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SPECTRAL INVARIANCE OF BESOV-BESSEL SUBALGEBRAS

ANDREAS KLOTZ

Abstract. Using principles of the theory of smoothness spaces we give sys-
tematic constructions of scales of inverse-closed subalgebras of a given Banach
algebra with the action of a d-parameter automorphism group. In particular
we obtain the inverse-closedness of Besov algebras, Bessel potential algebras
and approximation algebras of polynomial order in their defining algebra. By
a proper choice of the group action these general results can be applied to alge-
bras of infinite matrices and yield inverse-closed subalgebras of matrices with
off-diagonal decay of polynomial order. Besides alternative proofs of known
results we obtain new classes of inverse-closed subalgebras of matrices with
off-diagonal decay.

This work is a continuation and extension of results presented in [20].

1. Introduction

We aim at systematic constructions of inverse-closed subalgebras of a given Ba-
nach algebra A. Recall that a subalgebra B of A is called inverse-closed in A,
if

(1) b ∈ B invertible in A implies b−1 ∈ B .

Many equivalent notions for this relation are used in the literature, e.g.,one says
that B is a spectral subalgebra of A [30], or B is spectrally invariant in A, see [19]
for a collection of synonyms.

A prototypical result is Wiener’s Lemma, which states precisely that the Wiener
algebra of trigonometric series with absolutely convergent coefficients is inverse-
closed in the algebra of continuous functions on the torus. Another example is
the algebra Cm(X) of m times continuously differentiable functions on a closed
interval X , which is inverse-closed in C(X) by the iterated quotient rule (note that
the algebra property of Cm(X) follows from the iterated product rule).

Our original interest was the construction of Banach algebras of matrices with
off-diagonal decay that are inverse-closed in B(ℓ2), the bounded operators in ℓ2,
see [20]. A key result is Jaffard’s theorem.

Theorem ([25]). If the entries of the matrix A satisfy |A(k, l)| ≤ C|k − l|−r for
some C > 0 and r > 0, and A is invertible in B(ℓ2), then |A−1(k, l)| ≤ C′|k − l|−r

for some C′ > 0.

In other words Jaffard’s theorem states that the Banach algebra C∞
r , consisting

of matrices A with finite norm ‖A‖C∞
r

= supk,l|A(k, l)|(1 + |k − l|r), is inverse-

closed in B(ℓ2). Generalizations and variants of this theorem have been obtained
in, e.g., [5, 7, 21, 22, 25].
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Inverse-closed subalgebras are often related to the concept of smoothness, an el-
ementary example is again the algebra Cm(X). In more generality, the domain
of a densely defined, closed and symmetric derivation on the C∗ algebra A was
shown to be inverse-closed in A by Bratteli and Robinson [11], an extension of this
result to general Banach algebras was given in [26]. Related concepts of smooth-
ness that define inverse-closed subalgebras are the differentials norms [10], the Dp

algebras [26, 27], or the Leibniz seminorms [36].
Although it might be not immediately obvious the examples of matrices with

off-diagonal decay fit into this picture, as off-diagonal decay can be decribed by
smoothness conditions. In particular, the formal commutator

δ(A) = [X,A] ,

X = Diag((k)k∈Z), is a derivation on B(ℓ2), and its domain defines an algebra of
matrices with off-diagonal decay that is inverse-closed in B(ℓ2) [20, 3.4].

The proof of the spectral invariance of B ⊆ A makes often detailed use of some
specific properties of the involved algebras. The standard proof for Wiener’s Lemma
is a prime example of an application of the Gelfand theory. Proofs of the spectral
invariance of Banach algebras of matrices involve the theorem of Bochner-Philips [5,
6], interpolation arguments [21, 40, 41] or commutator estimates [25]. As it turns
out, all of these proof methods use some related concepts of smoothness [28].

In a previous publication [20] we obtained systematic constructions of inverse-
closed subalgebras of a given Banach algebra with additional smoothness condi-
tions. In particular it was shown in [20] that

(1) the domain of a (not necessaryly densely defined) closed derivation of a
symmetric Banach algebra A is inverse-closed in A,

(2) the subalgebra C(A) of continuous elements of a Banach algebra A with
d-parameter automorphism group Ψ and the associated Hölder-Zygmund
spaces Λ∞

r (A) are inverse-closed in A,
(3) the approximation spaces of polynomial order of a symmetric Banach al-

gebra A are inverse-closed in A, where the approximating subspaces are
adapted to the algebra multiplication (see Section 2.4).

Applied to subalgebras of B(ℓ2) the theory yields scales of inverse-closed subalgebras
of matrices with off-diagonal decay, including the Banach algebras of matrices used
in the literature cited above, but also new classes of inverse-closed subalgebras
of matrices with off-diagonal decay constructed by approximation with banded
matrices.

In this article we generalize the approach (2). In its essence this approach is
based on the product and quotient rules of real analysis. The identities

∆t(fg) = Ttf∆tg +∆tfg ,

∆t(1/f) = −
∆tf

Ttf · f
,

(2)

where Ttf(x) = f(x − t) is the translation operator, imply that the smoothness
of f (resp. g) is preserved by the product fg, and by the reciprocal 1/f . To give
an example, the membership of the continuous function f in the Hölder-Zygmund
space Λ∞

r (L∞(R)) for 0 < r < 1 is defined by the condition ‖∆tf‖∞ ≤ C|t|r for
some C > 0, and Equation (2) implies that ‖∆t(1/f)‖∞ ≤ C′|t|r for a constant
C′ > 0.

In [20] we have (amongst other things) adapted this approach to more general
Banach algebras. If translation is replaced by the action of a d-parameter automor-
phism group on the Banach algebraA, the noncommutative form of the product and
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quotient rule (2) impliy that the noncommutative Hölder-Zygmund space Λ∞
r (A)

is an inverse-closed subalgebra of A [20, 3.21].
In this article we extend this approach to cover Besov and Bessel potential spaces.

In more detail, the organization of the paper is as follows.
After introducing notation we describe some classes of matrices that will serve as

examples for the theory to be developed, and we define the approximation spaces
needed. In Section 3 we introduce smoothness for a Banach algebra A by the action
of a d-parameter automorphism group, and review basic properties. Besov spaces
are defined in Section 3.2, and it is proved that they form inverse-closed subalgebras
ofA. A useful property not only for simplifying several proofs but also of conceptual
interest is a reiteration theorem for Besov spaces (Theorem 3.7). In [2] a similar
theorem was proved by interpolation methods for Besov spaces of operators. An
examination of the details of this proof shows that it uses similar ingredients (and is
of similar complexity) as ours, which is valid in the more general setting of a Banach
algebra with automorphism group. Instead of interpolation theory the proof given
here uses estimates for the moduli of smoothness. In Section 3.3 we identify Besov
spaces as approximation spaces and obtain a Littlewood-Paley-decomposition of
them.

For the discussion of Bessel potential spaces Pr(A) in Section 3.4 we introduce
the concept of Cw-continuity [2, 3] in order to cover relevant examples of Banach
algebras of matrices with off-diagonal decay. A description of Bessel potential
spaces by hypersingular integrals is used to prove the algebra properties and the
inverse-closedness of Pr(A) in A.

Again, we illustrate the abstract concepts by constructing subalgebras of matri-
ces with off-diagonal decay. The membership of a matrix A in a Besov or Bessel
subalgebra of B(ℓ2) is then equivalent to a form of off-diagonal decay, so this appli-
cation of the general theory describes scales of inverse-closed subalgebras of matrices
with off-diagonal decay.

Long proofs have been moved to the appendices.

Acknowledgments. The author wants to thank Karlheinz Gröchenig for many
helpful discussions.

2. Resources

2.1. Notation. The d-dimensional torus is T
d = R

d/Zd. Let Cd
∗ = C

d \ {0}, and
Rd

∗ = Rd \ {0}. The symbol ⌊x⌋ denotes the greatest integer smaller or equal to the
real number x.

A multi-index α = (α1, . . . , αd) is a d-tuple of nonnegative integers. We set
xα = xα1

1 · · ·xαdd , and Dαf(x) = ∂α1

1 · · · ∂αdd f(x) is the partial derivative. The

degree of xα is |α| =
∑d

j=1 αj , and β ≤ α means that βj ≤ αj for j = 1, . . . , d.

More generally, |x|p =
(
∑d

k=1|x(k)|
p
)1/p

denotes the p-norm on Cd.
Positive constants will be denoted by C, C′,C1,c, etc., The same symbol might

denote different constants in each equation. If f and g are positive functions, f ≍ g
means that C1f ≤ g ≤ C2f . We sometimes use the notation f . g (f & g) to
express that there is a constant C > 0 such that f ≤ Cg (f ≥ Cg).

The standard basis of ℓp(Zd) is ek = (δjk)j∈Zd , 〈x, y〉 =
∑

k∈Zd
x(k)y(k) is the

standard dual pairing between ℓp(Zd) and its dual ℓp
′

(Zd). If p = 2, we define the

scalar product as 〈x, y〉 =
∑

k∈Zd
x(k)y(k). This should not lead to confusion.

A submultiplicative weight on on Zd is a positive function v : Zd → R such that
v(0) = 1 and v(x + y) ≤ v(x)v(y) for x, y ∈ Zd. The standard polynomial weights
are vr(x) = (1 + |x|)r for r ≥ 0. The weighted spaces ℓpw(Z

d) are defined by the
norm ‖x‖ℓpw(Zd) = ‖xw‖ℓp(Zd). If w = vr we will simply write ‖x‖ℓpr(Zd).
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The Schwartz space of rapidly decreasing functions on Rd is denoted by S (Rd).

The Fourier transform of f ∈ S (Rd) is Ff(ω) = f̂(ω) =
∫

Rd
f(x)e−2πiω·x dx. This

definition is extended by duality to S ′(Rd), the space of tempered distributions.
The same symbols are also used for the Fourier transform on Zd and Td.

The continuous embedding of the normed space X into the normed space Y is
denoted as X →֒ Y . The operator norm of a bounded linear mapping A : X →
Y is ‖A‖X→Y . In the special case of operators A : ℓ2(Zd) → ℓ2(Zd) we write
‖A‖B(ℓ2(Zd)) = ‖A‖ℓ2(Zd)→ℓ2(Zd) or simply ‖A‖B(ℓ2).

We will consider Banach spaces with equivalent norms as equal.

2.2. Inverse closed subalgebras of Banach algebras. All Banach algebras are
assumed to be unital. To verify that a Banach space A with norm ‖ ‖A is a Banach
algebra it is sufficient to prove that ‖ab‖A ≤ C‖a‖A‖b‖A for some constant C.
The expression ‖a‖′A = sup‖b‖A=1‖ab‖A is an equivalent norm on A and satisfies

‖ab‖′A ≤ ‖a‖′A‖b‖
′
A.

Definition 2.1 (Inverse-closedness). If A ⊆ B are Banach algebras with common
multiplication and identity, we call A inverse-closed in B, if

(3) a ∈ A and a−1 ∈ B implies a−1 ∈ A.

Inverse-closedness is equivalent to spectral invariance. This means that the spec-
trum σA(a) = {λ ∈ C : a− λ not invertible in A} of an element a ∈ A satisfies

σA(a) = σB(a), for all a ∈ A.

The relation of inverse-closedness is transitive: If A is inverse-closed in B and B is
inverse-closed in C, then A is inverse-closed in C.

Remark. Spectral invariance is a generalization of Wiener’s Lemma, which states
precisely that the Wiener algebra Fℓ1(Zd) of absolutely convergent Fourier series
is inverse-closed in C(Td). See [19] for a concise overview of the importance of the
concept of inverse-closedness.

2.3. Examples of Matrix Algebras. To describe the most common forms of off-
diagonal decay, let us fix some notation. An infinite matrix A over Zd is a function
A : Zd × Zd → C. The m-th side diagonal of A is the matrix Â(m) with entries

Â(m)(k, l) =

{

A(k, l), k − l = m,

0, otherwise.

A matrix A is banded with bandwidth N , if

A =
∑

|m|∞≤N

Â(m).

Let 1 < p ≤ ∞, r > d(1− 1/p), or p = 1, and r ≥ 0. The space Cp
r consists of all

matrices A with finite norm

‖A‖Cpr =

(

∑

k∈Zd

∑

l∈Zd

|A(l, l − k)|p(1 + |k|)rp
)1/p

with the standard change for p = ∞.
The following special cases have obtained particular interest. The Jaffard algebra

C∞
r consists of the matrices A for which |A(k, l)| ≤ C(1+ |k− l|)−r, so the norm of

C∞
r describes polynomial decay off the diagonal.
The algebra of convolution-dominated matrices C1

r , r ≥ 0, (sometimes called the
Baskakov-Gohberg-Sjöstrand algebra) consists of all matrices A, for which there
is a h ∈ ℓ1r(Z

d) such that |Ax(k)| ≤ h ∗ |x|(k), where |x| denotes the vector with
components (|x(k)|)k∈Zd .
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If 1 < p ≤ ∞ and r > d(1 − 1/p) or p = 1 and r ≥ 0 the Schur algebra Sp
r is

defined by the norm

‖A‖Spr = max
{

sup
k∈Zd

(

∑

l∈Zd

|A(k, l)|pvr(k − l)p
)1/p

, sup
l∈Zd

(

∑

k∈Zd

|A(k, l)|pvr(k − l)p
)1/p

}

with the standard change for p = ∞.

Remarks. (1) The scales Sp
r and Cp

r are identical at the endpoint p = ∞, i.e.
S∞
r = C∞

r . (2) It follows immediately from the definitions that Cp
r →֒ Sp

r .

We note that the norms above depend only on the absolute values of the matrix
entries. Precisely, a matrix norm on A is called solid, if B ∈ A and |A(k, l)| ≤
|B(k, l)| for all k, l implies A ∈ A and ‖A‖A ≤ ‖B‖A. In particular, for a solid norm
we have ‖ |A|‖A = ‖A‖A, where |A| is the matrix with entries |A|(k, l) = |A(k, l)|
for k, l ∈ Zd.

The following result summarizes the main properties of the matrix classes Cp
r

and Sp
r . See [5, 21, 25, 40] for proofs.

Proposition 2.2. Assume that A is one of the matrix classes Cp
r or Sp

r for r >
d(1 − 1/p), if p > 1, and r ≥ 0, if p = 1. Then A is a solid Banach ∗-algebra with
respect to matrix multiplication and taking adjoints as the involution. Every A is
continuously embedded into the algebra B(ℓp(Zd)) of bounded operators on ℓp(Zd)
for 1 ≤ p ≤ ∞. With the exception of S1

0 [42] every class A is inverse-closed in
B(ℓp(Zd)), 1 ≤ p ≤ ∞. In particular, A is symmetric.

In the sequel we will construct algebras that are inverse-closed in one of the
standard algebras Cp

r ,S
p
r , and are therefore inverse-closed in B(ℓ2(Zd)) by Proposi-

tion 2.2.
We generalize the definitions above.

Definition 2.3. A matrix algebra A (over Zd) is a Banach algebra of matrices that
is continuously embedded in B(ℓ2(Zd)).

We drop the reference to the index set Zd whenever possible.

Lemma 2.4. If A is a matrix algebra, the selection of matrix elements is contin-
uous.

Proof. |A(k, l)| = |〈Aek, el〉| ≤ ‖A‖B(ℓ2) ≤ C‖A‖A. �

2.4. Approximation Spaces and Algebras. Let the index set Λ be either R
+
0

or N0. An approximation scheme on the Banach algebra A is a family (Xσ)σ∈Λ of
closed subspaces of A that satisfy X0 = {0}, Xσ ⊆ Xτ for σ ≤ τ , and Xσ ·Xτ ⊆
Xσ+τ , σ, τ ∈ Λ. If A possesses an involution, we further assume that 1 ∈ X1

and Xσ = X∗
σ for all σ ∈ Λ. The σ-th approximation error of a ∈ A by Xσ is

Eσ(a) = infx∈Xσ‖a− x‖A. We define approximation spaces Ep
r (A) by the norm

(4) ‖a‖p
Epr

=

∞
∑

k=0

Ek(a)
p(k + 1)rp

1

k + 1
, for Λ = N0 ,

for 1 ≤ p < ∞ with the obvious change for p = ∞. If Λ = R
+
0 an equivalent norm

is ‖a‖p
Epr

=
∫∞

0
Eσ(a)

p(σ + 1)rp dσ
σ+1 . Algebra properties of approximation spaces of

approximation spaces are discussed in [1, 20]. In particular, in [20] the following
result is proved.

Proposition 2.5. If A is a symmetric Banach algebra and (Xσ)σ∈Λ an approxi-
mation scheme, then Ep

r (A) is inverse-closed in A.
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If A is a matrix algebra and TN = TN (A) denotes the set of matrices in A with
bandwidth smaller than N ,

TN = {A ∈ A : A =
∑

|k|∞<N

Â(k)}

then the sequence (TN )N≥0 is an approximation scheme for A. The closure of all
banded matrices in A is the space of band-dominated matrices in A [34, 35].

In [20] we obtained the following constructive description of E∞
r (C1

0): The ap-
proximation space E∞

r (C1
0) consists of all matrices A satisfying

‖Â(0)‖B(ℓ2) <∞, 2rk
∑

2k≤|l|<2k+1

‖Â(l)‖B(ℓ2) = 2rk
∑

2k≤|l|<2k+1

sup
m∈Zd

|A(m,m− l)| ≤ C

for all k ≥ 0. Theorem 3.14 is a more general result of this type.

3. Smoothness in Banach Algebras

An important observation in [20] was that the off-diagonal decay of matrices
can be described by smoothness properties, using derivations and the action of
the automorphism group χt(A) =

∑

Â(k)e2πikt. In our treatment we focused on
Hölder-Zygmund spaces and on spaces of m times differentiable elements. Now we
extend our research and cover the more general Besov and Bessel potential spaces.
We also establish the isomorphism between Besov spaces and approximation spaces
of polynomial order. In all cases we obtain results on the inverse-closedness of the
smoothness spaces in their defining algebra.

It turns out that the investigations can be carried out with no additional ef-
fort for Banach algebras with the bounded action of a d-parameter automorphism
group. Here we obtain new methods for the construction of scales of inverse-closed
subalgebras.

3.1. Automorphism Groups and Continuity. Let A be a Banach algebra. A
(d-parameter) automorphism group acting on A is a set of Banach algebra auto-
morphisms Ψ = {ψt}t∈Rd of A that satisfy the group properties

ψsψt = ψs+t for all s, t ∈ R
d.

If A is a ∗-algebra we assume that Ψ consists of ∗-automorphisms. In order to
simplify some proofs, we assume that Ψ is uniformly bounded, that is,

MΨ = sup
t∈Rd

‖ψt‖A→A <∞ .

The abstract theory works for more general group actions [2, 23, 43].
An element a ∈ A is (strongly) continuous, if

(5) ‖ψt(a)− a‖A → 0 for t→ 0.

The continuous elements of A are denoted by C(A).
For t ∈ Rd \ {0} the generator δt is

(6) δt(a) = lim
h→0

ψht(a)− a

h

The domain D(δt,A) of δt is the set of all a ∈ A for which this limit exists.
The canonical generators of Ψ are (δek)1≤k≤d, and Ψ is the automorphism group
generated by (δek )1≤k≤d. If α ∈ Nd

0 is a multi-index, then δα = δα1
e1 · · · δαded

. In [20,
3.15] precise conditions are given, under which condition two derivations commute.
In particular, this is true for all cases that will be encountered in this text. Each
generator δt is a closed derivation, that is δt(ab) = aδt(b) + δt(a)b for all a, b ∈
D(δt,A), and the operator δt is a closed operator on its domain. If A is a Banach
∗-algebra, then δt is a ∗-derivation [12].
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Proposition 3.1 ([20, 3.4]). If A is symmetric, and δ is a closed ∗-derivation then
D(δt,A) is inverse-closed in A.

We call the action of Ψ periodic if ψt+ek = ψt for all 1 ≤ k ≤ d and all t ∈ Rd.

Definition 3.2. A matrix algebra A is called homogeneous [16, 17], if

χt : A 7→MtAM−t, χt(A)(k, l) = e2πi(k−l)·tA(k, l) for all k, l ∈ Z
d and t ∈ R

d

define uniformly bounded mappings on A, where Mt, t ∈ R
d, is the modulation

operator Mtx(k) = e2πik·tx(k), k ∈ Zd.

Clearly χ = {χt}t∈Rd defines an automorphism group on A. The algebra of
bounded operators on ℓ2 is a homogeneous matrix algebra, and so are all solid
matrix algebras.

In the literature on group actions it is often assumed that Ψ is strongly contin-
uous on all of A, i.e. A = C(A). This is no longer true for most matrix algebras,
and in general C(A) is a closed and inverse-closed subalgebra of A [20, 3.14].

In [20] the spaces C(A) have been identified for the algebras C1
r , C

∞
r ,S1

r . We use
the opportunity to state the full result for the algebras Cp

r and Sp
r .

Proposition 3.3. If A is one of the algebras C∞
r ,Sp

r ,B(ℓ
2(Zd)) for r ≥ 0, then

C(A) 6= A.

C(Cp
r ) = Cp

r , 1 ≤ p <∞ ,

C(C∞
r ) = {A ∈ C∞

r : lim
|k|∞→∞

‖Â(k)‖C∞
r

= lim
|k|∞→∞

‖Â(k)‖B(ℓ2)(1 + |k|)r = 0}

C(Sp
r ) = {A ∈ Sp

r : lim
N→∞

sup
k∈Zd

∑

|s|∞>N

|A(k, k − s)|p(1 + |s|)rp = 0 and

lim
N→∞

sup
k∈Zd

∑

|s|∞>N

|A(k − s, k)|p(1 + |s|)rp = 0} .

The method of proof is as in [20].

3.2. Besov Spaces. The theory of vector valued Besov spaces is well established [9,
13, 31, 44]. The main results of this section are the algebra properties of vector-
valued Besov spaces derived from a given Banach algebra A. Though possibly
known, we were not able to find any references, so full proofs of the results are
included.

Let A be a Banach algebra with automorphism group Ψ. Define the kth differ-
ence operator as ∆k

t = (ψt − id)k, t ∈ Rd. For a step size h > 0, the modulus of
continuity of a ∈ A is ωh(a) = ω1

h(a) = sup|t|≤h‖∆ta‖A. If k > 1, the kth modulus

of smoothness of a is ωk
h(a,A) = ωk

h(a) = sup|t|≤h‖∆
k
t a‖A.

Definition 3.4. Let 1 ≤ p ≤ ∞, r > 0, l = ⌊r⌋ + 1. The (vector valued) Besov
space Λp

r(A) consists of all a ∈ A for which the seminorm

|a|Λpr(A) =

{

(∫

R+(h
−rωl

h(a))
p dh

h

)1/p
, 1 ≤ p <∞

‖a‖A + suph>0 h
−rωl

h(a) , p = ∞

is finite. The parameter r is the smoothness parameter. The Besov norm is
‖a‖Λpr(A) = ‖a‖A + |a|Λpr(A).
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Actually, replacing l by any integer k > ⌊r⌋ in the preceding definition yields an
equivalent norm for Λp

r(A). In addition, we will need the following norm equiva-
lences.

‖a‖Λpr(A) ≍ ‖a‖A +
(

∫

Rd

(|t|−r‖∆k
t a‖A)

p dt

|t|d

)1/p

≍ ‖a‖A +
(

∞
∑

l=0

(

2rlωk
2−l(a)

)p
)1/p

.

(7)

If l ∈ N0, and l ≤ r, these norms are further equivalent to

‖a‖A +
∑

|α|=l

‖δα(a)‖Λp
r−l

(A) .

The Besov spaces Λp
r(A) are Banach spaces for all 1 ≤ p ≤ ∞ and r > 0. If

1 ≤ p, q ≤ ∞ and 0 < r < s, then Λp
s(A) →֒ Λq

r(A). If p < q then Λp
r(A) →֒ Λq

r(A).
See, e.g., [9, 13, 31, 44] for these and other basic properties.

Lemma 3.5. If A is a Banach algebra with (bounded) automorphism group Ψ, then
Ψ is a bounded automorphism group on Λp

r(A) for every 1 ≤ p ≤ ∞, and r > 0.

Proof. Assume that p <∞. If a ∈ Λp
r(A), k > ⌊r⌋ and s ∈ Rd, then for every s > 0

‖ψsa‖Λpr(A) = ‖ψsa‖A +
(

∫

Rd

(|t|−r‖∆k
tψsa‖A)

p dt

|t|d

)1/p

≤MΨ‖a‖Λpr(A) ,

since δkt ψs = ψsδ
k
t , so ψs is bounded on Λp

r(A). The proof for p = ∞ is similar. �

Proposition 3.6 ([13, 3.1.5, 3.4.3]). If k > ⌊r⌋ then

C(Λp
r(A)) = Λp

r(A), 1 ≤ p <∞ ,

C(Λ∞
r (A)) = λ∞r (A) = {a ∈ A : lim

h→0
h−rωk

h(a) = 0} .

Does the iteration of the construction of Besov spaces yield refined smoothness
spaces?

Theorem 3.7 (Reiteration theorem). If 1 ≤ p, q ≤ ∞ and r, s > 0 then

(8) Λq
s(Λ

p
r(A)) = Λq

r+s(A) .

A proof of is in appendix A.

Remarks. A proof of the reiteration formula for the Banach algebra of bounded
operators on a Banach space X and the automorphism group ψ obtained by conju-
gation with an automorphism group on X has been given in[2], using interpolation
theory.

We think the reiteration formula is of some conceptual interest. Note that the
classical notion of Besov spaces on Rd does not even allow to formulate the result.
We use (8) to simplify proofs of approximation results.

The main result of this section treats the algebra properties of Besov spaces.

Theorem 3.8. Let A be a Banach algebra with automorphism group Ψ. For all
parameters 1 ≤ p ≤ ∞ and r > 0, the Besov space Λp

r(A) is a Banach subalgebra
of A. Moreover, Λp

r(A) is inverse-closed in A.

Proof. We treat the case r < 1 first. To show that Λp
r(A) is a Banach algebra we

use the identity

(9) ∆t(ab) = ψt(a)∆t(b) + ∆t(a)b .
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Taking norms we obtain

‖∆t(ab)‖A ≤ ‖ψt(a)‖A‖∆t(b)‖A + ‖∆t(a)‖A‖b‖A

≤MΨ‖a‖A‖∆t(b)‖A + ‖∆t(a)‖A‖b‖A .

This implies a similar relation for the Besov-seminorms, namely,

|ab|Λpr(A) ≤MΨ‖a‖A|b|Λpr (A) + ‖b‖A|a|Λpr (A).

So

‖ab‖Λpr(A) = ‖ab‖A + |ab|Λpr(A) ≤ C‖a‖Λpr(A)‖b‖Λpr(A) ,

and the assertion follows.
To show that Λp

r(A) is inverse-closed in A we assume that a ∈ Λp
r(A) is invert-

ible in A. It is sufficient to verify that |a−1|Λpr(A) is finite. By a straightforward
computation we obtain

(10) ∆t(a
−1) = −ψt(a

−1) ∆t(a) a
−1 .

This implies that a−1 has a finite Λp
r(A)-norm.

In the general case we can use the reiteration theorem (Theorem 3.7) and the
transitivity of inverse-closedness, and prove the statement by induction. Assume
that the statement is proved for all smoothness parameters smaller than s > 0.
As Λp

r(A) = Λp
r−s(Λ

p
s(A)) for r > s, the preceding argument yields Λp

r−s(Λ
p
s(A))

is inverse-closed in Λp
s(A) for s < r < s + 1. As Λp

s(A) is inverse-closed in A by
hypotheses, the theorem is proved. �

3.3. Characterization of Besov Spaces as Approximation Spaces. As in the
case of function spaces, Λp

r(A) can be characterized by approximation properties.
This was carried out for Λ∞

r (A) in [20], so our treatment is very brief.
We focus on the approximation of a Banach algebra A with automorphism group

Ψ by smooth elements.

Definition 3.9 (Bernstein inequality). An element a ∈ A is σ-bandlimited for
σ > 0, if there is a constant C such that for every multi-index α

(11) ‖δα(a)‖A ≤ C(2πσ)|α| .

An element is bandlimited, if it is σ-bandlimited for some σ > 0.

If A is a Banach algebra with automorphism group Ψ, then,

X0 = {0}, Xσ = {a ∈ A : a is σ-bandlimited}, σ > 0

is an approximation scheme for A [20, Lemma 5.8]. From now on we use this
approximation scheme without further notice.

In particular, if A is ahomogeneous matrix algebra, we obtain the following
characterization of bandlimited elements

Proposition 3.10 ([20, 5.7]). A matrix A is banded with bandwidth N in the
homogeneous matrix algebra A, if and only if it is N -bandlimited with respect to
the group action {χt}.

Theorem 3.11 (Jackson Bernstein Theorem). Let A be a Banach algebra with
automorphism group Ψ, and assume that r > 0 and 1 ≤ p ≤ ∞. If {Xσ : σ ≥ 0} is
the approximation scheme of bandlimited elements, then

(12) Λp
r(A) = Ep

r (A) .

The proof is in appendix B.
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Littlewood-Paley Decomposition. The norms of Besov spaces are not easily com-
putable. An equivalent explicit norm for these spaces can be obtained by means of
a Littlewood-Paley decomposition.

First we need some technical preparation: If µ ∈ M(Rd) and a ∈ C(A), the
action of µ on a is defined by

(13) µ ∗ a =

∫

Rd

ψ−t(a)dµ(t).

This action is a generalization of the usual convolution and satisfies similar prop-
erties:

‖µ ∗ a‖A ≤MΨ‖µ‖M(Rd) ‖a‖A .

If f ∈ C∞
c (Rd) then

(14) δα(f ∗ a) = Dαf ∗ a ∈ C(A)

for every multi-index α. See [13] for details and proofs.
In particular, if the group action is periodic, the action of µ on a is

(15) µ ∗ a =

∫

Td

ψ−t(a) dµ(t) =
∑

k∈Zd

F(µ)(k)â(k) ,

where â(k) =
∫

Td
ψ−t(a)e

2πik·t dt is the k-th Fourier coefficient of a and the sum
converges in the C1-sense.
Now assume that ϕ ∈ S (Rd) with supp ϕ̂ ⊆ {ω ∈ Rd : 2−1 ≤ |ω|∞ ≤ 2}, ϕ̂(ω) > 0
for 2−1 < |ω|∞ < 2, and

∑

k∈Z
ϕ̂(2−kω) = 1 for all ω ∈ Rd \ {0}. Set ϕ̂k(ω) =

ϕ̂(2−kω), k ∈ N0, so ϕk(x) = 2kdϕ0(2
kx), and let ϕ̂−1 = 1 −

∑∞
k=0 ϕ̂k. Then

{ϕ̂k}k≥−1 is a dyadic partition of unity.

Proposition 3.12. Let {ϕ̂k}k≥−1 be a dyadic partition of unity, and 1 ≤ p ≤ ∞,
r > 0. An element a ∈ A is in Λp

r(A), if and only if

(16)

( ∞
∑

k=−1

2rkp‖ϕk ∗ a‖
p
A

)1/p

<∞ .

The expression (16) defines an equivalent norm on Λp
r(A). Moreover the Littlewood-

Paley decomposition
∑∞

k=0 ϕk ∗ a converges to a in the norm of A.

The special case p = ∞ was proved in [20] with a weak type argument. This
approach does not work for p <∞, so we adapt a proof in [9], see Appendix C.

Approximation of Polynomial Order in Homogeneous Matrix Spaces.

Lemma 3.13. If {ϕk}k≥−1 is a dyadic partition of unity and the action of Ψ on
A is periodic, then for a ∈ C(A),

(17) ϕk ∗ a =
∑

⌊2k−1⌋≤|l|∞<2k+1

ϕ̂k(l)â(l) .

Proof. Let ϕΠ
k (t) =

∑

l∈Zd
ϕk(t+ l) denote the periodization of ϕk. Then

ϕΠ
k (t) =

∑

⌊2k−1⌋≤|l|∞<2k+1

ϕ̂k(l)e
2πil·t

by Poisson’s summation formula. Equation (17) now follows, combining (15) with

ϕk ∗ a =

∫

Rd

ψ−t(a)ϕk(t) dt =

∫

Td

ψ−t(a)ϕ
Π
k (t) dt �

Equation (17) allows us to obtain a characterization of the approximation spaces
for homogeneous matrix algebras by the Littlewood-Paley decomposition of its el-
ements.
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Proposition 3.14. Let A be a homogeneous matrix algebra, r > 0, and Φ =
{ϕk}k≥−1 a dyadic partition of unity. Then the norm on the approximation space
Ep
r (A) = Λp

r(A) is equivalent to

(18) ‖A‖Epr (A) ≍

( ∞
∑

k=0

2kpr
∥

∥

∥

∑

⌊2k−1⌋≤|l|∞<2k+1

ϕ̂k(l)Â(l)
∥

∥

∥

p

A

)1/p

.

If A is solid, then

(19) ‖A‖Epr (A) ≍

( ∞
∑

k=−1

2kpr
∥

∥

∥

∑

⌊2k⌋≤|l|∞<2k+1

Â(l)
∥

∥

∥

p

A

)1/p

.

Remark. If the matrix algebra A is solid, similar results can be obtained for ap-
proximation spaces of non-polynomial order [28].

Proof. The results for general homogeneous matrix algebras follow from the Jackson
Bernstein Theorem (Theorem 3.11) and the Littlewood-Paley decomposition. We

still have to prove the norm equivalence (19). Set Ck = ‖
∑

2k≤|l|<2k+1 Â(l)‖A. The

solidity of A implies that, for k ≥ −1,

Bk = ‖ϕk ∗A‖A ≤ ‖
∑

2k−1≤|l|∞<2k+1

Â(l)‖A = Ck−1 + Ck

On the other hand, since φk−1 + φk + φk+1 ≡ 1 on {ξ : 2k−1 ≤ |ξ|2 ≤ 2k+1}, we
obtain Ck ≤ Bk−1 + Bk + Bk+1. So ‖A‖p

Epr (A)
≍

∑∞
k=0 2

kprBk ≍
∑∞

k=−1 2
kprCk,

and this is (19). �

We apply the preceding results to the example of Cp
r (see Section 2.3 for the

definition). We obtain

Eq
s (C

p
r ) = Eq

s+r(C
p
0 ) ,

‖A‖Eqr (Cps ) ≍
(

∞
∑

j=0

2jq(r+s)
(

∑

⌊2−1⌋≤|k|∞<2j

‖A[k]‖p
ℓ∞(Zd)

)q/p
)1/q

≍ ‖A‖Eq
r+s

(Cp0 )
.

In particular,

Ep
s (C

p
r ) = Cp

r+s .

If p 6= q these norms define new classes of inverse-closed subalgebras of B(ℓ2) with
a form of off-diagonal decay suited to approximation with banded matrices.

These results should be compared to the definition of discrete Besov spaces [32].

3.4. Bessel Potential Spaces. Bessel potentials allow us to define an analogue
of polynomial weights in a Banach algebra with an automorphism group. For
homogeneous matrix algebras the Bessel potential spaces are weighted algebras.

We define the Bessel kernel Gr by its Fourier transform,

FGr(ω) = (1 + |2πω|22)
−r/2 , r > 0.

Cw groups. In analogy to the case of real functions we would like to define an
element of the Bessel potential space Pr(A) as an element of the form a = Gr ∗ y
for some y ∈ A. However, the action Gr ∗ y is defined only for y ∈ C(A). Using a
weaker form of continuity for the action of the automorphism group we can extend
the convolution “∗” to the whole algebra for all examples of matrix algebras in
Section 2.3.
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Definition 3.15 ([4, 12]). Let A be a Banach algebra with automorphism group
Ψ. For a ∈ A, a′ ∈ A′ define Ga′,a(t) = 〈a′, ψt(a)〉. Assume that

A′
Ψ = {a′ ∈ A′ : Ga′,a is continuous for all a ∈ A}

is a norm fundamental subspace of A′, that is

‖a‖A = sup{|〈a′, a〉| : a′ ∈ A′
Ψ, ‖a

′‖A′ ≤ 1}

for all a ∈ A. Assume that A is equipped with the weak topology σ(A,A′
Ψ) with

respect to the functionals in A′
Ψ, and

(20)
the convex hull of every σ(A,A′

Ψ)-compact set has σ(A,A′
Ψ)-compact closure.

In this case we call Ψ a Cw group and denote A with the σ(A,A′
Ψ) topology by

Aw, if necessary.

Condition (20) ensures the existence of the “convolution integral” (13) as a
Pettis integral, see below. If σ(A,A′

Ψ) is quasi-complete, i.e., bounded Cauchy nets
converge, then condition (20) is automatically satisfied [29].

Example 3.16.

(1) If A′
Ψ is the predual of A (in particular, if A is a von Neumann algebra)

the quasi-completeness is a consequence of the Banach-Alaoglu theorem.
(2) If A is a Banach function space in the sense of [8], and A′

Ψ is a norm
fundamental order ideal of the Koethe dual A∼, then it is known that
(A, σ(A,A′

Ψ)) is quasi-complete [8, 1.5.2].
(3) If A = C(A) then A′

Ψ = A′. It is well-known that ψt is strongly continuous
at a ∈ A, if and only if it is continuous with respect to the σ(A,A′)-
topology [13, 24], so in this case Aw = A. In this case the condition (20) is
a consequence of the Krein-Smulian theorem.

Remarks. If the group action is uniformly bounded the space A′
Ψ is a norm-closed

subspace of A′. Indeed, if a′k ∈ A′
Ψ and a′k → a′ in norm, then

lim
t→0

Ga′,a(t)−Ga′,a(0) = lim
t→0

〈a′, ψt(a)− a〉 = lim
t→0

lim
k
〈a′k, ψt(a)− a〉

= lim
k

lim
t→0

〈a′k, ψt(a)− a〉 = 0 .

We do not have general conditions when the action of χ on a homogeneous matrix
algebra is a Cw-group. For the specific examples of matrix algebras introduced in
Section 2.3 we can prove that χ is a Cw group.

Example 3.17. Recall that B(ℓ2) is the dual of the trace class operators B1, B(ℓ
2) =

(B1)
′ and the finite rank operators are dense in B1. Adapting a continuity argument

from [16] we verify that (B(ℓ2))′χ ⊇ B1. Indeed, for x, y ∈ ℓ2(Zd) and the rank one
operator (x⊗ y)z = 〈z, y〉x we obtain

Gx⊗y,A(t)−Gx⊗y,A(t) = tr((x ⊗ y)χt(A))− tr((x ⊗ y)A) = 〈x, (χt(A)−A)y〉

=〈x,MtAM−t(y −Mty)〉

As limt→0‖z − Mtz‖ℓ2(Zd) = 0 for every z ∈ ℓ2(Zd), it follows that Gx⊗y,A is
continuous. So, if A′ is a finite rank operator then GA′,A is continuous. As A′

Ψ

is norm closed in A′, and the finite rank operators are dense in B1 we obtain the
continuity of GA′,A for all A′ ∈ B1. We have shown that the space A′

Ψ contains B1.
This implies that A′

Ψ is norm fundamental, and so χ is a Cw-group on B(ℓ2).
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Example 3.18. If A = Sp
r we can argue as follows: Let ℓ∞,p

mr
(Z2d) the mixed norm

space on Z2d with

‖(x(k, l))k,l∈Zd‖ℓ∞,p
mr

= sup
k∈Zd

(
∑

l∈Zd

|x(k, l)|p(1 + |k − l|)rp)1/p

and define (jx)(k, l) = x(l, k). Then we obtain the isometric isomorphism

Sp
r
∼= ℓ∞,p

mr
(Z2d) ∩ j

(

ℓ∞,p
mr

(Z2d)
)

.

From [15, Lemma 1.12] (and using standard facts about sequence spaces, e.g [29,
30.3] we conclude that

(

ℓ∞,p
mr

(Z2d) ∩ j
(

ℓ∞,p
mr

(Z2d)
))∼ ∼= ℓ1,p

′

m−r
(Z2d) + j

(

ℓ1,p
′

m−r
(Z2d)

)

It is routine to verify that GA′,A is continuous for A′ ∈ ℓ1,p
′

m−r
(Z2d) + j

(

ℓ1,p
′

m−r
(Z2d)

)

and A ∈ Sp
r , so Example 3.16 (2) verifies that Sp

r is a Cw-group.

We need the concept of Cw-groups not only to extend the action of a measure
defined in (13) to the whole of A, but also to give a weak type description of this
action.

Proposition 3.19 ([3, 1.2]). If Ψ is a Cw- group for the Banach algebra A, then
for each µ ∈ M(Rd) and each a ∈ A there is an element, denoted as µ ∗ a ∈ A,
such that

〈a′, µ ∗ a〉 =

∫

Rd

〈a′, ψ−t(a)〉 dµ(t)

for all a′ ∈ A′
Ψ . As usual we write

(21) µ ∗ a =

∫

Rd

ψ−t(a) dµ(t) .

We obtain the norm inequality

‖µ ∗ a‖ ≤MΨ‖a‖A‖µ‖M(Rd) .

Remarks. Clearly in special cases the existence of the integral (21) can be verified
directly. In particular, if A = C(A) the integral exists in the sense of Bochner.

The following result is straightforward.

Proposition 3.20. If Ψ is a Cw- group for the Banach algebra A, and Ga′,a(t) =
〈a′, ψt(a)〉 for a

′ ∈ A′
Ψ, a ∈ A, then

‖a‖A ≍ sup{‖Ga′,a‖∞ : a′ ∈ A′
Ψ, ‖a

′‖A′ ≤ 1} .

Moreover,

(22) Ga′,µ∗a = µ ∗Ga′,a .

Before defining Bessel potential spaces we list properties of the Bessel kernel that
will be needed in the sequel.

Lemma 3.21 ([38, V.5]).

(1) Gr ∈ Λ∞
r (L1(Rd)) , ‖Gr‖L1(Rd) = 1,

(2) Gr ∗ Gs = Gr+s for all r, s > 0,
(3) Gr ∗ S = {Gr ∗ ϕ : ϕ ∈ S } = S .

Definition 3.22. Let A be a Banach space and Ψ a Cw- group acting on A (this
includes the case A = C(A)). The Bessel potential space of order r > 0 is

Pr(A) = Gr ∗ A = {a ∈ A : a = Gr ∗ y for some y ∈ A}

with the norm
‖Gr ∗ y‖Pr(A) = ‖y‖A.
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We have to verify that the definition of the norm on Pr(A) is consistent, that
is, we show that the convolution with Gr is injective on A. We use a weak type
argument.

Let y ∈ A with Gr ∗ y = 0. This is equivalent to

Ga′,Gr∗y(t) = Gr ∗Ga′,y(t) = 0

for all t ∈ Rd and all a′ ∈ A′
Ψ. Now we proceed as in [38, V.3.3]. We choose a test

function ϕ ∈ S and obtain
∫

Rd

(Gr ∗Ga′,y)(t)ϕ(t) dt =

∫

Rd

Ga′,y(t)(Gr ∗ ϕ)(t) dt = 0 .

By Lemma 3.21 (3) the convolution with Gr is surjective on S , and so it follows
that Ga′,y = 0 for all a′ ∈ A′

Ψ, that is, y = 0.

An immediate consequence of Definition 3.22 is the embedding Pr(A) →֒ A.
Indeed, if a ∈ Pr(A), then a = Gr ∗ y for a y ∈ A, and

(23) ‖a‖A ≤ ‖Gr‖L1(Rd)‖y‖A = ‖Gr‖L1(Rd)‖a‖Pr(A).

As Gr ∗ Gs = Gr+s for r, s > 0 we obtain a useful reiteration property for the
Bessel potential spaces.

Proposition 3.23. If A is a Banach algebra and Ψ a Cw-automorphism group on
A, then for all r, s > 0

Pr(Ps(A)) = Pr+s(A) .

Proof. We have to verify that Ψ is a Cw-automorphism group on Pr(A). For this
we show that the dual pairing defined by

〈a′,Gr ∗ y〉A′
Ψ
×Pr(A) = 〈a′, y〉A′×A

yields a norm-fundamental subspace of Pr(A)′. As

|〈a′,Gr ∗ y〉A′
Ψ
×Pr(A)| ≤ ‖a′‖A′‖y‖A = ‖a′‖A′‖Gr ∗ y‖Pr(A)

the mapping z 7→ 〈a′, z〉A′
Ψ
×Pr(A) is continuous for every a′ ∈ A′

Ψ, so Pr(A)′Ψ ⊃

A′
Ψ. Moreover, a straightforward computation shows that ‖a′‖Pr(A)′ = ‖a′‖A′ . By

definition t 7→ 〈a′, ψtz〉A′
Ψ
×Pr(A) is continuous for each a

′ ∈ A′
Ψ and each z ∈ Pr(A).

Finally, A′
Ψ is norm fundamental, as we have for z = Gr ∗ y

sup{|〈a′, y〉A′
Ψ
×Pr(A)| : a

′ ∈ A′
Ψ, ‖a

′‖Pr(A)′ ≤ 1}

=sup{|〈a′, y〉A′×A| : a
′ ∈ A′

Ψ, ‖a
′‖A′ ≤ 1}

=‖y‖A = ‖z‖Pr(A)

�

3.4.1. Characterization by Hypersingular Integrals.

Lemma 3.24. If a ∈ Pr(A), then ‖a‖Pr(A) ≍ sup‖a′‖A′≤1‖Ga′,a‖Pr(L∞), where the

dual pairing in Ga′,a is the one of A′
Ψ ×A.

Proof. Let a = Gr ∗ y. Then

‖a‖Pr(A) =‖y‖A ≍ sup
‖a′‖A′≤1

‖Ga′,y‖∞

= sup
‖a′‖A′≤1

‖Gr ∗Ga′,y‖Pr(L∞) = sup
‖a′‖A′≤1

‖Ga′,Gr∗y‖Pr(L∞) . �

We state a special case of a result by Wheeden [46] (see also [37],[38, V.6.10]).
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Theorem 3.25. Let 0 < r < 2. A function f is an element of Pr(L
∞(Rd)) if and

only if f ∈ L∞(Rd) and

(24) sup
ǫ>0

∥

∥

∥

∫

|t|2≥ǫ

|t|−r
2 ∆t(f)

dt

|t|d2

∥

∥

∥

L∞(Rd)
<∞.

If (24) holds,

(25) ‖f‖L∞(Rd) + sup
ǫ>0

∥

∥

∥

∫

|t|2≥ǫ

|t|−r
2 ∆t(f)

dt

|t|d2

∥

∥

∥

L∞(Rd)
<∞

defines an equivalent norm on Pr(L
∞(Rd)).

Combining Lemma 3.24 with Theorem 3.25 we obtain the first statement of the
following theorem.

Theorem 3.26. Let A be a Banach algebra and Ψ a Cw-automorphism group
acting on it. For 0 < r < 2 the norm ‖a‖Pr(A) is equivalent to

(26) ‖a‖A + sup
ǫ>0

∥

∥

∥

∫

|t|2≥ǫ

|t|−r
2 ∆t(a)

dt

|t|d2

∥

∥

∥

A
.

This norm is further equivalent to

‖a‖A + sup
ǫ>0

∥

∥

∥

∫

ǫ≤|t|2≤1

∆t(a)

|t|r2

dt

|t|d2

∥

∥

∥

A
.

Proof. We only show the second statement. As
∥

∥

∥

∫

ǫ≤|t|2

∆t(a)

|t|r2

dt

|t|d2

∥

∥

∥

A
≤

∥

∥

∥

∫

ǫ≤|t|2≤1

∆t(a)

|t|r2

dt

|t|d2

∥

∥

∥

A
+
∥

∥

∥

∫

|t|2≥1

∆t(a)

|t|r2

dt

|t|d2

∥

∥

∥

A

≤
∥

∥

∥

∫

ǫ≤|t|2≤1

∆t(a)

|t|r2

dt

|t|d2

∥

∥

∥

A
+ (1 +MΨ)‖a‖A

∫

|t|2≥1

|t|−r
2

dt

|t|d2

≤ C(‖a‖A +
∥

∥

∥

∫

ǫ≤|t|2≤1

∆t(a)

|t|r2

dt

|t|d2

∥

∥

∥

A
) ,

the proof of the other inequality works in a similar way. �

Next we compare Bessel potential spaces with Besov spaces.

Proposition 3.27. If A is Banach algebra with Cw-automorphism group Ψ, then

Λ1
r(A) →֒ Pr(A) →֒ Λ∞

r (A) if r > 0.

Proof. For the proof of the embedding Pr(A) →֒ Λ∞
r (A) let a ∈ Pr(A) with a =

Gr ∗ y, y ∈ A. The seminorm |a|Λ∞
r (A) can be estimated for k > ⌊r⌋ as

|a|Λ∞
r (A) = sup

|t|6=0

‖∆k
t (Gr ∗ y)‖A

|t|r
= sup

|t|6=0

‖
∆k

t (Gr)

|t|r
∗ y‖A

≤ sup
|t|6=0

‖
∆k

t (Gr)

|t|r
‖L1(Rd)‖y‖A = ‖Gr‖Λ∞

r (L1)‖a‖Pr(A) ,

and this is the desired embedding. We still have to verify the first inclusion. Assume
first that 0 < r < 1. By Theorem 3.26, for an a ∈ Pr(A)

‖a‖Pr(A) ≍ ‖a‖A + sup
ǫ>0

∥

∥

∥

∫

|t|2≥ǫ

|t|−r
2 ∆t(a)

dt

|t|d2

∥

∥

∥

A

≤ ‖a‖A +

∫

Rd

|t|−r
2 ‖∆t(a)‖A

dt

|t|d2
= ‖a‖Λ1

r(A) .
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In the general case we proceed by induction. Assume that the statement is true for
all positive values up to s > 0, and s < r < s+ 1. Then

Λ1
r(A) = Λ1

r−s(Λ
1
s(A)) ⊆ Pr−s(Λ

1
s(A)) ⊆ Pr−s(Ps(A)) = Pr(A) ,

where we have used the reiteration theorems for the Bessel and the Besov spaces
(Theorem 3.7). �

Another application of the reiteration theorem and the representation of the
norm of Pr(A) by the hypersingular integral (26) shows how Besov spaces and
Bessel potential spaces interact.

Proposition 3.28. If A is a Banach algebra with Cw-automorphism group Ψ, then
for all r, s > 0 and 1 ≤ p ≤ ∞

(27) Pr(Λ
p
s(A)) = Λp

s(Pr(A)) = Λp
r+s(A) .

Proof. Again, we need to know first that Ψ is a Cw-automorphism group on Λp
r(A).

If p < ∞ then C(Λp
r(A)) = Λp

r(A) by Proposition 3.6. If p = ∞ the assertion
follows from

‖a‖Λ∞
r (A) = sup

|t|6=0

sup{〈a′,
∆k

t (a)

|t|r
〉 : a′ ∈ A′

Ψ, ‖a
′‖A′ ≤ 1} .

The details are similar to the proof of the analogue statement in Proposition 3.23
and are left to the reader.

Using the reiteration theorems for Bessel potential spaces and Besov spaces,
it suffices to prove the proposition only for 0 < r, s < 1. We show first that
Pr(Λ

p
s(A)) →֒ Λp

s(Pr(A)). Assume that a ∈ Pr(Λ
p
s(A)), so a = Gr ∗ y with y ∈

Λp
s(A). We obtain the following estimate.

‖a‖p
Λps(Pr(A))

=

∫

Rd

‖∆t(a)‖
p
Pr(A)

|t|sp
dt

|t|d

=

∫

Rd

‖∆t(Gr ∗ y)‖
p
Pr(A)

|t|sp
dt

|t|d

=

∫

Rd

‖Gr ∗∆t(y)‖
p
Pr(A)

|t|sp
dt

|t|d

=

∫

Rd

‖∆t(y)‖
p
A

|t|sp
dt

|t|d

=‖y‖p
Λps(A)

= ‖Gr ∗ y‖
p
Pr(Λ

p
s(A))

.

Now let a = Gr ∗ y ∈ Pr(Λ
p
s(A)). Then

‖a‖p
Pr(Λ

p
s(A))

=‖Gr ∗ y‖
p
Pr(Λ

p
s (A))

= ‖y‖p
Λps(A)

=

∫

Rd

‖∆t(y)‖
p
A

|t|sp
dt

|t|d2

=

∫

Rd

‖∆t(Gr ∗ y)‖
p
Pr(A)

|t|sp
dt

|t|d2
=‖Gr ∗ y‖Λps(Pr(A)) = ‖a‖Λps(Pr(A)) .

Consequently Pr(Λ
p
s(A)) = Λp

s(Pr(A)). Finally, Proposition 3.27 implies that

Λp
s(Λ

1
r(A)) →֒ Λp

s(Pr(A)) →֒ Λp
s(Λ

∞
r (A)) ,

and the first and last space in this chain equal Λp
r+s(A) by the reiteration theorem

for Besov spaces (Theorem 3.7). �
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Algebra Properties. The characterization of Bessel potential spaces by a hypersin-
gular integral yields the Banach algebra properties of Pr(A).

Theorem 3.29. If A is a Banach algebra with Cw-group Ψ, then the Bessel po-
tential space Pr(A) is a Banach subalgebra of A for every r > 0. Moreover, Pr(A)
is inverse-closed in A.

For functions in Pr(L
∞(Rd) this result is in Strichartz [39].

Proof. We treat the case r < 1 first. Let a, b ∈ Pr(A). Using

∆t(ab) = ∆t(a)∆t(b) + a∆t(b) + ∆t(a)b

we obtain
∥

∥

∥

∫

ǫ≤|t|2≤1

∆t(ab)

|t|r2

dt

|t|d2

∥

∥

∥

A
≤

∥

∥

∥

∫

ǫ≤|t|2≤1

∆t(a)∆t(b)

|t|r2

dt

|t|d2

∥

∥

∥

A

+
∥

∥

∥
a

∫

ǫ≤|t|2≤1

∆t(b)

|t|r2

dt

|t|d2

∥

∥

∥

A
+
∥

∥

∥

(

∫

ǫ≤|t|2≤1

∆t(a)

|t|r2

dt

|t|d2

)

b
∥

∥

∥

A
.

(28)

The second and third term of the expression on the right hand side of the inequality
are dominated by

‖a‖A‖b‖Pr(A) + ‖a‖Pr(A)‖b‖A . ‖a‖Pr(A)‖b‖Pr(A) .

For the estimation of the first term in (28) we use the embedding Pr(A) →֒
Λ∞
r (A) (Proposition 3.27), so ‖∆ta‖A . |t|r2‖a‖Pr(A), with a similar estimate for

b. Therefore
∥

∥

∥

∫

ǫ≤|t|2≤1

∆t(a)∆t(b)

|t|r2

dt

|t|d2

∥

∥

∥

A
. ‖a‖Pr(A)‖b‖Pr(A)

∫

0≤|t|2≤1

|t|r2
dt

|t|d2
≤ Cr‖a‖Pr(A)‖b‖Pr(A) ,

and Cr does not depend on ǫ. Combining the estimates we have proved that

‖ab‖Pr(A) . ‖a‖Pr(A)‖b‖Pr(A).

For the verification of the inverse-closedness of Pr(A) in A we use a similar
argument: Expand the identity ((10)) to obtain

∆t(a
−1) = −∆t(a

−1)∆t(a)a
−1 − a−1∆t(a)a

−1.

So

(29)
∥

∥

∥

∫

ǫ≤|t|2≤1

∆t(a
−1)

|t|r2

dt

|t|d2

∥

∥

∥

A
≤

∥

∥

∥

∫

ǫ≤|t|2≤1

∆t(a
−1)∆t(a)a

−1

|t|r2

dt

|t|d2

∥

∥

∥

A

+
∥

∥

∥

∫

ǫ≤|t|2≤1

a−1∆t(a)a
−1

|t|r2

dt

|t|d2

∥

∥

∥

A
.

As a ∈ Λ∞
r (A), we know that ‖∆t(a)‖A . |t|r2‖a‖Λ∞

r (A) , and, as Λ
∞
r (A) is inverse-

closed in A, ‖∆t(a
−1)‖A . |t|r2‖a

−1‖Λ∞
r (A).

The first term on the right hand side of (29) can be dominated by

∫

ǫ≤|t|2≤1

‖∆t(a
−1)‖A‖∆ta‖A‖a

−1‖A
|t|r2

dt

|t|d2
. ‖a−1‖Λ∞

r (A)‖a‖Λ∞
r (A)‖a‖A

The second term can be estimated as

∥

∥

∥

∫

ǫ≤|t|2≤1

a−1∆t(a)a
−1

|t|r2

dt

|t|d2

∥

∥

∥

A
=
∥

∥

∥
a−1

(

∫

ǫ≤|t|2≤1

∆t(a)

|t|r2

dt

|t|d2

)

a−1
∥

∥

∥

A

.‖a−1‖2A‖a‖Pr(A).

As Λ∞
r (A) is inverse-closed in A we obtain the inverse-closedness of Pr(A) in A.



18 ANDREAS KLOTZ

If r ≥ 1 we can proceed by induction. Assume that we have already proved that
Ps(A) is inverse-closed in A, and s < r < s + 1. By what we have just proved
Pr(A) = Pr−s(Ps(A)) is inverse-closed in Ps(A). As Ps(A) is inverse-closed in A
by hypotheses we are done. �

3.4.2. Application to Weighted Matrix Algebras. We call v∗r (k) = (1+ |2πk|22)
r/2 for

r > 0 the Bessel weight of order r. If A is a Banach space of matrices, we say that a
matrix A is in the weighted matrix space Avr , where vr is the standard polynomial
weight vr(k) = (1 + |k|)r, if the matrix with entries A(k, l)vr(k − l) is in A. The
norm in Avr is ‖A‖Avr = ‖(A(k, l)vr(k− l))k,l∈Zd‖A. In a similar way we introduce
Av∗

r
.

Proposition 3.30. If A is a homogeneous matrix algebra, and χ is a Cw- group
on A, then

Av∗
r
= Pr(A) .

Proof. By definition A is in Pr(A), if there is a A0 ∈ A such that A = Gr ∗ A0.
This is equivalent to

Â(k) = (1 + |2πk|2)−r/2Â0(k) ,

or Â0(k) = (1 + |2πk|2)r/2Â(k), and therefore

‖A‖Pr(A) = ‖A0‖A = ‖A‖Av∗r ,

i.e., A ∈ Av∗
r
. �

Proposition 3.31. If A is a homogeneous matrix algebra, χ is a Cw- group on
A, and v∗r , r > 0, is a Bessel weight, then Av∗

r
= Pr(A) is a matrix algebra. This

algebra is inverse-closed in A.

Proof. This is an application of Theorem 3.29. �

Proposition 3.31 applies in particular to the weighted subalgebras of B(ℓ2).
For solid matrix algebras the standard polynomial weights vr can be taken in-

stead of v∗r .

Corollary 3.32. If A is a solid matrix algebra, and χ is a Cw- group on A, then
Avr is an inverse-closed subalgebra of A.

We state the results of Proposition 3.27 and Proposition 3.28 for weighted matrix
algebras.

Proposition 3.33. If A is a homogeneous matrix algebra, and r, s > 0, then

Λ1
r(A) →֒ Av∗

r
→֒ Λr

∞(A),

Λp
r(Av∗

s
) = Ep

r (Av∗
s
) = (Λp

r(A))v∗
s
= Λp

r+s(A) = Ep
r+s(A).

Example 3.34. For the Schur algebras Sp
r we obtain

Eq
s (S

p
r ) = Eq

s+r(S
p
0 ) .

Appendix A. Proof of the Reiteration theorem

We give a proof of Theorem 3.7. We need some properties of the moduli of
smoothness.

Lemma A.1. If l, k ∈ N, l ≥ k, t ∈ Rd and h > 0, then

(1) ‖∆l
t(x)‖X ≤ (MΨ + 1)k‖∆l−k

t (x)‖X and ωl
h(x) ≤ (MΨ + 1)kωl−k

h (x) ,
(2)

ωk
t (x) ≍ sup

|hj |≤t
1≤j≤k

‖
(

k
∏

j=1

∆hj

)

x‖X .
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The proof of (1) is an easy calculation in complete analogy to the corresponding
properties of the moduli of smoothness for functions. See, e.g., [18]. Item 2 is
proved in [8, 5.4.11].

Proof of the Reiteration theorem. We assume first that x is in Λq
s+r(A) and esti-

mate ‖x‖Λqs(Λpr (A)). As ‖x‖Λqs(Λpr (A)) = ‖x‖Λpr(A) + |x|Λqs(Λpr (A)) and the inclusion
relations of Besov spaces imply that ‖x‖Λpr(A) ≤ C‖x‖Λq

r+s
(A), it suffices to esti-

mate |x|Λqs(Λpr (A)).
Assume that ⌊r⌋ < m and ⌊s⌋ < n, m,n ∈ N. Using the norm equivalences in

(7) we can write

|x|Λqs(Λpr (A)) ≍

{

∫

R+

[

h−sωn+m
h (x,Λp

r(A))
]q dh

h

}1/q

= ‖h−sωn+m
h (x,Λp

r(A))‖Lq∗ ,

(30)

where ‖f‖Lq∗ =
(∫∞

0 f(t)q dt
t

)1/q
. An estimate of the modulus of smoothness is

ωn+m
h (x,Λp

r(A)) = sup
|u|≤h

‖∆n+m
u x‖Λpr(A)

≤ sup
|u|≤h

‖∆n+m
u x‖A + sup

|u|≤h

|∆n+m
u x|Λpr(A)

. sup
|u|≤h

‖∆n+m
u x‖A + sup

|u|≤h

|∆n+m
u x|Λ1

r(A) ,

(31)

where the last inequality uses the embedding Λ1
r(A) →֒ Λp

r(A) for p ≥ 1.
Inserting this estimate into (30) we obtain

(32) |x|Λqs(Λpr (A)) . |x|Λqs(A) + ‖h−s sup
|u|≤h

|∆n+m
u x|Λ1

r(A)‖Lq∗ .

With φ(v, u) = ‖∆n+m
v ∆n+m

u x‖A the Lq
∗-norm in (32) can be rewritten as

‖h−s sup
|u|≤h

∫

R+

t−r sup
|v|≤t

φ(v, u)
dt

t
‖Lq∗

≤ ‖h−s sup
|u|≤h

∫ h

0

t−r sup
|v|≤t

φ(v, u)
dt

t
‖Lq∗ + ‖h−s sup

|u|≤h

∫ ∞

h

t−r sup
|v|≤t

φ(v, u)
dt

t
‖Lq∗

=: I + II.

We can estimate the first term further using Hardy’s inequality.

Iq =

∫ ∞

0

h−sq sup
|u|≤h

[
∫ h

0

sup
|v|≤t

t−rφ(v, u)
dt

t

]q
dh

h

≤

∫ ∞

0

h−sq

[
∫ h

0

sup
|v|,|u|≤h

t−rφ(v, u)
dt

t

]q
dh

h

(∗)

.

∫ ∞

0

(

t−(r+s) sup
|v|,|u|≤t

φ(v, u)

)q
dt

t

(∗∗)

.

∫ ∞

0

(

t−(r+s)ω
2(n+m)
t (x,A)

)q
dt

t
= |x|q

Λq
r+s

(A)
,

(∗) by Hardy’s inequality, and (∗∗) using Lemma A.1(2). For the second term we
use (1) of Lemma A.1 to get

φ(v, u) = ‖∆n+m
v ∆n+m

u x‖A . ‖∆n+m
u x‖A.
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Then sup|v|≤t φ(u, v) is independent of t, and

IIq .

∫ ∞

0

(

h−s sup
|u|≤h

∫ ∞

h

t−r‖∆n+m
u x‖A

dt

t

)q
dh

h

=

∫ ∞

0

h−(r+s)q sup
|u|≤h

‖∆n+m
u x‖qA

dh

h
= |x|q

Λq
r+s

(A)
.

(33)

I and II together give the desired estimate.
For the converse assume that x ∈ Λq

s(Λ
p
r(A)). Then,

|x|q
Λq
r+s

(A)
≍

∫

Rd

(

|t|−(r+s)‖∆n+m
t x‖A

)q
dt

|t|d

≍

∫

Rd

|t|−rq

(
∫

|η|≥|t|

|η|−sp‖∆n+m
t x‖pA

dη

|η|d

)q/p
dt

|t|d2
,

(34)

where we have used |t|−s ≍
(∫

|η|≥|t||η|
−sp dη

|η|d2

)1/p
for the last equivalence. As

‖∆n+m
t x‖A ≤ sup|v|≤|η|‖∆

m
v ∆n

t ‖A for |η| ≥ |t| , we can dominate the right hand

side of (34) by
∫

Rd

|t|−rq sup
|u|≤|t|

(
∫

|η|≥|t|

|η|−sp sup
|v|≤|η|

‖∆n
v∆

m
u x‖

p
A

dη

|η|d

)q/p
dt

|t|d

≤

∫

Rd

|t|−rq sup
|u|≤|t|

(
∫

Rd

|η|−sp sup
|v|≤|η|

‖∆n
v∆

m
u x‖

p
A

dη

|η|d

)q/p
dt

|t|d

≤

∫

Rd

|t|−rq sup
|u|≤|t|

(|∆m
u x|Λps (A))

q dt

|t|d

≤ |x|q
Λqr(Λ

p
s(A))

.

�

Appendix B. Jackson Bernstein Theorem

Proposition B.1 ([20, 5.12]). Let a ∈ A and σ > 0.

(1) There is a σ-bandlimited element aσ ∈ C(A) such that

‖a− aσ‖A ≤ Cω1/σ(a)

with C independent of σ and a.
(2) If δα(a) ∈ C(A), for all multi-indices α with |α| = k then there exists a

σ-bandlimited element aσ ∈ A such that

‖a− aσ‖A ≤ Cσ−k
∑

|α|=k

ω2
1/σ(δ

αa) .

Corollary B.2. If a ∈ Λp
r(A) for r > 0, then a ∈ Ep

r (A).

Proof. We use the integral version of the norm for an approximation space in (4)
and assume that 1 ≤ p <∞. The proof for p = ∞ is simpler and done in [20].

Assume first that 0 < r < 1. Then, by Proposition B.1(1),
∫ ∞

1

(

Eσ(a)σ
r
)p dσ

σ
≤ C

∫ 1

0

(

ωτ (a)τ
−r

)p dτ

τ
≤ C|a|p

Λpr (A)
,

and so the approximation norm is dominated by the Besov norm.
Likewise, if r = k + η, 0 < η ≤ 1, and k ∈ N, Proposition B.1(2) yields

∫ ∞

1

(

Eσ(a)σ
r
)p dσ

σ
≤ C

∑

|α|=k

∫ 1

0

(

ω2
τ (δ

α(a))τ−η
)p dτ

τ
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and again ‖a‖Epr (A) is dominated by the Besov norm. �

Before proving the converse implication in Theorem 3.11, i.e., the Bernstein-type
result, we need a mean-value property of automorphism groups.

Lemma B.3 ([20, 5.15]). If a is σ-bandlimited, then

(35) ‖∆ta‖A ≤ Cσ |t| ‖a‖A .

Proposition B.4. Let a ∈ A, and r > 0, 1 ≤ p ≤ ∞. If a ∈ Ep
r (A), then

a ∈ Λp
r(A).

Proof. We adapt a standard proof [14] and verify the statement for p < ∞. If
a ∈ Ep

r (A), the representation theorem of approximation theory (see, e.g [33, 3.1])
implies that

(36) a =

∞
∑

k=0

ak, with ak ∈ X2k and

∞
∑

k=0

2krp‖ak‖
p
A <∞ ,

where (Xσ)σ≥0 is the approximation scheme of bandlimited elements, and

‖a‖Epr (A) ≍
(

∞
∑

k=0

2krp‖ak‖
p
A

)1/p
,

where the infimum is taken over all admissible representations as in (36). An
application of Hölders inequality shows that

∑∞
k=0 ak is convergent in A. Note

that (36) implies that ‖ak‖A ≤ C2−krfor all k ∈ N0.
We assume first that 0 < r < 1. We need an estimate for the norm of ∆ta.

‖∆ta‖A ≤
M
∑

k=0

‖∆tak‖A +
∞
∑

k=M+1

‖∆tak‖A

≤
M
∑

k=0

‖∆tak‖A + (MΨ + 1)
∞
∑

k=M+1

‖ak‖A ,

(37)

where the value of M will be chosen later.
Lemma B.3 implies that

‖∆tak‖A ≤ C2k|t| ‖ak‖A

for all k ∈ N. Substituting back into (37) yields

(38) ‖∆ta‖A ≤ C
(

M
∑

k=0

2k|t|‖ak‖A +

∞
∑

k=M+1

‖ak‖A

)

.

We use this relation for the estimation of the Besov seminorm.

|a|Λpr(A) ≍

( ∞
∑

l=0

(

2lrω2−l(a)
)p
)1/p

.

( ∞
∑

l=0

2lrp
(

M
∑

k=0

2k2−l‖ak‖A +
∞
∑

k=M+1

‖ak‖A

)p
)1/p

.

We split this expression into two parts and assume that M = l in the inner sums.

|a|Λpr (A) .

( ∞
∑

l=0

2l(r−1)p
(

l
∑

k=0

2k‖ak‖A

)p
)1/p

+

( ∞
∑

l=0

2lrp
(

∞
∑

k=l+1

‖ak‖A

)p
)1/p

.
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We apply Hardy’s inequalities to both terms on the right hand side and obtain

|a|Λpr (A) .
(

∞
∑

l=0

2l(r−1)p2lp‖al‖
p
A

)1/p

+
(

∞
∑

l=0

2lrp‖al‖
p
A

)1/p

= 2
(

∞
∑

l=0

2lrp‖al‖
p
A

)1/p

.

As the representations a =
∑∞

k=0 ak were arbitrary we conclude that |a|Λpr(A) .

‖a‖Epr (A), using again the representation theorem. Next we consider the case r =
m+ η for m ∈ N0 and 0 < η < 1. The Bernstein inequality implies that

‖δα(ak)‖A ≤ C(2π2k)|α|‖ak‖A

for all k ∈ N and α ∈ N
d
0. Consequently

∑∞
k=0 δ

αak converges in A for all α with
|α| ≤ m and its sum must be δα(a) , as each δj is closed on D(δα). We now apply
the above estimates δα(a) instead of a and deduce that δα(a) must be in Λp

η(A) for
|α| ≤ k. Thus a ∈ Λp

r(A).
If r is an integer, then we have to use second order differences and a corresponding

version of the mean value theorem. The argument is almost the same as above
(see [45] for details in the scalar case). �

Combining Propositions B.2 and B.4, we have completed the proof of Theo-
rem 3.11.

Appendix C. Littlewood-Paley decomposition

Proof of Proposition 3.12. We include the derivation of the relevant results to keep
the presentation self-contained. We follow [9], but we use approximation arguments
where feasible.

We use some obvious facts of the dyadic partition of unity (ϕk)k≥−1. By
definition, supp ϕ̂k = 2k supp ϕ̂ ⊆ {ω : 2k−1 ≤ |ω|∞ ≤ 2k+1} for k ≥ 0, and
suppϕ−1 ⊆ {ω : |ω|∞ ≤ 1}. As the intersection of supp(ϕ̂k) with supp(ϕ̂l) is
nonempty only for l ∈ {k−1, k, k+1} we obtain that ϕk = ϕk ∗ (ϕk−1+ϕk+ϕk+1)
if k ≥ 0, and ϕ−1 = ϕ−1 ∗ (ϕ−1 + ϕ0).

Assume first that (16) holds. Then ‖ϕk ∗ a‖A ≤ C2−rk, and so
∑∞

k=−1 ϕk ∗ a
is norm convergent in A. A standard weak type argument shows that the limit is
actually a.

For a ∈ Λp
r(A) and m > ⌊r⌋ we use ‖a‖Λpr(A) ≍ ‖a‖A+

(
∑∞

k=0(2
rkωm

2−k(a))
p
)1/p

.
As ‖∆m

t (ϕk ∗ a)‖A ≤ Cm‖ϕk ∗ a‖A by Lemma A.1 (1), and ‖∆m
t (ϕk ∗ a)‖A ≤

C′|t|m2mk‖ϕk ∗ a‖A by repeated application of Lemma B.3 we conclude that

(39) ‖∆m
t (ϕk ∗ a)‖A ≤ C1 min(1, |t|m2mk)‖ϕk ∗ a‖A .

As an immediate consequence we obtain

(40) ωm
|t|(a) ≤ C1

∞
∑

k=−1

min(1, tm2mk)‖ϕk ∗ a‖A ,

and so

(41) 2rjωm
2−j (a) ≤ C1

∞
∑

k=1

2(j−k)r2kr min(1, 2−(j−k)m)‖ϕk ∗ a‖A .

The right hand side of this relation can be written as a convolution. If we set
u(l) = min(1, 2−lm)2lr for l ∈ Z, and v(l) = 2lr‖ϕl ∗ a‖A if l > −1 and 0 else, then
u and v are sequences in ℓ1(Z), and the right hand side of (41) is just (u ∗ v)(j).



SPECTRAL INVARIANCE OF BESOV-BESSEL SUBALGEBRAS 23

So ‖
(

2rjωm
2−j(a)

)

j∈N
‖ℓp(N) ≤ C‖u‖ℓ1(Z)‖v‖ℓp(Z), and this means that

(42) ‖a‖Λpr(A) ≤ C
(

∞
∑

k=−1

2rkp‖ϕk ∗ a‖
p
A

)1/p

,

so (16) implies that a ∈ Λp
r(A).

For the other inequality we use ‖a‖Λpr(A) ≍ ‖a‖A +
∑

|α|=m‖δα(a)‖Λp
r−m

(A) with

m < r ≤ m+ 1.
First we show that

(43) ‖ϕk ∗ a‖A ≤ C2−mk‖ϕk ∗ δα(a)‖A , m = |α|

and

(44) ‖ϕk ∗ δ
α(a)‖A ≤ Cω2

2−k(δ
αa).

For the proof of these relations choose an even function Φ ∈ S(Rd) such that Φ̂ ≡ 1

on supp ϕ̂0, and Φ̂ ≡ 0 in a neighbourhood of 0. Set Φk(t) = 2kdΦ(2kt), then

‖Φk‖1 = ‖Φ‖1 and Φk ∗ ϕk = ϕk. The function η̂(α) : ω → (2πiω)−αΦ̂(ω) is an

element of S . Again, if we set η
(α)
k (t) = 2kdη(α)(2kt), then ‖η

(α)
k ‖1 = ‖η(α)‖1.

Then Φ̂k(ω) = Φ̂(2−kω) = 2−k|α|(2πiω)αη̂
(α)
k (w) , and so, assuming that |α| = m,

we obtain ϕ̂k(ω) = 2−kmη̂
(α)
k (ω)(2πiω)αϕ̂k(ω) for all ω ∈ Rd, which implies

ϕk ∗ a = 2−kmη
(α)
k ∗ δα(ϕk ∗ a) = 2−kmη

(α)
k ∗ ϕk ∗ δ

α(a),

the last equality by (14). Now (43) follows immediately.
For the proof of (44) set y = δα(a) and yk = ϕk ∗ y = Φk ∗ ϕk ∗ y = Φk ∗ yk. We

obtain

ϕk ∗ y = Φk ∗ yk =

∫

Rd

Φk(t)ψ−t(yk) dt

= 1
2

∫

Rd

Φk(t)
{

ψ−t(yk)− 2yk + ψt(yk)
}

dt = 1
2

∫

Rd

Φk(t)ψ−t∆
2
t (yk) dt ,

as
∫

Rd
Φk = 0 and Φk(−t) = Φk(t). Changing variables we obtain

ϕk ∗ y = 1
2

∫

Rd

Φ(u)ψ−2−ku∆
2
2−ku(yk) dt =

1
2

∫

Rd

Φ(u)ψ−2−ku

(

ϕk ∗∆
2
2−ku(y)

)

dt.

Taking norms we get

‖ϕk ∗ y‖A ≤
Mψ

2

∫

Rd

|Φ(u)|‖ϕk‖1ω
2
2−k|u|(y) dt.

≤
Mψ

2 ‖ϕ0‖1

∫

Rd

|Φ(u)|(1 + |u|2)ω2
2−k(y) dt

≤ Cω2
2−k(y) ,

where the estimate for ω2
2−k|u|(y) follows from Lemma A.1. This is what we wanted

to show.
The proof of the reverse inclusion now follows by putting (43) and (44) together.

2rk‖ϕk ∗ a‖A ≤ C2(r−m)k‖ϕk ∗ δ
α(a)‖A ≤ C2(r−m)kω2

2−k(δ
α(a)) ,

and so
∞
∑

k=−1

2rpk‖ϕk ∗ a‖
p
A ≤ C

(

‖a‖pA +
∞
∑

k=0

2(r−m)pkω2
2−k(δ

α(a))p
)

≤ C′(‖a‖pA + |δα(a)|p
Λp
r−m

(A)
) ≤ C”‖a‖p

Λp
r−m

(A)
.

(45)

We have shown that a ∈ Λp
r(A) implies (16). The norm equivalence follows from

(42) and (45). �
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on Harmonic Analysis.
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[29] G. Köthe. Topological vector spaces. I. Translated from the German by D. J. H. Garling. Die
Grundlehren der mathematischen Wissenschaften, Band 159. Springer-Verlag New York Inc.,
New York, 1969.

[30] T. W. Palmer. Banach algebras and the general theory of ∗-algebras. Vol. I, volume 49 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
1994. Algebras and Banach algebras.

[31] J. Peetre. New thoughts on Besov spaces. Mathematics Department, Duke University,
Durham, N.C., 1976. Duke University Mathematics Series, No. 1.

[32] A. Pietsch. Eigenvalues of integral operators. I. Math. Ann., 247(2):169–178, 1980.
[33] A. Pietsch. Approximation spaces. J. Approx. Theory, 32(2):115–134, 1981.
[34] V. S. Rabinovich, S. Roch, and B. Silbermann. Fredholm theory and finite section method

for band-dominated operators. Integral Equations Operator Theory, 30(4):452–495, 1998.
Dedicated to the memory of Mark Grigorievich Krein (1907–1989).

[35] V. S. Rabinovich, S. Roch, and B. Silbermann. Limit operators and their applications in
operator theory, volume 150 of Operator Theory: Advances and Applications. Birkhäuser
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