
ar
X

iv
:1

01
2.

32
50

v1
  [

m
at

h.
G

R
] 

 1
5 

D
ec

 2
01

0

Some Inequalities for Nilpotent Multipliers of

Finite Groups

B. Mashayekhy, F. Mohammadzadeh, and A. Hokmabadi

Department of Mathematics,

Center of Excellence in Analysis on Algebraic Structures,

Ferdowsi University of Mashhad,

P. O. Box 1159-91775, Mashhad, Iran.

mashaf@math.um.ac.ir

fa-mo26@stu-mail.um.ac.ir

az-ho13@stu-mail.um.ac.ir

Abstract

In this paper we present some inequalities for the order, the expo-
nent and the number of generators of the c-nilpotent multiplier (the
Baer invariant with respect to the variety of nilpotent groups of class
at most c ≥ 1) of a finite group and specially of a finite p-group. Our re-
sults generalize some previous related results of M.R. Jones and M.R.R.
Moghaddam. Also, we show that our results improve some of the previ-
ous inequalities.
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1 Introduction and Motivation

Let G be a group with a presentation F/R, where F is a free group. Then
the Baer invariant of G with respect to the variety V , denoted by VM(G), is
defined to be

VM(G) =
R ∩ V (F )

[RV ∗F ]
,

where V (F ) is the verbal subgroup of F and

[RV ∗F ] = 〈v(f1, ..., fi−1, fir, fi+1, ..., fn)v(f1, ..., fi, ..., fn)
−1|

r ∈ R, fi ∈ F, v ∈ V, 1 ≤ i ≤ n, n ∈ N〉.
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One can see that the Bear invariant of a group G is always abelian and inde-
pendent of the choice of the presentation of G. In particular, if V is the variety
of abelian groups, A, then the Baer invariant of the group G will be

R ∩ F ′

[R,F ]
,

which is isomorphic to the Schur multiplier of G , denoted by M(G). Also, if
V is the variety of nilpotent groups of class at most c ≥ 1, Nc, then the Baer
invariant of the group G will be

NcM(G) =
R ∩ γc+1(F )

[R, cF ]
.

We also call it the c-nilpotent multiplier of G, and denote it by M (c)(G) (see
[8,10] for further details).

Definition 1. A variety V is said to be a Schur-Baer variety if for any
group G for which the marginal factor group G/V ∗(G) is finite, then the verbal
subgroup V (G) is also finite and |V (G)| divides a power of |G/V ∗(G)|. Schur
[8] proved that the variety of abelian groups, A, is a Schur-Baer variety. Also,
Baer [1] proved that if u and v have Schur-Baer property, then the variety
defined by the word [u, v] has the above property.

The following theorem gives a very important property of Schur-Baer vari-
eties.

Theorem 2. ([10]) The following conditions on the variety V are equiva-
lent:
(i) V is a Schur-Baer variety.
(ii) For every finite group G, its Baer invariant, VM(G), is of order dividing a
power of |G|.

Definition 3. ([4]) The basic commutators on letters x1, x2, ..., xn, ... are
defined as follows:
(i) The letters x1, x2, ..., xn, ... are basic commutators of weight one, ordered
by setting xi < xj if i < j.
(ii) If basic commutators ci of weight w(ci) < k are defined and ordered, then
define basic commutators of weight k by the following rules. [ci, cj] is a basic
commutator of weight k if and only if
1. w(ci) + w(cj) = k;
2. ci > cj ;
3. If ci = [cs, ct], then cj ≥ ct.
Then we will continue the order by setting c ≥ ci, whenever w(c) ≥ w(ci),
fixing any order among those of weight k, and finally numbering them in order.
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Theorem 4. (P. Hall [4]) Let F be the free group on {x1, x2, ..., xd}, then
for all 1 ≤ i ≤ n,

γn(F )

γn+i(F )

is the free abelian group freely generated by the basic commutators of weights
n, n+ 1, ..., n+ i− 1 on the letters {x1, x2, ..., xd}.

Theorem 5. (Witt formula [4]) The number of basic commutators of
weight n on d generators is given by the following formula,

χn(d) =
1

n

∑

m|n

µ(m)d
n
m ,

where µ(m) is the Mobious function, which defined to be

µ(m) =







1 ;m = 1,
0 ;m = pα1

1 ...pαk

k , ∃αi > 1
(−1)s ;m = p1...ps,

where the pi are distinct prime numbers.

M.R. Jones in a series of three papers [5,6,7] studied on the order, the expo-
nent and the number of generators of the Schur multiplier of finite groups, spe-
cially finite p-groups and presented some interesting inequalities about them.
Also M.R.R. Moghaddam [13,14] generalized some of his results. The following
are some of them which we deal with in this article.

Theorem 6. (M.R. Jones [5]) Let G be a p-group of order pn with center

of exponent pk. Then |G′||M(G)| is no more than p
1
2
(n−k)(n+k−1). In particular

|G′||M(G)| ≤ p
1
2
n(n−1).

Theorem 7. (M.R. Jones [6]) Let G be a finite group and K any normal
subgroup of it. Set H = G/K, then
(i) |M(H)| divides |M(G)||G′ ∩K|;
(ii) exp(M(H)) divides exp(M(G)) exp(G′ ∩K);
(iii) d(M(H)) ≤ d(M(G)) + d(G′ ∩K).

Corollary 8. (M.R. Jones [6]) Let G be a finite d-generator group of order
pn. Then

p
1
2
d(d−1) ≤ |G′||M(G)| ≤ p

1
2
n(n−1).

In 1981 M.R.R. Moghaddam [13,14] gave varietal generalizations of Theo-
rem 7 and corollary 8. He presented the following theorem without the con-
dition of being Schur-Baer on the variety. But this condition seems to be
necessary, because VM(G) is finite if and only if variety V is a Schur-Baer
variety.
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Theorem 9. (M.R.R. Moghaddam [13]) Let V be a Schur-Baer variety
and G be a finite group with a normal subgroup K. Let H = G/K, then
(i) |VM(H)| divides |VM(G)||V (G) ∩K|;
(ii) exp(VM(H)) divides exp(VM(G)) exp(V (G) ∩K);
(iii) d(VM(H)) ≤ d(VM(G)) + d(V (G) ∩K).

Corollary 10. (M.R.R. Moghaddam [13,14]) Let V be the variety of
polynilpotent groups of a given class row. Let G be a finite d-generator group
of order pn. Then

|VM(Z(d)
p )| ≤ |VM(G)||V (G)| ≤ |VM(Z(n)

p )|,

where Z
(m)
n denotes the direct sum of m copies of Zn.

The following theorem is useful in our investigation.

Theorem 11. (B. Mashayekhy and M.R.R. Moghaddam [11]) Let G ∼=
Zn1

⊕Zn2
⊕ ...⊕Znk

be a finite abelian groups, where ni+1 | ni for all 1 ≤ i ≤
k − 1. Then for all c ≥ 1, the c-nilpotent multiplier of G is

M (c)(G) = Z
(χc+1(2))
n2

⊕ Z
(χc+1(3)−χc+1(2))
n3

⊕ ...⊕ Z
(χc+1(k)−χc+1(k−1))
nk

.

A useful corollary can be obtained by using Corollary 10 and Theorem 11.

Corollary 12. Let G be a finite d-generator p-group of order pn, then

pχc+1(d) ≤ |M (c)(G)||γc+1(G)| ≤ pχc+1(n).

The next theorem gives some upper bounds in terms of normal subgroups
and factor groups.

Theorem 13. (M.R. Jones [6]) Let G be a finite group and K be a central
subgroup of G. Set H = G/K, then
(i) |M(G)||G′ ∩K| divides |M(H)||M(K)||H ⊗K|;
(ii) exp(M(G)) divides exp(M(H))exp(M(K))exp(H ⊗K);
(iii) d(M(G)) ≤ d(M(H)) + d(M(K)) + d(H ⊗K).

The following theorem is a generalization of the above theorem, for which
the condition of Schur-Baer variety seems to be necessary too.

Theorem 14. (M.R.R. Moghaddam [13]) Let V be a Schur-Baer variety
and G be a finite group with a marginal subgroup K. Let G = F/R be a free
presentation for G and K = S/R. Set H = G/K ∼= F/S. Then
(i) |VM(G)||V (G) ∩K| = |VM(H)||[SV ∗F ]/[RV ∗F ]|;
(ii) exp(VM(G)) divides exp(VM(H))exp([SV ∗F ]/[RV ∗F ]);
(iii) d(VM(G)) ≤ d(VM(H)) + d([SV ∗F ]/[RV ∗F ]).
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Theorem 15. (M.R. Jones [6]) Let G be a finite nilpotent group of class
c and let Qj = G/γj(G) for 2 ≤ j ≤ c. Then

(i) |G′||M(G)| divides |M(G/G′)|
∏c−1

j=1 |γj+1(G) ⊗Qj+1|;

(ii) exp(M(G)) divides exp(M(G/G′))
∏c−1

j=1 exp(γj+1(G) ⊗Qj+1);

(iii) d(M(G)) ≤ d(M(G/G′)) +
∑c−1

j=1 d(γj+1(G)⊗Qj+1).

The above theorem has an interesting corollary for which we need the fol-
lowing definition.

Definition 16. Let X be any group. We say that X has a special rank
r(X) if every subgroup of X may be generated by r(X) elements and there
is at least one subgroup of X that cannot be generated by fewer than r(X)
elements. It is easy to see that r(X) = d(X) for every abelian group X . Also
if N is a normal subgroup of X then r(X) ≤ r(X/N) + r(N).

Corollary 17. If G is a finite p-group of class c and special rank r then

d(M(G)) ≤
1

2
r((2c− 1)r − 1).

Corollary 18. If G is a finite p-group of class c and exponent pe, then

exp(M(G)) ≤ pec

.

M. R. Jones in 1974 gave an improvement of Theorem 15 as follows.

Theorem 19. (M.R. Jones [7]) Let G be a finite nilpotent group of class
c ≥ 2. Let Zj = Zj(G) for all 1 ≤ j ≤ c, then
(i) |γc(G)||M(G)| divides |M(G/γc(G))||γc(G)⊗ (G/Zc−1(G))|;
(ii) exp(M(G)) divides exp(M(G/γc(G)))exp(γc(G) ⊗ (G/Zc−1(G)));
(iii) d(M(G)) ≤ d(M(G/γc(G))) + d(γc(G) ⊗ (G/Zc−1(G))).

Corollary 20. Let G be a finite p-group of class c ≥ 2 and exponent pe.
Then

exp(M(G)) ≤ pe(c−1).

G. Ellis [3], S. Kayvanfar and M.A. Sanati [9] generalized the result of M.R.
Jones for the exponent of the Schur multiplier of G (Corollary 20). A result
of G. Ellis [3] shows that if G is a p-group of class k ≥ 2 and exponent pe,

then exp(M (c)(G)) ≤ pe[
k
2
], where [k2 ] denotes the smallest integer n such that

n ≥ [k2 ]. Clearly the recent bound sharpens the bound obtained in 20.
S. Kayvanfar and M.A. Sanati [9] proved that exp(M(G)) ≤ exp(G) when G
is a finite p-group of class 3, 4 or 5 and exp(G) satisfies in some conditions.
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Now, in this paper we are going to concentrate on the Jones results and try-
ing to generalize some of them. We will give some upper bounds for the order,
the exponent and the number of generators of the nilpotent multiplier of a finite
group, specially of a finite p-group and compare some of them with previous
results. We use the notation ⊗c+1(B,A) for the tensor product B⊗A⊗ ...⊗A
involving c copies of A, where A and B are arbitrary groups. The main results
of this article are as follows

The following theorem is a generalization of Theorem 6.

Theorem A. Let G be a finite p-group of order pn, B be a cyclic subgroup
of Z(G) of order pk, where pk = exp(Z(G)), and A = G/B be a d-generator
group. Then

|γc+1(G)||M (c)(G)| ≤ pχc+1(n−k)+dk(1+d)c−1

.

The next theorem extends Theorem 15 and has several interesting corollaries.

Theorem B. Let G be a finite nilpotent group of class t ≥ 1 and let
Qj = G/γj(G) for 2 ≤ j ≤ t. Then

(i) |γc+1(G)||M (c)(G)| divides |M (c)(G/G′)|
∏t−1

k=1 | ⊗
c+1 (γk+1(G), Qk+1)|;

(ii)exp(M (c)(G)) divides exp(M (c)(G/G′))
∏t−1

k=1 exp(⊗
c+1(γk+1(G), Qk+1));

(iii)d(M (c)(G)) ≤ d(M (c)(G/G′)) +
∑t−1

k=1 d(⊗
c+1(γk+1(G), Qk+1)).

The following theorem generalizes Theorem 19 and gives some bounds in
terms of the lower central series.

Theorem C. Let G be a finite nilpotent group of class t ≥ 2. Let Zj =
Zj(G) for 1 ≤ j ≤ t, then
(i)

a) If c+ 1 ≤ t, then
|γt(G)||M (c)(G)| divides |M (c)(G/γt(G))|| ⊗c+1 (γt(G), G/Zt−1(G)).
b) If c+ 1 > t, then
|γc+1(G)||M (c)(G)| divides |M (c)(G/γt(G))|| ⊗c+1 (γt(G), G/Zt−1(G))|.

(ii) exp(M (c)(G)) divides exp(M (c)(G/γt(G)))exp(⊗c+1(γt(G), G/Zt−1(G))).
(iii) d(M (c)(G)) ≤ d(M (c)(G/γt(G))) + d(⊗c+1(γt(G), G/Zt−1(G))).

2 Proofs of Main Results

In order to prove main results we need the following lemmas.

Lemma 21. Let G be a group, then for any positive integer i and any
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normal subgroups M , N of G, we have

[M,γi(N)] ⊆ [M, iN ].

Proof. We use induction on i. Suppose [M,γi(N)] ⊆ [M, iN ], for any
normal subgroups M , N of G. Then by the Three Subgroup Lemma we have

[γi+1(N),M ] = [γi(N), N,M ] ⊆ [N,M, γi(N)][M,γi(N), N ]

⊆ [M, i+1N ].

Lemma 22. Let F/R be a presentation of G as a factor group of a free
group F . Let B = S/R be a normal subgroup of G, so that A = G/B ∼= F/S.
Then there exists the following epimorphism

⊗c+1(B,A) −→
[S, cF ]

[R, cF ][S, c+1F ]
∏c+1

i=2 γc+1(S, F )i
,

where for all 2 ≤ i ≤ c, γc+1(S, F )i = [D1, D2, ..., Dc+1] such that D1 = Di = S
and Dj = F , for all j 6= 1, i.

Proof. Define

θ : ⊗c+1(
S

RS′
,

F

SF ′
) −→

[S, cF ]

[R, cF ][S, c+1F ]
∏c+1

i=2 γc+1(S, F )i

by θ(sRS′, f1SF
′, ..., fcSF

′) = [s, f1, ..., fc][R, cF ][S, c+1F ]
∏c+1

i=2 γc+1(S, F )i,
where s ∈ S and fi ∈ F for all i = 1, 2, ..., c. The usual commutator calcula-
tions and Lemma 21 show that θ is well defined. Also for any s1, s2 ∈ S and
f1, ..., fc, f

′
1, ..., f

′
c ∈ F, we have

[s1s2, f1, ..., fc] ≡ [s1, f1, ..., fc][s2, f1, ..., fc]
[s1, f1, ..., fif

′
i , ..., fc] ≡ [s1, f1, ..., fi, ..., fc][s1, f1, ..., f

′
i , ..., fc](mod[S, (c+1)F ]).

Then θ is a multilinear map. Therefore the universal property of the tensor
product completes the proof.

Now we are ready to prove Theorem A.

Proof of Theorem A.

Let F/R be a free presentation of G with B = S/R, so that A = G/B =
F/S. Then

|γc+1(G)||M (c)(G)| = |
γc+1(F )R

R
||
γc+1(F ) ∩R

[R, cF ]
| = |

γc+1(F )

γc+1(F ) ∩R
||
γc+1(F ) ∩R

[R, cF ]
|

7



= |
γc+1(F )/[R, cF ]

(γc+1(F ) ∩R)/[R, cF ]
||
γc+1(F ) ∩R

[R, cF ]
| = |

γc+1(F )

[R, cF ]
| = |

γc+1(F )

[S, cF ]
||
[S, cF ]

[R, cF ]
|.

On the other hand by corollary 12 we have

|
γc+1(F )

[S, cF ]
| = |γc+1(A)||M

(c)(A)| ≤ pχc+1(n−k).

Now it is enough to show that |[S, cF ]/[R, cF ]| ≤ pdk(1+d)c−1

. We use the
following notation for all 1 ≤ j ≤ c− 1

Pj =
∏

(D1,...,Dc−1)∈Yj

[S, F,D1, ..., Dc−1],

where
Yj = {(D1, ..., Dc−1)| ∃ i1, i2, ..., ij s.t. Dk = S for all

k = is, 1 ≤ s ≤ j and Dk = F, otherwise },

and P0 = [S, cF ] , Pc = γc+1(S). It is easy to see that
|[S, cF ]/[R, cF ]| = |P0/([R, cF ]P1)||([R, cF ]P1)/[R, cF ]| = ...
= |P0/([R, cF ]P1)||([R, cF ]P1)/([R, cF ]P2)|...|([R, cF ]Pc−1)/[R, cF ]|.
Since B ≤ Z(G), [S, F ] ≤ R and thus S′ ≤ R. Also, since M(B) = 1,
S′

⋂
R = [R,S]. So that S′ = [R,S]. Hence [S, S, c−1F ] ≤ [R, cF ]. Therefore

by lemma 22 we have the following epimorphism

⊗c+1(B,A) →
P0

[R, cF ]P1

Also by an argument similar to the proof of lemma 22 one can deduce the
following epimorphism

⊕
∑

(D1,...,Dc−1)∈Y ′

j

B ⊗A⊗D1 ⊗ ...⊗Dc−1 →
[R, cF ]Pj

[R, cF ]Pj+1
,

where
Y ′
j = {(D1, ..., Dc−1)| ∃ i1, ..., ij s.t. Dk = B for all

k = is, 1 ≤ s ≤ j and Dk = A, otherwise },

for all 1 ≤ j ≤ c − 1. Now since |A ⊗ B| ≤ min {|Aab|d(B), |Bab|d(A)},

|([R, cF ]Pj)/([R, cF ]Pj+1)| ≤ p(
c−1

j−1)kd
c−j+1

for all 1 ≤ j ≤ c − 1. There-
fore
|[S, cF ]/[R, cF ]| ≤ p(

c−1

0 )kdc+(c−1

1 )kdc−1+...+(c−1

c−1)kd = pkd(d+1)c−1

.

The following example compares the above bound and the upper bound of
Corollary 12 .
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Example 23. If G = Zpk ⊕ Zpα1 ⊕ Zpα2 ⊕ ...⊕Zpαd such that αd ≤ ... ≤
α2 ≤ α1 ≤ k and k > 1, then B = Zpk , A ∼= Zpα1 ⊕ Zpα2 ⊕ ... ⊕ Zpαd and
n = k + t where t = α1 + α2 + . . .+ αd. Now for c = 2, by Corollary 12

|γc+1(G)||M (c)(G)| ≤ pχ3(n) = p1/3(t
3−t+3kt2+k3+3k2−k).

But using Theorem A we have

|γc+1(G)||M (c)(G)| ≤ pχ3(t)+dk(1+d) = p1/3(t
3−t+3dk+3d2k) ≤ p1/3(t

3−t+3t2k+3tk).

It is easy to see that k3 + 3k2 − k > 3tk. Therefore the previous bound in
Corollary 12 is larger than the bound of Theorem A for all finite abelian p-
groups but elementary abelian p-groups.

Now the following theorem is needed to prove Theorem B.

Theorem 24. Let G be a finite nilpotent group of class t ≥ 2 , let
G = F/R be a free presentation of G . Then

(i) |γc+1(G)||M (c)(G)| = |M (c)(G/G′)|
∏t−1

k=1 |[γk+1(F )R, cF ]/[γk+2(F )R, cF ]|;

(ii) exp(M (c)(G)) divides exp(M (c)(G/G′))
∏t−1

k=1 exp([γk+1(F )R, cF ]/[γk+2(F )R, cF ]).

(iii) d(M (c)(G)) ≤ d(M (c)(G/G′))+
∑t−1

k=1 d([γk+1(F )R, cF ]/[γk+2(F )R, cF ]);

Proof. With the previous notation, we have
(i)

|γc+1(G)||M (c)(G)| = |γc+1(F )/[R, cF ]|

= |γc+1(F )/([Rγ2(F ), cF ])||[Rγ2(F ), cF ]/[R, cF ]|

= |M (c)(G/G′)||[Rγ3(F ), cF ]/[R, cF ]|

|[Rγ2(F ), cF ]/[Rγ3(F ), cF ]|

= ...

= |M (c)(G/G′)||[Rγt+1(F ), cF ]/[R, cF ]|
t−1∏

k=1

|[Rγk+1(F ), cF ]/[Rγk+2(F ), cF ]|

= |M (c)(G/G′)|
t−1∏

k=1

|[Rγk+1(F ), cF ]/[Rγk+2(F ), cF ]|.
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(ii)The proof is similar to (i).

exp(M (c)(G)) = exp(R ∩ γc+1(F )/[R, cF ])

| exp(γc+1(F )/[R, cF ])

| exp(M (c)(G/G′))exp([Rγ2(F ), cF ]/[R, cF ])

| exp(M (c)(G/G′))exp([Rγ3(F ), cF ]/[R, cF ])

exp([Rγ2(F ), cF ]/[Rγ3(F ), cF ])

| ...

| exp(M (c)(G/G′))

t−1∏

k=1

exp([γk+1(F )R, cF ]/[γk+2(F )R, cF ]).

(iii) We have

d(M (c)(G)) = r(M (c)(G)) = r(R ∩ γc+1(F )/[R, cF ])

≤ r(γc+1(F )/[R, cF ])

≤ r(M (c)(G/G′)) + r([Rγ2(F ), cF ]/[R, cF ])

= d(M (c)(G/G′)) + d([Rγ2(F ), cF ]/[R, cF ])

≤ d(M (c)(G/G′)) + d([Rγ3(F ), cF ]/[R, cF ])

+ d([Rγ2(F ), cF ]/[Rγ3(F ), cF ])

≤ ...

≤ d(M (c)(G/G′)) +

t−1∑

k=1

d([Rγk+1(F ), cF ]/[Rγk+2(F ), cF ]).

Proof of Theorem B.

Using the notation of lemma 22, putB = (γk+1(F )R)/R andA = G/γk+1(G) =
Qk+1, then we have the following epimorphism

⊗c+1(γk+1(G), Qk+1) →
[Rγk+1(F ), cF ]

([R, cF ][Rγk+1(F ), c+1F ]
∏c+1

i=2 γc+1(Rγk+1(F ), F )i)
.

On the other hand

[R, cF ][Rγk+1(F ), c+1F ]

c+1∏

i=2

γc+1(Rγk+1(F ), F )i ≤ [γk+2(F )R, cF ],

since [Rγk+1(F ), c+1F ] = [R, c+1F ][γk+1(F ), c+1F ] ≤ [γk+2(F )R, cF ]. Also,
for all positive integers n, m such that m+ n = c− 1, we have
[Rγk+1(F ), nF,Rγk+1(F ), mF ]

10



= [R, nF,Rγk+1(F ), mF ][γk+1(F ), nF,R, mF ][γk+1(F ), nF, γk+1(F ), mF ]
≤ [R, cF ][R, γk+n+1(F ), mF ]γ2k+c+1(F ) ≤ [Rγk+2(F ), cF ].
Hence

⊗c+1(γk+1(G), Qk+1) →
[Rγk+1(F ), cF ]

[Rγk+2(F ), cF ]

is an epimorphism. Now the results follows by theorem 24.

The following example shows that the above bound for the order of c-
nilpotent multiplier of a finite p-group is sometimes smaller than the bound
which is obtained in corollary 12.

Example 25. If G is an extra special p-group of order p3 then G is a
nilpotent group of class 2. By Theorem B(i) we have

|γ3(G)||M (2)(G)| ≤ |M (2)(G/G′)||γ2(G)⊗ (G/γ2(G))⊗ (G/γ2(G))|

= |M (2)(Zp ⊕ Zp)||Zp ⊗ (Zp ⊕ Zp)⊗ (Zp ⊕ Zp)| = p6.

But Corollary 12 implies that, |γ3(G)||M (2)(G)| ≤ pχ3(3) = p8 .

Corollary 26. If G is a finite d-generator p-group of special rank r and
nilpotency class t then d(M (c)(G)) ≤ χc+1(d) + rc+1(t− 1).

Proof. Since G is a p-group and d(G) = d(G/G′) = d, d(M (c)(G/G′)) =
χc+1(d) by Theorem 11. In addition d(⊗c+1(γk+1(G), Qk+1)) ≤ d(γk+1(G))d(Qk+1)

c ≤
rdc ≤ rc+1. Hence the required assertion follows by Theorem B for t ≥ 1.

Note that the inequality in corollary 26 is attained for all elementary abelian
p-groups. Now as a final application of Theorem B we have the following result.

Corollary 27. Further to the notation and assumptions of Theorem B, let
ej = min{exp(Qj+1), exp(γj+1(G))} for 1 ≤ j ≤ c− 1. Then exp(M (c)(G)) ≤

exp(G/G′)
∏t−1

j=1 ej. In particular, if G has exponent pe then exp(M (c)(G)) ≤

pet.

Proof. Since G/G′ is an abelian group, by Theorem 11 exp(M (c)(G/G′)) ≤
exp(G/G′)). Also, by the properties of tensor products, we have
exp(⊗c+1(γj+1(G), Qj+1)) ≤ ej . Now the result holds by Theorem B.

Example 28. It can be seen that the inequality of Corollary 27 is attained.
LetG be a dihedral group of order 8, D8. By a theorem of M. R. R. Moghaddam
[15] we have

M (c)(D8) ∼= Z4 ⊕ Z2 ⊕ ...⊕ Z2
︸ ︷︷ ︸

(χc+1(2)−1)−times

.
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Then exp(M (c)(G)) = 4. On the other hand Corollary 27 implies that,
exp(M (c)(G)) ≤ exp(Z2 ⊕ Z2) (min{exp(Z2 ⊕ Z2), exp(Z2)}) = 4.

The following theorem helps us to proof Theorem C.

Theorem 29. Let G be a finite nilpotent group of class t ≥ 2 and let
G = F/R be a free presentation for G. Then
(i)

a) If c+ 1 ≤ t, then
|γt(G)||M (c)(G)| = |M (c)(G/γt(G))||[Rγt(F ), cF ]/[R, cF ]|.
b) If c+ 1 > t, then
|γc+1(G)||M (c)(G)| = |M (c)(G/γt(G))||[Rγt(F ), cF ]/[R, cF ]|;

(ii) exp(M (c)(G)) divides exp(M (c)(G/γt(G)))exp([Rγt(F ), cF ]/[R, cF ]);
(iii) d(M (c)(G)) ≤ d(M (c)(G/γt(G))) + d([Rγt(F ), cF ]/[R, cF ]).

Proof. Since γt(G) = (γt(F )R)/R ∼= γt(F )/(R ∩ γt(F )) and G/γt(G) ∼=
F/(γt(F )R), we have (M (c)(G/γt(G))) = (γc+1(F ) ∩ γt(F )R)/[Rγt(F ), cF ] .
(i) We consider two cases.
Case One: If c+ 1 ≤ t,then

(γc+1(F ) ∩R)γt(F )

[Rγt(F ), cF ]
∼=

((γc+1(F ) ∩R)γt(F ))/[R, cF ]

[Rγt(F ), cF ]/[R, cF ]
.

Hence

|
(γc+1(F ) ∩R)γt(F )

[R, cF ]
| = |

[Rγt(F ), cF ]

[R, cF ]
||M (c)(

G

γt(G)
)|.

But

((γc+1(F ) ∩R)γt(F ))/[R, cF ]

(γc+1(F ) ∩R)/[R, cF ]
∼=

(γc+1(F ) ∩R)γt(F )

γc+1(F ) ∩R

∼=
γt(F )

γt(F ) ∩R
∼= γt(G),

so that

|
(γc+1(F ) ∩R)γt(F )

[R, cF ]
| = |γt(G)||

γc+1(F ) ∩R

[R, cF ]
|

= |γt(G)||M (c)(G)|.

Therefore

|γt(G)||M (c)(G)| = |M (c)(
G

γt(G)
)||

[Rγt(F ), cF ]

[R, cF ]
|.

Case Two: If c+ 1 > t, then we have

M (c)(
G

γt(G)
) ∼=

γc+1(F )

[Rγt(F ), cF ]
∼=

γc+1(F )/[R, cF ]

[Rγt(F ), cF ]/[R, cF ]
.
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Thus

|
γc+1(F )

[R, cF ]
| = |M (c)(

G

γt(G)
)||

[Rγt(F ), cF ]

[R, cF ]
|.

But

γc+1(F )/[R, cF ]

(γc+1(F ) ∩R)/[R, cF ]
∼=

γc+1(F )

γc+1(F ) ∩R
∼=

γc+1(F )R

R
∼= γc+1(G).

Hence the result follows as for case one.

(ii),(iii) Since

M (c)(
G

γt(G)
) ∼=

(γc+1(F ) ∩ γt(F )R)/[R, cF ]

[Rγt(F ), cF ]/[R, cF ]

and

M (c)(G) ∼=
γc+1(F ) ∩R

[R, cF ]
≤

γc+1(F ) ∩ γt(F )R

[R, cF ]
,

we have

exp(M (c)(G)) | exp(
γc+1(F ) ∩Rγt(F )

[R, cF ]
) | exp(M (c)(

G

γt(G)
))exp(

[Rγt(F ), cF ]

[R, cF ]
).

On the other hand by Lemma 21, ((γc+1(F ) ∩R)γt(F ))/[R, cF ] is an abelian
group, therefore

d(M (c)(G)) ≤ r(
γc+1(F ) ∩Rγt(F )

[R, cF ]
) = d(

γc+1(F ) ∩Rγt(F )

[R, cF ]
)

≤ d(M (c)(
G

γt(G)
)) + d(

[Rγt(F ), cF ]

[R, cF ]
).

This completes the proof.

Proof of Theorem C

Let F/R be a free presentation for G with Zj = Yj/R for 1 ≤ j ≤ t. Then
we have γt(G) = γt(F )R/R and G/Zj

∼= F/Yj for 1 ≤ j ≤ t. Define

θ :
γt(F )R

R
×

F

Yt−1
× ...×

F

Yt−1
−→

[Rγt(F ), cF ]

[R, cF ]

by θ(gR, f1Yt−1, ..., fcYt−1) = [g, f1, ..., fc][R, cF ] for f1, ..., fc in F and g
in γt(F ). Suppose g′ = gr and f ′

i = fiyi for r in R and yi in Yt−1 for
1 ≤ i ≤ c. Then the commutator calculations and Lemma 21 show that
[g, f1, ..., fc] ≡ [g′, f ′

1, ..., f
′
c] (mod [R, cF ]) and θ is well defined. Moreover

for g, g′ in γt(G) and fi, f
′
i in F , [gg′, f1, ..., fc] ≡ [g, f1, ..., fc][g

′, f1, ..., fc]
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and [g, f1, ..., fif
′
i , ..., fc] ≡ [g, f1, ..., fi, .., fc][g, f1, ..., f

′
i , .., fc] (mod [R, cF ])

for 1 ≤ i ≤ c. Hence θ is multilinear map and therefore ([Rγt(F ), cF ])/[R, cF ]
is a homomorphic image of ⊗c+1(γt(G), G/Zt−1(G)) , by the universal property
of tensor product. Now the result follows from previous theorem.

Remarks

(i) The inequality in Theorem C (i) is attained for extra special p-group
of order p3 of exponent p and c = 1. Also equality holds in (ii), for dihedral
group of order 8. In addition, Example 25 helps us to see that the bound is
some times better than the bound obtained by Corollary 12 for the order of
c-nilpotent multiplier of a finite p-group.

(ii) Note that a result similar to Theorem C has been proved in a differ-
ent method by J. Burns and G. Ellis [2, Proposition 5]. Their proof is based
on nonabelian tensor product argument. Note that when we consider the ex-
terior product of abelian groups by the canonical homomorphisms γt(G) →
G/Zt−1(G) and G/Zt−1(G) → G/Zt−1(G) as crossed modules, then the rule of
θ in the proof of the Theorem C gives the following epimorphism:

θ̂ : γt(G) ∧
G

Zt−1(G)
∧ ... ∧

G

Zt−1(G)
→

[Rγt(F ), cF ]

[R, cF ]
.

Hence we can replace γt(G)⊗G/Zt−1(G)⊗...⊗G/Zt−1(G) by γt(G)∧G/Zt−1(G)∧
...∧G/Zt−1(G) in Theorem C. Also it seems that there is a missing point in the
proof of the similar result of J. Burns and G. Ellis [2, Proposition 5] for the
right exactness of the sequence

M (c)(G) → M (c)(
G

γt(G)
) → γt(G) → 1.

So we should state part (i) of Theorem C in two cases.
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