx:xeN}. (3.5)

Lemma 3.2. Suppose that {N;} is a sequence of constant mean curvature
surfaces in a given asymptotically flat end (R3\ B1(0),g) and that

lim ro(V;) = oo. (3.6)
71— 00
And suppose that
1— 00

Then there is a subsuquence of {]Vl} converges to a 2-plane at distance 1
from the origin. Moreover the convergence is in C%“ in any compact set of R3.

We must understand the behavior of the surfaces N; in the scales between
ro(N;) and H~1(N;). We consider the scale r; such that

N;
im Y o i E (V) = 0 (3.8)
i—00 i i—00
and blow down the surfaces
Ny=r'N={r;'z:ze N} (3.9)

Lemma 3.3. Suppose that {IV;} is a sequence of constant mean curvature
surfaces in a given asymptotically flat end (R3\ B1(0),g) and that

lim ro(N;) = o0 (3.10)

i—00

And suppose that r; are such that

i N o () =0 (3.11)

1—00 T 1—00

Then there is a subsequence of {N;} converges to a 2-plane at the origin in
Gromov-Hausdorff distance. Moreover the convergence is C%® in any compact
subset away from the origin.

4 Asymptotically analysis

First we revise Proposition 2.1 in [I0]. We prove a different version. Let us
denote:

Jull}; = / lul? 4+ |Vul?dtdd (4.1)
[(i—1)L,iL]x S1

13



Lemma 4.1. Suppose u € W12(X, RF) satisfies

Au+A-Vu+B-u=h (4.2)

in ¥, where ¥ = [0,3L] x S. And suppose that L is given and large. Then
there exists a positive number §p such that if

|h|L2(E) < g 1I£11<fi<X3 |u|1,i (4.3)

and

[Alpe(s) <0 [Blr=) < do (4.4)

then,

(@)lullrs < e 2% ull1 2 implies [[ull12 < e~ 2E|jul|11

(b)|ull1,1 < e~ =E|[ully,5 implies [|ullx,> < e~2E ul|1 3

(c)Ifboth [, o udf and [,; o udf < 6o maxi<i<s [|ull1,s, then either [[ul|; 2 <
e |lull11 or ull12 < e FE|fully 3

Proof. Suppose that u € W12(X) and u is harmonic, we can deduce that u
satisfies (a)(b)(c’)with

(¢)If both [, ¢ udf and [, i udf =0, then either [lul[; 2 < e~ 2E|uly 1
or Jufl12 < e"2Elull1 3

A harmonic function u can be written as:

u = ag + bot + Z{e"t(an cosnb + by, sinnb) + e " (a_, cosnf +b_, sinnfh)}
n=1
(4.5)
Then it follows that:

1
[ullf; = 27 ((ad + b3)L + agbo L*(2i — 1) + §b§L3(3i2 —3i+1))

oo _
T e?nL 1

(e20=DnL (g2 4 p2) 4 o2l (g2 4L 52 V) 4 AL (apa—n + bpb_p)}
n

x 2nL—1
+7 Z{
n=1

+4L(n*ana_, +n*b,b_,)} (4.6)

(62(1'71)7111 (n2a721 + n2bi) + 672niL(n2a2_n + n2b2_n))

i=1,2,3
If L is fixed and sufficiently large, then we have

1 _
lullto < 5™ lullfs+ e llull) (4.7)

14



which implies (a). We get (b) in the same way. For (c¢’), we have ag = by = 0
then we have

1 _
el s < 5e~"(lul

13+ lullf ) (4.8)

which implies (c¢”)

The second step is to pass limits. If the proposition were false, then one
would have a sequence of ¢, — 0 and a sequence of solution uy with ||hg|/r2 < d
|Ag| < 0 and |Bg| < di solves:

Auyp + Ag - Vug + By - up, = hy, (4.9)

We may assume maxi<;<3 ||ug|l1,; = 1 otherwise we can normalize them. Then
we know that there is a subsequence that converges to some u € W12(%) weakly.
And u is a harmonic function. From the interior W?2? estimate we know the
convergence is strongly W12 in I, which implies that w is not trivially zero.
Because, with the assumption of the proof by contradiction, the middle one is
the largest.

And because u; — u weakly in W2(32) sense. So u; — u in WH2([;) and
Wh2(I3) sense, then we have:

liminf [Ju;||1,1 > [Jull1,1, iminf Ju||l1 5 > [Jul13 (4.10)
1—00 1—>00
and
lim [lugl1,2 = [Julli2 (4.11)
12— 00

then wu,; converges to some non-trivial harmonic function u which violates one
of (a)(b) or (c), which proves the lemma.

From now on we assume ¢ = 1.

Given a surface N in R?, recall from, for example, (8.5) in [6], that

Aev + |Vev]?v = V. H, (4.12)

where v is the Gauss map from N — S2. For the constant mean curvature
surfaces in the asymptotically flat end (R3\ B1(0), g), we have

Lemma 4.2.
|V H|(z) < C’|gc|_27°0_1 (4.13)

Proof. Because the metric g and the Euclidean metric are uniformly equiv-
alent. So we just prove that

VH,.|(2) < C|x —2p1 4.14
0
From (234), we know that:
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IVH,| < [Vhij||A] + [hij || A]? + |hi| |V Asj| + H|A||hij| + H|Vh;]
+|A|Whij| + |v2h|
< |o| 2yt (4.15)

Suppose ¥ is a constant mean curvature surface in the asymptotically flat
end. Set

Ay ={z €X i < 2| <12} (4.16)

and A?Mz stands for the standard annulus in R%2. We are concerned with the

behavior of v on Ak, (s),sm-1(x) of ¥ where K will be fixed large and s will be
fixed small. The lemma below gives us a good coordinate on the surface.

Lemma 4.3. Suppose X is a constant mean curvature surface in a given asymp-
totically flat end (R?\ B1(0),g). Then, for any e > 0 and L fixed and large,
there are M,s and K such that, if 7o > M and Kro(X) < r < sH~1(X), then
(r~'A, .,.,r"2g.) may be represented as (A?)EL,E) and

15 = ldz*ller a0,y <e. (4.17)

In other words, in the cylindrical coordinates (S! x [logr, L +logr,g,])

”gc - (dtz + d92)||01(51X[logr,LJrlogr]) <e (418)

Proof. Suppose this is not true. Then we can assume that such K (or such

s) cannot be found. Then by Lemma for some g¢p > 0, there is a sequence
Y, with r9(3,) = oo, and l,, — oo , such that:

(Kroel»t)=1 A Kroe"h)=2g,) (4.19)

KroefnL,Kroe(lN"+l)L ’ (
is not ¢ close to (A} .,7).
By Lemma Bl We know that

KTQeT"L
sH=1(X,)

must hold because we have choose s sufficiently small.
L

-0 (4.20)

So if we assume r,, = Kroet»”, we have:

=0 (4.21)

n—o00 KTO ,n~>oo SH_l

We blow down the surface using r,,, and have a contradiction with Lemma
This proves the lemma.

Now consider the cylindrical coordinates (¢,6) on (S* x [log Kro,log sH™1]),
then the tension field
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[7(v)| = r?|VeHe| < Cryt (4.22)
for t € [log Krg,log sH~!]. Thus,

/ 7 (0)[2dtd0 < O (4.23)
S1x[t,t+L]

Let I; stand for S' x [log Krg + (i — 1)L,log Krg + iL], and N; stand for
I, 1 UL; Ul On %, we assume log(sH ') —log(Krg) = I,,L. And like [10],
first we prove that,

Lemma 4.4. For each i € [3,1,, — 2], there exists a geodesic 7 such that

V(v —~)|2dtdf < C(e™ ™ 4 e~ In=D1)2 4 Ot (4.24)
I;
where V is the gradient on S* x [log(Kro), log(sH™1)]
Proof. By Theorem2.8 we have

Pleag < Vol < Clry * +5) (4.25)

then if ro sufficiently large and s sufficiently small, we have [v]ca(n,) is very
small.

To apply the Lemma [£.1] to prove this lemma we choose to points P and Q
on S?(the image of Gauss map) satisfying

1
|P— — vdd| <C max |v— P?
27T (i—l)LXSl (i—l)LXSl
1
- = do| < C - QP 4.26
Q=5 [ it <C max o=@ (1.26)

Note that S? is compact and smooth, so by ([@25) we can always find such P
and @ and P,Q are very close. So there is a unique geodesic ; connecting P
and @ whose velocity is sufficiently small.

So if we write down the equation satisfied by v—~; on St x [log(Krg),log(sH 1))

Au+A-Vu+B-u=r (4.27)
where u = v — ~;, we have:
4] < C( Vvl + Vi) < &
|B| < Cmin{|Vo|?, |Vi|?} < do (4.28)
If Lemma [Tl (C’) cannot be used, the only reason is that

lv—=7ill1i < Cll7llL2 () (4.29)
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which implies
/1 IV (v — ) [2dtdf < Cry 2 (4.30)

which implied ([Z24]).
If Lemma [4T] (C’) can be used, then applying it for u = v — 7; over N;, we
have either
_1
ullii < e 2" |[uflia (4.31)

or

_1
lulli < ™2 lull i1 (4.32)
Suppose the first one happens (without loss of generality). Then we may push
this relation to the left because (L28) hold regardless of t’s position. If the
theorem can be used on NN;;; but not on N; for some j > 2, then we have
lulle < e 2O uflyy < Cem 20Dt < O (4.33)

If the theorem can be used until I, then we have

e lullra < fJulls = (/ w2dtdp) s +(/ Vul2dtdo) *
Iy

Iy

g(/ u2dtd9)%+(/ (u(t,0) — u(t + L,0))2dtd0)* + (| |Vu|2dtdo)?
I I I

(4.34)

So we have

L
(% = Dlullrz < ( / ( / %(Hs,endsfdtdeﬁﬂ / |Vul*dtds) =
I, JO

Iy

L ) : ~ )
g/( |a—u(t+s,0)|2dtd9)§ds+(/ |Vu|2dtdo)
0 11 t Il
< C(/ |Vu|?dtd) >
I1Uly

SC(/ |%|2dtd9)%+c(/ |V |2dtd) 2
I,UI> I

1UI
1
< C(T‘O 24+ S) (4.35)
So we have the estimate

i—2

i _1
Julli,; < Ce™ = Hlull12 < Ce 75 (ry 2 + 5) (4.36)
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If lullis < e 2%||ull1i11 happens, we will have similarly
n—i -1
lulli < Ce™ ™5 Ly 2 +5) (4.37)
Finally we get
i n—i -1
u1i§06_7L+e_l2 e+ COr, 2 4.38
. 0

which implies (Z24)).
Then to get the energy decay, we use the Hopf differential

® = |0pw|* — |9pv|* — 2v/—10sv - Dpv (4.39)

We know that the L' norm of ® is invariant under conformal change of the

coordinates. (t,0) is the coordinate of Ag,. .i-»r gpoe+1r, We find another
: " _ iL -1 —2

coordinate for it: set r; = Kroe'", then (r; " A, c(i-2L kpoetit1L,T; ~ge) CaAN

be represented as (A7 .z .1,7) , where [ —|dz[*||c140__ ) <e. Assume this

Euclidean coordinate is (x,y), so:

/ |D|dtdo — / |B|ddy (4.40)
S1x[log Kro+(i—1)L,log Kro+iL] A:

—L 1

To estimate the right hand side, we use the Cauchy integral formula on
Q= A2,2L o, and set Q' = AS,L 1, for any z € €

1 O (w) dw + 1 0P (w) dw A dw

b =
W) =575 oo 0T )y, 90w

(4.41)

‘We know

. , _1 _1 ,
10,0, |0,v] < CKroe't|Al < CKroet(|z)trg 2 +r71) < Cry 2 + se” (=L

(4.42)
so we have:
1 ®(w) -1 2, —2(lp—i
dw| < C (n—i)L 4.43
|27T\/—_1 b0 W — 2 U)|_ (TO +s%e ) ( )
For the second term, notice that by easy calculation
0P

8Eu_w) = 0v - T(v) (4.44)

where T(v) is the tension field under this coordinate. And
[7(v)| < (Kroe)?|V He| < Cry! (4.45)

so we have:
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(w) dw A dw

1 0P
< COryt 4.46
27n/—1/9 5w w_z — 0 (4.46)
Then we get:
|®] < C(rgt + s%e 2=k (4.47)
Q/
By direct calculation
/ |0yv|2dtd
SIx[Kroeli=DL Krgeil]
< / |®|dtd6 +/ |0v|?dtdd
SIx[Kroeli—DL Krgeil] SIx[Kroet=DL Krgeil]

(4.48)

and we can get the estimate of fslx[Krerfl)L KroeiL] |Ogv|?dtdd directly by
#24). So we get the estimate:

/ [Vul2dtd < Cle™™ + e =DE)s2 4 Orgt (4.49)
S1x[Kroeli—DL Kroeil]

Proposition 4.5. Suppose that{3,} is a sequence of constant mean curvature
surfaces in a given asymptotically flat end (R3\ B1(0),g) and that

lim r¢(%,) = o (4.50)
11— 00
And suppose that
ILm ro(Zn)H(E,) =0 (4.51)

Then there exist a large number K, a small number s and ng such that,when
n Z no,

max Vol < Cle2F + e_un{i)L)s + Cro_% (4.52)
where
I; = S* x [log(Kro(2,)) + (i — 1)L, log(Kro(X,)) +iL] (4.53)
and
i €[0,0,]  log(Kro(3,)) + 1L =log(sH 1 (2,)) (4.54)

Proof. We just use the interior estimate of the elliptic equation
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Av+|VolPo =7 (4.55)
We know || Vol|so < C(TO_% +5), and ||7||o < Crgt. Assume that :

Lccl,ccN; (4.56)

then for some p > 2

sup|Vo| < ClIVollwer(r) < Cvllpa) +707) < Cllvlzaavy +707)

7

i n—i ~1
SC(e_fL—f—e_(l 2 )L)S—I—CT‘O 2 (4.57)

This analysis improves our understanding of the blowdowns that we dis-
cussed in the previous section. Namely,

Corollary 4.6. Assume the same condition as the above proposition and in
addition limy, o logl(/’}) = 0. Then the limit plane in Lemma3.2] and Lemma3.3]
T

are all orthogonal t(;) the same vector a. In fact, we may choose s small and ¢
large enough so that,

|v(x) +a|l <e (4.58)
for all z € ,, and |z| < sHY(X,,)
Proof. We want to prove that
Oscp_,, 1z, (4.59)
is sufficiently small if ro(3,,) large and s small. We already know that

Oscpy,,ns, v (4.60)

is very small from Lemma 3.2 so we need only to prove that

OSC(BSHfl\BKTO)ﬂEn’U (461)

is small.
From the proposition above we find that

ln ln
OSC(B_ 1 \Bxry)nS,V < Z Oscrv < CZsup [Vl

i=1 i=1 "¢
In
i n—1 _1 _1
<C> (e e T s 4y T) < O+ Lry (4.62)

=1
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From C~!ry < H=! < Ory and the condition lim,, e % =0, we have
'r‘

log 1

lnro_% = L Y(log(sH ") — log(Kro))ry 3 <C -0 (4.63)

2
To

as rg — 00, so we prove the lemma.
Corollary 4.7. Assume the same condition as Proposition L3l Let v, = v(py,)
for some p,, € I1,. Then

2

sup |v — vy, | < C’(e_%iL temilnl

k3

) + Loty ? (4.64)

for i € [0, 3,]

sup |v — vp| < Ce L 4 em2(n=DLyg 4 lnra% (4.65)
I

i

for i € [3n,ln]

5 Harmonic Coordinates

We assume that the metric g can be expanded in the coordinate {z;} as
9ij = 0ij + hij = 855 + hi;(0) /7 + Q

where 6 is the coordinate on the unit sphere S?, and h;(6) is a function extended
constantly along the radius direction. And @ satisfies

supritR|okQ| < C (5.1)
for k=0,1,---,5
First, note that:
Agzy = 73 (\/_g”—:zrk)
0 1 i mn
(9 g P 29 9 9mn,
=- m"ann = O(|z[7?) (5.2)

Now our aim is to find asymptotically harmonic coordinate, i.e. some coor-
dinate y® such that Ayy* = O(|z|~3)

) B B
Ayt = —g' g™ S (—hi + 8_{Elhji - _Iihjl)
Lj

2(8%
= g S (2 (0, (6) ~ WA(O))
(h]z 1(9) hl (9) r ) (h]l 1(9) h (9) ))) + aQ

—glghl 57 T (0) + O(l2 %) (5.3)
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We also know that g/ = 6" — h}.(0)/r + O(r~?)
Then : 1
Agxk = _57"72 jlk](e) + O(Tﬁg) (54)

Suppose 0 = & > & > & > -+ are the eigenvalues of A|gz2, and A, (6) are
the corresponding orthonormal eigenvectors.
Set:

g =2+ 3 ) A () (5.5)
n=0

We have:

Agyk = Agxk + Z Aps(fr(r)An(0)) + Z(Ag — Aps)(fr (1A (0)  (5.6)

n=0 n=0

Solve the equation:

Aga® + Y Aps(fr(r)Aa(9)) = O(|z| %) (5.7)
n=0
Assume
1 o0
5k (0) = DA An (D) (5.8)
n=0
so we have:
> Apa(fE(r)An(0) =r2 > AEAL(0) (5.9)
n=0 n=0
T_12(2rf7]f/+r2fﬁll+frl§(r)§n):)\fwn:O,..- y OO (5'10)
n=0, fr=1log(r) (5.11)
)\k
n>0, fr=7n (5.12)
én
and this solution satisfies that:
D (Ag = Aps)(fE(r)An(0)) = O(|z| ) (5.13)
n=0
so if
e S logr—l—i/\—ﬁA ) (5.14)
2y/m "0 g, " '
then we must have:
Ay = O(la|~?) (5.15)
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Note that

N > 1 J
Alg2 Z g—An(H) = Z ArAn(6) = 3 i (0) — 3 i (0) (5.16)
n=1>" n=1
where fjlkj (9) is its mean value on the unit sphere.
Set
1 o~ An 1l L
g (0) = Z g—An(G) =A (Efjkj(o) D) jkj(o)) (5.17)
n=1 >"
oy* N1t 1
— = 05 e 0 i .
oxt 5k+2ﬁrr+gk()r (5.18)
oz’
a—gjk = dir, + O(|z| 1) (5.19)
So we get:
~ o 0 1
9ij = g(ﬁ_yi’ 8_yﬂ) =i + O(|z| ™) (5.20)
Suppose B
gij = 5ij + hij (521)
Now I want to discuss the ellipticity of EZ—J—
- 1 a0l ot (g]500) +g),(0)
hz:hl_— 1 J Y zJ )5 .
s =hy = g =+ X ) (5.22)

Where g} ;(0) denotes the constant extention along the radius direction of function 8%1; ®) |52
? J

Example 5.1. : For the metric g;; = 6;; + %, we have:

k 12 -3
Aga”® = ~373 + O(|z]™?) (5.23)
r
We know that on S2, we have A|g22* = —22% . So if we let:
12k
k_ k1%
yr=at - (5.24)
We have A y* = O(|z|=3) , then:
oyk 1 .6k aFat
L S — (2 .
oxt k 4( r r3 ) (5.25)
~ 385, iyl
By = T2 O>r2) (5.26)

2r 273

24



Lemma 5.2. Suppose in some coordinate {'} , gi; = di; +hi;(6)/r +Q , then
for any m > 2 there exists ¢ > 0, if [|h;(6) — 6;;(0)|lwm2(s2) < € then in the
asymptotically harmonic coordinate {y‘}we get above , we have

Gij = 035 + }Nlij (5.27)

where 7Lij =O0(ly|™") , and |y|ﬁu is uniformly elliptic.
Proof: We know easily from (5.I8) that h;; = O(|z|~") and that lim,| Lol —

- s ||
1 ,then h;; = O(Jy|™!) . So we need only to prove that |y|h;; is uniformly elliptic.
First we know from [|h;(6) — 6;;(0)|lwm.>(s2) < € that

1.4 1k

||§f]k](9> — ——me 1,2(52) < Ce (528)

Note that 5 (0) = S0 0 A" A4,(0) and 2* is an eigenvector of Ag: , so

we can assume that Ay (0) = Cra*| s> without loss of generality.

1 oo
[INE Ao (0) + (NsCr — i)xk + ) NEAL(0) w122y < e (5.29)
n=2
so we get
N <&, (\F A2 <e (5.30)
n= 2

Note that from (E14)

k k j k
dy . A5 1zt 1 1:|: xzzzrk Z)\ 0AL( (5.31)

o = g5l £
where the last term on the right can be estimated, for some p > 0

A’“aA ) o~ AL [Vs2 An (0)]
|Z sz =

< Z IAkI [An ()l w2+r.2

n=2 |§n| r
Z XS] €al "+ 140 (8) ] 2
- |§n T
k p—m+1 m+l
<< Z XL 11En] *7 1€0l
n=2
1 & i N
< (ALl ")) Zlfnl” 1y (5.32)
n=2
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let p= "2 then from &, = O(n) we have

Sl <o (5.33)
n=2
)
A\ 8A C’s
IZ =< — (5.34)
then we have: o 5
v' 5. L0 mwk,  Ce
ox? Ok 4( T r3 )+ r (5.35)

so we can deduce that:

~ 8i;  ztxd  Ce
oo = by 2 ce 5.36
J it 2r 273 + r ( )

because |};(60) — 6ij(0)|wm2(s2) < €, we have rhy; is uniformly elliptic. And

the eigenvalues of ﬁg” are between 0 and 1, so |y|ﬁu is uniformly elliptic from

lim, 00 & u =1 for ¢ sufficiently small.

So all the analysis in Section 2,3,4 can be done in the asymptotically har-
monic coordinate {y;}.

Lemma 5.3. In the asymptotically harmonic coordinate {y*}, we have that

1 ~ —
— 58 loglg] = R(g) + O(ly|~*) (5.37)
Proof. From direct calculation we have

61“;?}C B ar%

~jk~il~ —4
R(g) = ¢"g" gnu( oy oy —)+0(yl™) (5.38)
e OU o OGMTR) _
PG G2 = TG —— 2 + O(lyl ™)
Ay Ay
- OA
= 55 22+ Oy ) = O] (5.39)
Y
orm 1. . 0%
~jk~il~ ik _ _ —~jk>ip p 4
A 599" g, T OWIT)
1 N _
= 54 log[g] + O(lyl ™) (5.40)

so we prove the lemma.
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Corollary 5.4. If in addition R = O(]x|=3~7) for some 7 > 0 , then in the
asymptotically harmonic coordinate {y’} , we have

3
> hai = 8m(g)/lyl + o(|ly| 7~ F) (5.41)
i=1
Proof: First we know that

lim M—

1, (5.42)

then from the lemma above that in the coordinate {y’} , we have
Agloglgl = O(y|~*™7) (5.43)

We know that
log [g] = O(ly|™") (5.44)
From the theory of harmonic functions in R™ , we have there exist some
constant C' such that: o
log |g] = ot o(ly| =7 %) (5.45)
From Bartnik’s result , we know the mass is invariant under the change of
coordinates because R(g) € L .

R
m(g) = }%gnmm/m(hij,j — hyji)vgdp (5.46)
Now we have
U DU 0 )
Gikk = 5 9kki =G TG (Gika — 3 9k4) + O(ly|™®)
= —Agy' +O(ly|7*) = O(ly| ™) (5.47)
So we have:
@ = o [ (ghman
m = 11mm —- —=N;i;)U
g Roveo 167/, 0 2 33,1) Vg OHt
o L [ Ologldl i,
T RSe32n ), oy 9
1 i
= lim —/ CY i dp
R—o0 32 Jy . |y3 7
C
== 5.48
3 (5.48)

So we get the result by easy calculation .
Remark 5.5. In fact we can replace the constraint equation by the condition
R=0(|z|77) (5.49)

for some 7 > 0.
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6 Proof of the Theorem

Now let’s prove Theorem
First recall that, for any surface ¥ embedded in R? and any given vector
b € R3, one has

/He<ve-b>edue:0 (6.1)
b))

where H, and v, denote the mean curvature and normal vector field with respect
to the Euclidean metric.

On the other hand , if ¥ is a constant mean curvature surface in the asymp-
totically flat end , then

/H<ve-b>edue:0 (6.2)
p)
So we have
/(H—He)<ve-b>edue=O (6.3)
)

From now on , our calculation is in the coordinate {x'} ,which is assumed
to be the asymptotically harmonic coordinate. We have calculated H — H,, so
we have

. _ 1. o
/Z(H —H.) <ve b >cdpe = L(_flkhklflJAij + gHvlvjhij — f9u!Vhj

1 .. — —
+§f%lvlhij + C|h||Vh| £ C|h|?|A]) < ve - b >, dpe (6.4)

We assume that there exists a sequence of constant mean curvature surfaces
Y, with

lim ro(%,) = oo lim H(X,)ro(3,) =0 (6.5)

n—oo n—r oo

otherwise we have get the result from the uniqueness theorem of Lan-Hsuan
Huang. So we can choose s sufficiently small and K sufficiently large with
sH=1 > Krq for ry sufficiently large.

We know that

(b = O(la| "), [VA| = O(l| 2, A| < CH +C| | (6.6)

from the estimate .
Al < 7o 20(|x71) (6.7)

we have
I/(iCIhIIVhI + C|h|A]) < ve b >c dpe| < C/ (Hlax| 72 + |2|7%)
p) p)

=0(rg ") (6.8)
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by the estimates in Section 2.
Now we calculate other terms in (6.4)

/ —fijvl(vihjl)vmbmdue

n

1 7 : 1 3
- 5/ (£ hgae f Ay = HO 0 by o™ ™ dpre + 5/ FI0 hi A fF " dpe
Sn -
1 I
Zn

because dpe = (1+O(r=1))du , ve = (1 +O0(r1))v and < ve - b >.=<v-b >,
+O0(r7h).
So we have

1 . ) -
/E (H—H.) < ve-b > due = /E —§flkhklf“Aijvmbm + f90l hy A fFm o™

1 = 1. =
—Ef”ulvihﬂumbm + 5f”vlvlhijvmbm +O(ryM)dm

(6.10)
Note that
: fij ; -1 _
Aij = Ay + 7JH, sup |A| <r, 20(|z| 1) (6.11)
So we have
H H .
/ (H - He) < Ve b >, d,ue = / —kalhklvmbm + ijmhjlvlbm
1 iJ (T I, mpm 1 iJ (T I, mpm
+§f J(Vlhij)v v"H" — §f J(Vihjl)v v"b
j:O/ 2| "2ry 2 + O(rg ) (6.12)
3n

In this case we calculate

/ |x|_2rg%due (6.13)

n

We divide the integral into three parts:

1 _1
/ |:E|72’I”O 3 :/ +/ _|_/ |:17|72’I“0 2(.614)
S £nnBS, 1 (0)  JEunBrrg(0)  JEan(B, - 1\Brry)

Then by the blowdown results in Section 3 we have
_1 —1 _1
/ || ™%rq ? dpe = /~ %%y 2dj < Cry 2 (6.15)
Entngl(O) 2,NBE(0)
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_1 _1 1
/ || "%ry 2 dpe = /A |Z|ry 2dji < Cry 2 (6.16)
2,NBxr (0) £,NBy(0)

1 n 1
2. —3% —2.—%
/ ol Zrg s =Y | 2| ~2rg b d
EnN(B,g-1\Birg) i—0 Y ZaN(B 140 \B 4(i—1)L)

Krge Krge
i _1 _1
< CZ/ Z|"%r, 2du < Cry 21, L (6.17)
i=0 Y Bear \B1
where el Kry = sH™!
so if low I
lim 18 F1 (6.18)
ro—0 3
To
in other words |
lim 10871 _ (6.19)
r0—0 b
To
we have
_1
/ |z| 27y 2di — 0 (6.20)
b
as rg — 00
From the property of the asymptotically harmonic coordinate
P 8 T
g7 hij = M + O(T—l—é) (6.21)
T
1 _
9" (gik1 — 591@‘) =0(|z|™3) (6.22)

H H . 1 .. _
/E —kalhklvmbm + Zfﬂmhﬂvlbm + 5]“3 (Vihi; — Vihj)vtv™p™
H H .
— /; _nglhklvmbm + Zgjmhjlvlbm
1 .. — - _
+§g”(vlhij — Vihjl)vlvmbm + O(|ro| 1)

< T Ve >e< Ve - b >,
3

=—2m(g)/ (g<ve-be >+ )

n

H
+/ zhmlvlbm—i—o(l).

n

(6.23)
So we have:
. H <X Ve >e< Ve b > H Lim
nll}rréo(—2m(g)/2n(7 < Ve b >+ 3 )—I—/Enzhmlvb )=0

(6.24)
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Note that:
tr(h)

Pt = (B — 5 S 0! + — " (6.25)
where tr(h) = g¥h;;
Assume that the three eigenvalues of h,,; are
AL > A >A3>0 (6.26)

For p € ¥ fixed , choose coordinate properly such that

tr(h
hml - Té )5ml (627)
can be written as
tr(h)
A= 0 0
0 g — i) 0 (6.28)
0 0 Ay — )

2
Assume v = (0%,92,9%),and (91)? + (02)? + (?3)?2 = 1 . Then we have
3 2
Z((/\Z B t’l”éh) )51)2 _ (tr(j)) _ Z Al(tT(h) _ )\1)(51)2 (629)

i=1 =1

Because of the uniformly ellipticity we have there exists C' > 0 , such that

% <M<l <A <(l- %)th(h) (6.30)
SO
M(Eh() = X) = 51— D(er(h))? (6.31)
henee 5 tr(h) ., 11 1

Zl(()\i - TW)Q < (Z - 5(1 - 5))(“’(71))2 (6.32)

/En %hmlvlbm = /En %(”ém < Ve b >e A (R — @&nz)vlbm)

< /E th(h)(% <ve-b>e ﬂ/i - %(1 - %))
= / H”Z(g) (< Ve b>e +1— %) (6.33)
3n
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so we have
H
(H—H,) <ve-b><-m — < ve-b>,
n En /r.

2 2 H
+7“_3 <X Ve >e< Ve - b > dpe + (1 — a)m(g)/ 7due +o(1)

n

(6.34)
as n — 0o
From Lemma B we have £%, subconverges to some sphere S7(a) with
|a] = 1. Now we choose b = —a. Then from the calculation in [9], we have
H 8
- m(g)/ — <V -b> — —-mmlg) (6.35)
S T 3
2 16
—m(g)/ 3 < T Ve >e< Ve b>. — —gwm(g) (6.36)
Z’Vl
2 H 2
1-—= — 1-—=)8 6.37
(1= 5)mlg) e (1—5)8mm(g)  (6.37)
as n — 0o

Because there is a little difference from [9],we prove them again. We notice
from Lemma [3.I] we have &%, subconverges to some sphere S1(a) with |a| =

1, and the first and third integral converges to —m(g) fsl(a)% < Voo b >e=

—3mm(g) and (1 — 2)m(g) fS1(a) 2 = (1— 2)8mm(g) respectively.

To deal with the (636, first we notice that
2 4
— < T Ve >e< Ve b>cdue=m (6.38)
S2(a) T 3
then we break up the integral (G.36]) into three parts.

2
/ r—g<a:-ve>e<ve-b>ed,u8
3

2
= + + —3<3:~ve>e<ve-b>ed,u8
.NBe, 4 (0) SnNBKr (0) £,NB, ;-1\Bxry |

(6.39)
Then
. 2
lim —3<$~ve>e<ve-b>edue
n—o0 EntsH—l(O) r
2
z/ — < T Ve >e< Ve b >c dpe (6.40)
S2(a)nBe T
and
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. 2
lim — <X Ve >e< Ve b >c due
N0 S8, NBkry (0) T

2
= / — < TV >e< Ve b>c dite, (6.41)
PNBk (0) 73

where P is the limit plane in Lemma From Corollaryid.6l we know the
normal vector of P is v.. Then due to an easy calculation we know

2
/—<;E-ve >c< Ve - b > dye = 47 (6.42)
P

r3

From the divergence theorem we have

2
/ 3 <X Ve > dpte = 87 (6.43)
Zn

for any n and

2
/S2<>T—3<:E-ve>edue:47r (6.44)

because the origin is on the sphere S?(a). Since

2 2
lim — < T Ve >e duez/ — < TV >, dye (6.45)
n—00 .NBe, ,(0) r S2(a)nBe(0) T
. 2 2
lim — < T Ve >e dpie = — <X Ve >e dpte (6.46)
N0 JSnNBEry (0) T PNBk(0) T
and
2
— < T Ve >e dpe = 4T (6.47)
pT
then we have
. . 2
lim limsup| — < ve > dpe| =0 (6.48)
s—0,K—00 500 Znﬂ(BsH—l\BKm) T
Now we want to prove that
. . 2
lim  limsup| = <X Ve >e< Ve b>e due| =0 (6.49)

s—0,K—00 pn—00 Enm(BSH—l\BKro) T
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We use Lemma 7] to get (G.49) from (G.48]), but there is a bit difference

from [9].
2
= < TV >e< Ve b >e dpe
Znﬂ(BSH—l\BKT()) r

2
:<vn-b>e/ — < Ve b>cdpe
2,N(B, g—1\Brry) T

2
+/ —3<:1c-ve>e<(ve—vn)-b>edu6
SnN(B, y—1\Bkry) T

(6.50)

The first term will converge to 0. For the second term, we deal with it in the

cylinder coordinate in Section 4:

2
| —3<;E-ve>e<(ve—vn)-b>edue|
Znﬂ(BSHfl\BKT‘()) r

In
2
:|Z T—3<x~ve>e<(ve—vn)~b>edue|
j=1 Akroc(jfl)L,Kroch
In
< CZLmaxhje — U
- I;
Jj=1
In)2 I
= CZ Lmax |ve —v,|+ C Z Lmax |[ve — vy,
I; I;
j=1 ’ §=ln/2+1 ’
From Lemma (4.7
1n/2 I
C’LZsup|v—vn|—|—C’L Z sup |v — vy,
i=1 i=tpp1

1
< C(lpe L + C)s + 12ry 2
But from the condition

. log(r(En))
O N

we know
L~1(1 H ' —logK
lim liro 2 = lim ( (log s - o8 TO))2 =0
n—oo n—oo I
To
so ([649) holds
Then
8 16 2 16
0 < —gmm(g) — 5rmm(g) + (1 = Z)8rmlg) = —Fmm(g)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)



but m(g) > 0, this is a contradiction. So for the stable constant mean curvature
foliation there exists some constant C' > 0 such that for any sphere ¥ in the
foliation,

ro(2)
r?(z) > C. (6.56)

Then the uniqueness follows from Theorem [T.4]
Proof of the Corollary [L9l Suppose there is not such K(C, ), then we can
find a sequence of constant mean curvature spheres ¥,,, with

1
lm ro(Se) = oo lim 280 g (6.57)

and X,, do not belong to the foliation. But from the argument above we know
this sequence satisfies
To (Zn

1 (En

~—

> C. (6.58)

~—

So when n is sufficiently large, ¥, must belong to the foliation, which ends the
proof.
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