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Abstract. In this paper, we study k-parabolic arrangements, a generalization

of the k-equal arrangement for any finite real reflection group. When k =
2, these arrangements correspond to the well-studied Coxeter arrangements.

We construct a cell complex Permk(W ) that is homotopy equivalent to the

complement. We then apply discrete Morse theory to obtain a minimal cell
complex for the complement. As a result, we give combinatorial interpretations

for the Betti numbers, and show that the homology groups are torsion free.

We also study a generalization of the Independence Complex of a graph, and
show that this generalization is shellable when the graph is a forest. This

result is used in studying Permk(W ) using discrete Morse theory.

1. Introduction

A subspace arrangement A is a collection of linear subspaces of a finite-dimensional
vector space V , such that there are no proper containments among the subspaces.
Examples of subspace arrangements include real and complex hyperplane arrange-
ments. One of the main questions regarding subspace arrangements is to study the
structure of the complement M(A ) = V − ∪X∈AX. Many results regarding the
homology and homotopy theory ofM(A ) can be found in the book Arrangements
of Hyperplanes by Orlik and Terao [21], when A is a real or complex hyperplane
arrangement.

The base example that serves as motivation for this paper is the k-equal arrange-
ment over R. The k-equal arrangement, An−1,k is the collection of subspaces given
by equations:

xi1 = . . . = xik

over all distinct 1 ≤ i1 < i2 < . . . < ik ≤ n. Note that this is a subspace
arrangement over Rn. This subspace arrangement was originally investigated in
connection with the k-equal problem: given n real numbers, determine whether or
not some k of them are equal [4].
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Given a topological space X, let β̃i(X) denote the ranks of the torsion-free part
of the ith singular reduced integral homology group. Given a real subspace arrange-
ment A , Björner and Lovász showed that the minimum number of leaves in a linear

decision tree that determines membership in A is at least 1 + 2
∑
i≥0 β̃i(M(A )).

Thus, knowing the homology of the complement gives lower bounds on the mini-
mum depth of a linear decision tree which decides membership in A .

A combinatorial tool that has proven useful in studying the complement is the
intersection lattice, L(A ), which is the lattice of intersections of subspaces, ordered
by reverse inclusion. In particular, the work of Goresky and MacPherson gives an
isomorphism, known as the Goresky MacPherson formula, that allows one to trans-
late the problem of determining the homology groups of M(A ) into the problem
of studying certain groups related to L(A ).

Theorem 1.1 (Theorem III.1.3 in Stratified Morse Theory [14]). Let A be a real
linear subspace arrangement. We have the following isomorphism:

Hi(M(A )) ∼=
⊕

x∈L(A )>0̂

Hn−dim(x)−i−2(∆(0̂, x))

where ∆(0̂, x) is the order complex of the interval [0̂, x], and dimension refers to
dimension over R.

In [7], Björner and Welker used the Goresky MacPherson formula to deter-
mine the cohomology groups of the complement of the k-equal arrangement. They
showed that the groups are torsion free, and trivial in dimensions that are not a
multiple of k−2. They also obtained formulas for the homology groups of the order
complex of L(An,k). Similar formulas were obtained by Björner and Wachs [6] by
showing L(An,k) has an EL-labeling, and thus is shellable. We note that Björner
and Wachs extended the definition of shellability to non-pure posets in order to
obtain their results.

Type B and D analogues of the k-equal arrangement were studied by Björner
and Sagan [5]. Their type B analogue is denoted Bn,k,h, and their type D analogue
is denoted Dn,k. The arrangement Dn,k consists of subspaces given by equations:

ε1xi1 = · · · = εkxik
over all {i1, . . . , ik} ⊂ [n] and all (ε1, . . . , εk) ∈ {+,−}k. The arrangement Bn,k,h

consists of Dn,k and new subspaces given by equations:

xi1 = · · · = xih = 0

over all {i1, . . . , ih} ⊂ [n].
Björner and Sagan showed that the intersection lattice L(Bn,k,h) has an EL-

labeling, and obtained results regarding the cohomology ofM(Bn,k,h). Their meth-
ods did not extend to Dn,k. Kozlov and Feichtner [11] obtained results regarding the
cohomology of the complement of Dn,k, by showing L(Dn,k) had an EC-labeling,
a notion due to Kozlov [20].

We see that using the Goresky MacPherson formula in general is a challenge. It
translates the problem of studying the cohomology groups of the complement into
a problem of finding the homology groups of the order complex of the intersection
lattice. Most of these examples involved expanding previously known methods in
order to find equations for the Betti numbers. Also, in most cases, the problem of
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writing down an explicit general formula for the Betti numbers of the order complex
is very difficult. In the end, one does not get much intuition regarding what these
Betti numbers are actually counting. Finally, the labelings involved for the type
D k-equal arrangement are very different from the labelings used for Bn,k,h, so
one might be skeptical about giving a uniform proof for a generalization of these
arrangements given for arbitrary reflection group.

In a previous paper [3], we introduced a generalization of the k-equal arrangement
associated to any finite Coxeter group W . We denote this arrangement, called the
k-parabolic arrangement, by Wn,k. These arrangements correspond to orbits of
subspaces fixed by irreducible parabolic subgroups of rank k− 1. In [3], we studied
the fundamental group of the complement of these arrangements, generalizing work
that had been done by Khovanov [18] for the 3-equal arrangements of types A, B,
and D. In this paper, we study the integral homology groups of the complement.

Given the challenges of proving shellability of the intersection lattice for the pre-
viously studied cases, we choose to study the homology groups using a different
approach. Fix a finite Coxeter group W of rank n, and let 3 ≤ k ≤ n. First, we
note that the k-parabolic arrangement is always embedded in the corresponding
reflection arrangement of W . Using a construction due to Solomon, we obtain a
cell complex Permk(W ), that is homotopy equivalent to M(Wn,k). Then we use
Forman’s discrete Morse theory [12] to study Permk(W ). We note that discrete
Morse theory has been applied multiple times in recent years in topological com-
binatorics. It has also been applied to study complements of complex hyperplane
arrangements [23]. This marks the first attempt to use discrete Morse theory to
study the complement of a subspace arrangement. In particular, we obtain a mini-
mal cell complex for Permk(W ): that is, a homotopy equivalent cell complex with
exactly βi(Permk(W )) cells of dimension i.

Theorem 1.2. There exists a minimal cell complex Mk(W ) such that Permk(W ) ∼=
Mk(W ).

We note that when k = 3, M(Wn,3) is not simply connected. For simply-
connected topological spaces X, there is already a well-known construction [15]
of a minimal cell complex that is homotopy equivalent to X. To our knowledge,
Theorem 1.2 is the first result regarding existence of minimal cell complexes for real
subspace arrangements whose complements have nontrivial fundamental groups.

We hope that Mk(W ) can be used to study the cohomology ring structure of
M(Wn,k), something that cannot be done using the Goresky-MacPherson formula.
However, for this paper, however, we focus on obtaining information about the
homology groups from Mk(W ). Let Hi,k(W ) be the ith singular homology group
ofM(Wn,k), and let βi,k(W ) be the rank of the torsion-free part of Hi,k(W ). Then
we obtain the following results.

Theorem 1.3. Let W be a Coxeter group of rank n, and let 3 ≤ k ≤ n. Then the
following holds:

(1) Hi,k(W ) is torsion-free.
(2) Hi,k(W ) is trivial unless i = t(k − 2) for some 0 ≤ t ≤ n

k .

We note that these results were obtained when W is of type A, B or D by Björner
and Welker [7], Björner and Sagan [5], and Kozlov and Feichter [11], respectively.

We also have a combinatorial interpretation of the Betti numbers. For now, let
W be irreducible, with set of simple reflections S. Let D be the Dynkin diagram
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Figure 1. linear orders for irreducible Coxeter groups

for W . Furthermore, suppose S is linearly ordered according to the numbering of
verices appearing in Figure 1. Finally, given a set T ⊂ S let C be the vertex sets
of connected components of D[T ], the subgraph of the Dynkin diagram induced by
T. Given a component C ∈ C , let N<

C (C) be the set of vertices of D that are not
in any component, are adjacent to some vertex of C, occur in the linear order on
S before any of the vertices of C, and are not adjacent to any vertex of any other
component of D[T ]. Finally, given w ∈ W , let Des(w) be the descent set of w.
Then we obtain the following:

Theorem 1.4. Let W be an irreducible Coxeter group of rank n, and let 3 ≤ k ≤ n.
Let S be ordered as in Figure 1, and let 0 ≤ t ≤ n

k be an integer. Then βt(k−2),k(W )
is the number of pairs (w, T ) such that:

(1) w ∈W , T ⊂ Des(w).
(2) D[T ] has t components C = {C1, . . . , Ck}, each of size k − 2
(3) For every component C of D[T ], we have N<

C (C) ∩Des(w) 6= ∅
(4) For every v ∈ Des(w), v is adjacent to some component of D[T ].

We note that for classical reflection groups, this interpretation can be described
more explicitly. Moreover, we obtain new formulas for the Betti numbers corre-
sponding to types A, B, and D. Finally, Theorem 1.4 also holds for any finite
Coxeter group, and for a much larger class of linear orders than just the linear
orders mentioned in Figure 1. We mention more regarding these facts in Section 5.
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Fix a finite Coxeter group W , let n be the rank of the Coxeter group, S be the
set of simple reflections, and D be the Dynkin diagram. Finally, unless otherwise
noted, k is a fixed integer with 3 ≤ k ≤ n.

2. Definition of k-Parabolic Arrangement

Since we are generalizing the k-equal arrangement, which corresponds to the
case W = An, we use it as our motivation. In this paper, we actually work with
the essentialized k-equal arrangement. Recall that the k-equal arrangement, An,k,
is the collection of all subspaces given by xi1 = xi2 = . . . = xik over all indices

{i1, . . . , ik} ⊂ [n + 1], with the additional relation
∑n+1

1 xi = 0. The intersection
poset L(An,k) is a subposet of L(H (An)). There is already a well-known combina-
torial description of both of these posets. The poset of all set partitions of [n+ 1]
ordered by refinement is isomorphic to L(H (An)), and under this isomorphism,
L(An,k) is the subposet of set partitions where each block is either a singleton, or
has size at least k. However, our generalization relies on the Galois correspondence
of Barcelo and Ihrig [2].

Given I ⊂ S, let WI be the subgroup generated by the reflections of I. Such a
subgroup is called a standard parabolic subgroup. A standard parabolic subgroup is
irreducible if (WI , I) is an irreducible Coxeter system. Given the Dynkin diagram, a
subset I ⊂ S corresponds to an irreducible standard parabolic subgroup if and only
if the subgraph induced by I is a connected graph. Any conjugate of a standard
parabolic subgroup is called a parabolic subgroup. We say a given subgroup is a k-
parabolic subgroup if it is the conjugate of an irreducible parabolic subgroup of rank
k − 1. Given a parabolic subgroup G, let Fix(G) = {x ∈ Rn : wx = x, for all w ∈
W}. Given a subspace X, let Gal(X) = {w ∈ W : wx = x for all x ∈ X}. Let
P(W ) be the collection of all parabolic subgroups, ordered by inclusion. Barcelo
and Ihrig proved the following:

Theorem 2.1 (Theorem 3.1 in [2]). The maps G → Fix(G) and X → Gal(X)
defined above are lattice isomorphisms between P(W ) and L(H (W )).

1234

1/2/3/4
e

<12>

<34>23<12>23

34<23>34

24<12>24

<23>

12/34134/2123/413/24124/31/234
14/23

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

13<12,34>13

<23,34>

34<12,23>34

23<12,34>23

<12,23>

12<23,34>12

<12,34>

<12,23,34>

Figure 2. The Galois Correspondence for A3

Definition 2.2. Let W be a finite real reflection group of rank n, and let 2 ≤ k ≤ n.
Let Pn,k(W ) be the collection of all irreducible parabolic subgroups of W of rank
k − 1.
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Then the k-parabolic arrangement Wn,k is the collection of subspaces

{Fix(G) : G ∈Pn,k(W )}.

Note that, given W , 2 ≤ j ≤ k ≤ n, Wn,k is embedded in Wn,j . Moreover, the
arrangement is invariant under the action of W . Note that in this paper, we will
usually assume k 6= 2, as in this case we obtain the Coxeter arrangement. The
complement of the Coxeter arrangement consists of |W | disjoint regions, with no
nontrivial homology above dimension 0. Some examples of Wn,k are given in Table
1.

W An Bn Dn(k = 3) Dn(k > 3) W (k = 2)
Wn,k An,k Bn,k,k−1 Dn,3 Bn,k,k−1 H (W )

Table 1. k-parabolic arrangements for particular choices of W

Since our motivation comes from the group action, in this paper Dn,k will always
refer to the k-parabolic arrangement of type D, even when this arrangement is
different from the previously defined analogue of the type D k-equal arrangement.

Now we construct Permk(W ). The construction relies on the fact that Wn,k

is embedded in the Coxeter arrangement, H (W ) of type W . Let ∆(W ) be the
simplicial decomposition of Sn−1 induced by H (W )∩Sn−1. This complex is known
as the Coxeter complex. An example of a Coxeter complex is given in Figure 3.

Now we describe the face poset of the Coxeter complex. This description is
found in Section 1.14 of Humphreys [16]. Given I ⊆ S, let CI = {x ∈ Rn : (x, α) =
0 for all α ∈ I, (x, β) > 0 for all β ∈ S \ I}. Clearly this object is a convex cone.
Given I ⊆ S,w ∈ W , let wCI = {wx : x ∈ CI}. These regions, when intersected
with the (n−1)-sphere, correspond to faces in the Coxeter complex. Thus, the face
poset of the Coxeter complex corresponds to cosets of standard parabolic subgroups,
ordered by reverse inclusion. We shall call such cosets parabolic cosets.

Let ∆k(W ) = {F ∈ ∆ : ∃X ∈ Wn,k such that F ⊆ X}. Clearly ∆k(W ) is a
subcomplex of ∆(W ). Moreover, we have the following proposition.

Proposition 2.3. M(Wn,k) is homotopy equivalent to |∆(W )| \ |∆k(W )|.

Proof. Since Wn,k is essential, we are removing subspaces containing the origin.
Then the map f sending x → x

|x| on Rn, gives a homotopy equivalence between

M(Wn,k) and |∆(W )| \ |∆k(W )|. �

Lemma 2.4. Let W be a finite reflection group of rank n, let 2 ≤ k ≤ n. Then
∆k(W ) corresponds to cosets wWI where there exists J ⊂ I such that WJ is a
k-parabolic subgroup.

In other words, the maximal simplices of the complex ∆k(W ) correspond to
cosets uWI , where the the subgraph of D (the Dynkin diagram) induced by I is
connected, and has k − 1 vertices.

Proof. Given a coset wWI , and X in Wn,k, we claim that wCI ⊂ X if and only if
CI ⊂ w−1X. Let x ∈ CI , X = Fix(uWJu

−1) where u ∈ W,J ⊂ S and uWJu
−1 ∈

Pn,k(W ). Then wx ∈ Fix(uWJu
−1) if and only if x ∈ w−1Fix(uWJu

−1), so
wCI ⊂ X if and only if CI ⊂ w−1X.
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Fix I ⊂ S. Thus it suffices to understand when CI ⊂ X for some X ∈ W n, k.
Clearly if there exists J ⊂ I such that WJ is a k-parabolic subgroup, then CI ⊂
Fix(WJ) ∈ W n, k. So we see that the subcomplex ∆k(W ) contains all cosets wWI

where there exists a standard k-parabolic subgroup WJ with J ⊂ I. Now we must
show that these are the only faces in ∆k(W ). Consider a standard k-parabolic
subgroup WJ , and assume that J is not a subset of I. Let s ∈ J \ I, and let α
be the simple root corresponding to s. By definition of CI , for any x ∈ CI we
have (x, α) > 0, which means that x 6∈ Hα, and thus x 6∈ Fix(WJ). Hence CI
is disjoint from Fix(WJ). Thus if wWI happens to be such that for all J ⊂ I,
WJ 6∈ Pn,k(W ), then wCI is not in ∆k(W ). Hence we obtain the description of
∆k(W ) given above. �

Next we consider a polytope related to the Coxeter complex, known in the lit-
erature as the Coxeter cell or Coxeter permutahedron Perm(W ). We construct
Permk(W ) as a subcomplex of Perm(W ). Consider a point x in one of the
regions of H (W ), and let W (x) = {wx : w ∈ W}. For any set I ⊂ W , let
I(x) = {wx : w ∈ I}. The W -permutahedron is the convex hull of W (x). An
example of the B3-permutahedron is given in Figure 3. The W -permutahedron,
denoted Perm(W ), is a polytope. It is a combinatorial exercise to show that the
face poset of the W -permutahedron is dual of the face poset of the Coxeter complex.
That is, there is a bijection ϕ : F (∆(W ))→ F (Perm(W )) such that F ⊂ G if and
only if ϕ(G) ⊂ ϕ(F ), for any F,G in F (∆(W )). So faces of the W -permutahedron
correspond to parabolic cosets, ordered by inclusion. Note that the one skeleton of
the W permutahedron is the Cayley graph of W with respect to the generating set
S.

Figure 3. Left - B3 Coxeter Complex, Right - B3 Permutahedron

We show a much deeper correspondence between the Coxeter complex and the
Perm(W ). Given Wn,k, there is a subcomplex of Perm(W ) homotopy equivalent to
the complement. This construction holds for any subspace arrangement embedded
in the Coxeter arrangement. To prove this result, we use the following specialization
of Proposition 3.1 in [8].

Proposition 2.5. Let ∆ be a simplicial decomposition of the k-sphere, and let
∆0 be a subcomplex of ∆. Let P be the face poset of ∆, and let P0 be the lower
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order ideal generated by ∆0. Then |∆|\|∆0| is homotopy equivalent to a regular
CW complex X, and moreover, the face poset of X is (P\P0)∗, where ∗ denotes
taking the dual poset.

Thus we have the following corollary.

Corollary 2.6. There is a subcomplex, Permk(W ) of Perm(W ) such thatM(Wn,k) ∼=
Permk(W ). Moreover, the faces of Permk(W ) correspond to cosets wWI such that
for all J ⊂ I, WJ is not k-parabolic.

Proof. We see thatM(Wn,k) ∼= |∆(W )|\|∆k(W )|, which by the previous theorem is
equivalent to some regular CW complex Permk(W ). The face poset of Permk(W )
follows from Proposition 2.5 and the description of the face poset of ∆k(W ). Since
regular CW complexes are determined by their face poset, we note that face poset
of Permk(W ) corresponds to a subcomplex of Perm(W ), and hence Permk(W )
may be viewed as a subcomplex of Perm(W ). �

Note that in a previous paper [3], we proved this result only for the 2-skeleton
of Permk(W ).

Remark 2.7. When k = 3, F (Permk(W )) consists only of cosets wWI , where
the reflections in I commute. It is not hard to see that the corresponding face
of Perm3(W ) is an |I|-cube. Thus, Perm3(W ) is a cubical complex, that is, a
polyhedral complex whose faces are all cubes. We need this fact for Section 7.

Naturally, we would like a set of representatives for our cosets. First, we recall
some combinatorics of Coxeter groups, as this will give us nice choices for represen-
tatives. Given an element w ∈W , let `(w) denote the minimum number of simple
reflections s1, . . . , sk such that w = s1 · · · sk. We refer to `(w) as the length of w.
Given a simple reflection s, we call s a descent of w if `(ws) < `(w). The right
weak order on W is defined as follows: given two elements u, v ∈ W , we say that
u ≤ v if there exists w ∈W , v = uw, and `(v) = `(u) + `(w).

Figure 4 is from Aguiar and Sottile [1].
When W is finite, the right weak order has a maximum element, denoted w0.

We now extend the definition of descent to finite standard parabolic cosets. Given
I ⊂ S,w ∈ W , there is a unique element w′ ∈ wWI of minimal length. We call
this the coset representative of minimal length. Let W I denote the set of coset
representatives of minimal length for WI . Then the following results may be found
in Humphreys’ book [16]

Theorem 2.8 (Proposition 1.10c in [16]). (1) W I = {w ∈W : `(ws) > `(w), for all s ∈
I}

(2) For all w ∈W , there exists unique u ∈WI , v ∈W I such that w = uv, and
`(w) = `(u) + `(v).

If a coset wWI is finite, then it also has a coset representative of maximal length,
given by multiplying the minimal length representative on the right by the maxi-
mum element of WI . We say that an element s ∈ S \ I is a descent for a coset wWI

if and only if it is a descent for the maximal length representative of wWI . In this
paper, we use coset representatives of maximal length. Also, the right weak order is
used when applying the Cluster Lemma and techniques from discrete Morse theory.
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3214 3142 2413 23414123 1432

3124 2143 1423 13422314

1324 1243

4213 4132 3412 24313241

4312 3421

1234

2134

4321

4231

Figure 4. S4 under right weak order

3. Discrete Morse Theory and Shellability

Here we review the terminology used with discrete Morse theory, as well as state
the major theorems we use. Throughout, let P,Q be finite posets. There are
several wonderful introductions to discrete Morse theory: we highly recommend
the book by Jonsson [17], which has several examples of the application of discrete
Morse theory. Our terminology comes from Combinatorial Algebraic Topology by
Kozlov [19]. However, the results of this section are due to Forman [13], who used
different (but equivalent) terminology. For the reader familiar with discrete Morse
theory, we note that we actually need the full power of the fundamental theorem
of discrete Morse theory. That is, our complexes are not simplicial, so we need
to the regular CW complex version of discrete Morse theory. Moreover, we have
to compute the boundary operator of the resulting Morse complex when k = 3.
Finally, our Morse matchings will be constructed out of matchings arising from
shellable simplicial complexes. We begin by presenting the definition of an acyclic
matching that appears in the literature.

Definition 3.1 ([19], Definition 11.1). Let P be a poset.
A matching in P is a partial matching in the underlying graph of the Hasse

diagram of P , i.e., it is a subset M ⊆ P × P such that

• (a, b) ∈M implies b � a (b covers a);
• each a ∈ P belongs to at most one element in M .

When (a, b) ∈ M we write a = d(b) and b = u(a). A partial matching on P is
called acyclic if

there does not exist a cycle

b1 � d(b1) ≺ b2 � d(b2) ≺ · · · ≺ bn � d(bn) ≺ b1
with n > 2 and all bi ∈ P being distinct.
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Theorem 3.2 ([19], Theorem 11.13). Let ∆ be a polyhedral complex, and let M

be an acyclic matching on F(∆) \ {0̂}. Let ci denote the number of critical i-
dimensional cells of ∆.

(a) If the critical cells form a subcomplex ∆c of ∆, then there exists a sequence
of cellular collapses leading from ∆ to ∆c.

(b) In general, the space ∆ is homotopy equivalent to ∆c, where ∆c is a CW
complex with a bijection between the set of i-cells of ∆c and Ci.

(c) Moreover, under this bijection f , for any two cells σ and τ of ∆c satisfying
dim σ = dim τ + 1, the incidence number [τ : σ] is given by

[τ : σ] =
∑
c

ω(c).

Here the sum is taken over all alternating paths c connecting f(σ) with
f(τ), i.e., over all sequences c = (f(σ), a1, u(a1), . . . , at, u(at), f(τ)) such
that f(σ) � a1, u(at) � f(τ), and u(ai) � ai+1 , for i = 1, ..., at−1. For
such an alternating path, the quantity ω(c) is defined by

ω(c) := (−1)t[a1 : f(σ)][f(τ) : u(at)]

t∏
i=1

[ai : u(ai)]

t−1∏
i=1

[ai+1 : u(ai)]

where the incidence numbers in the right-hand side are taken in the complex
∆.

Given an acyclic matching M , we say that a matching is optimal if ∆c is a
minimal cell complex. Constructing an acyclic matching is often a very challenging
problem, so we need to use the following result, known as the Cluster Lemma or
Patchwork Theorem, which allows us to create an acyclic matching on a poset P by
piecing together acyclic matchings on the fibers of a poset map from P to another
poset Q.

Lemma 3.3 ([19], Theorem 11.10). Assume that ϕ : P → Q is an order-preserving
map, and assume that we have acyclic matchings on subposets ϕ−1(q) for all q ∈ Q.
Then the union of these matchings is itself an acyclic matching on P .

Using the Patchwork Theorem, we show how to associate an optimal matching to
a shellable simplicial complex ∆. This is already a known result, and is mentioned
in Kozlov [19]. However, we make this result explicit, as our optimal matching on
Permk(W ) is constructed by using shellability and the Patchwork Theorem.

Let ∆ be an abstract simplicial complex. Given a face σ, let σ̄ = {τ : τ ⊆ σ}.
Recall that ∆ is shellable if its maximal simplices can be arranged in a linear order
F1, . . . , Fr so that, for all 1 ≤ i ≤ r, ∆i ∩ F̄i is pure and has dimension dim(Fi)− 1,
where ∆i = ∪j<iF̄j . Such an order is called a shelling order. The definition of
shellability for pure simplicial complexes is due to Bruggesser and Mani [9], and
was extended to nonpure simplicial complexes by Björner and Wachs [6].

An equivalent definition is the following: For every 1 ≤ i < j ≤ r, there exists
1 ≤ k < j such that Fi ∩ Fj ⊆ Fk ∩ Fj , and |Fk ∩ Fj | = |Fj | − 1. Given a maximal
simplex Fi, we say it is spanning if ∆i∩F̄i = F̄i\{Fi}, that is, if Fi is being attached
by its entire boundary. One of the nice results regarding shellable complexes is that
their homology groups, and homotopy type are both easy to describe. However, for
this paper, we only use the fact that shelling orders give rise to optimal matchings.
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To define an example of such a matching, we need to recall the definition of the
restriction map. Given a facet Fi, let R(Fi) = {x ∈ Fi : Fi \ {x} ∈ ∆i}. We call R
the restriction map. The next lemma is essentially due to Björner and Wachs [6]:
our novelty is using the terminology of order-preserving maps to state their result.

Lemma 3.4. Let f : F (∆) → [r] be given by f(σ) = min{i : σ ⊆ Fi}. Then f is
an order preserving map. Moreover, given i ∈ [r], f−1(i) = [R(Fi), Fi], where R
is the restriction map.

Theorem 3.5. Let ∆ be a shellable complex with shelling order F1, . . . , Fr, and
restriction map R. Then

(1) There are optimal acyclic matchings on F (∆).
(2) In such a matching M , there is one critical 0-cell.
(3) In such a matching M , Ck, the set of critical k-cells (k > 0) correspond to

the set of facets Fi such that R(Fi) = Fi, and dimFi = k.
(4) Given such a matching M , ∆ ∼=

∨
σ∈Ci

Sdimσ

Proof. By the Patchwork Theorem, we know we need to find an acyclic matching
on the fibers of f , the map defined in Lemma 3.4. However, the fibers are Boolean
intervals. Let i ∈ [r] such that Fi is not spanning, and fix x ∈ Fi \R(Fi). Then
consider the map gx,i : [R(Fi), Fi]→ [R(Fi), Fi] given by

gx,i(σ) =

{
σ \ {x} if x ∈ σ
σ ∪ {x} else

The map gx,i is clearly an involution, and gives an acyclic matching on [R(Fi), Fi].
The union of these matchings is acyclic, and clearly has the properties stated in
the theorem.

Note that the critical cells all correspond to facets. Thus, the resulting Morse
complex is actually a wedge of spheres. �

In our case, we always have a linear order on the vertex set V (∆), so we can
specify the map gx,i in the proof of this theorem by x = minFi \R(Fi).

4. Generalization of Independence Complex of a Graph

In this section, we define a simplicial complex which generalizes the Independence
complex of a graph G. We show that this complex, Indk(G), is shellable when G is a
forest. This shelling order is used to construct an optimal matching for Permk(W )
in the next section. The complex Indk(G) has vertex set V (G), and simplices σ
correspond to vertex sets such that every component of G[σ] has size at most k.
Recall that G[σ] is the induced subgraph. That is, V (G[σ]) = σ, and ij ∈ E(G[σ])
if and only if i, j ∈ σ and ij ∈ E(G). The case k = 1 is the usual Independence
complex studied in the literature. For more about the topology of Ind1(G), we
invite the reader to consult Engström’s paper [10].

Given a tree T with a root r, a tree-compatible ordering is a linear order on V (T )
such that, given two vertices u and v, if v is contained on the unique path from u
to r, then u ≤ v. Equivalently, a tree-compatible ordering is a linear extension of
the partial order that is dual to what is known as the Tree order. Given a forest F ,
with a set of vertices r1, . . . , rk, we define a tree-compatible ordering to be a linear
order that is a tree-compatible order when restricted to each component. Given a
tree-compatible ordering on F , it turns out that the lexicographic ordering of facets
of Indk(F ) is a shelling order.



12 CHRISTOPHER SEVERS AND JACOB A. WHITE

We claim the following:

Theorem 4.1. Let F be a forest on n vertices, and let 1 ≤ k ≤ n. Then Indk(F )
is shellable. Consider a set of roots for F , and a tree-compatible ordering on F .
Then a shelling order is given by lexicographic ordering on facets: σ < τ if min(σ \
τ) ∪ (τ \ σ) ∈ σ.

Proof. Let v1, . . . , vn be a tree-compatible order on F . Order the maximal simplices
of Indk(F ) lexicographically. We claim that this is a shelling order. Let F1, . . . , Fr
denote the maximal simplices in this order. We use the phrase ‘large component’
to mean a component with more than k vertices.

Let i, j be such that Fi < Fj . Let x = minFi \ Fj , and let C be the component
of the subgraph of F induced by Fj + x which contains the vertex x. Since Fj is a
facet, |C| > k. Since Fi is also a facet, C \ Fi 6= ∅. Let y = minC \ Fi. We show
that Fj + x− y does not contain a large component.

Let C>y denote vertices of C that are greater than y, and let C<y denote vertices
of C that are less than y. It suffices to show that the only vertex v > maxC<y that
is adjacent to some vertex in C<y is the vertex y itself. Then Fj + x − y cannot
have a large component, as such a large component would have to be in Fj or Fi.

There is some component T of F containing C<y. Moreover, this tree T has a
root vertex r. Suppose there are vertices u, v such that u ∈ C<y, v > y, and uv is
an edge. Since v > u and uv is an edge, v is on the unique path from r to u. Since
C is connected, and y > u, y also lies on the unique path from r to u. However, we
see that y lies on the unique path from r to v, and hence y > v, a contradiction.
Therefore, C<y has no edge to any vertex of V>y.

Let Fk be any facet containing Fj + x− y. Then clearly Fk < Fj , and Fi ∩Fk ⊆
Fk ∩ Fj = Fj − y. Therefore, we have a shelling order. �

Naturally, given the fact that we have a shelling order on Indk(F ), it would
be nice to classify the homotopy type. Also, since we use these shelling orders to
give matchings in the next section, classifying the critical cells is necessary. Given
a graph G with a linearly ordered vertex set, and a subgraph H, let C be the
components of H. Let C be a component of H. Recall from the introduction that
N<

C (C) is the set of vertices v in G−H that are adjacent to some vertex in C, and
such that v < minC in the linear ordering.

Theorem 4.2. Given a tree-compatible order on a forest F , spanning simplices of
Indk(F ) are simplicies σ such that:

(1) F [σ] consists of t components, C = {C1, . . . , Ct}, each of size k, where
0 ≤ t ≤ n

k .
(2) For every component C of F [σ], we have N<

C (C) 6= ∅
(3) Every vertex in V (F ) \ σ is adjacent to some component C ∈ C .

Proof. Clearly, if a subset I has all the stated properties, then it is a facet, and
R(I) = I. So suppose we have a facet I such that R(I) = I. Let x = minV (F ).
If x ∈ I, then x 6∈ R(I) by definition of the restriction map. Thus x 6∈ I. However,
since I is a facet, I +x must contain a large component. Let C be the lexicograph-
ically least large component (of size k + 1). Then x ∈ C. Consider removing N [C]
from V (F ), obtaining a new set V ′. Note that x ∈ N<

C (C).
Now let x = minV ′. Again, we see that x 6∈ I. Moreover, since x 6∈ N [C], I + x

contains a large component C ′ of size k+1 that is disjoint from C. Given our choice
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of x, every element of C ′ is greater than x. Choose C ′ to be lexicographically least,
and remove N [C ′] from V ′. Continuing in this manner, we see that I is a disjoint
union of components of size k, and for each component C we have N<

C (C) 6= ∅.
Finally every remaining vertex is adjacent to some component. �

Example 4.3. Let G be a graph with vertex set {1, . . . , 9}, and edge set {14, 24, 34,
45, 58, 68, 78, 89}. Then the natural ordering 1 < 2 < . . . < 9 is a tree-compatible
order, where 9 is the root vertex. Ind3(G) has many facets for this complex. How-
ever, one can check that the spanning simplices correspond to vertex sets 234789
and 458. So Ind3(G) is homotopy equivalent to a wedge of two spheres, one of
dimension 2 and one of dimension 5. In particular, Indk(G) does not always cor-
respond to a wedge of equidimensional spheres.

5. Matching Algorithm and Main Results

In this section, we define an optimal matching on Permk(W ), and prove the
main theorems from the introduction. Given W with simple reflections S, order
S so that we have a tree-compatible order on the Dynkin diagram D(W ) (where
tree-compatible order is defined in the previous section).

Recall that elements of Permk(W ) correspond to parabolic cosets wWI that
do not contain a coset w′WJ where WJ is k-parabolic. Given such a coset wWI ,
suppose w is of maximum length in wWI . Finally, let P(wWI , s) = {J ⊂ I :
WJ+sis k-parabolic}, and let Des(w) be the descent set of w. Then we match wWI

based on the following algorithm:
Let L = S.
While L 6= ∅

Let s = minL
If s 6∈ Des(w)

Set L = L− s
Else If s ∈ I

Return wWI\{s}
Else If wWI+s 6∈ Permk(W )

Let J = min P(wWI , s)
Set L = L− J − s

Else
Return wWI∪{s}

End While
Return wWI

Given a coset wWI , we refer to the coset the algorithm outputs as M(wWI).
We match wWI with M(wWI) if M(wWI) 6= wWI . Otherwise, wWI is critical.
Note that it is not entirely obvious that this is a matching. However, we show that
the matching given by this algorithm is one arising from shellability of generalized
independence complexes from the last section.

First, note that there is a natural order-preserving map ϕ : F (Permk(W )) →
W , where W is given right weak order. The map is given by sending a coset
wWI to its maximal length representative w. Moreover, given w ∈ W , it is not
hard to see that ϕ−1(w) is isomorphic to the face poset of Indk−2(Dw), where
Dw = D[Des(w)]. That is, given a coset wWI ∈ Permk(W ) with maximal length
element w, we have I ⊂ Des(w), and the subgraph of D induced by I has no
component of size k − 1. Thus, we can conclude, that given a tree-compatible
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ordering on S, the techniques of the last section give us a collection of acyclic
matchings Mw, one for each w ∈ W . Then the Patchwork Theorem gives us an
acyclic matching M ′ on Permk(W ).

Let wWI ∈ Permk(W ) with maximum length element w. Then I ∈ Indk−2(Dw).
Let Fj be the lexicographically first facet containing I. Then M ′(wWI) = wWJ

where J is obtained from I by adding or removing x = minFj \R(Fj), depending
on whether or not x ∈ I. If Fj = R(Fj), then we define M ′(wWI) = wWI . We
have thus constructed an involution coming from our matching.

Theorem 5.1. Let M ′ be obtained as described in the above paragraph. Then
M = M ′.

Proof. Let wWI be a coset with maximal length representative w, and suppose the
while loop for the matching algorithm for M runs m times, and let Li be the list
L after running the while loop of the matching algorithm i times. Also, let Fj be
the lexicographically least facet of Indk(Dw) containing I.

We claim that for each i, 1 ≤ i ≤ m, Fj ⊆ (I ∪ Li), and I \ Li ⊆ R(Fj). Let
si = minLi. Suppose at step i, si 6∈ I, and the algorithm chooses not to add it to I.
Then either si 6∈ Des(w), or WI+si contains a k-parabolic subgroup. Thus si 6∈ Fj ,
so we have Fj ⊆ (I ∪ Li+1). Also, if si 6∈ Des(w), then I \ Li+1 ⊆ R(Fj). Suppose
WI+si contains a k-parabolic subgroup. Then so does WFj+si . Let J be minimal
such that WJ is a k-parabolic subgroup contained in WFj+si . Note that si ∈ J .
We claim that J>si ⊆ R(Fj). This is clear if J>si = ∅. Otherwise, fix y ∈ C>si .
If K = FJ + si − y ∈ Indk−2(Dw), then y ∈ R(Fj). If not, then uWK contains a
k-parabolic subgroup WJ′ , which can be chosen to be minimal with respect to the
condition si ∈ J ′. We claim that J ′ < J . Since we have a tree-compatible ordering,
there are no edges between S>y and S<y. Since J ′ induces a connected subgraph
of D, not involving y, it follows that J ′ ⊂ S<y. Since y ∈ J , and |J ′| = k − 1, we
must have min J ′ < min J . However, this is a contradiction, since si ∈ J ′, and J
was chosen to be lexicographically minimal. Therefore K ∈ Indk(Dw), and hence
y ∈ R(Fj) for all y ∈ C>si . Thus I \ Li+1 ⊆ R(Fj). Therefore we have proven the
claim for each i by induction.

Now we would like to show that when the algorithm terminates, M(wWI) =
M ′(wWI). Clearly, if M(wWI) = wWI , we see from our claims that R(Fj) = I =
Fj , whence wWI is left unmatched in the union of acyclic matchings, so M ′(wWI) =
wWI = M(wWI). Otherwise, suppose the matching algorithm terminated after m
steps, and matched wWI to another coset, by either removing or adding a reflection
s to I. If the algorithm terminates by adding a reflection s to I, we see that s ∈ Fj .
By our properties, s ∈ Fj \R(Fj). Since this is the first reflection we could possibly
remove, we see that s is the minimum of Fj\R(Fj), and thus M(wWI) = M ′(wWI).

Suppose instead that the algorithm removes some s ∈ I. Suppose s ∈ R(Fj).
Then there exists t such that Fj + t− s is contained in a lexicographically smaller
facet. Moreover, Dw[Fj + t] has a component with at least k− 1 vertices. Let J be
minimum such that J ⊂ Fj + t and WJ is k-parabolic. If {s, t} is not a subset of
J , then we obtain a contradiction to the fact that uWFj , uWFj+t−s ∈ Permk(W ).
Thus, {s, t} ⊆ J , and must be in the same component of J . However, since J was
chosen to be minimal, when the algorithm studied t, it would have removed J , and
thus s, from L. Therefore we have a contradiction, and s 6∈ R(Fj). Again, by our
previous claims, we can conclude that s ∈ Fj \R(Fj). It is also the first reflection
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encountered that could be removed, and so s is the minimum of Fj \R(Fj), and
thus M(wWI) = M ′(wWI). �

Proposition 5.2. Let wWI ∈ Permk(W ) with maximum length element w. If
wWI is critical, then the following hold:

(1) I ⊂ Des(w).
(2) D[Des(w)] consists of t components, C = {C1, . . . , Ct}, each of size k − 2
(3) For every component C of D[I], we have N<

C (C) ∩Des(w) 6= ∅
(4) For every v ∈ Des(w) \ I, there exists a component C such that v ∈ N(C).

Proof. The result follows from the poset map ϕ, and the description of critical cells
given in the last section. �

Note then that ci, the number of critical cells of dimension i, is 0 unless i =
t(k − 2) for some 0 ≤ t ≤ n

k .

Lemma 5.3. The matching M is optimal.

Proof. Suppose k > 3. Then the fact that there are only critical cells of dimension
t(k−2) for 0 ≤ t ≤ n

k implies that the boundary operator of ∆c, the complex given
in Theorem 3.2, must be the 0-map. Hence the cellular chain groups of ∆c are
isomorphic to the homology groups. The case k = 3 is proven below in Section 7,
and is considerably more involved. �

Proof of Theorems 1.2, 1.3, 1.4. Immediate from the previous Lemma, Proposition
5.2, Theorem 3.2, and the observation about the number of critical cells of a given
dimension. �

6. Betti Numbers for Irreducible Coxeter Groups

6.1. The k-Equal Arrangement. We can now describe the algorithm for the
matchingM using terminology from set compositions. Given an element (B1, B2, . . . , Bt)
we consider pairs of adjacent blocks Bi and Bi+1. We start with i = 1.

(1) If Bi is not a singleton, we match

(B1, . . . , Bi, Bi+1, . . . , Bt)

with

(B1, . . . , Bi−1, {max(Bi)}, Bi \ {max(Bi)}, . . . , Bt).
(2) If there is a ascent from Bi to Bi+1, we set i = i+ 1 and start over at step

one.
(3) If |Bi+1| = k − 1, then we set i = i+ 2 and start over at step one.
(4) We match

(B1, . . . , Bi, Bi+1, . . . , Bt)

with the element

(B1, . . . , Bi ∪Bi+1, . . . , Bt).

An example of the matching along with some critical elements is shown in Figure
5.

It remains to compute the number of critical elements. A weak integer com-
position of n is a sequence of nonnegative integers µ = (µ1, . . . , µk) such that

µ1 +µ2 + · · ·+µk = n. We refer to `(µ) = k as the length of µ, and |µ| =
∑`(µ)
i=1 µi.
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32/864/1/975

3/2/864/1/975 1/7/632/9/8549/721/5/64/83

9/721/5/6/4/83

Figure 5. A matching between elements in Perm4(A8)

We use µ |= n to say that µ is a weak integer partition with |µ| = n. Given a
weak integer compositions µ, let

(
n
µ

)
=
(

n
µ1,...,µk

)
. Let t be an integer such that

1 ≤ t ≤ n/k . Then the number of unmatched cells in dimension t(k − 2) is given
by:

∑
µ|=n+1
`(µ)=t+1

µm≥k,∀1≤m≤t

(
n+ 1

µ

) t∏
m=1

(
µm − 1

k − 1

)

where the sum is over all integer compositions of n + 1 into t + 1 parts, such
that each part, with the exception of the last part, has size at least k. The formula
comes from the following: consider a composition A1, . . . , At+1 of [n+ 1] into t+ 1
parts whose sizes are given by µ1, . . . , µt+1. For each part, besides the last one,
take k − 1 elements x that are not the maximum of that part. Make this a block,
and place all other elements of Ai \X as singletons in increasing order before X, to
get a set composition Ai that consists of singletons, and ends with a block of size
k− 1. Finally, partition At+1 into singletons and place them in increasing order to
obtain a set composition At+1. Then let C be given by starting with the blocks of
A1 in order, followed by the blocks of A2 in order, and so on. This creates a critical
set composition. Clearly this gives all set compositions that meet our criteria for

not being matched. Thus we have successfully computed β̃t(k−2)(M(An,k)). We
note that this formula was also found by Peeva, Reiner and Welker [22].

6.2. The Signed k-equal Arrangement. For type B, one can use type B set
compositions to understand our matching. A type B set composition is a sequence
C = (B0, . . . , Bk) of disjoint subsets of {n̄, ¯n− 1, . . . , 1̄, 1, 2, . . . , n}, such that 0 ∈
B0, and for each i, either i is in some block of C, or ī is, but not both. Moreover,
we require elements in B0 to be unbarred.

Using our optimal matching, and discrete Morse theory, we obtain the following:

Theorem 6.1. Ht(k−2)(M(Bn,k)) is free abelian of rank∑
µ|=n

`(µ)=t+1
µm≥k,∀1≤m≤t

(
n

µ

)
2n−µ1+k−1

t∏
m=1

(
µm − 1

k − 1

)
+

∑
µ|=n

`(µ)=t+1
µm≥k,∀2≤m≤t

µ1=k−1

(
n

µ

)
2n−k+1

t∏
m=2

(
µm − 1

k − 1

)

Proof. It suffices to count the number of cells of rank t(k− 2). In the first summa-
tion, we are summing over set compositions for which B1 is a singleton. In these
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0/3̄/2/864/1/975

03̄/2/864/1/975

0/9/721̄/5/6/4/83

0/9/721̄/5/64/83 0/1/7/326̄/9/854

Figure 6. An example of the matching for B9 with k = 4

cases, µ1 corresponds to all the singletons leading up to the first k − 1 block Bi,
as well as the elements of Bi. We can place signs on every element except the
singletons leading up to Bi. This explains the power of 2 in the summation. The
rest of the terms come from the same arguments as the type A case.

The second summation is over critical set compositions for which B1 is of size
k − 1. In this case, we know the elements of B1 must be all negative, but we are
still free to choose the signs of the remaining n − k + 1 elements. This explains
the power of 2 in the second summation. The rest of the second summation again
follows from counting arguments as in the type A case. �

We note that this result specializes to a formula given by Björner and Sagan [5],
when t = 1.

6.3. The Type D 3-Equal Arrangement. Next we study the type D 3-equal
arrangement. Note that since Dn,k = Bn,k for k > 3, this is the only case left to
study for classical reflection groups. Studying the Betti numbers again reduces to
counting critical cosets. The proof of the following result is similar to type A and
B, so we omit the details.

Theorem 6.2. Ht(M(Dn,3)) is free abelian of rank∑
µ|=n

`(µ)=t+1
µm≥3,∀2≤m≤t

µ1≥4

(
n

µ

)
2n−µ1+2

t∏
m=1

(
µm − 1

2

)
+

∑
µ|=n

`(µ)=t+1
µm≥3,∀2≤m≤t

µ1=3

(
n

µ

)
7∗2n−3

t∏
m=2

(
µm − 1

2

)

6.4. The Finite Exceptional Coxeter Groups. In this section, we detail meth-
ods for determining the Betti numbers for the remaining irreducible finite Coxeter
groups. Let W be an exceptional Coxeter group of rank n. One of our main re-
sults is that Permk(W ) has an optimal acyclic matching that only has unmatched
elements in ranks that are multiples of k − 2, and one unmatched element in rank
0. When there is only one such rank satisfying these conditions, it is not hard to
compute the Betti number. That is, one just computes the fi number of i-faces
of Permk(W ), and then computes

∑n
i=1(−1)ifi, the reduced Euler characteristic.

The final result gives, up to sign, the rank of the only non-trivial homology group.
We note that in some cases there are two ranks of nontrivial homology. By

observation, this only occurs when W is of type E. Clearly, after computing the
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Euler characteristic, determining one of the Betti numbers allows us to determine
the other one. So of course, we have reduced our problem to the case of determining
β2(k−2). In this case, we know that unmatched elements correspond to cosets wWI

with maximum length representative w, where I corresponds to a disjoint collec-
tion of components of size k − 2 in the subgraph D[Des(w)]. Moreover, for each
component C there exists x ∈ Des(w), x < minC, such that x ∪ C is connected.
Similarly, an unmatched element has some set of prescribed ascents as well. In
other words, given sets I and J with I ⊆ J ⊆ S, we can determine if there exists
an element w such that Des(w) = J and wWI is critical. Then it would remain to
compute the number of elements w with this given descent set J .

We determine necessary and sufficient conditions on I, Des(w), and S \Des(w)
such that a coset wWI with maximal length representative w is unmatched. For
a fixed I, let D(I) and A(I) be subsets of S such that wWI is unmatched if and
only if D(I) ⊂ Des(w) and A(I) ⊂ S \ Des(w) (given a particular choice of I,
it is not too hard to determine D(I) and A(I)). Let βI = |{w ∈ W : D(I) ⊂
Des(w) and A(I) ⊂ S \ Des(w)}|. Finally, let I denote the set of all possible
I ⊂ S which are 2 components, each of size k − 2. Then β2(k−2) =

∑
I∈I βI . So

it suffices to compute βI . However, while counting the number of elements whose
descent set contains a given set J (by counting cosets of WJ), counting the number
of elements with a set of prescribed descents and prescribed ascents involves using
inclusion-exclusion, to restate the problem only in terms of enumerating elements
with prescribed descents. Fix I ∈ I , T ⊂ A(I). Let AI,T = {wWT∪D(I) : w ∈
W}. As noted before, AI,T corresponds to the number of elements w ∈ W with

D(I) ∪ T ⊂ Des(w). So, by inclusion-exclusion,
∑
T⊂A(I)(−1)|T ||AI,T | counts the

number of elements w ∈W for which D(I) ⊂ Des(w) and A ⊂ S \Des(w).
Thus we obtain β2(k−1) =

∑
I∈I

∑
T⊂A(I)(−1)|T ||AI,T |. Naturally, this summa-

tion can be rather challenging to compute, although it is simple enough that it can
be done by hand. For the remaining cases, this summation was used to determine
β2(k−2). However, we omit the rather tedious computations. The resulting Betti
numbers appear in the Appendix at the end of this paper.

7. Proof of Optimality When k = 3

By Theorem 3.2, Perm3(W ) is homotopy equivalent to some space ∆c such that
the i-cells in ∆c are indexed by the unmatched i-cells of Perm3(W ). We would like
to show the boundary operator of ∆c is the 0-map, which would allow us to conclude
that ∆c is a minimal complex. Thus, we want to show the summation in Theorem
3.2, part c, is zero by constructing a sign-reversing involution on alternating directed
paths between pairs of critical cells. Most examples of discrete Morse theory in the
literature have never had to use the boundary formula. Much like when k > 3, for
most examples it is immediately clear that the boundary map is the 0-map, because
there are no cells in consecutive dimensions.

Given any coset wWI ∈ Perm3(W ), we can construct pairs of alternating di-
rected paths P and Q with ω(P ) + ω(Q) = 0, where both paths start at wWI and
end with the same coset vWJ , and w(P ) is as defined in Theorem 3.3 part c. In
general, the ending coset vWJ may not be critical. However, we show that given
any alternating directed path between two critical cells, some subpath is identical
to one generated by these algorithms. This fact is used to construct a sign-reversing
involution on alternating directed paths between pairs of critical cells.
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Figure 7. Examples of alternating directed paths in A3

An example of paths coming from our construction is given in Figure 7. Re-
call that the faces of the A3-permutahedron correspond to set compositions of
{1, 2, 3, 4}. Figure 7 has two alternating, directed paths that start and end with
the same set compositions. We constructed these paths using an algorithm given
below.

To make definitions easier, for this section we assume that when W is irre-
ducible, it is given one of the linear orders appearing in Figure 1. If S decomposes
as S1, . . . , Sm, where each of the Si are disjoint, and correspond to a connected
component of D(W ), then we order the reflections so that every reflection of Si
is less than every reflection of Sj , whenever i < j, and then order the reflections
in each individual Si according to Figure 1. Again, the results actually hold for
any tree-compatible order, however, the proofs and definitions are far more compli-
cated. To keep the presentation simple, we shall only give the proofs for the cases
where we have chosen the above linear orders. Finally, given a linear order on S,
we extend it to a linear order on S ∪{∞} by making ∞ the unique largest element
of the linear order.

Let wWI be a coset in Perm3(W ) with maximal length representative w. In
general, let w0(wWI) denote the maximal length representative of a coset wWI . If
M(wWI) 6= wWI , we let m(wWI) denote the simple reflection that was added or re-
moved when running the algorithm for wWI . IfM(wWI) = wWI , we let m(wWI) =
∞. The elements of I that are less than m(wWI) form a set {si1 , . . . , sim} for
some m. Moreover, these elements form an independent set of Dw, they each
have a back neighbor in Dw, and all descents less than m(wWI) must be adjacent
to some sij ∈ I. Given si < sj , let [si, sj ] = {sk : si ≤ sk ≤ sj}. Suppose
m > 1. For 1 ≤ j < m, we let Aj = [sij+2, sij+1

]. We define A0 = [s1, . . . , si1 ],
Am = [sim+2,m(wWI)]. We call these ascending blocks.

Given a coset wWI and a reflection s ∈ I, s ≤ m(wWI), we construct two
alternating directed paths that start with wWI , and end at a coset w′WI−s. The
weights on these paths coming from Theorem 3.2 part c cancel, and form the basis
of our involution. In general, we show that any alternating directed path between



20 CHRISTOPHER SEVERS AND JACOB A. WHITE

two unmatched cosets must contain one of these constructed paths as a subpath.
Then we define the involution by finding the first such subpath, and replacing it
with its opposite construction. We admit that this is a complicated involution.

Given a coset wWI , let s ∈ I such that s ≤ m(wWI), and let A be the as-
cending block containing s. The algorithm returns P, a sequence of vertices of an
alternating, directed path.

Let J = I \ {s}.
Let u = w.
Let P = (wWI , uWJ).
While m(uWJ) ∈ A

Let r = m(uWJ)
Append M(uWJ) to P
Append urWJ to P
Let u = w0(urWJ).

End While
Return P
The other algorithm only differs from the first algorithm by replacing the second

line with Let u = ws. Given a coset wWI and s ∈ I, s ≤ m(wWI), let p(wWI , s) be
the result of the first algorithm run with inputs wWI and s, and let p̂(wWI , s) be the
result of the second algorithm run with those inputs. Finally, let α(p(wWI , s)) =
p̂(wWI , s), and α(p̂(wWI , s)) = p(wWI , s). The paths from Figure 7 are examples
of paths created by this algorithm. Again, note that the algorithm is defined for
more than just critical elements.

Lemma 7.1. Let wWI ∈ Perm3(W ), with maximal length element w, and consider
s ∈ I, s ≤ m(wWI). Then ω(p̂(wWI , s)) +ω(p(wWI , s)) = 0, where ω is defined in
Theorem 3.2 part c. Moreover, these paths end at the same coset.

Proof. Note that Perm3(W ) is a cubical complex. In particular, given a coset wWI

with maximum length element w, and s ∈ S, we see that the faces corresponding
to wsWI−s and wWI−s are parallel faces of wWI . In particular, one can show
that [wWI−s : wWI ] = −[wsWI−s : wWI ]. We see that the products of incidence
numbers appearing in the formula for ω(p(wWI , s)) are all −1, and the number
of −1 terms is the same as the power of −1 appearing outside the product. Thus
p(wWI , s) = [wWI−s : wWI ], and similarly, p̂(wWI , s) = [wsWI−s : wWI ]. How-
ever, these incident numbers are additive inverses, so their sum is 0. The first result
follows.

For the second result, consider the coset wWA. Consider running the algorithm
for p(wWI , s). At the ith step of the algorithm we consider ti = m(uWI−s) for
some u, and append utiWI−si to the end of the path. Let t1, . . . , tr be the resulting
sequence of reflections. Note that these reflections all come from Ai, and we see that
wt1 · · · tr is an element of the last coset when the algorithm terminates. Observe
that, since the algorithm terminates, A ∩ Des(wt1 · · · tr) = ∅. At each step, one
can show that wt1 · · · tk is the maximum element of wt1 · · · tkWJ . Since A is a
set of ascents for wt1 · · · tr, wt1 · · · tr is the minimum length element of wWA. By
similar arguments for p̂(wWI , s), we obtain another sequence t′1, . . . , t

′
r, such that

the last coset of the path is wt′1 · · · t′rwJ , and wt′1 · · · t′r is the minimum length
element of wWA. Thus, the paths p(wWI , s) and p̂(wWI , s) end at the same coset
wt1 · · · trWJ . �
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We show that the following proposition is true, and we use it to define an in-
volution. This proposition explains why we have been defining everything in this
section for arbitrary cosets in Perm3(W ), and not just critical ones.

Proposition 7.2. Fix cosets uWI , vWJ ∈ Perm3(W ), with maximal coset repre-
sentatives u, v, and let P be an alternating, directed path from uWI to vWJ . Assume
that vWJ is critical, and that either uWI is critical, or m(uWI) ∈ I. Then there
exists an integer m, paths Pj, cosets wjWIj , and simple reflections sj for j ∈ [m],
paths Qj for 2 ≤ j ≤ m, and a path R such that:

(1) Either p(wjWIj , sj) = PjQj or p̂(wjWIj , sj) = PjQj for 2 ≤ j ≤ m,
(2) Either p(w1WI1 , s1) = P1 or p̂(w1WI1 , s1) = P1,
(3) m(wjWIj ) ∈ Ij for all j,
(4) sj ≤ m(wjWIj ) for all j,
(5) P = PmPm−1 · · ·P1R,
(6) wmWIm = uWI .

Proof. We prove the result by induction on the length of P . Clearly P has at
least one edge. We claim that this edge must be of the form uWI > uWI−s
or uWI > usWI−s for some s ∈ I, s ≤ m(uWI). Clearly this is the case if
m(uWI) = ∞, so suppose uWI is not critical, and the first edge is of the form
uWI > uWI−s for some s > m(uWI). Then we note that the matching algorithm
matches uWI−s with uWI−s−m where m = m(uWI). However, this means that P
is not a directed alternating path, a contradiction.

Assume the first edge is of the form uWIuWI−s, where s ∈ I, and s ≤ m(uWI).
Then there exists P ′, Q′, R′ such that p(uWI , s) = P ′Q′ and P = P ′R′. Let P ′ be
the maximum of all such paths, let wWK be the last coset of P ′. If wWK = vWJ ,
then we are done.

Otherwise, observe that M(wWK) ⊂ wWK . That is, the last edge of P ′ must be
from the matching in order for P to be an alternating directed path. In particular,
the last edge must be of the form M(wWK), wWK . Therefore m(wWK) ∈ wWK .
By induction, there exists an integer m, simple reflections sj , cosets wjWIj , paths
Pj , Qj and R statisfying 1-6 for the path R′ from wWK to vWJ . Let wm+1WIm+1

=
uWI , Qm+1 = Q′, Pm+1 = P ′, sm+1 = s. Clearly we have properties 1-6 for
this collection. A similar argument holds if the first edge of P is of the form
uWI > usWI−s for some s ∈ I, s < m(uWI). �

Fix critical cells uWI and vWJ with |J | = |I|− 1. Let P(uWI , vWJ) denote the
set of all alternating directed paths from uWI to vWJ . We wish to construct an in-
volution on these paths. Let P ∈P(uWI , vWJ). Let R,Pm, . . . , P1 be paths which
satisfy all the properties of Proposition 7.2 for P . Let α(P ) = Pm · · · , P2, α(P1)R.
We claim that ω(α(P )) + ω(P ) = 0. Clearly ω(α(P )) + ω(P ) = (ω(α(P1)) +
ω(P ))ω(R)

∏m
i=2 ω(Pi) = 0, since ω(α(P1))+ω(P1) = 0 by Lemma 7.1. Also we see

that α is an involution. Applying Theorem 3.2 to Perm3(W ), we get a complex ∆c

homotopy equivalent to Perm3(W ). Moreover, as a result of our involution calcu-
lation, [uWI : vWJ ] = 0 in ∆c, and hence the boundary operator is the 0-map. We
can conclude:

Theorem 7.3. The matching M is an optimal matching for Perm3(W ).
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8. Conclusion and Open Problems

We conclude with several open problems. First, it would be nice to understand
the cohomology ring structure of Permk(W ), and the attachment maps of the
minimcal cell complex we get via discrete Morse theory. It is already known how to
use discrete Morse theory to study cup products, so there is hope in this direction.
However, computing attachment maps is a very challenging problem.

It is also interesting to note that there is a natural group action of W on
Permk(W ), and this induces a group action on the cohomology groups. It would
be of note of this group action is isomorphic to the group action on the cohomology
of the complement. Moreover, could the representation be understood by acting
on the (co)homology basis we have constructed? The first step here would be to
understand our homology basis in terms of representative cycles in Permk(W ).
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9. Appendix

Group k i β̃i(M(Wn,k))
H3 3 1 31
H4 3 1 3601
H4 4 2 719
F4 3 1 289
F4 4 2 47
E6 3 1 7201
E6 3 2 720
E6 4 2 5039
E6 5 3 1441
E6 6 4 125
E7 3 1 135073
E7 3 2 135072
E7 4 2 141119
E7 5 3 60481
E7 6 4 11591
E7 7 5 757
E8 3 1 10946881
E8 3 2 54492480
E8 4 2 12337919
E8 4 4 2177280
E8 5 3 7257601
E8 6 4 2600639
E8 7 5 2600639
E8 8 6 60481

Table 2. nonzero Betti numbers of exceptional Coxeter groups
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