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Abstract

Let G be a finite p-group of order pn with |M(G)| = p
n(n−1)

2
−t,

where M(G) is the Schur multiplier of G. Ya.G. Berkovich, X. Zhou,
and G. Ellis have determined the structure of G when t = 0, 1, 2, 3. In
this paper, we are going to find some structures for an abelian p-group
G with conditions on the exponents of G,M(G), and S2M(G), where
S2M(G) is the metabelian multiplier of G.
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1 Introduction and Preliminaries

Let G be any group with a presentation G ∼= F/R, where F is a free group.
Then the Baer invariant of G with respect to the variety of groups V, denoted
by VM(G), is defined to be

VM(G) =
R ∩ V (F )

[RV ∗F ]
,

where V is the set of words of the variety V, V (F ) is the verbal subgroup of
F and

http://arxiv.org/abs/1012.3249v1


2 B. Mashayekhy, F. Mohammadzadeh, and A. Hokmabadi

[RV ∗F ] = 〈v(f1, ..., fi−1, fir, fi+1, ..., fn)v(f1, ..., fi, ..., fn)
−1|

r ∈ R, fi ∈ F, v ∈ V, 1 ≤ i ≤ n, n ∈ N〉.

In particular, if V is the variety of abelian groups, A, then the Baer invariant
of the group G will be (R ∩ F ′)/[R,F ] which is isomorphic to the well-known
notion the Schur multiplier of G, denoted by M(G) (see [5,6] for further de-
tails).
If V is the variety of polynilpotent groups of class row (c1, ..., ct), Nc1,c2,...,ct,
then the Baer invariant of a group G with respect to this variety is as follows:

Nc1,c2,...,ctM(G) =
R ∩ γct+1 ◦ ... ◦ γc1+1(F )

[R, c1F, c2γc1+1(F ), ..., ctγct−1+1 ◦ ... ◦ γc1+1(F )]
, (1)

where γct+1 ◦ ... ◦ γc1+1(F ) = γct+1(γct−1+1(...(γc1+1(F ))...)) are the term of
iterated lower central series of F . See [4] for the equality

[RN ∗

c1,...,ct
F ] = [R, c1F, c2γc1+1(F ), ..., ctγct−1+1 ◦ ... ◦ γc1+1(F )].

In particular, if ci = 1 for 1 ≤ i ≤ t, then Nc1,c2,...,ct is the variety of solvable
groups of length at most t ≥ 1,St.
In 1956, J.A. Green [3] showed that the order of the Schur multiplier of a finite

p-group of order pn is bounded by p
n(n−1)

2 , and hence equals to p
n(n−1)

2
−t, for

some nonnegative integer t. In 1991, Ya.G. Berkovich [1] has determined all
finite p-groups G for which t = 0, 1. The groups for which t = 0 are exactly
elementary ablian p-groups, and the groups for which t = 1 are cyclic groups
of order p2 or the nonabelian group of order p3 with exponent p > 2. In 1994,
X. Zhou [7] found all finite p-groups for t = 2. He showed that these groups
are the direct product of two cyclic groups of order p2 and p or the direct
product of a cyclic group of order p and the nonabelian group of order p3 and
exponent p > 2 or the dihedral group of order 8. G. Ellis [2] determined all
finite p-groups G with t = 0, 1, 2, 3 in a quite different method to that of [1]
and [7] as follows:

Theorem 1.1 ([2]). Let G be a group of prime-power order pn. Suppose

that M(G) has order p
n(n−1)

2
−t. Then t ≥ 0 and

(i) t = 0 if and only if G is elementary abelian;
(ii) t = 1 if and only if G ∼= Zp2 or G ∼= E1;
(iii)t = 2 if and only if G ∼= Zp × Zp2, G ∼= D or G ∼= Zp × E1;
(iv)t = 3 if and only if G ∼= Zp3, G ∼= Zp×Zp×Zp2 , G ∼= D×Zp2 , G ∼= E2, G ∼=
Q or G ∼= Zp × Zp × E1.
Here Zpm denotes the cyclic group of order pm, D denotes the dihedral group
of order 8, Q denotes the quaternion group of order 8, E1 denotes the extra
special group of order p3 with odd exponent p, and E2 denotes the extra special
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group of order p3 with odd exponent p2.

Now, in this paper, we are going to find some structures for the p-group
G when G is abelian and |Φ(G)| = pa with conditions on the exponents of
G,M(G), and S2M(G). The following useful theorem of I. Schur is frequently
used in our method.

Theorem 1.2 (I. Schur [5]). Let G ∼= Zn1 ⊕Zn2 ⊕ ...⊕Znk
, where ni+1|ni

for all i ∈ 1, 2, ..., k − 1 and k ≥ 2, and let Z(m)
n denote the direct product of

m copies of Zn. Then

M(G) ∼= Zn2 ⊕ Z(2)
n3

⊕ ...⊕ Z(k−1)
nk

Remark 1.3. Let G be an abelian group with a free presentation F/R.
Since F ′ ≤ R,Nc1M(G) = γc1+1(F )/[R, c1F ]. Now, we can consider γc1+1(F )/[R, c1F ]
as a free presentation for Nc1M(G) and hence

Nc2M(Nc1M(G)) =
γc2+1(γc1+1(F ))

[R, c1F, c2γc1+1F ]
.

Therefore by (1) we have

Nc1,c2M(G) = Nc2M(Nc1M(G)).

By continuing the above process we can show that

Nc1,c2...,ctM(G) = NctM(...Nc2M(Nc1M(G))...).

In particular, if c1 = c2 = 1, then we have S2M(G) = M(M(G)).

2 Main Results

Through out the paper we assume that G is an abelian p-group of order pn

with |M(G)| = p
n(n−1)

2
−t.

Lemma 2.1 . Let Φ(G), the Frattini subgroup of G, be of order pa. Then
n = (a(a+ 1) + 2t+ 2m)/2a, for some m ∈ N0.

Proof. Let G = Zpα1 ⊕ Zpα2 ⊕ ... ⊕ Zpαn−a , where α1 ≥ α2 ≥ ... ≥ αn−a.

By Theorem 1.2 , M(G) ∼= Zpα2 ⊕ Z
(2)
pα3 ⊕ ... ⊕ Z

(n−a−1)
pαn−a and so |M(G)| =
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pα2+2α3+...+(n−a−1)αn−a . But M(G) has order p
n(n−1)

2
−t. Therefore

n(n− 1)

2
− t = α2 + 2α3 + ... + (n− a− 1)αn−a

≥ 1 + 2 + ...+ (n− a− 1)

=
(n− a)(n− a− 1)

2

=
n2 − (2a+ 1)n+ a(a+ 1)

2
.

Hence 2an ≥ 2t+ a(a + 1), and the result holds.

Lemma 2.2 . With the assumption and notation of the previous lemma we
have the following inequalities for the exponent of G,

pa−m+1 ≤ exp(G) ≤ pa+1.

Proof. Clearly G/Φ(G) is an elementary abelian p-group of order pn−a and so
exp(G) ≤ pa+1.

For the other inequality let G ∼= Zpα1 ⊕ Zpα2 ⊕ ... ⊕ Zpαn−a , where α1 ≥
α2 ≥ ... ≥ αn−a ≥ 1. Then similar to the proof of previous lemma we have

n(n− 1)

2
− t = α2 + 2α3 + ... + (n− a− 1)αn−a

≥ α2 + (2 + 3 + ...+ n− a− 1)

≥
2α2 − 2 + n2 − (2a+ 1)n + a(a+ 1)

2

Therefore n ≥ a(a+1)+2α2−2+2t
2a

and hence by Lemma 2.1 we have α2 ≤ m+ 1.
Now, suppose by contrary exp(G) = pa−k+1, where k > m, then α3 ≥ 2. Thus
by Theorem 1.2 we have

n(n− 1)

2
− t = α2 + 2α3 + ... + (n− a− 1)αn−a

= (α2 + α3 + ... + αn−a) + α3 + 2α4 + ... + (n− a− 2)αn−a

≥ (n− a+ k − 1) + (2 + 2 + 3 + ...+ n− a− 2)

= n− a+ k +
(n− a− 2)(n− a− 1)

2
.

Hence n ≥ 2k+a(a+1)+2+2t
2a

> 2m+a(a+1)+2+2t
2a

which is a contradiction by Lemma
2.1.



On the Order of Schur Multipliers of Finite Abelian p-Groups 5

Theorem 2.3 . With the above notation and assumptions, let G be of ex-
ponent pa−m+1. Then G ∼= Zpa−m+1 ⊕ Zpm+1 ⊕ Zp ⊕ ...⊕ Zp

︸ ︷︷ ︸

n−a−2−copies

.

Proof. let G ∼= Zpα1 ⊕Zpα2 ⊕ ...⊕Zpαn−a , where α1 ≥ α2 ≥ ... ≥ αn−a ≥ 1. By
the proof of previous lemma we have α2 ≤ m+1. If α2 ≤ m, then α3 ≥ 2 and
we have

n(n− 1)

2
− t = α2 + 2α3 + ... + (n− a− 1)αn−a

= (α2 + α3 + ... + αn−a) + α3 + 2α4 + ... + (n− a− 2)αn−a

≥ (n− a+m− 1) + (2 + 2 + 3 + ... + n− a− 2)

= n− a+m+
(n− a− 2)(n− a− 1)

2
.

Therefore n ≥ 2m+a(a+1)+2+2t
2a

which is a contradiction by Lemma 2.1. Hence
the result holds.

Theorem 2.4 . Further to the previous notation and assumptions, let m =
k + s (k, s ∈ N0), exp(G) = pa−k+1, and exp(M(G)) + exp(S2M(G)) = pk+r.
Then

G ∼= Zpa−k+1 ⊕ Zpx ⊕ Zpk+r−x ⊕ Zph1 ⊕ ...⊕ Z
p
hf ⊕ Zp ⊕ ...⊕ Zp

︸ ︷︷ ︸

n−a−(f+3)−copies

,

where
x = k − s+ 2r − 3 + 3(h1 − 1) + ...+ (f + 2)(hf − 1), h1 ≥ h2 ≥ ... ≥ hf ≥ 2,
and f ≤ −r + 2.

Proof. Let G ∼= Zpα1 ⊕ Zpα2 ⊕ ... ⊕ Zpαn−a , where α1 ≥ α2 ≥ ... ≥ αn−a.
By Theorem 1.2 and Remark 1.3 it is easy to see that exp(M(G)) = pα2 ,
exp(S2M(G)) = pα3 , and so by hypothesis α2+α3 = k+ r, and α1 = a−k+1.
If α3 = 1, then it is easy to see that s = 0 and so exp(G) = a−m+ 1. Hence
by Theorem 2.3 G ∼= Zpa−m+1 ⊕ Zpm+1 ⊕ Zp ⊕ ...⊕ Zp

︸ ︷︷ ︸

n−a−2−copies

.

Now, we can assume that α3 ≥ 2 and hence G may have the following
structure:

G ∼= Zpa−k+1 ⊕ Zpx ⊕ Zpk+r−x ⊕ Zph1 ⊕ ...⊕ Z
p
hf ⊕ Zp ⊕ ...⊕ Zp

︸ ︷︷ ︸

n−a−(f+3)−copies

,

where f ≥ 0 and h1 ≥ h2 ≥ ... ≥ hf ≥ 2. If f ≥ 1 since G is a group of order
pn, we have
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(a−k+1)+(k+r)+(h1+...+hf)+(n−a−f−3) = n so h1+...+hf = −r+f+2
and hence hf = −r + f + 2− h1 − ...− hf−1.
But h1 ≥ h2 ≥ ... ≥ hf ≥ 2, so that −r + f + 2 ≥ 2f and so 0 ≤ f ≤ −r + 2.
Now, by Theorem 1.2 we have

n2 − n− 2t

2
= z + (1 + 2 + ...+ n− a− 1),

where

z = x+ 2k + 2r − 2x+ 3h1 + 4h2 + ...+ (f + 2)hf − (1 + 2 + ...+ f + 2).

Thus

n =
2z + a(a+ 1) + 2t

2a
.

On the other hand by the hypothesis n = 2(k+s)+a(a+1)+2t
2a

, hence we have
z = k + s, and the result follows.

Corollary 2.5 . With the notation and assumptions of previous theorem
we have
(i) G ∼= Zpa−k+1 ⊕ Zpk−s+1 ⊕ Zps+1 ⊕ Zp ⊕ ...⊕ Zp

︸ ︷︷ ︸

n−a−3−copies

, if r = 2;

(ii) G ∼= Zpa−k+1 ⊕ Zpk−s+2 ⊕ Zps−1 ⊕ Zp2 ⊕ Zp ⊕ ...⊕ Zp
︸ ︷︷ ︸

n−a−4−copies

, if r = 1;

(iii) if r = 0, then

G ∼=







Zpa−k+1 ⊕ Zpk−s+4 ⊕ Zps−4 ⊕ Zp2 ⊕ Zp2 ⊕ Zp ⊕ ...⊕ Zp
︸ ︷︷ ︸

n−a−5−copies

or
Zpa−k+1 ⊕ Zpk−s+3 ⊕ Zps−3 ⊕ Zp3 ⊕ Zp ⊕ ...⊕ Zp

︸ ︷︷ ︸

n−a−4−copies

;

(iv) if r = −1, then

G ∼=







Zpa−k+1 ⊕ Zpk−s+8 ⊕ Zps−9 ⊕ Zp4 ⊕ Zp ⊕ ...⊕ Zp
︸ ︷︷ ︸

n−a−4−copies

Zpa−k+1 ⊕ Zpk−s+5 ⊕ Zps−6 ⊕ Zp3 ⊕ Zp2 ⊕ Zp ⊕ ...⊕ Zp
︸ ︷︷ ︸

n−a−5−copies

Zpa−k+1 ⊕ Zpk−s+7 ⊕ Zps−8 ⊕ Zp2 ⊕ Zp2 ⊕ Zp2 ⊕ Zp ⊕ ...⊕ Zp
︸ ︷︷ ︸

n−a−6−copies

.

Proof. i) If r = 2, then f = 0. Therefore

G ∼= Zpa−k+1 ⊕ Zpx ⊕ Zpk+r−x ⊕ Zp ⊕ ...⊕ Zp
︸ ︷︷ ︸

n−a−3−copies

,
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where x = k − s+ 1. Hence the result follows.
ii) If r = 1, then f = 0, 1. If f = 0, then n = a − k + 1 + k + 1 + n − a − 3
which is a contradiction. Then f = 1 and

G ∼= Zpa−k+1 ⊕ Zpx ⊕ Zpk+r−x ⊕ Zph1 ⊕ Zp ⊕ ...⊕ Zp
︸ ︷︷ ︸

n−a−4−copies

,

where h1 = −r + f + 2 = 2 and x = k − s + 2 + 6 − (1 + 2 + 3) = k − s + 2.
Hence the result follows.
iii) If r = 0, then f = 0, 1, 2. If f = 0, then h1 + h2 + ...+ hf = 0 but we have
h1 + h2 + ... + hf = −r + f + 2 = 2 which is a contradiction. If f = 1, then
x = k − s+ 4 and if f = 2, then x = k − s+ 3.
iv)By a routine calculation similar to (ii) the result holds.

Note that we can continue the above corollary for other integers r < −1,
but with a boring calculations.
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