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FAST TRANSPORT ASYMPTOTICS FOR STOCHASTIC RDES
WITH BOUNDARY NOISE

By SANDRA CERRAI' AND MARK FREIDLINZ
University of Maryland

We consider a class of stochastic reaction-diffusion equations also
having a stochastic perturbation on the boundary and we show that
when the diffusion rate is much larger than the rate of reaction, it is
possible to replace the SPDE by a suitable one-dimensional stochastic
differential equation. This replacement is possible under the assump-
tion of spectral gap for the diffusion and is a result of averaging in
the fast spatial transport. We also study the fluctuations around the
averaged motion.

1. Introduction. In classical chemical kinetics, the evolution of concen-
trations of various components in a reaction is described by ordinary dif-
ferential equations. Such a description turns out to be unsatisfactory in a
number of applications, especially in biology (see [12]).

There are several ways to construct a more adequate mathematical model.
If the reaction is fast enough, one should take into account that the con-
centration is not constant in space in the volume where the reaction takes
place. Then, the change of concentration due to spatial transport should be
taken into account and the system of ODEs should be replaced by a system
of PDEs of reaction-diffusion type. In some cases, one should also take into
account random changes in time of the rates of reaction. Then, the ODE is
replaced by a stochastic differential equation. If the rates change randomly
not just in time but also in space, then evolution of concentrations can be
described by a system of SPDEs.

On the other hand, the rates of chemical reactions in the system and the
diffusion coefficients may, and as a rule do, have different orders. Some of
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2 S. CERRAI AND M. FREIDLIN

them are much smaller than others and this allows one to apply various
versions of the averaging principle and other asymptotic methods, thereby
eventually obtaining a relatively simple description of the system.

In this paper, we study the case where the diffusion rate is much larger
than the rate of reaction and we show that in this case, it is possible to
replace SPDEs of reaction-diffusion type by suitable SDEs. Such an approx-
imation is valid, in particular, if the reaction occurs only on the boundary
of the domain (this means that the nonlinearity is included in the bound-
ary conditions). This replacement is a result of averaging in the fast spatial
transport. We would like to stress that our approach allows us also to cal-
culate the main terms of deviations of the solution of the original problem
from the simplified model. Notice, moreover, that the case where the dif-
fusion coefficients and some of the reaction rates are large compared with
other rates can be considered in a similar way.

More precisely, we are dealing with the following class of equations:

Qe (4 3y = éAua(t,x) + f(t, 7, ue(t, )

ot
+g(t (t ))M(t ) t>0,zeD
(11) g 7$7UEB7:E at y L), Z U, T 9
1 Ju, ow
- _= = - >
=5 (t,z)=o0(t,x) 5 (t,x), t>0,x€0D,
ue (0, ) = up (), reD,

for some 0 < ¢ < 1. These are reaction-diffusion equations perturbed by a
noise of multiplicative type, where the diffusion term A is multiplied by a
large parameter e ! and a noisy perturbation is also acting on the boundary
of the domain D.

Here, D is a bounded open subset of R%, with d > 1, having a regular
boundary (for more details, see Section 2) and, in the case d =1, we take
D = [a,b]. A is a uniformly elliptic second order operator and d/0v is the
corresponding conormal derivative. This is why the same constant ¢!, which
is in front of the operator A, is also present in front of the conormal derivative
0/0v. In what follows, we shall denote by A the realization in L?(D) of the
differential operator A, endowed with the conormal boundary condition.

The coefficients f,g:[0,00) x D x R — R are assumed to be measurable
and satisfy a Lipschitz condition with respect to the third variable, uniformly
with respect to the first two variables, and the mapping o:[0,00) x 0D — R
is bounded with respect to the space variable.

The noisy perturbations are given by two independent cylindrical Wiener
processes, w? and w?, defined on the same stochastic basis (Q,F, F;,P),
which take values on L?(D) and L?(9D), respectively, and have covariance
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operators Q € LT (L?(D)) and B € LT (L?(0D)), respectively.? In space di-
mension d =1, we can take @) equal to the identity operator so that we can
deal with space-time white noise. Moreover, as L?({a,b}) = R?, in space
dimension d =1, we do not assume any condition on B.

Stochastic partial differential equations with a noisy term also acting on
the boundary have been studied by several authors; see, for example, da
Prato and Zabczyk [3], Freidlin and Wentzell [6] and Sowers [10]. The last
two mentioned papers also deal with some limiting results with respect to
small parameters appearing in front of the noise. However, the limiting re-
sults which we are studying in the present paper seem to be completely new
and we are not aware of any previous results dealing with the same sort of
multiscaling problem, even in the simpler case of homogeneous boundary
conditions (i.e., 0 =0).

As mentioned above, our interest is in studying the limiting behavior of
the solution u. of problem (1.1) as the parameter € goes to zero, under the
assumption that the diffusion X; associated with the operator A, endowed
with the conormal boundary condition [this corresponds to a diffusion X
on some probability space (Q, F , .7:},,1@’) which reflect on the boundary of D],
admits a unique invariant measure p and a spectral gap occurs. That is, for
any h € L*(D, ),

2

/j)‘ﬁxh(Xt)—/jjh(y)u(dy)

p(de) < et /D ()2 (dy)

for some constant « > 0. This can be expressed in terms of the semigroup
!4 associated with the diffusion X, by saying that

(1.2) Scef’yt‘mLz(Dﬂu).
L*(D,p)

etAh—/Dh(x),u(dx)

Moreover, as shown in Remark 2.1, the space L?(D) is continuously embed-
ded into L?(D, ).

Our aim is to prove that equation (1.1) can be replaced by a suitable one-
dimensional stochastic differential equation, whose coefficients are obtained
by averaging the coefficients and the noises in (1.1) with respect to the
invariant measure . More precisely, for any h € L?(D, i), we define

F(t,h):/Df(t,x,h(x))u(dx), t>0,

2Here, and in what follows, given any Banach space E, we denote by £(E) the Banach
space of bounded linear operators on E and by £¥(E) the subspace of nonnegative and
symmetric operators.



4 S. CERRAI AND M. FREIDLIN

and for any h € L?(D, ), z € L*(D) and k € L?(0D), we define

~

Gt h)z = /D ot h(@)2(@)pldz), >0,
and
1)k = 0 /D Ny [o(t, K (@)p(dz), ¢ >0,

where Nj, is the Neumann map associated with A and dy is a suitable
constant (see Section 2, [8] and [9] for definitions). We prove that for any
t >0, the mappings F(t,-): L>(D, ) — R and G(t,-): L*(D, ) — L*(D) are
both well defined and Lipschitz continuous, and 3(¢) € L%(0D), so that the
stochastic ordinary differential equation

dv(t) = F(t,0(t)) dt + G(t,v(t)) dw®(t) + 2(t) dw® (1),
o0) = [ wla)u(da),

admits, for any 7' > 0 and p > 1, a unique strong solution u € LP(2; C([0,77))
which is adapted to the filtration of the noises w® and w?. Notice that (1.3)
is a one-dimensional stochastic equation, in the sense that the space variables
have disappeared. In Section 4, we show that it can be rewritten as

dv(t) = F(t,v(t)) dt + ®(t,v(t)) dB,

where (; is a standard Brownian motion and the diffusion coefficient & is
explicitly given in terms of @), G, B and X..

When we say that equation (1.1) can be replaced by (1.3), we mean that
the solution wu. of (1.1) can be approximated by the solution v of (1.3) in
the following sense:

(1.3)

p

(1.4) limE sup =0

=0 te5,1)
for any fixed 0 <d <T and p>1/2.
In order to prove (1.4), we first have to prove that for any fixed € > 0, equa-
tion (1.1) admits a unique adapted mild solution in LP(2,C([0,T]; L*(D))),
that is, there exists a unique adapted process u. such that

/ e (t,2) — v(t) P p(da)
D

t t
us(t) = e/5ug + / et R (5 u.(s)) ds + / =AY G (s, ue(s)) dw?(s)
0 0

+ wil,B(t)a

where w? p(t) is the boundary term (the stochastic boundary convolution)

Wit =G0 4) [ DAL N (s duP ()], 120
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(here, and in what follows, F' and G denote the composition/multiplication
operators associated with f and g, resp.). In particular, we have to show
that the above term is well defined in LP(, C([0,T]; L?(D))). Concerning
the notion of mild solutions and existence and uniqueness results for SPDEs
like (1.1), with fixed € > 0, we refer to Da Prato and Zabczyk [3]. How-
ever, we would like to stress that in the present paper, we are not imposing
the Hilbert—Schmidt condition on the covariance operators ¢ and B, and
this makes the treatment of the stochastic convolution and of the stochastic
boundary convolution more complicated, in view also of the a priori esti-
mates with respect to € > 0.

Actually, once we have a unique adapted mild solution u. for (1.1), we
prove an a priori estimate of the following type:

sup Efue(t)[¢ g0, 2oy < erp(1+ [wole(p))-
e€(0,1]
Due to (1.2), this allows us to proceed to the proof of (1.4).
After we have proven (1.4), in the final section, we study the fluctuations
of u. from v. Namely, we introduce the random field

ue (t, ) —v(t)
\/E )
and show that, under the assumption that the noisy perturbation in (1.1)

is of additive type (i.e., the diffusion coefficient ¢ is independent of u), for
any t > 0,

ze(t, ) = (t,x) €[0,+00) x D,

z(t) =~ Io(t)  in L*(D,p),e 0,

where Iy(t, ) is the Gaussian random field taking values in L?(D, i) for any
t > 0, defined by

Iy(t,x) := /OOO(eSAG(t) dw® (s, x) — (@(t),de(s»p(D))

+ /OOO((% — A)e™ N5y [Z(t) dw® (s)] (@) — (S(t), dw” () r2om) ).

The random field Iy(t, z) is well defined in L?(D, i) because of the spectral
gap inequality (1.2) and, in the case where the coefficients g and o do not
depend on ¢, Iy(t,z) also does not depend on t so that the weak limit of
ze(t,x) as € | 0 depends only on the space variable x and is constant in time
for any ¢ > 0.

2. Notation and assumptions. Let D be a bounded domain in R?, with
d > 1, satisfying the extension and exterior cone properties, and let v be the
outward normal at dD. We assume that 0D is a C'°° manifold and D is
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locally only on one side of dD. In the case d =1, D is a bounded interval
(a,b).

We define H := L?(D) and Z := L?(0D) and, for any o >0, we define
H®:= H*(D) and Z%:= H%(9D) (in particular, H’ = H and Z° = 7).

We assume that A is a second order differential operator,

) 9 d 9
A=Y a_:Ci(aij(x)a—;j) +) bi(x) &i,
=1

1,j=1

satisfying the uniform ellipticity condition

d

d
; » > 2 d
;ng ' azg(x)fﬁjfaozgw £ eRY,
1,7=1 =1
for some ag > 0. The coefficients a;; and b; are assumed to be smooth [for
simplicity, we take them to be in C°°(D)]. In what follows, we shall denote
by A the realization in H of the operator A, endowed with the boundary

condition
oh

(2.1) s

() = (a(z)v(x),Vh(x))ga =0, x € 0D.
Namely,

{Ah:Ah, he D(A),
D(A) ={h € H*(D);{a(x)v(z), Vh(z))ga = 0,2 € OD}.

As is well known, the operator A generates an analytic semigroup {e'4};>0
in H which is also strongly continuous. Moreover,

D(A%)=D((A")*) C H*,  a>0,
and
2
(2.2) D(A*)=H*, 0<a<?3

(for proofs, see [11] and [8], resp.).

If, for any 1 < p < oo, we denote by A, the realization in LP(D) of the
operator A, endowed with the boundary condition (2.1), it can be proven
that A, generates a strongly continuous analytic semigroup e in LP(D).
Notice that all of these semigroups are consistent, so, in what follows, we
shall denote them all by e*4.

As proved in, for example, [5], Theorem 2.4.4, since A is uniformly elliptic
and the domain D has the extension property, the semigroup e'4 admits an
integral kernel ki(z,y). Due to the boundary condition, the kernel satisfies

(2.3) 0<ki(z,y) <c(t¥2+1), t>0,
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for some constant ¢ > 0, almost everywhere in D x D.

As a consequence of our assumptions on A and D, it is possible to prove
that there exists some §y € R such that for any § > dg and h € Z, the elliptic
boundary value problem

{ (6 — A)v(x) =0, zeD,

(2.4) (a(x)v(z), Vo(x))ga = h(z), €D,

admits a unique weak solution v € H, which we will denote by Ngh. The
application Nj:Z — H is known as the Neumann map associated with the
operator A. It is well known that Ns maps Z into H as a bounded linear
mapping. Moreover, according to elliptic theory for domains with smooth
boundaries (for a proof, see [9], Theorem 7.4 of Volume I), we have

(2.5) N5 e L(Z% H3/%) a>0.
In what follows, we shall assume that e’ has the following long-time

behavior.

HypPOTHESIS 1. The semigroup e, t >0, admits a unique invariant
measure p and there exists some v >0 such that, for any h € L*(D, p),
(2.6)

Sce_“’t\hhg(p,u), tZO
L2(D,p)

. /D h(y)u(dy)

In what follows, we shall set H, := L?(D, u) and

(o) i= [ hautda).

REMARK 2.1.

1. If A is a divergence-type operator, that is, b; =0 for any i =1,...,d, then
the operator A is self-adjoint in H. This implies that it is possible to fix
a complete orthonormal system {ey };>0 in H and an increasing sequence
of nonnegative real numbers {ay};>0 such that

Aej. = —ayeyp, keN.

Let eg be the constant eigenfunction corresponding to the ag =0 eigen-
value and let oy be the first positive eigenvalue. It is immediate to check
that

(2.7) p(dz) = el dx = |D| ' dx
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and, in particular, that H = H,,, with equivalence of norms. Moreover, as
for any x € H, we have

oo

etAJ: - (.’E, H> = Z eitai (.’E, ei>H€i
i=1

and a1 < «; for any ¢ > 1, it is immediate to check that
(0.]
e e — (w, )|y, = DI e (w, e G < e Pzl
i=1

so the constant « in (2.6) coincides with .
2. If A is self-adjoint, as above, for any § >0 and k € N it holds that

* —
(28) N(S € = 5+ak €k‘aD.

Actually, for any h € Z, we have

(Nsh,ex)n = 5+10¢k /Dsth(ﬂf)((SJrak)ek(fU)dl“

1
O+ ay,

/ Nsh()(6 — A)en(z) da.
D

Now, if we assume that h € Z'/2, according to (2.5), we have that Nsh €
H? and then, due to the Gauss—Green formula and to (2.4), we obtain

/D Nsh(z)Aex(x)dr = — /BD h(o)ex(o)do + /D ANsh(x)ex(x) dx.

This implies that

1
N - _ AN,
(Nsh, e 5+ak/D(5 ANsh(z)en (@) do + 5 /aDh(a)ek(U)da

1

= 5o Hon) 7
so that
N 1
(h, N5er)z = mwvek\wh-

As Z'/? is dense in Z, we can conclude that (2.8) holds.
3. As

eh(z) = /D k(e.w)h(y)dy,  xeD,

and €41 =1, we have

(@) < b)),  weD.
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Due to the invariance of j, this implies that for any h € H,,

/ HAh (@) 2 u(de) < / A1 (2)u(de) = / Ih(z) Pu(da),
D D D
so et acts on H . as a contraction, that is,

(2.9) ||etA\|L(HH) <1, t>0.

4. We have that H is continuously embedded into H,,. Actually, due to the
invariance of p and to the kernel representation of ', for any h € H, we
have

X 2 €r) — €1A 2 X €r) — X 2 XT).
/D|h< ) 2u(de) /D Ih[2 (@) () /D/Dm )|h(y) 2 dyp(dz)

Then, thanks to (2.3), we have

iy, = [ In@)Patde) < [ Ihio)Pdy = b
D D
5. As a matter of fact, there exists a nonnegative function m € L>(D) such
that
w(dz) =m(x)dz, rzeD.

Actually, let ¢,v € C?(D), with ¢ fulfilling the boundary condition (2.1).
Integrating by parts, we obtain

(Wb, AQ) 11 = (A, Qg7 — / (av, Vi) pap do + / (b,v)gat) do,
oD oD
where

wp— O (. O\  div
A Q/)_E?acj (aw a$i> (b, V))ga — div bi).

Hence, the operator A*, endowed with the boundary condition

(210)  (a(z)v(z), Vi (2))ga — (b(2), v(2))Rat(x) =0, 2 €D,
is the formal adjoint of the operator A, endowed with the boundary
condition (2.1).
Now, the function v =1 is a nonzero solution of the problem
Au(z) =0, x €D,
(a(x)v(z), Vu(z))pe = 0, x € 0D.
Then, by the Fredholm alternative, there exists a nonzero weak solution
o € H' to the adjoint problem

{ A*p(x) =0, r €D,
(a(z)v(z), Vo(2))ra — (b(2),v(2))pap(z) =0, 2z €dD.
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By elliptic regularity results (cf. [7], Chapter 3), as the boundary of D
and the coefficients of A (and hence of A*) are of class C*°, we have that
 is a classical solution to the adjoint problem. Hence, if A* is the adjoint
of Ain H, for any A sufficiently large, we have

- 1
(A —A*) o= N4

and by taking the inverse Laplace transform, we obtain e!4" ¢ = ¢ for any
t>0.

Now, due to the positivity of the semigroup e*4 (and hence of the
semigroup etA*) and to the fact that e’ is conservative, we have that the
set

A={peH:ep=0pt>0}
is a lattice, that is, |p| € A for any ¢ € A. Therefore, if we set

m(z) = ()|
Iple)ldy’

we have that e'4"m =m for any ¢ > 0 and hence m(x)dz is a probability
measure and is invariant for e*4. As y is the unique invariant measure
for ¢4, we are done.

reD,

Concerning the coefficients f, g and o we assume the following conditions.

HYPOTHESIS 2.

The mappings f,g:]0,00) x D x R — R are measurable and the mappings
flt,x,-),g(t,z,-) : R — R are Lipschitz continuous, uniformly with respect
to (t,x) €[0,T] x D, for any T > 0. Namely, for any {,n € R

sup  |f(t,z,8) — f(t,x,m)| < Lt g€ —nl,
(t,z)€[0,T]x D

sup  |g(t,z,8) —g(t,z,n)| < Lrg|l§ —nl.
(t,z)€[0,T]x D

The mapping o :[0,00) x 0D — R is measurable and for any T >0,

sup |o(t, )|z~ @p) = €10 < 0.
te[0,7

In what follows, for any ¢t > 0 and hy, he € H, we shall define
F(t,hy)(x) := f(t,z, hi(x)), zeD,
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and
[G(t, h1)ho](z) := g(t,x, hi(x))he(x), xeD.

Due to Hypothesis 2, we have that F(t,-): H — H, G(t,-): H — L(H,L*(D))
and G(t,-): H — L(L*(D), H) are all Lipschitz continuous, uniformly with
respect to t € [0,7], for any T" > 0.

Notice that the same is true for the mappings F'(t,-): H, — H,, G(t,-): H, —
L(H,,L"(D,pn)) and G(t,-): H,, — L(L>=(D;pn), H,,).

Analogously, if, for any ¢ >0 and z € Z, we set

[(X(t)z](z) :=o(t,x)z(x), x € 0D,
then we have that () is a bounded linear operator on Z and for any 7" > 0,
(2.11) IE®lez) <ere,  t€[0,T]

Finally, concerning the noisy perturbations w®(t) and w?(t), we assume
that they are two independent cylindrical Wiener processes defined on the
same stochastic basis (€2, F, F;,P), taking values in H and Z, respectively,
with respective covariance operators Q € LT (H) and B € LT (Z). Namely,

we) =D Menbi(t),  wP(t) = Opfibr(b),

keN keN

where {eg}ren is the orthonormal basis of H which diagonalizes @, with
eigenvalues {Ag}ren, {fr}ren is the orthonormal basis of Z which diag-
onalizes B, with eigenvalues {0y }ren, and {fktren and {Bk}k;eN are two
sequences of independent standard Brownian motions, both defined on the
stochastic basis (Q,F, F;, P). Notice that the two sequences above are not
convergent in H and Z, but in any Hilbert spaces U and V which contain
H and Z, respectively, with Hilbert-Schmidt embedding. Moreover, in the
case d =1, we have Z =R? and hence

w?(t) = ©p(),

where © = diag(0;,62) and B(t) = (B1(t), B2(t)) is a two-dimensional stan-
dard Brownian motion.

In what follows, we shall assume the following summability conditions on
the eigenvalues A\ and 0y and the sup-norm of the corresponding eigenfunc-
tions.

HYPOTHESIS 3.
1. If d > 2, then there exists p < 2d/(d —2) such that

(2.12) Z)\Z\ek\go =: kg < 00.
keN
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2. If d>2, then there exists f < 2d/(d — 1) such that

(2.13) Z 95 =:Kkp < 00.
keN

REMARK 2.2.

1. From the proofs of Lemmas 3.3, 4.3 and 5.4, it is possible to see that if
the mapping ¢:[0,7] x D x R — R is uniformly bounded for any 7' > 0,
then we do not need to require that the sequence {ej }ren is contained in
L>(D) and condition (2.12) can be replaced by

Z A < 00,
keN
2. Asboth d/(d—2) and d/(d—1) are strictly greater than 1, neither ¢) nor
B are required to be Hilbert—Schmidt operators in general. Moreover, in
space dimension d =1, we have no conditions on the eigenvalues {\x}
and we can take ) = I. This means that we can deal with space-time
white noise.

3. A priori bounds for the solution of (1.1). In this section, we are con-
cerned with uniform bounds for the pth moments of the C([0,7; H)-norm
of the mild solution wu. of (1.1).

We first recall some general facts about the linear parabolic equation with
nonhomogeneous boundary conditions

% 1,2)= Ay(t,), 1> 00D,
(3.1) (a(2)v(x), Vy(t, 2))ga = v(t,z), 20,2 €D,
y(O,x):yo(:L‘), -TEDv

where v is a Z-valued function. If v(-) is twice continuously differentiable
and there exists 6y > 0 such that yo — Nsv(0) € D(A) for § > dp, then the
solution of problem (3.1) is given by

t

(3.2) y(t) = ey + (6 — A)/ eU=DANu(s) ds
0

(for a proof, see, e.g., [4], Proposition 13.2.1).

Such a formula can be extended by continuity to less regular functions v.
In particular, for each € > 0, we can consider the problem

oy 1
a(t,x)—EAy(t,x), t>0,z€D,
B
B3 a(a)w(@), Tyt ) = co(t.) 22 (t.2),  t> 0.0 €D,

ot
y(0,z) =0, rz €D,
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where w? is the cylindrical Wiener process defined in Z, introduced in Sec-
tion 2. In analogy to formula (3.2), by taking § = &y/c and v(t) = eX(t) dw® /ot,
we say that for any € € (0,1], the process

t
Win(t)= (8~ 4) [ VN S du(5), e,
0

is a mild solution to problem (3.3). The process w p(t) can be interpreted
as a boundary Ornstein—Uhlenbeck process and can be written as the infinite
series

t ~
Wi p(t) = 3 (6 — A) / AN (S()B il dBi(s), ¢ 0.
keN 0

As proved in the next lemma, such a series is well defined in LP(€2; C([0,7]; H))
for any T'> 0 and p > 1. Moreover, a uniform estimate with respect to
e € (0,1] holds.

LEMMA 3.1.  Under part 2 of Hypothesis 3, the process wi&,B belongs to
LP(Q;C(]0,T); H)) for any T >0, p>1 and € € (0,1], and

(34) ce(0.1] Elwl, sl(or1;m = e < 00-

PROOF. As a consequence of the stochastic Fubini theorem and of the
elementary identity

/Ut(t )0l (s— o) ds =

- , 0<o<t,aec(0,1),
sinTa

we have the factorization formula
. t
S
Wy (t) = 1n7T7Ta / (t— S)aqe(t—s)A/sYE,a(S) ds,
0

where
S
Yeals) = / (5 =)~ "(d0 — A)e* VNG, [S(r) dw® (r)]
0
(for a proof, see [2]). By the Holder inequality, this implies that for any
a>1/p,

E sup |wh 5(t)[y
t€[0,T)]

T
<erpa / E|Y: os)[% ds
(3.5) 0
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T s
< cT,p,a/ (/ (s — r)—2a
0 0

p/2
S BRI — AN () Al ) s
keN

the last inequality following from the Burkholder-Davis—Gundy inequality.
Now, assume that d > 1 (the case d =1 is simpler). According to (2.13),
we have

> 071(60 — A)el NG [S(r) fil 5
keN
2/B (s—r)A/e 2 1/
(3.6) <wg (D I Nio[S(r) fell1y
keN
x sup| (dg — A)el* A/ Ny, [5(r) fil [V,
keN
where ¢ := /(5 — 2). Thanks to (2.2) and (2.5), for any p > 0, we have
(3.7) S, = (8o — A)BP/ANs € £L(Z,H).

Hence, for any e >0 and 0 <r < s<T, due to (2.11), we have

> 180 — A)e A= NG () ful I

keN
— Z‘e(sfr)/m/s((go _ A)(1+p)/4e(sfr)/2A/6Spg(r)fk|§{
keN
(38) =D > [(fesB(r)S}[(00 — A)IFP ARl 2y ) 2
keNheN
— Z‘E(T)S;[((so _ A)(1+p)/4e(s—r)/2A/5]*e(s—r)/QA*/aeh|2Z
heN

e\ (HHe)/2 (s—r)/24% e 12
son|(555) 1 D,
heN

As the semigroup e4 admits an integral kernel k;(z,y), that is,

¢ f(x) = / k(z,y)f(y)dy, weD,
D
we have

M h(y) = /D ki(x,y)h(x) dz, yeD.
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This implies

Z|€s 7"/2A*/z-:€ ‘ Z/‘es r)/2A* /5 (y)\Qdy

heN heN

k(s r)/(2¢) (x y)eh( )dx dy

heN

—Z/‘ (s—r) (25 Y )€h>H|2dy

heN

/|k(s r) 25 Y )|de

Now, due to (2.3), for any ¢ >0 and y € D, we have

)l = [ oo < o2+ 1) [ i) do

D D

and hence
/ ke ()| dy < e(t™% + 1) / ke(z,y) dwdy = c| D| (£~ +1).
D DxD

This implies that for any € > 0,

d/2
Z‘e(sT)/ZA*/E€h|§{<C|D‘|:<SiT> —1—1},

heN
so, thanks to (3.8), we have

1/¢
(1660~ A1l e e 2l

keN

o\ ([@1+0)/(20)
< cT,p[( ) " 1}

sS—T

(3.9)

(3.10)

Next, by proceeding as in (3.8), we have
Sup‘((S() _ A)e(sfr)A/sNao [Z(’I”)fk] %C—l)/C

keN
(14+p)(¢=1)/(2¢)
<0Tp[<s_r) +1}

Therefore, thanks to (3.5), (3.6), (3.10) and (3.11), we can conclude that for
any ¢ € (0,1],

T p/2
E sup |wh gt <crpap </ [s~ Qo (d+Q/(20+p/2) 4 q] ds> )
t€[0,T] 0

(3.11)
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Now, as in Hypothesis 3, we are assuming that 5 < 2d/(d—1), so we have
(d+¢)/2¢ < 1. This means that we can fix @ > 0 and p > 0 such that

A+ ¢ p
2 — 4+ =<1
a+ % —1-2

and then, for any p > p:=1/a we obtain

sup E sup |w (1)} < crp.
e€(0,1]  t€l0,71)

The estimate for general p > 1 follows from the Hélder inequality. [
Next, we pass to (1.1).

DEFINITION 3.2. Let 7' >0 and p > 1. An adapted process u. € LP(€; C(]0,
T); H)) is a mild solution of (1.1) if, for any ¢ € [0, 77,

t
us(t) = e/ug + / eI (s, u.(s)) ds +w g (ue)(t) + wiy p(t),
0

where, for any uw € LP(Q;C([0,T]; H)), we define

w o(u)(t) == / te(t_S)A/aG(s u(s)) dw® (s) t>0
A,Q . 0 s s > U.

As is well known, wiQ(u) is the unique mild solution of the problem

1 Q
W t,2) = T Ay(t,2) + glt,wult2) o (t.2), 1200 D,
B12) 3 (a(@)v(@), Vy(t, 2))ga =0, £>0,0 €D,
y(o7x):07 $€D7

where w? is the cylindrical Wiener process with values in H, introduced in
Section 2.
As for wf p, we show that w? ¢ satisfies a bound in LP(Q;C([0,77]; H))

which is uniform with respect to € € (0, 1].

LEMMA 3.3. Assume Hypothesis 2 and part 1 of Hypothesis 3. Then,
w§ o is Lipschitz continuous from LP(Q;C(]0,T7; H)) into itself for any T >
0 and p>1, and

T
(3.13) Ez&pl] E|w27Q(u)|g([O’T];H) <cryp <1 + E/O lu(s)|%, ds).

PROOF. The proof of the Lipschitz continuity of w$ 5 in LP(; C([0,T7;
H)) is classical and can be found in, for example, [1]. Concerning estimate
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(3.13), as in the proof of Lemma 3.1, we use a factorization argument and,
for any a > 1/p, we get

E sup |wh o(t)ly

t€[0,T]

<erpat [ ([t r) ROl o

keN

According to (2.12), if we set ¢ := p/(p — 2), then we have
> ATV u(n)er]ly

(3.14)

keN

1/¢
< (S VGl

keN

x sup|eC A (G (r u(r))eg] R eg| 2P

keN

As in the proof of (3.9), we have

keN

Z|€(S_T)A/€ [G(T7 U(T))ek”?{ - /D‘k(s—r)/a (a:, -)g(T‘, ) u(T))ﬁ{ dx.

Now, thanks to (2.3), for any ¢t >0, x € D and h € H, we have

a2y = /D (2, 9)h () 2 dy

(3.15)

<c(t™? 4 1)/

D

ki(z,y)h* (y) dy

= c(t™ % £ 1)e R (x)

p/2

ds.

and this is meaningful since €' is well defined in L'(D). In particular, for

any € > 0,

> eI G ulr))er] |
d/2 .
> +1
g2 -
> +1

a2
> +1

keN

<c

(
(

(

€

sS—7T

€

sS—7T

€

sS—7r

g(r, -,u(’r)) H

/ e(s*’”)A/EQQ (ryu(r))(z) dz
D

e(S,T)A/EQZ(n . u(?”))\Ll(D)

2
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and, due to the linear growth of g,

(s—r)A/e 2 1
> e [G(r,u(r))ex] |

keN

(3.16) a20)
<CT[< c > —|—1}(1—|—|u(7“) 2/,

s—r

By analogous arguments, we have

(817)  suple G (r, u(r)ex] ™ el < er(L+ Jur)F )
keN

and then, thanks to (3.14), (3.16) and (3.17), we get, for any ¢ € (0, 1],

E sup |w§ o)/
t€[0,T)]

T/ ps 1\ 2e+d/(20) p/2
< cT,p,aE/ </ K ) + 1] (1+ |u(r)\%1)dr> ds.
0 0 S—7T

As we are assuming p < 2d/(d—2), we can find & > 0 such that 2a+d/(2¢) <
1. Due to the Young inequality, this implies (3.13) for all p > p=1/a and
hence for all p>1. 0O

According to Lemmas 3.1 and 3.3, we have the following result.

THEOREM 3.4. Under Hypotheses 1, 2 and 3, for any T’ >0 and p>1,
and for any ug € H and € >0, equation (1.1) admits a unique adapted mild
solution u. € LP(Q;C([0,T]; H)). Moreover,

(3.18) sup Eluc|fy o 7.0 < erp(1+ [uolr)-
e€(0,1]

PROOF. As both F(t,-): H — H and wj o: LP(;C([0,T]; H)) — LP(©;

C([0,7]; H)) are Lipschitz continuous and w$ p € LP(Q;C([0,T7; H)), we
have that the mapping ®. defined by

B (u)(£) = ' eug + / =L (5, u(s)) ds + w'y o) (£) + (1)

is Lipschitz continuous from the space of adapted processes in LP(€2; C([0,T7;
H)) into itself. Therefore, by a classical fixed point argument, equation (1.1)
admits a unique adapted mild solution u. € LP(Q,C([0,T]; H)).

Next, for any € > 0, we have

t
() < cp(\uoﬁ; st [ (o) s
0

+luf glua) O} + 501 )
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and then, according to (3.4) and (3.13), we conclude that

T
E sup |u:(t)|} <crp (1 + |uol; + / E sup |u.(r)ly ds).
t€[0,T] 0 ref0,s]

The Gronwall lemma allows us to obtain (3.18). [

4. The averaging result. In this section, we show that for any 0 < <T
and p > 1, the sequence {uc}.c(o) converges in LP(Q;C([0,7]; Hy)) to the
solution of a suitable one-dimensional stochastic differential equation. In
what follows, we first introduce the limiting equation by constructing the
coefficients and by describing a situation in which they are given by a simple
expression. In the second part of this section, we prove the convergence
result.

We start with the drift term. For each ¢ >0 and h € H, we define

(4.1) F(t,h) = (F(t,h), p) = /Df(t,:v,h(x))u(dm),

where p(dz) is the unique invariant measure associated with the semigroup

et (see Section 2 and Hypothesis 1). According to Hypothesis 2, for any
T >0 and hy,hy € H, we have
[f(t 2, hi(x)) = f(t, @, ho(2))] < Lyglha(z) = ho(2)],  (t,2) €[0,T] x D,
so that

F(t,-):H, >R

is Lipschitz continuous, uniformly with respect to t € [0,77], for any 7" > 0.
Notice that, as H C H,, this implies that F (t,-): H — R is also Lipschitz
continuous.

Next, we construct the term arising from the stochastic convolution
w5 o(u)(t). For each ¢ >0 and h € H, we introduce the linear mapping

z€Hw Y (Gt h)e, p)(z,ex)u = (G(t,h)z, ) €R.
keN
As H is continuously embedded into H,,, for any T' > 0, we have
(Gt )z ] <9, W)m, |20, < er(L+|hlm,)|zlm,  t<T.
This means that there exists G’(t, h) € H such that
(G(t,h),2)g = (G(t,h)z, ),  z€H.
Moreover, since for any hy,he € H, and T > 0,
(Gt h)z 1) — (Gt ha)z, )|
< lg(t, - hn) — gt~ ha) |, |2
<cr|lh1 — h2|g,|2|H, t<T,



20 S. CERRAI AND M. FREIDLIN

we have that the mapping G (t,-):H, — H is Lipschitz continuous, uniformly
with respect to ¢ € [0,77], for any 7" > 0.

This, in particular, implies that the mapping G’(t, -) is also Lipschitz con-
tinuous, both in H and in H,,, uniformly for ¢ € [0,7].

Finally, we construct the term arising from the boundary convolution
w$ p(t). For each fixed ¢ >0, we introduce the mapping

he Z s 8o (Nsy [S)R], 1) = o /D Ny [o(t, )h](2)p(der) € R.

As Ns, is a bounded linear operator from Z into H, X(t) is bounded and
linear in Z and H is continuously embedded in H,, such a mapping is
bounded and linear from Z into R and then, for any t > 0, there exists

~

Y(t) € Z such that for any h € Z, we have

(42)  (2(t),h)z = 80 (Nsy[S(8)h], ) =5o/DNao [o(2, )bl () p(dz).

We can now introduce the limiting equation. It is the one-dimensional
stochastic differential equation

() {9000 = FOo0) G000 0+ (0 )
v(0) = (uo, ).

As the mappings F(t,-):R — R and G(t,-):R — H are both Lipschitz con-

tinuous, uniformly with respect to t € [0,7], for any T > 0, equation (4.3)

admits a unique strong solution v € LP(Q; C([0,T];R)) for any p > 1 and

T >0, that is, there exists a unique adapted process in LP(€2; C([0,T];R))
which is adapted to the filtration {F;}:>o such that

v(t) = (ug, 1) —l—/o F(s,v(s))ds+wa,q(v)(t) +wa,nB(t),
where
t R t R
Da.(0)(t) == /0 (G, 0(), du®(s)) DA p(t) = /0 (S(s),dwB(s)) 7.

Notice that both w4 g(v)(t) and wa p(t) are F;-martingales having zero
mean. Moreover, we have

t A
(4.4) Eli4.0(0) (1) = /O EIQG(s,u(s))[3 ds

and
t

(45) Blias(®)f = [ EIBS()Eds
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In particular, as w® and w?” are independent, we have that o (v)(t) +
wa p(t) is an Fy-martingale having zero mean and covariance

t
(4.6) /0 (EIQG(s, v(s)|E + [BE(s)[%) ds

so that there exists some Brownian motion f; defined on some stochastic
basis (2, F, F;, P) such that the solution of problem (4.3) coincides in law
with the solution of the problem

{dv(t) = F(t,(t))dt + ®(t,v(t)) dp,
v(0) = (uo, 1),

where
(4.7) o(t,v) = (|QG(t,v)[3 +|BE(t)|2) .

As shown in Remark 2.1, in the case where the operator A is self-adjoint,
we have

wu(dr) = W dx

so that, due to the definition of G(t,v), we get

. 1 1
QG = prlQult 0 = 5 /D 1Qg(t, ) (@)]? da.

Concerning the boundary term, due to (2.8), we have

|B3(t) |2 Z\ (Noo [Z(0)Bfils 1)
keN
_Z \D|2 (O)Bfil, N5, 1)z
keN
_ 2 B
%‘ fk7 )>Z| ‘D|2‘ J( )‘Z

_ ‘,%' /8 lBott. o) dn

Therefore, in the self-adjoint case, we have

1 o) oan)
o(t.0) = o ([ IQate ol dos [ potemPan)

Now that we have described the candidate limit equation, we prove that
ue in fact converges to its solution.
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THEOREM 4.1. Assume Hypotheses 1, 2 and 3. Then, for any ug € H,
p>1,T>0 and 0 <1, and for any § >0, we have
0
E sup [ue(t) —v(t)ffy, < erpale+"/2)(1+ uolty, )

)

(4.8) 5/
—po/e p
+e ‘u0|Hu7
where v is the solution of the one-dimensional problem (4.3). In particular,

limE sup |uc(t) —v(t)};, =0.
=0 te[s,1) H

Proor. We have

t A A
w(t) = o(t) = (€% ug — (ug, ) + /O (F(s,us(s)) — E(s,v(s))) ds

where

R.(t) = /0 E=IA/E (s (s)) ds — /O P(s,uc(s)) ds
(4.9)
+ Wi o(ue)(t) —waqgus)(t) +wy p(t) —wa p(t).
This yields

|ue(t) — v(t) ];{u

<erp <\€tA/5uo — (o, )7,

t A~ A~
(4.10) -l—/o |F'(s,us(s)) — F(s,v(s))[Pds
t . P
4 /0 (Cs,ue(s)) — Cls,v(s))), dw®(s))

+ \Rs(tﬂ%u)-

Due to the Lipschitz continuity of E(, ):H, =R, for any 0 <t <T, we
have

s€[0,t]

E sup /08|F(r,u5(7")) — F(r,v(r)) P dr
(4.11) .

< cT,p/ Elues(r) — U(?“)‘Z;{M dr.
0
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Analogously, due to the Lipschitz continuity of G’(t,-) :H,, — H and the
Burkholder-Davis—Gundy inequality, for any 0 <t <T'| we easily obtain
s R p
E sup | [ (G0 uelr) = G v(r). du? ()
s€[0,t]1J/0

(4.12) .
< CT7p~/O Elue(r) — v(r)|1;{# dr.
Then, thanks to condition (2.6), for any 0 <t <T,
Elu.(t) - v()[f,
t
<ecryp <e‘wt/5|uo|€{ +E sup |R:(t)|% +/ Elu(s) —v(s)[% ds>
. te[0,T) * o Jo #
and, by comparison, this yields
t
(4.13) / Elue(s) —v(s)[f, ds < erp (cluolfy, +E sup |Re()]f, ).
0 a " te[0,7] a
In view of (4.10), thanks to (4.11) and (4.12), for any 0 < 6 <7, we obtain
E sup fu-(t) — o(t)f},

te[6,T

T
—ps
<ce P /E|UQ‘%#+CT,p/(; E‘UE(S)—U(S)‘%ﬂ dt
bergE sup RN,
te[0,7

Therefore, if we show that, for any 77> 0, p > 1 and 6 € (0,1),

(4.14) E SElP ] R ()], < crp0e™ > (1+ Juolfy),
tefo,7

then we can conclude that (4.8) holds. O

Due to (4.9), in order to prove (4.14) and hence complete the proof of
Theorem 4.1, we need the following three lemmas.

LEMMA 4.2. Assume Hypotheses 1, 2 and 3. Then, for any T >0 and
p>1, and for any € € (0,1], we have

te(tfs)A/E s,u:(s))ds — tAsu s))ds
/ Pls,u(s)ds = [ Flsue()d

p

E sup
te[0,7

Hy
(4.15)
< CT,p(1 + ‘u0|]]){)€p-
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PROOF. Due to Hypothesis 1, for any ¢ € [0,7], we have
et=9)A/e P (s, ug(s)) — F(S,Ua(s)”Hu
< C€77(t75)/5|F(3>ua(s))‘Hp
< ce_“’(t_s)/qF(S,Ua(S))‘H

< cpetm9)/e (1 + sgg |u5(5)\H)

This implies that, for any ¢ € (0,77,

p

te(tfs)A/E s,u:(s))ds — tAsus s
/ Pls,us(s))ds = [ Flsua()a

t p
<eryp (1 + sgl} \ua(s)ﬁ{) (/0 e V5/e ds>
s<

so that, thanks to (3.18), for any ¢ € (0, 1], we obtain

Hy

t t P
E sup / e(t_S)A/EF(S,UE(S))dS—/ F(s,us(s))ds
tejo,111Jo 0 H,
< epp(1+ |uglhy)er. O

LEMMA 4.3.  Assume Hypotheses 1, 2 and 3, and fix T >0, p>1 and
0 < 1. Then, there exists some constant crp g > 0 such that for any € € (0, 1],

(4.16) Ets[l(l)% } [y @ (ue) (t) — A, (ue) (1), < erpoe?>(1+ [uolfy).
€|0,

PROOF. As in the proofs of Lemmas 3.1 and 3.3, we use a factorization
argument. Since 41 =1, for any ¢t >0 and « > 0, we have

. t
_ s1n7ra/ (t_s)a—le(tfs)A/syEﬂ(s) ds,
0
where
Yea(s) :Z/ (s =)~ VU (r,ug (r)) du(r)
0

and, for any hi,he € H,
W(r, hi)hg := G(r,hi)hy — (G(r,h1), ha) g
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Hence, due to (2.9), ¢4 is a contraction in H,, for any t >0, and by pro-
ceeding as in the proofs of Lemmas 3.1 and 3.3, for o < 1/p, we obtain

t P
E sup wi,@(us)(t)—/ (G(s,uc(s)), dw® ()
t€[0,T] 0 H,
T s p/2
< CT,ppJE/ </ (s —?”)72012)\@6(57”14/5‘1’(?”, us(r))ekﬁ{u dr> ds.
0 0

keEN
Due to the invariance of ;1 and condition (2.6), we have
les=mA/E g () us(r))ekl g,
= |G (r uc(r))er] — (G(r,ue(r)), ex) g,
_ |e(sfr)/2A/€(€(S*T)/2A/E [G(r,us(r))ex)])
— (TG uc (1)) er]) 1)
< ce T C P (G (1) e

so that

p

E sup
te[0,7

T s
(417) < CT,p,aE/ </ (8 _ T)—Qae—w(s—r)/a
0 0

wi,@(us)(t)—/o (G(s,us(s)), dw?(s))

Hy

p/2
S Gl ) s
keN

Using the same arguments that were used in the proof of Lemma 3.3 [see
(3.16) and (3.17)], for any 0 <r <s<T, we get

" ) d/(2¢)
SOl G el <er (155) T #1| 0 el

keN

with ( =p/(p—2) if d >1 and with ( =1 if d =1. Thanks to (3.18), this
yields

sS—T

p

W o(ue) (1) - / (G5, uels)), dw(s)) g

E sup

t€[0,7] H,

T[ /o (20+d/(20)) %
<erpalt+holpe([7](5) eafeea)
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Now, according to the first condition in Hypothesis 3, we have d/2¢ <1 so
that, for any 6 < 1, we can fix & > 0 such that

d
1—2a>0, 2a+2—C<1.

Then, with a change of variable, we easily obtain

E sup

t p
Wi que)(t) —/ (G(s,u(s)), dw®(s) | < erpoe™?(1+ [uolfy)
te[0,T] 0

Hy

for any p > p:=1/a. By the Holder inequality, we obtain an analogous
estimate for any p > 1 and (4.16) then follows. [

LEMMA 4.4.  Assume Hypotheses 1, 2 and 3, and fix any T >0, p>1

and 0 < 1. Then, there ewists some constant cr,e > 0 such that for any
e€(0,1],

(4.18) E sup [wh p(t) —wap(t)f, < crpoe.
t€[0,T]

PrOOF. Notice that (6y — A)et41 = & for any t > 0. Then, as in Lemma
3.1, by factorization, we obtain

sin o

Wy p(t) — / (S(s),dw? ()7 = / (- 5)* 1e=EY, (s) ds,

s

where
Veal)i= [ (51780 — A0 () du(r),
0

and for any h € Z,

1 -
U(r)h = Ns,[X(r)h] — 5—0(2(7“), h)z.
Hence, according to (2.9), by arguing as in the proofs of Lemmas 3.1 and
3.3, for any p > 1/a, we obtain

p

E sup sz‘LB(t)_/O <§3(5)7dw3(5)>2

te[0,7)

T s
< CT,p,a/ </ (8 — fr)*Qa
0 0

Hy
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Due to the invariance of p and to condition (2.6), we have

(S0 — A)el* VW (r) firll

(80 — A)e“*”f‘/szvao [S(r) fi]
“M/2A/E Ns [S(r) fr])

— 00 (Nso [E(r) fieds 1) | 1,

_ ‘e(sfr)/ZA/s(((;O _ A)e(s
((J0 = A)eMIPAENG [S(r) fil, 1),

< ce TR (55 — A)elTI2ALE N [5(r) ful |,

This implies that
t P
B sup |uy s(t) — [ (S(6), du” ()
tejo,7)l 0 H,

T s
< CT,p,a/ </ (s _T)—2ae—7(8—r)/a
0 0

p/2
X ) " 071(80 — A)elsr2AE N % (r)fk]ﬁ{#dr) ds

keN
and, hence, by proceeding as in the proof of Lemma 3.1, we conclude that

t P
W p(t) — /O ($(s), dwP(s)) 2
Hy
2a+(dsign(d—1)+¢)/(2¢)+p/2 p/2
> + 1] e 8/e ds> ,

E sup
t€[0,T)

T IS
([
0 S
—2)ifd>1

where p is a positive constant to be chosen and where ( = 3/(
and ¢ =1 if d =1. Now, as we are assuming 5 < 2d/(d — 1) when d > 2, for
any 6 <1, we can fix @ and p both positive such that
dsign(d —1 D
1-2a>0, 2a Slgn(% )+C+g<1.

Then, with a change of variable, for any p >p=1/a
p
< CT,pEpa/Q

t
Wy () - /0 CONTAOFE

0

E sup
t€[0,T)]

and this implies (4.18) for any p > 1.
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REMARK 4.5.
1. Notice that from (4.13), we have
0
(4.19) E|lus — U‘IJ;P(O,T;H#) <ecrpo(e? 241+ \u0|1;{u)
so that
: P _
gg%ﬂus U‘LP(O,T;HM) =0.
2. If we take ug = (ug, p), then, for any p>1, T'> 0 and 6 < 1, we have the
stronger estimate

(4.20) E SElp } lue (t) — v(t)\%ﬂ < cT7p795p9/2(1 + |uo|P).
tel0,T

3. From the proofs of Lemmas 4.3 and 4.4, we easily see that for any 7" > 0
and p > 1,

(421)  sup Ejud olu)(t) — g, < erpe?’?(1+ luoly)
t€[0,T]
and
(4.22) sup Elu p(t) — i p(t)[}, < corpe’’?.
t€[0,T]
Then, for any 7">0 and p > 1,
sup B|R:(t)[}, <crpe??(1+uolfy),  £€(0,1].
te[0,7) a #

Then, by repeating the arguments used in the proof of Theorem 4.1, we
have

e Eluc(t) = v(t)[, < erple+e??)(1+ [uolly,) +e " fuoly,
€|,

Moreover, if ug = (ug, i), as in (4.20), we have

(4.23) sup Eluc(t) —v(t)[2, < erpe??(1+ |uglP).
te[0,7) a

5. Fluctuations around the averaged motion. In this section, we ana-
lyze the fluctuations of the motion wu. around the averaged motion v. More
precisely, we will study the limiting behavior of the random field

(5.1) 2e(t, ) Zuelbm) ) g e,

Ve
as the parameter € goes to zero.
In what follows, in addition to Hypothesis 2, we shall assume that the
coefficients f and g satisfy the following conditions.
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HYPOTHESIS 4.

1. The mapping f(t,z,-):R — R is of class C*, with Lipschitz continuous
derivative, uniformly with respect to x € D and t € [0,T], for any T > 0.
2. The mapping g does not depend on the third variable, that is, g(t,x,n) =
g(t,z) for any t >0, z € D and n € R.
3. For any x € D, the mappings g(-,x):[0,00) = R and o(-,x):R — R are
Hoélder continuous of exponent o> 0 and
suplg(-, z)|ce (j0,400)) = Lg < 00,
€D

(5.2)

sup [0 (-, n)]ce ([0, 400)) = Lo < 00.
neoD

From Hypothesis 4, we easily obtain that the mapping F(t, ):H,—Ris
Fréchet differentiable and, for any ¢t >0 and h,k € H,, we have

DF(t,h)k:/Dg—g(t,x,h(x))k(x)u(dx) = <g—§(t,-,h)k,u>.

Moreover, DF' (t,-):H, — H is Lipschitz continuous, uniformly for ¢ € [0, 7.

THEOREM 5.1.  Assume Hypotheses 1—4. Then, for any t >0,
(5.3) ze(t,x) — Io(t,x), el0,
in Hy,, where Io(t,z) is the Gaussian random field defined for any t >0 and
xeD by
Ip(t,x) = /OO e G(t) dw® (s, z)
(5.4) "o
+/0 I1(6p — A)e*A N5, [B(t) dw? (s)](x).

[For any x € H,, we have set Ilx :=x — (x, ). Notice that, due to the in-
variance of i,

e h =e!1h,  t>0,h€ H,,  IIAh= Allh, he D(A).

We now define

(5.5) Ig(t) == /0 h [e*AG(t) dw® (s)

and

(5.6) Is(t) == /0 h I1(8p — A)e* Nj, [2(t) dw® (s)].
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Before proceeding with the proof of Theorem 5.1, it is important to see that
the two terms I (t) and Ix(t) are both well defined in L?*(2; H,,) for any
t>0.

LEMMA 5.2.  Under Hypotheses 1-3,

2
E|Ig(t)\H# < 00, t>0.
PROOF. Due to the invariance of pu, we have

o) =3 [ (G tal - (Glt)er ) dbis)
k=10

so that, by proceeding as in the proof of Lemma 3.3, thanks to (2.12), we
have

Blla(lh, = [ TSR IEAG () er] — (Glt)er ) B ds
k=1

o (&2 1¢
(5.7) <o [ T[Sl AG e - (GEerm)l,
0
k=1
x suple A [G(t)ex) = (G(O)ew, w3y, lenls? s

where ( = (p —2)/p and p is the constant appearing in (2.12). Due to (2.6)
and the invariance of 1, we have

e ([G()er] = (G (tew )y, < el *A G (el

so that, according to (3.16), we have

5 1/
<Z\68A([G(t)ek] — (G()ex, u>)@,ﬂ) < eye /S (52 4 1),
k=1

Analogously, according to (3.17), we have

up e [G(t)er] — (Glt)er ) lenloHP < e e
S

and hence, in view of (5.7), we conclude that

o0
Ella(t)}, <o /0 =13 (5~ 42 4 1) ds < ¢y, -

As far as Iy is concerned, we have the following, analogous, result.
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LEMMA 5.3.  Under Hypotheses 1-3

E|Is(t)[7, < oo, t>0.

PROOF. Due to the invariance of pu, we have
Is(t) = Z/ 01 ((J0 — A)e* Ny [£(8) fi] = 0Ny [Z(0) f 1)) dBr(s)-
k=10

Using the same arguments used in Lemma 4.4, due to (2.6) and the invari-
ance of u, we have

(80 — A)e™ N5y [Z(t) fi] — S0(Nao [S(8) fu], 10,
< ce7%|(80 — A)e™ PN, [S(0) fill i,

and then, as in the proof of Lemma 3.1, due to (2.13), we get

 sup (g — A)e* Ny [(1) s~/ s
S

By using (3.10) and (3.11), this allows us to conclude that for some p >0
such that (d+()/2¢+p/2 <1,

ElIs(t)[3, Sct/o e85~ (@022 1 1) ds < 400 0

5.1. Proof of Theorem 5.1. It is immediate to check that for any ¢ > 0,

z(t) = /0 DF(s,v(s))z(s) ds + Re(t) + I.(t),

R(t):= %(et/sAuo — (uo, 1))

L 9472 B s (5)) — F(s,e(5))) ds
+\/g/0< F(s,us(s)) — F(s,us(s))) d

t 1 . .
+ /O /0 [DE(s,0(s) + 0(uc(s) — v(s))) — DE(s,v(s))]2(s) ds O

3
=3 Reilt)
=1
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and
1 . ) 1, . .
(5.8) k@)?=;§OM&Q@%—WAQ@D-%;gh%asﬁ%—WAB@D-
Due to (1.2), we have
C /e
(59) |RE,1(t)‘Hu < %e vt/ |UO‘H;L-

For R.(t), with a change of variables, due to (2.6), we have, for any t €
[0, 77,

t
[Realt)lm, < 2 / e\ P (s, ue(s)) |, ds
0

t

1+ sup |uc(s /e'ys/sds
\/_( s€0t| ()‘H”) 0
Sct\/g<1+ sup \ug(s)|H#>

s€[0,t]
and then, thanks to (3.18), we get
(5.10) E sup ‘REQ( )|HHSCT\/E(1+‘UO|HH)-
te[0,T)

Finally, for R.3(t), due to the Lipschitz continuity of DF(S,')IHH — H,
uniform with respect to s € [0,¢], and estimate (4.19) with p=2 and 0 €
(1/2,1), we get

E|R. 3(t ‘Hu < / Elue(s) — )|H ds
(5.11) 1 ,
< ere? V2 (14 |ugl?).

Therefore, collecting together (5.9), (5.10) and (5.11), we can conclude that
for any T'> 0 and ¢ € (0, 1],

C /e _
(5.12) E\Rs(t)\Hugﬁe " ug| g, + or(1+ Juol7, )2, te o, T).

Next, for any € > 0, we introduce the problem

:/0 DE(s,0(s))¢(s) ds + L.(1),

where I.(t) is the process introduced in (5.8). For any € > 0, we denote by
(- its unique solution.

We have the following result, whose proof is postponed to the end of this
section.
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LEMMA 5.4. Under Hypotheses 1—4, for any t >0, we have

Cs(t) 4-[0(1(;)7 E\L07
in H,,, where Iy(t) is the H,-valued Gaussian vector field defined in (5.4).

Now, for any € >0 and t > 0, we define p(t) := 2z-(t) — (-(t). We have
)= [ DFG.0(6))p.(5)ds + (1)
so that
B0, < er [ Elpels)l, +BIROln
By comparison, we get
Bl 0, < cxEIR D, +er [ BIR-(5)n, ds
and, thanks to (5.12), this implies that

cr _ _
Elps(t)|n, < N "< |, + er(1 + |uoly, )"/

t
cr _
4+ = v5/€ ds |u .
\/5/0 ‘ | O‘Hu

Hence, we can conclude that for any ¢ > 0,
i Bl22(t) — G(0) |, = lim E|pa(1) 11, =0

so that, in view of Lemma 5.4, Theorem 5.1 is proved.
5.1.1. Proof of Lemma 5.4. For any x € D and t > 0, we have

t
Co(t) = /O /D g—g(s,y,v(S))Ce(s,y)u(dy)ds+Ia(t,93)-

Then, if we multiply both sides above by 0f/9¢(t,z,v(t)) and integrate in
x with respect to the measure u, we get

WL (t) = H(1) / W, (s)ds + K. (t),
where

‘Ile(t) ::/Dg—g(t,l‘,’v(t))@(t,l‘)u(dl‘)
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and
H(O)= [ Gt vl)utdo)
K.(t) = g-g (t, 2, 0(0) L (t, ) ().

It is then immediate to check that

/Ot V. (s)ds = /Otexp</:H(r)dr>K€(8) ds

(t,x) /Hts s)ds+ I.(t,x),

H(t,s) = exp ( / " dr).

Step 1. We show that for any ¢t > 0,

/t H(t,s)K.(s)ds 2
0

Due to (5.8) and the stochastic Fubini theorem, we have
t

so that

where

(5.13) lim E =0.

e—0

=S [ [ s s,

TG () Qa]) dsdeilo)

Hy
1 ' of
22, L (G,

(50 - A)e(sfa)A/s
Y n[zv%(z(o)Bfk)QH ds dBi (o).

Then, as w®? and w? are independent and 9f/9¢ is uniformly bounded, we

get
t 2
IE/ H(t,s)K.(s)ds
0
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. 2
</ em(tfs)‘e(S*U)A/EH[G(g)Qek”Hu dS) do

t °© t
K — -
+ ?t/o E (/U em(t S)|(50 — A)e(s )A/e

2
x II[Ns, (E(U)Bfk)”H# ds) do

t
_. % (Jer(t, o) + Jea(t, o)) do.
0
For the first term J; 1, in view of (2.6), for any a € (0,2), we have

Jea(t o)

00 t ?
Z)‘% </ em(t—s)e—v(s—ff)/(%)|e(S—U)A/(25)H[G(U)ek]‘H# ds)
k=0 7

' 2/(2-0)
( / ori(2-0)(t-5) —(2-0)(s-0) /(22) d5>

IN

IN

o)

: o 2(1-0)/(2-a)
<3N < / =AY r)ey 2O dS)
k=0 7

oo t
< e Y ( / =G )y 20 g

)2(1—0()/(2—0()
k=0

Then, if we set ( = p/(p — 2), by using the Hélder inequality for infinite
series, we get

Jea(t o)

< Ct€2/(2—a)ﬁé/p

t (oo}
X ( / <Zle(s”’A/ @G (0)ex] I3
7 \k=0

1/¢(2=a)/(2(1-)) 2(1~a)/(2~a)
X ‘ek‘;l/(p—?)) d5>

and, by proceeding as in the proof of Lemma 3.3, we conclude that for
e €(0,1],

‘ 2(1-a)/(2-a)
Jor(to) < Ctgz/(za%/p( / ((8_(,)d/<2<>(2a>/(2(1a>>+1>d8) ,
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Now, in view of Hypothesis 3, we have d/2¢ < 1 and can fix @; > 0 such that
d 2—a
B

2C2(1 —a)

and then

t
(5.14) ﬁ/ Jei(t,0)do < cp e/ P70 2 €(0,1),6>0.
€ Jo

The same arguments can be repeated for the term J; 2, so we can find some
@ > 0 such that
Kt t

= | ot o) do < ¢ g,e™/ 702 g€ (0,1],t>0.
€ Jo

This, together with (5.14), implies that
2
< e, e€(0,1],t >0,

E /0 H(t,s)K:(s)ds

where
o a1 N\ Qo
C2—a Aag’
so (5.13) follows.
Step 2. We show that for any fixed ¢ > 0,

(5.15) L(t) = Io(t), <lo.

With a change of variable, we have

1) == [ et oveGis) aus)

0
4 /0 (8 — A)e(t*S)A/EH[Nao(Z(S) de(S))]>
_ /t/s e AI[G(t — er) dwgt(r)]
0

t/e
T / (60 — YA N3, (S(t — er) duw?, (1),
0

where
w@,(r) = %(wQ(t) —wl(t—er)),  wh(r)= ig(wB(t) —wB(t—er).

This means that for any € > 0 and ¢ > 0,
L(I(t)) = L(I(1)),
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where

. t/e
I.(t) == /O e MIG(t — er) dw®(r)]

t/e
+ / (80 — A)e™ I N;, (B(t — er) dw? (r))].
0
Thus, in order to obtain (5.15), it is sufficient to prove
. z 2 _
(5.16) tim E[1(8) ~ To(1)}, = 0.

We have

With the same arguments used several times throughout the paper, we
have

t/e
E|J.1(t)|F, < C/ e (s W) L 1)g(t —es,-) — g(t,)[Hy, ds.
0
Then, due to Hypothesis 4, we have

(517) B[, < e / e13(574/ 20 4 1)62% ds < 2
0

Analogously, we have
(5.18) E|Je2(t) |7, <™.

Concerning J; 3(t), we have

Bl (1), <c / e (574 4 1) ds|g(t, )3,

t/e

o)
< ct/ e (s~ Y2 £ 1) ds
t/e
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so that
(5.19) lim E|J. 5(t)[3 = 0.
e—0 ’ s

In an identical way, we can show that

li E i, =
s | Jea ()5, =0

and this, together with (5.17), (5.18) and (5.19), implies (5.16).

Acknowledgments. We would like to thank the two anonymous refer-
ees who read the first version of our paper for their interesting and useful
remarks and suggestions.

1]

2]
3]

[4]

[5]
[6]
[7]
8]
[9]
(10]
(11]

(12]

REFERENCES

CERRAI, S. (2003). Stochastic reaction-diffusion systems with multiplicative noise
and non-Lipschitz reaction term. Probab. Theory Related Fields 125 271-304.
MR1961346

DA PrATO, G., KWAPIEN, S. and ZABCZYK, J. (1987). Regularity of solutions of
linear stochastic equations in Hilbert spaces. Stochastics 23 1-23. MR920798

Da PraTO, G. and ZABCZYK, J. (1993). Evolution equations with white-noise bound-
ary conditions. Stochastics Stochastics Rep. 42 167-182. MR1291187

DA PraTO, G. and ZABCZYK, J. (1996). Ergodicity for Infinite-Dimensional Systems.
London Mathematical Society Lecture Note Series 229. Cambridge Univ. Press,
Cambridge. MR1417491

Davies, E. B. (1989). Heat Kernels and Spectral Theory. Cambridge Tracts in Math-
ematics 92. Cambridge Univ. Press, Cambridge. MR990239

FREIDLIN, M. I. and WENTZELL, A. D. (1992). Reaction-diffusion equations with
randomly perturbed boundary conditions. Ann. Probab. 20 963-986. MR 1159581

LADYZHENSKAYA, O. A. and URAL'TSEVA, N. N. (1968). Linear and Quasilinear
Elliptic Equations. Academic Press, New York. MR0244627

LASIECKA, I. (1980). Unified theory for abstract parabolic boundary problems—a
semigroup approach. Appl. Math. Optim. 6 287-333. MR587501

Lions, J. L. and MAGENES, E. (1972). Non-homogeneous Boundary Value Problems
and Applications, Vol. I. Springer, New York. MR0350177

SOWERS, R. B. (1994). Multidimensional reaction-diffusion equations with white
noise boundary perturbations. Ann. Probab. 22 2071-2121. MR1331216

TRIEBEL, H. (1978). Interpolation Theory, Function Spaces, Differential Operators.
North-Holland Mathematical Library 18. North-Holland, Amsterdam. MR503903

VOLKENSTEIN, M. V. (1983). General Biophysics. Academic Press, New York.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MARYLAND
COLLEGE PARK

MARYLAND, 20742

USA

E-MAIL: cerrai@math.umd.edu


http://www.ams.org/mathscinet-getitem?mr=1961346
http://www.ams.org/mathscinet-getitem?mr=920798
http://www.ams.org/mathscinet-getitem?mr=1291187
http://www.ams.org/mathscinet-getitem?mr=1417491
http://www.ams.org/mathscinet-getitem?mr=990239
http://www.ams.org/mathscinet-getitem?mr=1159581
http://www.ams.org/mathscinet-getitem?mr=0244627
http://www.ams.org/mathscinet-getitem?mr=587501
http://www.ams.org/mathscinet-getitem?mr=0350177
http://www.ams.org/mathscinet-getitem?mr=1331216
http://www.ams.org/mathscinet-getitem?mr=503903
mailto:cerrai@math.umd.edu

	1 Introduction
	2 Notation and assumptions
	3 A priori bounds for the solution of (1.1)
	4 The averaging result
	5 Fluctuations around the averaged motion
	5.1 Proof of Theorem 5.1
	5.1.1 Proof of Lemma 5.4


	Acknowledgments
	References
	Author's addresses

