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SILTING MUTATION FOR SELF-INJECTIVE ALGEBRAS

TAKUMA AIHARA

Abstract. We study ‘silting mutaion’ for self-injective algebras. In particular we focus on ‘tilting
mutation’ and show that iterated irreducible ‘silting mutation’ transitively act on the set of silting
objects for representation-finite symmetric algebras. Moreover we give some sufficient conditions for
‘Bongartz-type Lemma’ on silting objects.

1. Introduction

In representation theory of algebras the notion of ‘mutation’ often plays important roles. ‘Mutation’
is an operation for a certain class of objects in a fixed category to construct a new object from a given
one by replacing a summand. An important case is ‘tilting mutation’ for tilting complexes and it was
studied in modular representation theory. For example ‘tilting mutation’ appears in the study of Broué’s
abelian defect group conjecture [O, Ri2] and Brauer tree algebras [A, KZ, Z].

However ‘tilting mutation’ has a big disadvantage, that is, it is not always possible. It often occurs that
an object which is constructed by replacing a summand of a tilting object is not tilting. The disadvantage
is canceled by introducing ‘silting mutation’ which was studied in [AI]. The point is that ‘silting mutation’
is always possible in the sense that an object which is constructed by replacing any summand of a silting
object is always silting. Hence we hope that ‘silting mutation’ gives us sufficiently many silting objects.

In this paper we consider two important questions.
The first is about ‘silting transitivity’. We pose the following question:

Question 1.1. Let A be a finite dimensional algebra A over a field and T := Kb(proj-A). Is the action
of iterated irreducible ‘silting mutation’ on the set of basic silting objects in Kb(proj-A) transitive?

It was shown in [AI] that Question 1.1 is true for either a local algebra [AI, Corollary 2.42], a hereditary
algebra or a canonical algebra [AI, Theorem 3.1].

In this paper we have the following partial answer (Theorem 5.2).

Theorem 1.2. Question 1.1 has a positive answer if A is a representation-finite symmetric algebra.

In the case of symmetric algebras any ‘silting mutation’ is always ‘tilting mutation’. From the point
of view, this is one of important cases for ‘silting transitivity’.

To prove Theorem 1.2, in Section 4 we construct a ‘pre-silting object’ induced by a torsion pair (Lemma
4.9) and show that it is silting (tilting) under a nice condition (Theorem 4.10).

The second is about ‘Bongartz-type Lemma’ (cf. [B, Lemma 2.1]) in the sense that any module which
is a self (1-) orthogonal module at most 1 in projective dimension is a direct summand of a (classical)
tilting module. In general ‘Bongartz-type Lemma’ does not hold for tilting complexes, that is, there
exists a ‘pre-tilting object’ which is not ‘partial tilting’ (cf. [Ri1, Section 8]). However the ‘pre-tilting
object’ given in [Ri1, Section 8] (so it is ‘pre-silting’) is ‘partial silting’ (Remark 2.14). We hence hope
that the following question has a partial answer.

Question 1.3. Is any ‘pre-silting object’ always ‘partial silting’?

In this paper we give some sufficient conditions for the question mentioned above to have a partial
answer (Theorem 2.12(a), Lemma 2.15).

Notations Let T be an additive category. For morphisms f : X → Y and g : Y → Z in T , we denote
by gf : X → Z the composition. We say that a morphism f : X → Y is right minimal if any morphism
g : X → X satisfying fg = f is an isomorphism. Dually we define a left minimal morphism.
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For a collection X of objects in T , we denote by addX the smallest full subcategory of T which is
closed under finite direct sums, summands and isomorphisms and contains X .

Let X be a full subcategory of T . We say that a morphism f : X → Y is a right X -approximation of
Y if X ∈ X and HomT (X, f) is surjective for any X ∈ X . We say that X is contravariantly finite if any
object in T has a right X -approximation. Dually, we define a left X -approximation and a covariantly
finite subcategory. We say that X is functorially finite if it is contravariantly and covariantly finite.

When T is a Krull-Schmidt category, we say that an object X ∈ T is basic if the endomorphism
algebra of X is a basic algebra.

When T is a triangulated category, we denote by thickX the smallest thick subcategory of T containing
X . For collections X and Y of objects in T , we denote by X ∗Y the collection of objects Z ∈ T appearing
in a triangle X → Z → Y → X [1] with X ∈ X and Y ∈ Y.

For an additive category A, we denote by Kb(A) the homotopy category of bounded complexes over
A.

For a ring A, we denote by mod-A the category of all finitely generated right A-modules, by proj-A the
category of finitely generated projective A-modules. When A is a finite dimensional algebra over a field
k, we denote by D := Homk(−, k) : mod-A ↔ mod-Aop the k-duality, by ν := DHomA(−, A) : mod-A →
mod-A the Nakayama functor and by τ, τ−1 the Auslander-Reiten translations. For any i ∈ Z, we denote
by Hi := HomKb(mod-A)(A,−[i]) : Kb(mod-A) → mod-A the i-th cohomological functor. We denote by
mod-A the stable module category and by Ω : mod-A → mod-A the syzygy functor.

Acknowledgments. The author would like to give his deep gratitude to Osamu Iyama who read the
paper carefully and gave a lot of helpful comments and suggestions.

2. Silting objects and silting mutation

The aim of this section is to study silting mutation and a partial order in the sense of [AI] and to give
some results which are necessary for this paper.

Let T be a triangulated category and we assume the following:

Assumption 2.1. T is Krull-Schmidt, k-linear for a field k and Hom-finite, that is, dimkHomT (X,Y ) <
∞ for any X,Y ∈ T .

Let us start with the definition of silting objects.

Definition 2.2. Let T ∈ T .

(a) We say that T is pre-silting (respectively, pre-tilting) if HomT (T, T [i]) = 0 for any i > 0 (respectively,
i 6= 0).

(b) We say that T is silting (respectively, tilting) if it is pre-silting (respectively, pre-tilting) and satis-
fies T = thickT . We denote by silt T (respectively, tilt T ) the isomorphism classes of basic silting
(respectively, tilting) objects in T .

(c) We say that T is partial silting if it is a direct summand of a silting object.

Now we define silting mutation.

Definition 2.3. Let T ∈ silt T . For a direct summand X of T , we define an object µ+
X(T ) as follows:

We set T = X ⊕ M satisfying addX ∩ addM = 0. Now we take a minimal left addM -approximation
f : X → M ′ and a triangle

X
f

// M ′ // Y // X [1].

It is possible by Assumption 2.1. We put

µ+
X(T ) := Y ⊕M,

and call it a left mutation of T with respect to X . Dually we define a right mutation µ−
X(T ) of T with

respect to X . (Silting) mutation is a left or right mutation.
We say that mutation is tilting mutation if both T and its mutation are tilting.
We say that mutation is irreducible if X is indecomposable.
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Theorem 2.4. [AI, Theorem 2.30] Any mutation of a silting object is again a silting object.

Next we define a partial order on silt T .

Definition 2.5. For T, U ∈ silt T , we write T ≥ U if HomT (T, U [i]) = 0 for any i > 0.

Theorem 2.6. [AI, Theorem 2.10] ≥ gives a partial order on silt T .

The following subcategory is useful to understand a partial order on silt T .

Definition 2.7. For any T ∈ silt T , we define a subcategory of T by

T ≤0
T := {X ∈ T | HomT (T,X [i]) = 0 for any i > 0}.

We put T ≤ℓ
T = T <ℓ+1

T := T ≤0
T [−ℓ] for ℓ ∈ Z.

We have the following useful property.

Proposition 2.8. [AI, Proposition 2.13] Let T, U ∈ silt T . Then T ≥ U if and only if T ≤0
T ⊇ T ≤0

U .

The following results play important roles in this paper.

Proposition 2.9. [AI, Proposition 2.23] Let T ∈ silt T . For any U = U0 ∈ T ≤0
T , we have triangles

U1
g1

// T0
f0

// U0
// U1[1],

· · · ,

Uℓ

gℓ
// Tℓ−1

fℓ−1
// Uℓ−1

// Uℓ[1],

0
gℓ+1

// Tℓ

fℓ
// Uℓ

// 0,

for some ℓ ≥ 0 such that fi is a minimal right addT -approximation and gi+1 belongs to JT for any
0 ≤ i ≤ ℓ where JT is the Jacobson radical of T .

Lemma 2.10. [AI, Lemma 2.24] Let T ∈ silt T and U0, U
′
0 ∈ T ≤0

T . For U0, we take ℓ ≥ 0 and triangles
in Proposition 2.9. Also for U ′

0, we take triangles

U ′
1

g′
1

// T ′
0

f ′
0

// U ′
0

// U ′
1[1],

· · · ,

U ′
ℓ′

g′
ℓ

// T ′
ℓ′−1

f ′
ℓ′−1

// U ′
ℓ′−1

// U ′
ℓ′ [1],

0
g′
ℓ′+1

// T ′
ℓ′

f ′
ℓ′

// U ′
ℓ′

// 0,

satisfying the same properties. If HomT (U0, U
′
0[ℓ]) = 0 holds, then we have (addTℓ) ∩ (addT ′

0) = 0.

We now improve the result of [AI, Proposition 2.35].

Proposition 2.11. Let T ∈ silt T and U ∈ T . If U is a pre-silting object with U 6∈ addT and U ∈ T ≤0
T ,

then there exists an irreducible left mutation P of T such that T > P and U ∈ T ≤0
P .

Proof. Since U 6∈ addT and U ∈ T ≤0
T , we can take U0 ∈ addU which does not belong to addT and triangles

in Proposition 2.9 with ℓ > 0. Now take an indecomposable object X of Tℓ and put P := µ+
X(T ). By [AI,

Theorem 2.34], we have T > P . To show U ∈ T ≤0
P , we consider the triangle as in Definition 2.3. Since

we have an exact sequence

HomT (X,U [i]) → HomT (Y, U [i+ 1]) → HomT (M
′, U [i+ 1]),

we obtain HomT (P,U [i]) = 0 for any i > 1. Thus it remains to prove HomT (P,U [1]) = 0. Since we have
an exact sequence

HomT (M
′, U)

·f
→ HomT (X,U) → HomT (Y, U [1]) → HomT (M

′, U [1]) = 0,
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we only have to show that HomT (M
′, U)

·f
→ HomT (X,U) is surjective. Fix a : X → U and consider a

diagram

Y [−1] // X
f

//

a

��

M ′

U ′
1

g′
1

// T ′
0

f ′
0

// U // U ′
1[1]

where the lower triangle is given in Lemma 2.10 as U ′
0 = U . Since f ′

0 is a right addT -approximation,
we get b : X → T ′

0 with a = f ′
0b. Since addTℓ ∩ addT ′

0 = 0 by Lemma 2.10, we have X 6∈ addT ′
0 and so

T ′
0 ∈ addM . Since f is a left addM -approximation, we obtain c : M ′ → T ′

0 with b = cf . Thus we have
a = (f ′

0c)f and the assertion holds. �

Proposition 2.11 implies the following result, whose first assertion is ‘Bongartz-type Lemma’.

Theorem 2.12. Let T ∈ silt T and U ∈ T be a pre-silting object with U ∈ T ≤0
T . Assume that there exist

only finitely many silting objects P ∈ silt T satisfying T ≥ P and U ∈ T ≤0
P . Then the following hold:

(a) U is a partial silting object;
(b) If U is a silting object, then it can be obtained from T by iterated irreducible (left) mutation.

Proof. Assume U 6∈ addT . By Proposition 2.11, we have a sequence of irreducible left mutation

T = T0 > T1 > · · · > Ti > · · ·

satisfying U ∈ T ≤0
Ti

for any i ≥ 0. By our assumption, U is a direct summand of Tℓ for some ℓ ≥ 0. The
last assertion follows from [AI, Theorem 2.17]. �

The corollary below is an immediate consequence of Proposition 2.12.

Corollary 2.13. Assume that T has a silting object T such that for any ℓ ≥ 0, there exist only finitely
many silting objects P ∈ silt T satisfying T ≥ P ≥ T [ℓ]. Then the action of iterated irreducible mutation
on silt T is transitive.

Remark 2.14. Assume that T has a silting object. Then the assumption of Corollary 2.13 holds if
T = add{M [i] | i ∈ Z} for some M ∈ T . This implies that the action of iterated irreducible mutation on
silt T is transitive if the dimension of T , which was defined in [Ro], is zero: For example it is satisfied if
A is derived equivalent to a representation-finite hereditary algebra and T := Kb(proj-A).

We end this section by giving another ‘Bongartz-type Lemma’ for a condition different from that of
Theorem 2.12, which is a modification of [AH, Lemma 3.1].

Lemma 2.15. Let T ∈ T be a pre-silting object. Assume that there exists P ∈ silt T satisfying P ∈ T ≤0
T

and T ∈ T ≤1
P . Then T is a partial silting object.

Proof. We take a right addT -approximation f : T ′ → P of P with T ′ ∈ addT and a triangle Q → T ′ f
−→

P → Q[1]: it is possible by Assumption 2.1. Set U = T ⊕ Q. Since P is a silting object, we can check
T = thickU easily.

(i) We show HomT (T,Q[i]) = 0 for any i > 0. Since we have an exact sequence

HomT (T, P [i− 1])
0
−→ HomT (T,Q[i]) → HomT (T, T

′[i]) = 0,

we have HomT (T,Q[i]) = 0 for any i > 0.
(ii) We show HomT (Q,U [i]) = 0 for any i > 0. Since we have an exact sequence

0
(i)
= HomT (T

′, U [i]) → HomT (Q,U [i]) → HomT (P [−1], U [i]) → HomT (T
′[−1], U [i])

(i)
= 0,

we obtain HomT (Q,U [i]) ≃ HomT (P [−1], U [i]). Since we have an exact sequence

HomT (P, P [i]) → HomT (P,Q[i+ 1]) → HomT (P, T
′[i+ 1])

T∈T
≤1

P= 0,
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we have HomT (P,Q[i+ 1]) = 0 for any i > 0. This implies HomT (Q,U [i]) = 0 for any i > 0.
By (i) and (ii), we have HomT (U,U [i]) = 0 for any i > 0. Thus the assertion holds. �

3. Derived invariances for self-injective algebras

Through this section, let A be a basic self-injective algebra and put T := Kb(proj-A). In this section
we give useful applications of results studied in Section 2, which are a improvement of the proof given
in [AH] and [AR]. In particular the assertion implies that the self-injectivity is preserved by derived
equivalences.

Let us start with the following easy observations.

Lemma 3.1. silt T and tilt T are closed under ν.

Lemma 3.2. For any T ∈ tilt T , we have T ≥ νT . In particular, T ≤0
T is closed under ν.

Proof. Since we have HomT (T, νT [i]) ≃ DHomT (T [i], T ) = 0 for any i 6= 0, we have T ≥ νT . We can

easily check νT ≤0
T ⊆ T ≤0

νT . Hence the last assertion follows from Proposition 2.8. �

The following result plays an important role.

Proposition 3.3. [AR, Theorem 1.1] Let Λ be a finite dimensional algebra for a field, and · · · , P−1, P 0, P 1, · · ·
a sequence of finitely generated projective Λ-modules, such that P i = 0 for all but finitely many i. Then
up to isomorphism there are only finitely many tilting complexes

P = · · · → P−1 → P 0 → P 1 → · · · .

We have the following result.

Lemma 3.4. For any T ∈ silt T , there exists a positive integer n such that addT = addνnT .

Proof. Since T = thickA, applying shifts to T , we can assume T ≤ A. By Proposition 2.9, there exist
ℓ ≥ 0 and P0, P1, · · · , Pℓ ∈ proj-A such that T ∈ P0 ∗P1[1] ∗ · · · ∗Pℓ[ℓ]. Since A is self-injective, we have a
positive integer s such that Pi ≃ νsPi for any 0 ≤ i ≤ ℓ. Therefore we also have νsT ∈ P0∗P1[1]∗· · ·∗Pℓ[ℓ].
By Proposition 3.3, there exists a multiple n of s such that T ≃ νnT . �

Now we recover a result of [AH] and [AR].

Theorem 3.5. [AH, Lemma 1.7] [AR, Theorem 2.1] Let T ∈ silt T . Then the following are equivalent:

(1) T is a tilting object;
(2) T ≃ νT .

Proof. The implication (2) ⇒ (1) can be checked easily. Assume that T is a tilting object. Since νjT is
tilting for any j ∈ Z, by Lemma 3.2 we have a sequence of tilting objects

T ≥ νT ≥ ν2T ≥ · · · .

By Lemma 3.4, we have T ≃ νnT for some n > 0. Hence the assertion follows from Theorem 2.6. �

The corollary below is an immediate consequence of Theorem 3.5.

Corollary 3.6. [AR, Theorem 2.1] Self-injective algebras are closed under derived equivaleces.

Let {P1, · · · , Pn} be the set of non-isomorphic projective indecomposable A-modules. Then there
exists a permutation ρ of the set I := {1, · · · , n}, called the Nakayama permutation of A, such that
νPi ≃ Pρ(i) for any i ∈ I.

We can also recover a result of [AH].

Corollary 3.7. [AH, Proposition 2.14] If the Nakayama permutation of A is transitive, then tiltA =
{A[i] | i ∈ Z}.

Proof. Let T ∈ T be a basic tilting object contained in P0 ∗P1[1] ∗ · · · ∗Pℓ[ℓ] for some P0, · · · , Pℓ ∈ addA.
By Theorem 3.5, we have T ≃ νT . This implies Pi ≃ νPi for any 0 ≤ i ≤ ℓ. Assume ℓ > 0, i.e.
Pℓ 6= 0. We take an indecomposable direct summand Q of Pℓ. Since the action of ν is transitive, we have
νjQ ∈ addP0 for some integer j. Since P0 ≃ νP0, we obtain Q ∈ addP0. This is contradiction by Lemma
2.10. Thus we have T ∈ addA, which implies addT = addA. �
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4. Silting objects induced by torsion pairs

In this section we construct a silting object induced by a torsion pair satisfying a good condition. It
is a modification of the construction in [AH]. The main result of this section (Theorem 4.10) essentially
plays an important role to prove Theorem 1.2.

Through this section, let A be a finite dimensional algebra over a field and T := Kb(proj-A).

Definition 4.1. For any full subcategory E of mod-A, we define a full subcategory of mod-A by
⊥E = {M ∈ mod-A | HomA(M,E) = 0 for any E ∈ E},

E⊥ = {M ∈ mod-A | HomA(E,M) = 0 for any E ∈ E}.

For any X ∈ mod-A, we simply write ⊥addX (respectively, addX⊥) by ⊥X (respectively, X⊥).

Definition 4.2. A pair (C,D) of full subcategories C,D in mod-A is called a torsion pair for mod-A if
C = ⊥D and D = C⊥.

Let (C,D) be a torsion pair for mod-A. Then for any X ∈ mod-A, there exists an exact sequence
0 → X ′ → X → X ′′ → 0 with X ′ ∈ C and X ′′ ∈ D. We call X ′ (respectively, X ′′) a torsion part
(respectively, a torsion-free part) of X , and denote it by γ(X).

We know a fundamental example of torsion pairs for mod-A.

Lemma 4.3. [ASS, Example VI.1.2(a)] For any X ∈ mod-A, the pair
(

⊥X, (⊥X)⊥
)

is a torsion pair for
mod-A.

Definition 4.4. Let E be a full subcategory of mod-A closed under extensions. An A-module X is called
Ext-projective (respectively, Ext-injective) in E if Ext1A(X,E) = 0 (respectively, Ext1A(E,X) = 0) for any
E ∈ E .

The following result plays an important role for a vanishing condition of silting objects.

Lemma 4.5. [AH, Lemma 2.6, 2.12] Let (C,D) be a torsion pair for mod-A and X ∈ mod-A.

(1) Assume X ∈ C. Then the following hold:
(i) X is Ext-injective in C if and only if it is a torsion part of an injective A-module;
(ii) X is Ext-projective in C if and only if τ(X) ∈ D.

(2) Assume X ∈ D. Then the following hold:
(i) X is Ext-projective in D if and only if it is a torsion-free part of a projective A-module;
(ii) X is Ext-injective in D if and only if τ−1(X) ∈ C.

For a full subcategory E of mod-A, we define the annihilator of E to be the ideal annE of A by

annE = {a ∈ A | Ea = 0 for any E ∈ E}.

Let (C,D) be a torsion pair for mod-A and B the factor algebra A/annC of A by annC. Then it is easy
to see that any A-module in C is in a natural way a B-module and the torsion part of DA is isomorphic
to DB as a right B-module (cf. [S]).

We recall a (classical) tilting module. For any X ∈ mod-A, we denote by δ(X) the number of non-
isomorphic indecomposable direct summands of X . An A-module T is called a tilting module if it satisfies
Ext1A(T, T ) = 0, the projective dimension of T is at most one, and δ(T ) = δ(A).

The following result plays an important role for a generating condition of silting objects.

Lemma 4.6. [S] Let (C,D) be a torsion pair for mod-A. Then the following are equivalent:

(1) A direct sum of non-isomorphic indecomposable Ext-projective modules in C is a tilting module as a
right A/annC-module;

(2) C is covariantly finite in mod-A;

Remark 4.7. (See [AH] and [H].) For any M ∈ mod-A, addM is covariantly finite in mod-A. Hence if
A is representation-finite, then the condition (2) in Lemma 4.6 automatically holds.

Now we construct a complex in Kb(proj-A) induced by a torsion pair.
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Definition 4.8. Let (C,D) be a torsion pair for mod-A. We define a complex T ∈ Kb(proj-A) as follows:
We put X as a direct sum of non-isomorphic indecomposable Ext-projective modules in C. Set U as the
(−1)-shift of a projective presentation of X and V as a direct sum of non-isomorphic indecomposable
injective modules in D. Now we define T := T(C,D) := U ⊕ ν−1V where ν−1 := HomA(DA,−).

We have the following result.

Lemma 4.9. Let (C,D) be a torsion pair for mod-A. Then T := T(C,D) is a pre-silting object.

Proof. We use the notation as in Definition 4.8. We only have to show HomT (T, T [1]) = 0. By Lemma
4.5, we have H0(νT ) ≃ τ(X)⊕ V ∈ D. Hence we obtain

HomT (T, T [1]) ≃ DHomKb(mod-A)(T [1], νT )

≃ DHomA(H
1(T ), H0(νT ))

≃ DHomA(X, τ(X)⊕ V )

= 0.

Thus the assertion holds. �

We now state the main result of this section.

Theorem 4.10. Let (C,D) be a torsion pair for mod-A. If C is covariantly finite in mod-A, then
T := T(C,D) is a silting object. In particular if C ⊇ νC, then T is a tilting object.

Proof. Let X, V be as in Definition 4.8. We can check A ∈ T ≤0
T and T ∈ T ≤1

A easily. By Lemma 4.9
and Lemma 2.15, T is a partial silting object. Since C is covariantly finite in mod-A, X is a tilting
A/annC-module by Lemma 4.6. Hence δ(X) is equal to the number of non-isomorphic indecomposable
direct summands of a torsion part of DA, and it is equal to the number of non-isomorphic injective
indecomposable modules which does not belong to D. This implies δ(A) = δ(X) + δ(V ) = δ(T ). By [AI,
Corollary 2.27], T must be a silting object.

Assume C ⊇ νC. Then we also have D ⊇ ν−1D. Since D ⊇ ν−1D and τ(X) ∈ D by Lemma 4.5, we
have ν−1V ∈ D and Ω2(X) ≃ ν−1τ(X) ∈ D. Hence we obtain

HomT (T, T [−1]) ≃ HomA(H
1(T ), H0(T ))

≃ HomA(X,Ω2(X)⊕ ν−1V )

= 0.

Thus the second assertion holds. �

5. Silting transitivity for representation-finite symmetric algebras

We show the silting transitivity for representation-finite symmetric algebras. In this case any silting
mutation is always tilting mutation, since any silting object is tilting (e.g. [AI, Example 2.8]). The
assumption to be a symmetric algebra but not only a self-injective one plays a role finally.

In this section let A be a finite dimensional algebra over a field and T := Kb(proj-A).
For any non-zero complex X ∈ T with X i = 0 unless a ≤ i ≤ b, we denote by length(X) = b − a+ 1

the length of X . When A is a self-injective algebra, the length of a complex is useful to understand a
partial order on silt T as follows.

Proposition 5.1. Let T ∈ silt T , P ∈ tilt T and ℓ ≥ 0. Assume that A is a self-injective algebra. Then
the following are equivalent:

(1) P [−ℓ] ≥ T ≥ P ;
(2) HomKb(proj-A)(P, T [i]) = 0 unless 0 ≤ i ≤ ℓ.

In particular, the following are equivalent:

(1) length(T ) ≤ ℓ+ 1;
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(2) There exists an integer n such that A[−ℓ+ n] ≥ T ≥ A[n].

Proof. The implications follow from Theorem 3.5. �

The aim of this section is to prove the following result.

Theorem 5.2. If A is a representation-finite symmetric algebra, then the action of iterated irreducible
silting mutation on silt T is transitive.

To prove Theorem 5.2, we consider the following conditions:
For any derived equivalent algebra Λ to A,

(A1) Any silting object T with Λ[−1] ≥ T ≥ Λ can be obtained from Λ[−1] and Λ by iterated
irreducible silting mutation on Kb(proj-Λ);

(A2) Let P ∈ Kb(proj-Λ) be a tilting object with Λ[−ℓ] ≥ P ≥ Λ for a positive integer ℓ > 0. Then
there exists a tilting object T ∈ Kb(proj-Λ) with Λ[−1] ≥ T ≥ Λ such that T [−ℓ+ 1] ≥ P ≥ T ;

(A3) For any silting object T ∈ Kb(proj-Λ), there exists a tilting object which can be obtained from
T by iterated irreducible silting mutation on Kb(proj-Λ).

We have the following result.

Lemma 5.3. The conditions (A1)(A2) and (A3) follow a positive answer for Question 1.1.

Proof. By (A3), we shall show that any tilting object can be obtained from A by iterated silting mutation
on Kb(proj-A). Let P ∈ Kb(proj-A) be a tilting object. Note that all shifts of A can be obtained from
A by (A1). Therefore we can assume A[−ℓ] ≥ P ≥ A for some ℓ > 0. Let T ∈ Kb(proj-A) be
a tilting object as in (A2). Put B = EndKb(proj-A)(T ) and an equivalence of triangulated categories

F : Kb(proj-A)
∼
−→ Kb(proj-B) which sends T to B. By (A2), we have B[−ℓ + 1] ≥ F (P ) ≥ B. This

implies that P can be obtained from A by the induction on ℓ and (A1). �

In the rest of this section we assume that A is a self-injective algebra.
Let us start with an observation of satisfying the condition (A1).

Lemma 5.4. The condition (A1) holds if A is representation-finite.

Proof. Note first that every complex of length 2 in T is a shift of a projective presentation of an A-module
up to projective direct summand. Since A is representation-finite, there exist only finitely many basic
silting objects T ∈ T satisfying A[−1] ≥ T ≥ A by Proposition 5.1. Thus the assertion follows from
Theorem 2.12. �

Next we show satisfying the condition (A2).

Lemma 5.5. The condition (A2) holds if A is representation-finite.

To prove Lemma 5.5, we need the following important result.

Lemma 5.6. Let P ∈ T be a pre-silting object with Hi(P ) = 0 unless 0 ≤ i ≤ ℓ for some ℓ > 0. If
⊥H0(νP ) is covariantly finite in mod-A, there exists T ∈ silt T with A[−1] ≥ T ≥ A satisfying T ∈ T ≤0

P

and P ∈ T ≤ℓ−1
T . In particular if addP = addνP , then T is a tilting object.

Proof. Set X := H0(νP ), C := ⊥X and D := C⊥. By Lemma 4.3, the pair (C,D) is a torsion pair for
mod-A. Since C is covariantly finite in mod-A, T := T(C,D) is a silting object by Theorem 4.10.

(i) We show T ∈ T ≤0
P . It is enough to prove HomT (P, T [1]) = 0. Since we have H1(T ) ∈ C, we obtain

HomT (P, T [1]) ≃ DHomT (T [1], νP )

≃ DHomT (H
1(T ), X)

= 0.

(ii) We show P ∈ T ≤ℓ−1
T . We only have to prove HomT (T, P [ℓ]) = 0. Since we have

HomA(H
ℓ(P ), X) ≃ HomT (P [ℓ], νP ) ≃ DHomT (P, P [ℓ]) = 0,
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we have Hℓ(P ) ∈ C. Since H0(νT ) ∈ D by Lemma 4.5, we obtain

HomT (T, P [ℓ]) ≃ DHomT (P [ℓ], νT )

≃ DHomA(H
ℓ(P ), H0(νT ))

= 0.

Thus the first assertion holds. Since A is self-injective, ν and ν−1 commute with H0. This implies the
second assertion by Theorem 4.10. �

Now we are ready to prove Lemma 5.5.
Let P be a tilting object with A[−ℓ] ≥ P ≥ A for some ℓ > 0. Take a torsion pair (C,D) as in the

proof of Lemma 5.6. By Theorem 3.5, one has P ≃ νP . Since C is covariantly finite by Remark 4.7, we
can get a tilting object T with A[−1] ≥ T ≥ A and T [−ℓ+ 1] ≥ P ≥ T by Lemma 5.6. �

Now we are ready to prove Theorem 5.2.
We have (A1) by Lemma 5.4, (A2) by Lemma 5.5. Since A is symmetric, any silting object is tilting

by [AI, Example 2.8]. This immediately implies (A3). Thus the assertion follows from Lemma 5.3. �
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