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Abstract

We present an explicit structure for the Baer invariant of a finitely

generated abelian group with respect to the variety [Nc1 ,Nc2 ], for all

c2 ≤ c1 ≤ 2c2. As a consequence we determine necessary and sufficient
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conditions for such groups to be [Nc1 ,Nc2 ]-capable. We also show that

if c1 6= 1 6= c2, then a finitely generated abelian group is [Nc1 ,Nc2 ]-

capable if and only if it is capable. Finally we show that S2-capability

implies capability but there is a finitely generated abelian group which

is capable but is not S2-capable.

Key Words : Baer invariant; Finitely generated abelian group; Varietal capa-

bility; Outer commutator variety.
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1 Introduction and Preliminaries

An interesting problem connected to the notion of Baer invariants is the

computation of Baer invariants for some natural classes of groups with respect

to common varieties. The class of finitely generated abelian groups is an

appropriate candidate because of their explicit structure theorem.

First of all Schur (1907), computed the Schur multiplier of a finite abelian

group. The second author in a joint paper Mashayekhy and Moghaddam

(1997), computed the Nc-multiplier of finitely generated abelian groups,

where Nc is the variety of all nilpotent groups of class at most c. The au-

thors in 2006 (Mashayekhy and Parvizi, 2006), computed the polynilpotent

multipliers of finitely generated abelian groups.

Another interesting problem is determining capable groups or more gener-

ally varietal capable groups. In 1938 Baer classified all capable groups among

the direct sums of cyclic groups and in particular among the finitely generated

abelian groups. Burns and Ellis (1998), extended the result for Nc-capability

and recently the authors in a joint paper (Parvizi, et al.) with S. Kayvanfar

classified all finitely generated abelian groups that are polynilpotent capa-

ble. Some work has been done in other classes of groups for example Magidin
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(2005), worked on capability of the nilpotent product of cyclic groups.

We note that one reason for studying Baer invariants and varietal capa-

bility is their relevance to the isologism theory of P. Hall which is used to

classify groups such as prime-power groups into a suitable equivalence classes

coarser than isomorphism. The article of Leedham-Green and Mckay (1976),

gives a fairly comprehensive account of these relationships.

In this paper we compute the multiplier of finitely generated abelian

groups and determine all varietal capable finitely generated abelian groups

with respect to the variety [Nc1,Nc2], for all c2 ≤ c1 ≤ 2c2.

In particular we show that:

a) if c1 6= 1 6= c2, then a finitely generated abelian group is [Nc1,Nc2]-

capable if and only if it is capable;

b) every S2-capable group is a capable group and there is a finitely gen-

erated abelian group which is capable but is not S2-capable.

In the following there are some preliminaries which are needed.

Definition 1.1. Let G be any group with a free presentation G ∼= F/R,

where F is a free group. Then, after Baer (1945), the Baer invariant of G

with respect to a variety of groups V, denoted by VM(G), is defined to be

VM(G) =
R ∩ V (F )

[RV ∗F ]
,

where V is the set of words of the variety V, V (F ) is the verbal subgroup of

F with respect to V and

[RV ∗F ] =
〈

v(f1, . . . , fi−1, fir, fi+1, . . . , fn)v(f1, . . . , fi, . . . , fn)
−1

∣

∣

∣

r ∈ R, v ∈ V, fi ∈ F for all 1 ≤ i ≤ n, n ∈ N
〉

.

As a special case, if V is the variety of abelian groups, A, the Baer

invariant of G is the well-known Schur multiplier

R ∩ F ′

[R,F ]
.
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If Nc is the variety of nilpotent groups of class at most c ≥ 1, then the

Baer invariant of G with respect to it, is called the c-nilpotent multiplier of

G, is given by:

NcM(G) =
R ∩ γc+1(F )

[R, cF ]
,

where γc+1(F ) is the (c + 1)-st term of the lower central series of F and

[R, 1F ] = [R,F ], [R, cF ] = [[R, c−1F ], F ], inductively.

Lemma 1.2. (Hulse and Lennox 1976) If u and w are any two words and

v = [u, w] and K is a normal subgroup of a group G, then

[Kv∗G] = [[Ku∗G], w(G)][u(G), [Kw∗G]].

Proof. See Hall and Senior (1964, Lemma 2.9).

Now, using the above lemma, then the Baer invariant of a group G with

respect to the outer commutator variety [Nc1,Nc2], is as follows:

[Nc1,Nc2]M(G) ∼=
R ∩ [γc1+1(F ), γc2+1(F )]

[R, c1F, γc2+1(F )][R, c2F, γc1+1(F )]
.

Definition 1.3. Let X be an independent subset of a free group, and select

an arbitrary total order for X . We define the basic commutators on X , their

weight wt, and the ordering among them as follows:

(1) The elements of X are basic commutators of weight one, ordered

according to the total order previously chosen.

(2) Having defined the basic commutators of weight less than n, the basic

commutators of weight n are the ck = [ci, cj], where:

(a) ci and cj are basic commutators and wt(ci) + wt(cj) = n, and

(b) ci > cj, and if ci = [cs, ct] then cj ≥ ct.

(3) The basic commutators of weight n follow those of weight less than

n. The basic commutators of weight n are ordered among themselves lexico-

graphically; that is, if [b1, a1] and [b2, a2] are basic commutators of weight n,

then [b1, a1] ≤ [b2, a2] if and only if b1 < b2 or b1 = b2 and a1 < a2.
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The next two theorems are vital in our investigation.

Theorem 1.4. (Hall, 1959). Let F = 〈x1, x2, . . . , xd〉 be a free group, then

γn(F )

γn+i(F )
, 1 ≤ i ≤ n

is the free abelian group freely generated by the basic commutators of weights

n, n+ 1, . . . , n+ i− 1 on the letters {x1, . . . , xd}.

Theorem 1.5. (Witt Formula). The number of basic commutators of weight

n on d generators is given by the following formula:

χn(d) =
1

n

∑

m|n

µ(m)dn/m,

where µ(m) is the Möbius function, which is defined to be

µ(m) =















1 if m = 1,

0 if m = pα1

1 . . . pαk

k ∃αi > 1,

(−1)s if m = p1 . . . ps,

where the pi, 1 ≤ i ≤ k, are the distinct primes dividing m.

Proof. See Hall (1959).

The following definition will be used several times in this article.

Definition 1.6. Let V be any variety of groups defined by a set of laws V ,

and G be any group. Extending the terminology of Hall and Senior (1964),

G is called V-capable if there exists a group E which satisfies G ∼= E/V ∗(E),

where V ∗(E) is the marginal subgroup of E with respect to V. (See also

Moghaddam and Kayvanfar, 1997, for the definition of V-capability and

Burns and Ellis, 1998, for Nc-capability.)

5



According to Definition 1.6 capable groups are A-capable groups, where

A is the variety of abelian groups.

The following definition and theorem are taken from Moghaddam and

Kayvanfar (1997), and contains a necessary and sufficient condition for a

group to be V-capable.

Definition 1.7. Let V be any variety and G be any group. Define V ∗∗(G)

as follows:

V ∗∗(G) = ∩{ψ(V ∗(E)) | ψ : E
onto
−→ G , kerψ ⊆ V ∗(E)}.

Note that if V is the variety of abelian groups, then the above notion which

has been first studied in Beyl., et al. (1979), is denoted by Z∗(G) and called

epicenter in Burns and Ellis (1998). Also the above notion has been studied

in Burns and Ellis (1998), for the variety Nc.

Theorem 1.8. With the above notations and assumptions G/V ∗∗(G) is the

largest quotient of G which is V-capable, and hence G is V-capable if and

only if V ∗∗(G) = 1.

The following theorem and its conclusion state the relationship between

V-capability and Baer invariants.

Theorem 1.9. Let V be any variety of groups, G be any group, and N be a

normal subgroup of G contained in the marginal subgroup with respect to V.

Then the natural homomorphism VM(G) −→ VM(G/N) is injective if and

only if N ⊆ V ∗∗(G), where VM(G) is the Baer invariant of G with respect

to V.

Proof. See Moghaddam and Kayvanfar (1997).

In the finite case the following theorem is easier to use than the proceeding

ones.
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Theorem 1.10. Let V be any variety and G be any group with V (G) = 1.

If VM(G) is finite, and N is a normal subgroup of G such that VM(G/N)

is also finite, then the natural homomorphism VM(G) −→ VM(G/N) is

injective if and only if |VM(G/N)| = |VM(G)|.

Proof. It is easy to see that with the assumption of the theorem we have

VM(G) ∼= V (F )/[RV ∗F ] and VM(G/N) ∼= V (F )/[SV ∗F ] in which G ∼=

F/R is a free presentation for G and N ∼= S/R. Therefore the kernel of the

natural homomorphismVM(G) −→ VM(G/N) is the group [SV ∗F ]/[RV ∗F ].

Considering the finiteness of VM(G) and VM(G/N), the result easily fol-

lows.

As a useful consequence of Theorem 1.9 we have:

Corollary 1.11. An abelian group G is V-capable if and only if the natural

homomorphism VM(G) −→ VM(G/〈x〉) has a non-trivial kernel for all

non-identity elements x in V ∗(G).

The following fact is used in the last section [Stroud, (1965), Theorem

1.2(b)]

Theorem 1.12. Let u and v be two words in independent variables and

w = [u, v]. Then, in any group G,

(i) w(G) = [u(G), v(G)]

(ii) if A = CG(u(G)), B = CG(v(G)), L/A = v∗(G/A), and M/B =

u∗(G/B), then w∗(G) = L ∪M .

To use these results we need an explicit structure for the Baer invariants

of finitely generated abelian groups with respect to the variety V as defined.

This will be done in Theorem 2.6.
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2 Computing [Nc1,Nc2]-Multipliers

Let G ∼= Z
(k) ⊕ Zn1

⊕ Zn2
⊕ · · · ⊕ Znt

be a finitely generated abelian group

with ni+1 | ni for all 1 ≤ i ≤ t− 1, where for any group X , X(n) denotes the

group X ⊕X ⊕ · · · ⊕X (n copies). Let F = F 〈x1, . . . , xk, xk+1, . . . , xk+t〉 be

the free group on the set {x1, . . . , xk+t}. It is easy to see that

1 −→ R −→ F −→ G −→ 1,

is a free presentation for G in which R =
∏t

i=1Riγ2(F ), where Ri = 〈xni

k+i〉,

so the Baer invariant of G with respect to [Nc1 ,Nc2] is

[Nc1,Nc2]M(G) ∼=
R ∩ [γc1+1(F ), γc2+1(F )]

[R, c1F, γc2+1(F )][R, c2F, γc1+1(F )]
.

Since R ⊇ γ2(F ) we have

[Nc1,Nc2]M(G) ∼=
[γc1+1(F ), γc2+1(F )]

[R, c1F, γc2+1(F )][R, c2F, γc1+1(F )]
.

In order to find the structure of [Nc1,Nc2]M(G), we need the following

notation and lemmas. Using Definition 1.3, we define the following set when

c1 ≥ c2.

A={[β, α] | β and α are basic commutators on X such that β > α,

wt(β) = c1 + 1, wt(α) = c2 + 1 }.

Lemma 2.1. If c1 ≤ 2c2, then every element of A is a basic commutator

on X.

Proof. Every element of A has the form [β, α], where β and α are basic

commutators on X , β > α and wt(β) = c1 + 1, wt(α) = c2 + 1. Now, let

β = [β1, β2], then in order to show that [β, α] is a basic commutator onX , it is

enough to show that β2 ≤ α. Since β = [β1, β2] is a basic commutator on X ,
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β1 > β2 and hence wt(β2) ≤
1
2
wt(β). Now, if c1 ≤ 2c2, then

1
2
(c1+1) < c2+1.

Thus, since wt(β) = c1 + 1, we have

wt(β2) ≤
1

2
wt(β) =

1

2
(c1 + 1) < c2 + 1 = wt(α).

Therefore β2 < α and hence the result holds.

Now put H = [R, c1F, γc2+1(F )][R, c2F, γc1+1(F )] ∩ γc1+c2+3(F ) we have

the following.

Lemma 2.2. [γc1+1(F ), γc2+1(F )] ≡ 〈A〉 (mod H).

Proof. Let [β, α] be a generator of the group [γc1+1(F ), γc2+1(F )], so we

have β ∈ γc1+1(F ) and α ∈ γc2+1(F ). Now by Theorem 1.4 we can write

β = β1β2 . . . βrη and α = α1α2 . . . αsµ in which the βj are basic com-

mutators on X of weight c1 + 1, the αi are basic commutators on X of

weight c2 + 1, η ∈ γc1+2(F ) and µ ∈ γc2+2(F ). Now [β, α]will be a prod-

uct of factors of the forms [βj, αi]
fij , [βj , µ]

gj , [η, αi]
hi and [η, µ]k, in which

fij, gj, hi, k ∈ γc2+1(F ). Now by the Three Subgroup Lemma it is easy to see

that [βj, αi, fij ], [βj, µ]
gj , [η, αi]

hi and [η, µ]k ∈ H . Hence the result holds.

Now the group [γc1+1(F ), γc2+1(F )]/H is the group generated by the set

Ā = {aH | a ∈ A}. The following shows that it is in fact the free abelian

group with the basis Ā.

Lemma 2.3. With the above notation and assumptions [γc1+1(F ), γc2+1(F )]/H

is the free abelian group with the basis Ā.

Proof. The group is abelian and generated by Ā, which is the image of the

elements of A modulo H . The elements of A are basic commutators of weight

c1+c2+2 (Lemma 2.1), and hence linearly independent over γc1+c2+3(F ); the

latter contains H , so the elements of A are also linearly independent modulo

H .

9



Now by the isomorphism

[Nc1,Nc2]M(G) ∼=
[γc1+1(F ), γc2+1(F )]/H

[R, c1F, γc2+1(F )][R, c2F, γc1+1(F )]/H
,

in order to determine the explicit structure of [Nc1,Nc2]M(G) we only need

to determine the structure of [R, c1F, γc2+1(F )][R, c2F, γc1+1(F )]/H . We

actually show that the mentioned group is free abelian with basis ∪t
i=1B̄i

where the Bi consist of nith powers of suitable elements of Ā. To do this we

need the following lemma.

Lemma 2.4. With the previous notation we have

[R, c1F, γc2+1(F )] ≡
∏

[Ri, c1F, γc2+1(F )] (mod H)

and

[R, c2F, γc1+1(F )] ≡
∏

[Ri, c2F, γc1+1(F )] (mod H)

Proof. By routine commutator calculus we have

[R, c−1F, γc2+1(F )] =

t
∏

i=1

[RF
i γ2(F ), c−1F, γc2+1(F )]

=

t
∏

i=1

[RF
i , c−1F, γc2+1(F )][γ2(F ), c−1F, γc2+1(F )]

≡
t

∏

i=1

[Ri, c−1F, γc2+1(F )] (mod H).

The following lemma will do most of the work.

Lemma 2.5. [R, c1F, γc2+1(F )][R, c2F, γc1+1(F )]/H is the free abelian group

with the basis ∪t
j=1B̄j, where

Bj = {[β, α]nj | [β, α] ∈ A and xk+j does occur in [β, α]} and ¯ denotes

the natural homomorphism [γc1+1(F ), γc2+1(F )] −→ [γc1+1(F ), γc2+1(F )]/H.
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Proof. Clearly [R, c1F ] ≡
∏k+t

i=k+1[Ri, c1F ] (mod γc1+2(F )).

Also

[Ri, c1F ] ≡ 〈βni | β is a basic commutator of weight c1 + 1 on X s.t. xk+i

does appear in it〉 (mod γc1+2(F )).

Therefore

[Ri, c1F, γc2+1(F )] ≡ 〈[β, α]ni | [β, α] ∈ A and xk+i does appear in β 〉

(mod H).

Similarly,

[Ri, c2F, γc1+1(F )] ≡ 〈[β, α]ni | [β, α] ∈ A and xk+i does appear in α〉

(mod H).

Hence [R, c1F, γc2+1(F )][R, c2F, γc1+1(F )] ≡ 〈
⋃

Bj〉 (mod H).

Now we are in a position to give an explicit structure for [Nc1,Nc2]M(G).

It only remains to compute |Bj | for j = 1, ..., t. Bearing in mind Lemma 2.3

it is clear that each B̄j is linearly independent modulo H therefore the size

of B̄j is as same as that of Bj , so it is enough to compute the size of Bj .

The cases c1 = c2 and c1 > c2 are essentially different in computing |Bj|. If

c1 > c2 for an arbitrary j we can write Bj = B1j ∪B2j ∪ B3j in which

B1j = {[β, α]nj | [β, α]nj ∈ Bj and xk+j only appears in β},

B2j = {[β, α]nj | [β, α]nj ∈ Bj and xk+j only appears in α},

B3j = {[β, α]nj | [β, α]nj ∈ Bj and xk+j appears in both β and α}.

It is easy to see that the union is disjoint and we have

|B1j | = (χc1+1(k + j)− χc1+1(k + j − 1))χc2+1(k + j − 1),

|B2j | = χc1+1(k + j − 1)(χc2+1(k + j)− χc2+1(k + j − 1)),

and

|B3j | = (χc1+1(k+ j)−χc1+1(k+ j − 1))(χc2+1(k+ j)−χc2+1(k+ j − 1)),

so |Bj| = χc1+1(k + j)χc2+1(k + j)− χc1+1(k + j − 1)χc2+1(k + j − 1).
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In the case c1 = c2 it is easy to see that A is in fact the set of all basic

commutators of weight 2 on the set of all basic commutators of weight c1, so

we have |Bj | = χ2(χc1+1(k + j))− χ2(χc1+1(k + j − 1)).

Now the following theorem gives the desired structure.

Theorem 2.6. Let G ∼= Z(k) ⊕ Zn1
⊕ Zn2

⊕ · · · ⊕ Znt
be a finitely generated

abelian group with ni+1 | ni for all 1 ≤ i ≤ t− 1, if c2 ≤ c1 ≤ 2c2 then,

[Nc1 ,Nc2]M(G) ∼= Z
(bk) ⊕ Z

(bk+1−bk)
n1

⊕ Z
(bk+2−bk+1)
n2

⊕ . . .⊕ Z
(bk+t−bk+t−1)
nt

where bi = χc1+1(i)χc2+1(i), if c1 > c2 and bi = χ2(χc1+1(i)) if c1 = c2.

Proof. The proof easily follows from Lemma 2.5.

Comparing this theorem with the main theorem of Mashayekhy and

Parvizi (2006), it is easy to see that they agree on the variety Nc,1 in the

formula for the Baer invariant.

3 [Nc1,Nc2]-Capability

The concept of capable groups occured in work of P. Hall for classifying p-

groups. Determining such groups is an interesting problem to study. Some

researches has done on it which for example see Burns and Ellis (1998), Ellis

(1996), Moghaddam and Kayvanfar (1997), and Magidin (2005). In this

section we explicitly determine the structure of all [Nc1 ,Nc2]-capable groups

in the class of finitely generated abelian groups. When c2 ≤ c1 ≤ 2cc to do

this we wish to use Theorems 1.9, 1.10, and Corollary 1.11. To use them the

structure of the subgroups of a finitely generated abelian group is needed as

well as the structure of the Baer invariant of G. Theorem 2.6 gives the latter

and the following will determine the structure of the desired subgroups.

12



Lemma 3.1. Let G be a finitely generated abelian group and H ≤ G. Then

r0(G) = r0(G/H) + r0(H), where r0(X) is the torsion free rank of a finitely

generated abelian group X.

Proof. See Fuchs (1970).

In the case of p-groups the following theorem has an important role in

our investigation.

Theorem 3.2. Let G ∼= Zpα1 ⊕Zpα2 ⊕ · · · ⊕Zpαk be a finite abelian p-group,

where αi+1 ≤ αi for all 1 ≤ i ≤ k − 1, and let H be a subgroup of G. Then

H ∼= Zpβ1 ⊕ Zpβ2 ⊕ · · · ⊕ Zpβk where βi+1 ≤ βi for all 1 ≤ i ≤ k − 1 and

0 ≤ βi ≤ αi for 1 ≤ i ≤ k.

Proof. See Fuchs (1970).

Theorem 3.3. Let G ∼= Z
(k)⊕Zn1

⊕· · ·⊕Znt
be a finitely generated abelian

group, where ni+1 | ni for 1 ≤ i ≤ t− 1, and let H be a finite subgroup of G.

Then H ∼= Zm1
⊕· · ·⊕Zmt

, where mi+1 | mi for all 1 ≤ i ≤ t− 1 and mi | ni

for all 1 ≤ i ≤ t.

Proof. Trivially H ≤ t(G), the maximal torsion subgroup of G, so without

loss of generality we may assume that G is finite. It is well known that

G ∼= Sp1 ⊕ · · · ⊕ Spt , where Spi is the pi-Sylow subgroup of G. One may

easily show that if H ∼= S ′
p1 ⊕· · ·⊕S ′

pt is the same decomposition for H , then

S ′
pi
≤ Spi for all 1 ≤ i ≤ t. Therefore it is enough to consider finite abelian

p-groups. Now Theorem 3.2 completes the proof.

Proceeding now to [Nc1,Nc2]-capability, note that [N1,N1] = S2 is the

variety of metabelian groups (that is groups of solvability length at most 2)

and, according to Theorem 2.6, S2M(G) = 0 whenever G has at most two

generators. But if c2 < c1 ≤ 2c2 or c1 = c2 > 1, then the Baer invariant is
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trivial only if G is cyclic. This suggests dealing with the two cases separately,

and so we assume first that c2 < c1 ≤ 2c2 or c1 = c2 > 1.

The method we use here implies separating the cases which G is finite or

infinite.

Case one: G is finite abelian group.

Theorem 3.4. Let G ∼= Zn1
⊕ · · · ⊕ Znt

be a finite abelian group, where

ni+1 | ni for 1 ≤ i ≤ t − 1, then G is [Nc1,Nc2]-capable if and only if t ≥ 2

and n1 = n2.

Proof. We will establish the necessity by contrapositive. If t = 1 then G and

all its quotients are cyclic abelian groups so by Theorem 2.6 [Nc1,Nc2]M(G/N) =

0 for any normal subgroupN ofG, hence by Corollary 1.11G is not [Nc1,Nc2]-

capable. On the other hand if n1 6= n2, then let x = (n̄2, 0̄, . . . , 0̄), since

G/〈x〉 ∼= Zn2
⊕ Zn2

· · · ⊕ Znt
, Theorem 2.6 shows the Baer invariants for G

and G/〈x〉 have the same size. This shows G is not [Nc1 ,Nc2]-capable in this

case by Corollary 1.11.

For sufficiency, assume t ≥ 2 and n1 = n2. By Corollary 1.11 it is

enough to show that if N < G and [Nc1,Nc2]M(G) −→ [Nc1,Nc2]M(G/N)

is injective, then N is trivial.

In finite abelian groups each quotient is isomorphic to a subgroup and vice

versa. Now let N < G, then G/N is isomorphic to a subgroup of G, H say; so

by Theorem 3.3 H ∼= Zm1
⊕· · ·⊕Zmt

, where mi+1 | mi for all 1 ≤ i ≤ t−1 and

mi | ni for all 1 ≤ i ≤ t. Computing [Nc1 ,Nc2]M(G) and [Nc1,Nc2]M(H)

using Theorem 2.6 shows that |[Nc1,Nc2]M(G)| = |[Nc1,Nc2]M(H)| if and

only if mi = ni for all 2 ≤ i ≤ t, but n1 = n2 by hypothesis which implies

n1 = m1 which is equivalent to H = G and hence N = 0. Therefore G is

[Nc1,Nc2]-capable.

Now we consider the infinite case.
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Theorem 3.5. Let G ∼= Z
(k)⊕Zn1

⊕· · ·⊕Znt
be an infinite finitely generated

abelian group, where ni+1 | ni for 1 ≤ i ≤ t− 1, then G is [Nc1,Nc2]-capable,

if and only if k ≥ 2.

Proof. We first show that if k = 1, then there exists a nontrivial element x of

G for which the natural homomorphism [Nc1,Nc2]M(G) −→ [Nc1 ,Nc2]M(G/〈x〉)

is injective, proving the necessity by contrapositive.

Suppose k = 1, then G ∼= Z ⊕ Zn1
⊕ · · · ⊕ Znt

. Let x = (n1, 0̄, . . . , 0̄), so

G/〈x〉 ∼= Zn1
⊕Zn1

⊕· · ·⊕Znt
. Now by Theorem 2.6 we have |[Nc1,Nc2]M(G)| =

|[Nc1,Nc2]M(G/〈x〉)|, so the result follows.

For sufficiency, assume that k ≥ 2. It is enough to show that there is no

nontrivial subgroupN ofG for which [Nc1,Nc2]M(G) −→ [Nc1,Nc2]M(G/N)

is injective. If N is an infinite subgroup then r0(G/N) < r0(G), so by

Theorem 2.6 the torsion free rank of the Baer invariant of G/N is strictly

smaller than that of the invariant for G, so no injection is possible. On

the other hand if N is contained in the torsion subgroup of G, so G/N ∼=

Z
(k)⊕Zm1

⊕· · ·⊕Zmt
, where mi+1 | mi and mi | ni for all 1 ≤ i ≤ t−1, so by

Theorem 2.5 we have [Nc1 ,Nc2]M(G) ∼= Z
(bk)⊕Z

(bk+1−bk)
n1 ⊕· · ·⊕Z

(bk+t−bk+t−1)
nt

and

[Nc1,Nc2]M(G/N) ∼= Z
(bk)⊕Z

(bk+1−bk)
m1 ⊕· · ·⊕Z

(bk+t−bk+t−1)
mt . It is easy to show

that

t([Nc1,Nc2]M(G)) = Z
(bk+1−bk)
n1

⊕ · · · ⊕ Z
(bk+t−bk+t−1)
nt

and

t([Nc1 ,Nc2]M(G/N)) = Z
(bk+1−bk)
m1

⊕ · · · ⊕ Z
(bk+t−bk+t−1)
mt

.

The image of the torsion subgroup of [Nc1,Nc2]M(G) under the natural ho-

momorphism must lie in the torsion subgroup of [Nc1,Nc2]M(G/N), so if the

homomorphism is injective, then we must t(G) = t(G/N); t(G/N) = t(G)/N ,

this proves that if the map is ingective then N = 0, completing the proof.
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Remark 3.6. Let G ∼= Z
(k) ⊕Zn1

⊕ · · ·⊕Znt
be a finitely generated abelian

group, with ni+1 | ni for all 1 ≤ i ≤ t− 1. Baer’s result Baer (1938), implies

that G is capable if and only if k ≥ 2 or k = 0, t ≥ 2 and n1 = n2. Burns

and Ellis (1998), proved that G is Nc-capable if and only if it is capable. We

now see that this also holds for [Nc1,Nc2]-capability with suitable conditions

on c1 and c2.

In the case c1 = c2 = 1 we only state the characterization of the S2-

capable groups among finitely generated abelian groups. The proofs are

simillar to those of Theorems 3.4 and 3.5. The needed lemmas and their

proofs can be restated with necessary changes similar to Theorems 3.4 and

3.5. Note that in this case the variety [Nc1,Nc2] is actually the variety of

metabelian groups S2.

Theorem 3.7. Let G ∼= Z
(k)⊕Zn1

⊕· · ·⊕Znt
be a finitely generated abelian

group, where ni+1 | ni for all 1 ≤ i ≤ t−1. Then G is S2-capable if and only

if k ≥ 3, or k = 0, t ≥ 3, and n1 = n2 = n3.

4 The relation between capability and [Nc1,Nc2]-

capability.

As before mentioned in the beginning of section 3, capability is one of the

interesting concepts to study. Theorem 3.7 suggests to consider the relation-

ship between capability and varietal capability. More precisely we may ask

under what conditions capability implies varietal capability or vice versa?

This section answers the above question in part and show the two concepts

does not coincide in general. Having a review of what has been done, Burns

and Ellis (1998), after introducing the concept of c-capability, showed that

every c + 1-capable group is c-capable group and hence is a capable group,

but they construct a 2-group which is capable but is not 2-capable. This
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example shows that even in class of p-groups the capability does not imply

c-capability. However as an interesting fact they proved for finitely generated

abelian groups capability and c-capability are equivalent. Now we concen-

trate on Sℓ, the variety of solvable groups of length at most ℓ and prove the

following theorem.

Theorem 4.1. Let Sℓ be the variety of solvable groups of length at most ℓ.

Then every Sℓ-capable group is Sℓ−1-capable.

Proof. Using Theorem 1.12 we have

Sℓ
∗(G)

CG(Sℓ−1(G))
=

G

CG(Sℓ−1(G))
.

Now the result follows immediately.

An immediate consequence of the above theorem is that every Sℓ-capable

group is capable.

Comparing with c-capability, there is no difference in results. The next

theorem shows the converse of Theorem 4.1 is not true in general, just the

same as the result of Burns and Ellis. But the difference is that here the

counter example is in the class of finitely generated abelian groups, exactly

where the notions of capability and c-capability coincide.

Theorem 4.2. Let n be a natural number, then the group Zn⊕Zn is capable

but it is not S2-capable

Finally we consider [Nc1 ,Nc2]-capability. This can be considered as an

special case of [V,W]-capability and one may suggest dealing with the rela-

tion between V-capability, W-capability and [V,W]-capability. Here, there

can not be explained more about that situation except the following theorem

which has a proof similar to that of Theorem 4.1.

Theorem 4.3. Let V be any variety then every [V,V]-capable group is V-

capable group.
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As before stated the converse of the above theorem is not true in gen-

eral, but in class of finitely generated abelian groups we have the following

theorem.

Theorem 4.4. Let G ∼= Z
(k)⊕Zn1

⊕· · ·⊕Znt
be a finitely generated abelian

group, where ni+1 | ni for all 1 ≤ i ≤ t−1. Then the following are equivalent:

(i) G is capable.

(ii) G is Nc-capable for some c ≥ 1.

(iii) G is Nc-capable for all c ≥ 1.

(iv) G is [Nc1,Nc2]-capable for all c1, c2 with c2 < c1 ≤ 2c2 or c1 = c2 > 1.

(v) k ≥ 2, or k = 0, t ≥ 2, and n1 = n2.
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