On the Order of Schur Multipliers of Finite Abelian p-Groups

B. Mashayekhy*, F. Mohammadzadeh, and A. Hokmabadi
Department of Mathematics, Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran.
* Correspondence: mashaf@math.um.ac.ir

Abstract

Let G be a finite p-group of order p^{n} with $|M(G)|=p^{\frac{n(n-1)}{2}-t}$, where $M(G)$ is the Schur multiplier of G. Ya.G. Berkovich, X. Zhou, and G. Ellis have determined the structure of G when $t=0,1,2,3$. In this paper, we are going to find some structures for an abelian p-group G with conditions on the exponents of $G, M(G)$, and $S_{2} M(G)$, where $S_{2} M(G)$ is the metabelian multiplier of G.

Mathematics Subject Classification: 20C25; 20D15; 20E34; 20 E 10.
Keywords: Schur multiplier, Abelian p- group.

1 Introduction and Preliminaries

Let G be any group with a presentation $G \cong F / R$, where F is a free group. Then the Baer invariant of G with respect to the variety of groups \mathcal{V}, denoted by $\mathcal{V} M(G)$, is defined to be

$$
\mathcal{V} M(G)=\frac{R \cap V(F)}{\left[R V^{*} F\right]}
$$

where V is the set of words of the variety $\mathcal{V}, V(F)$ is the verbal subgroup of F and

$$
\begin{aligned}
{\left[R V^{*} F\right]=} & \left\langle v\left(f_{1}, \ldots, f_{i-1}, f_{i} r, f_{i+1}, \ldots, f_{n}\right) v\left(f_{1}, \ldots, f_{i}, \ldots, f_{n}\right)^{-1}\right| \\
& \left.r \in R, f_{i} \in F, v \in V, 1 \leq i \leq n, n \in N\right\rangle
\end{aligned}
$$

In particular, if \mathcal{V} is the variety of abelian groups, \mathcal{A}, then the Baer invariant of the group G will be $\left(R \cap F^{\prime}\right) /[R, F]$ which is isomorphic to the well-known notion the Schur multiplier of G, denoted by $M(G)$ (see [5,6] for further details).
If \mathcal{V} is the variety of polynilpotent groups of class row $\left(c_{1}, \ldots, c_{t}\right), \mathcal{N}_{c_{1}, c_{2}, \ldots, c_{t}}$, then the Baer invariant of a group G with respect to this variety is as follows:

$$
\begin{equation*}
\mathcal{N}_{c_{1}, c_{2}, \ldots, c_{t}} M(G)=\frac{R \cap \gamma_{c_{t}+1} \circ \ldots \circ \gamma_{c_{1}+1}(F)}{\left[R,{ }_{c_{1}} F,{ }_{c_{2}} \gamma_{c_{1}+1}(F), \ldots, c_{t} \gamma_{c_{t-1}+1} \circ \ldots \circ \gamma_{c_{1}+1}(F)\right]}, \tag{1}
\end{equation*}
$$

where $\gamma_{c_{t}+1} \circ \ldots \circ \gamma_{c_{1}+1}(F)=\gamma_{c_{t}+1}\left(\gamma_{c_{t-1}+1}\left(\ldots\left(\gamma_{c_{1}+1}(F)\right) \ldots\right)\right)$ are the term of iterated lower central series of F. See [4] for the equality

$$
\left[R \mathcal{N}_{c_{1}, \ldots, c_{t}}^{*} F\right]=\left[R,{ }_{c_{1}} F,{ }_{c_{2}} \gamma_{c_{1}+1}(F), \ldots,{ }_{c_{t}} \gamma_{c_{t-1}+1} \circ \ldots \circ \gamma_{c_{1}+1}(F)\right]
$$

In particular, if $c_{i}=1$ for $1 \leq i \leq t$, then $\mathcal{N}_{c_{1}, c_{2}, \ldots, c_{t}}$ is the variety of solvable groups of length at most $t \geq 1, \mathcal{S}_{t}$.
In 1956, J.A. Green [3] showed that the order of the Schur multiplier of a finite p-group of order p^{n} is bounded by $p^{\frac{n(n-1)}{2}}$, and hence equals to $p^{\frac{n(n-1)}{2}-t}$, for some nonnegative integer t. In 1991, Ya.G. Berkovich [1] has determined all finite p-groups G for which $t=0,1$. The groups for which $t=0$ are exactly elementary ablian p-groups, and the groups for which $t=1$ are cyclic groups of order p^{2} or the nonabelian group of order p^{3} with exponent $p>2$. In 1994, X. Zhou [7] found all finite p-groups for $t=2$. He showed that these groups are the direct product of two cyclic groups of order p^{2} and p or the direct product of a cyclic group of order p and the nonabelian group of order p^{3} and exponent $p>2$ or the dihedral group of order 8. G. Ellis [2] determined all finite p-groups G with $t=0,1,2,3$ in a quite different method to that of [1] and [7] as follows:

Theorem 1.1 ([2]). Let G be a group of prime-power order p^{n}. Suppose that $M(G)$ has order $p^{\frac{n(n-1)}{2}-t}$. Then $t \geq 0$ and (i) $t=0$ if and only if G is elementary abelian;
(ii) $t=1$ if and only if $G \cong \mathbf{Z}_{p^{2}}$ or $G \cong E_{1}$;
(iii)t $=2$ if and only if $G \cong \mathbf{Z}_{p} \times \mathbf{Z}_{p^{2}}, G \cong D$ or $G \cong \mathbf{Z}_{p} \times E_{1}$;
(iv) $t=3$ if and only if $G \cong \mathbf{Z}_{p^{3}}, G \cong \mathbf{Z}_{p} \times \mathbf{Z}_{p} \times \mathbf{Z}_{p^{2}}, G \cong D \times \mathbf{Z}_{p^{2}}, G \cong E_{2}, G \cong$ Q or $G \cong \mathbf{Z}_{p} \times \mathbf{Z}_{p} \times E_{1}$.
Here $\mathbf{Z}_{p^{m}}$ denotes the cyclic group of order p^{m}, D denotes the dihedral group of order $8, Q$ denotes the quaternion group of order $8, E_{1}$ denotes the extra special group of order p^{3} with odd exponent p, and E_{2} denotes the extra special
group of order p^{3} with odd exponent p^{2}.

Now, in this paper, we are going to find some structures for the p-group G when G is abelian and $|\Phi(G)|=p^{a}$ with conditions on the exponents of $G, M(G)$, and $S_{2} M(G)$. The following useful theorem of I. Schur is frequently used in our method.

Theorem 1.2 (I. Schur [5]). Let $G \cong \mathbf{Z}_{n_{1}} \oplus \mathbf{Z}_{n_{2}} \oplus \ldots \oplus \mathbf{Z}_{n_{k}}$, where $n_{i+1} \mid n_{i}$ for all $i \in 1,2, \ldots, k-1$ and $k \geq 2$, and let $\mathbf{Z}_{n}^{(m)}$ denote the direct product of m copies of \mathbf{Z}_{n}. Then

$$
M(G) \cong \mathbf{Z}_{n_{2}} \oplus \mathbf{Z}_{n_{3}}^{(2)} \oplus \ldots \oplus \mathbf{Z}_{n_{k}}^{(k-1)}
$$

Remark 1.3. Let G be an abelian group with a free presentation F / R. Since $F^{\prime} \leq R, \mathcal{N}_{c_{1}} M(G)=\gamma_{c_{1}+1}(F) /\left[R,{ }_{c_{1}} F\right]$. Now, we can consider $\gamma_{c_{1}+1}(F) /\left[R,{ }_{c_{1}} F\right]$ as a free presentation for $\mathcal{N}_{c_{1}} M(G)$ and hence

$$
\mathcal{N}_{c_{2}} M\left(\mathcal{N}_{c_{1}} M(G)\right)=\frac{\gamma_{c_{2}+1}\left(\gamma_{c_{1}+1}(F)\right)}{\left[R, c_{1} F, c_{2} \gamma_{c_{1}+1} F\right]}
$$

Therefore by (1) we have

$$
\mathcal{N}_{c_{1}, c_{2}} M(G)=\mathcal{N}_{c_{2}} M\left(\mathcal{N}_{c_{1}} M(G)\right)
$$

By continuing the above process we can show that

$$
\mathcal{N}_{c_{1}, c_{2} \ldots, c_{t}} M(G)=\mathcal{N}_{c_{t}} M\left(\ldots \mathcal{N}_{c_{2}} M\left(\mathcal{N}_{c_{1}} M(G)\right) \ldots\right)
$$

In particular, if $c_{1}=c_{2}=1$, then we have $S_{2} M(G)=M(M(G))$.

2 Main Results

Through out the paper we assume that G is an abelian p-group of order p^{n} with $|M(G)|=p^{\frac{n(n-1)}{2}-t}$.

Lemma 2.1 . Let $\Phi(G)$, the Frattini subgroup of G, be of order p^{a}. Then $n=(a(a+1)+2 t+2 m) / 2 a$, for some $m \in \mathbf{N}_{0}$.

Proof. Let $G=\mathbf{Z}_{p^{\alpha_{1}}} \oplus \mathbf{Z}_{p^{\alpha_{2}}} \oplus \ldots \oplus \mathbf{Z}_{p^{\alpha_{n-a}}}$, where $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n-a}$. By Theorem 1.2, $M(G) \cong \mathbf{Z}_{p^{\alpha_{2}}} \oplus \mathbf{Z}_{p^{\alpha_{3}}}^{(2)} \oplus \ldots \oplus \mathbf{Z}_{p^{\alpha_{n-a}}}^{(n-a-1)}$ and so $|M(G)|=$
$p^{\alpha_{2}+2 \alpha_{3}+\ldots+(n-a-1) \alpha_{n-a}}$. But $M(G)$ has order $p^{\frac{n(n-1)}{2}-t}$. Therefore

$$
\begin{aligned}
\frac{n(n-1)}{2}-t & =\alpha_{2}+2 \alpha_{3}+\ldots+(n-a-1) \alpha_{n-a} \\
& \geq 1+2+\ldots+(n-a-1) \\
& =\frac{(n-a)(n-a-1)}{2} \\
& =\frac{n^{2}-(2 a+1) n+a(a+1)}{2} .
\end{aligned}
$$

Hence $2 a n \geq 2 t+a(a+1)$, and the result holds.
Lemma 2.2 . With the assumption and notation of the previous lemma we have the following inequalities for the exponent of G,

$$
p^{a-m+1} \leq \exp (G) \leq p^{a+1}
$$

Proof. Clearly $G / \Phi(G)$ is an elementary abelian p-group of order p^{n-a} and so $\exp (G) \leq p^{a+1}$.

For the other inequality let $G \cong \mathbf{Z}_{p^{\alpha_{1}}} \oplus \mathbf{Z}_{p^{\alpha_{2}}} \oplus \ldots \oplus \mathbf{Z}_{p^{\alpha_{n-a}}}$, where $\alpha_{1} \geq$ $\alpha_{2} \geq \ldots \geq \alpha_{n-a} \geq 1$. Then similar to the proof of previous lemma we have

$$
\begin{aligned}
\frac{n(n-1)}{2}-t & =\alpha_{2}+2 \alpha_{3}+\ldots+(n-a-1) \alpha_{n-a} \\
& \geq \alpha_{2}+(2+3+\ldots+n-a-1) \\
& \geq \frac{2 \alpha_{2}-2+n^{2}-(2 a+1) n+a(a+1)}{2}
\end{aligned}
$$

Therefore $n \geq \frac{a(a+1)+2 \alpha_{2}-2+2 t}{2 a}$ and hence by Lemma 2.1 we have $\alpha_{2} \leq m+1$. Now, suppose by contrary $\exp (G)=p^{a-k+1}$, where $k>m$, then $\alpha_{3} \geq 2$. Thus by Theorem 1.2 we have

$$
\begin{aligned}
\frac{n(n-1)}{2}-t & =\alpha_{2}+2 \alpha_{3}+\ldots+(n-a-1) \alpha_{n-a} \\
& =\left(\alpha_{2}+\alpha_{3}+\ldots+\alpha_{n-a}\right)+\alpha_{3}+2 \alpha_{4}+\ldots+(n-a-2) \alpha_{n-a} \\
& \geq(n-a+k-1)+(2+2+3+\ldots+n-a-2) \\
& =n-a+k+\frac{(n-a-2)(n-a-1)}{2} .
\end{aligned}
$$

Hence $n \geq \frac{2 k+a(a+1)+2+2 t}{2 a}>\frac{2 m+a(a+1)+2+2 t}{2 a}$ which is a contradiction by Lemma 2.1.

Theorem 2.3. With the above notation and assumptions, let G be of exponent p^{a-m+1}. Then $G \cong \mathbf{Z}_{p^{a-m+1}} \oplus \mathbf{Z}_{p^{m+1}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-2-\text { copies }}$.

Proof. let $G \cong \mathbf{Z}_{p^{\alpha_{1}}} \oplus \mathbf{Z}_{p^{\alpha_{2}}} \oplus \ldots \oplus \mathbf{Z}_{p^{\alpha_{n-a}}}$, where $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n-a} \geq 1$. By the proof of previous lemma we have $\alpha_{2} \leq m+1$. If $\alpha_{2} \leq m$, then $\alpha_{3} \geq 2$ and we have

$$
\begin{aligned}
\frac{n(n-1)}{2}-t & =\alpha_{2}+2 \alpha_{3}+\ldots+(n-a-1) \alpha_{n-a} \\
& =\left(\alpha_{2}+\alpha_{3}+\ldots+\alpha_{n-a}\right)+\alpha_{3}+2 \alpha_{4}+\ldots+(n-a-2) \alpha_{n-a} \\
& \geq(n-a+m-1)+(2+2+3+\ldots+n-a-2) \\
& =n-a+m+\frac{(n-a-2)(n-a-1)}{2} .
\end{aligned}
$$

Therefore $n \geq \frac{2 m+a(a+1)+2+2 t}{2 a}$ which is a contradiction by Lemma 2.1. Hence the result holds.

Theorem 2.4. Further to the previous notation and assumptions, let $m=$ $k+s \quad\left(k, s \in \mathbf{N}_{0}\right), \exp (G)=p^{a-k+1}$, and $\exp (M(G))+\exp \left(S_{2} M(G)\right)=p^{k+r}$. Then

$$
G \cong \mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{x}} \oplus \mathbf{Z}_{p^{k+r-x}} \oplus \mathbf{Z}_{p^{h_{1}}} \oplus \ldots \oplus \mathbf{Z}_{p^{h} f} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-(f+3)-\text { copies }}
$$

where
$x=k-s+2 r-3+3\left(h_{1}-1\right)+\ldots+(f+2)\left(h_{f}-1\right), h_{1} \geq h_{2} \geq \ldots \geq h_{f} \geq 2$, and $f \leq-r+2$.

Proof. Let $G \cong \mathbf{Z}_{p^{\alpha_{1}}} \oplus \mathbf{Z}_{p^{\alpha_{2}}} \oplus \ldots \oplus \mathbf{Z}_{p^{\alpha_{n-a}}}$, where $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n-a}$. By Theorem 1.2 and Remark 1.3 it is easy to see that $\exp (M(G))=p^{\alpha_{2}}$, $\exp \left(S_{2} M(G)\right)=p^{\alpha_{3}}$, and so by hypothesis $\alpha_{2}+\alpha_{3}=k+r$, and $\alpha_{1}=a-k+1$. If $\alpha_{3}=1$, then it is easy to see that $s=0$ and so $\exp (G)=a-m+1$. Hence by Theorem 2.3 $G \cong \mathbf{Z}_{p^{a-m+1}} \oplus \mathbf{Z}_{p^{m+1}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-2-\text { copies }}$.

Now, we can assume that $\alpha_{3} \geq 2$ and hence G may have the following structure:

$$
G \cong \mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{x}} \oplus \mathbf{Z}_{p^{k+r-x}} \oplus \mathbf{Z}_{p^{h_{1}}} \oplus \ldots \oplus \mathbf{Z}_{p^{h_{f}}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-(f+3)-\text { copies }}
$$

where $f \geq 0$ and $h_{1} \geq h_{2} \geq \ldots \geq h_{f} \geq 2$. If $f \geq 1$ since G is a group of order p^{n}, we have
$(a-k+1)+(k+r)+\left(h_{1}+\ldots+h_{f}\right)+(n-a-f-3)=n$ so $h_{1}+\ldots+h_{f}=-r+f+2$ and hence $h_{f}=-r+f+2-h_{1}-\ldots-h_{f-1}$.
But $h_{1} \geq h_{2} \geq \ldots \geq h_{f} \geq 2$, so that $-r+f+2 \geq 2 f$ and so $0 \leq f \leq-r+2$. Now, by Theorem 1.2 we have

$$
\frac{n^{2}-n-2 t}{2}=z+(1+2+\ldots+n-a-1)
$$

where

$$
z=x+2 k+2 r-2 x+3 h_{1}+4 h_{2}+\ldots+(f+2) h_{f}-(1+2+\ldots+f+2)
$$

Thus

$$
n=\frac{2 z+a(a+1)+2 t}{2 a}
$$

On the other hand by the hypothesis $n=\frac{2(k+s)+a(a+1)+2 t}{2 a}$, hence we have $z=k+s$, and the result follows.

Corollary 2.5 . With the notation and assumptions of previous theorem we have
(i) $G \cong \mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{k-s+1}} \oplus$
$\oplus \mathbf{Z}_{p^{s+1}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-3-\text { copies }}$,
if $\quad r=2 ;$
(ii) $G \cong \mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{k-s+2}} \oplus \mathbf{Z}_{p^{s-1}} \oplus \mathbf{Z}_{p^{2}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-4-\text { copies }}, \quad$ if $\quad r=1$;
(iii) if $r=0$, then
$G \cong\left\{\begin{array}{l}\mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{k-s+4}} \oplus \mathbf{Z}_{p^{s-4}} \oplus \mathbf{Z}_{p^{2}} \oplus \mathbf{Z}_{p^{2}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-5-\text { copies }} \\ \text { or } \\ \mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{k-s+3}} \oplus \mathbf{Z}_{p^{s-3}} \oplus \mathbf{Z}_{p^{3}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-4 \text {-copies }}\end{array} ;\right.$
(iv) if $r=-1$, then
$G \cong\left\{\begin{array}{l}\mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{k-s+8}} \oplus \mathbf{Z}_{p^{s-9}} \oplus \mathbf{Z}_{p^{4}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-4-\text { copies }} \\ \mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{k-s+5}} \oplus \mathbf{Z}_{p^{s-6}} \oplus \mathbf{Z}_{p^{3}} \oplus \mathbf{Z}_{p^{2}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-5-\text { copies }} \\ \mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{k-s+7}} \oplus \mathbf{Z}_{p^{s-8}} \oplus \mathbf{Z}_{p^{2}} \oplus \mathbf{Z}_{p^{2}} \oplus \mathbf{Z}_{p^{2}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-6-\text { copies }} .\end{array}\right.$
Proof. i) If $r=2$, then $f=0$. Therefore

$$
G \cong \mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{x}} \oplus \mathbf{Z}_{p^{k+r-x}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-3-\text { copies }}
$$

where $x=k-s+1$. Hence the result follows.
ii) If $r=1$, then $f=0,1$. If $f=0$, then $n=a-k+1+k+1+n-a-3$ which is a contradiction. Then $f=1$ and

$$
G \cong \mathbf{Z}_{p^{a-k+1}} \oplus \mathbf{Z}_{p^{x}} \oplus \mathbf{Z}_{p^{k+r-x}} \oplus \mathbf{Z}_{p^{k_{1}}} \oplus \underbrace{\mathbf{Z}_{p} \oplus \ldots \oplus \mathbf{Z}_{p}}_{n-a-4-\text { copies }},
$$

where $h_{1}=-r+f+2=2$ and $x=k-s+2+6-(1+2+3)=k-s+2$. Hence the result follows.
iii) If $r=0$, then $f=0,1,2$. If $f=0$, then $h_{1}+h_{2}+\ldots+h_{f}=0$ but we have $h_{1}+h_{2}+\ldots+h_{f}=-r+f+2=2$ which is a contradiction. If $f=1$, then $x=k-s+4$ and if $f=2$, then $x=k-s+3$.
iv)By a routine calculation similar to (ii) the result holds.

Note that we can continue the above corollary for other integers $r<-1$, but with a boring calculations.

Acknowledgement

This research was in part supported by a grant from Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, CEAAS.

References

[1] Ya.G. Berkovich, On the order of the commutator subgroup and Schur multiplier of a finite p-group, J. Algebra, 144 (1991), 269-272.
[2] G.Ellis, On the Schur multiplier of p-groups, Communications in Algebra, 27 no. 9 (1999), 4173-4178.
[3] J.A. Green, On the number of outomorphisms of a finite p-group, Proc. Roc, A 237 (1958), 574-581.
[4] N.S. Hekster, Varieties of groups and isologism, J. Austral. Math. Soc. (Series A), 46 (1989), 22-60.
[5] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs, NewSeries No. 2, 1987.
[6] C.R. Leedham-Green and S. McKay, Baer-invarient, Isologism, Varietal Lows and Homology, Acta Math., 137 (1976), 99-150.
[7] X. Zhou, On the order of Schur multipliers of finite p-groups, Comm. Algebra, 22 no. 1 (1994), 1-8.

