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Abstract

We show that a pair of almost commuting self-adjoint, symmetric ma-
trices are close to commuting self-adjoint, symmetric matrices (in a uni-
form way). Moreover we prove that the same holds with self-dual in place
of symmetric. Since a symmetric, self-adjoint matrix is real, the former
gives a real version of Huaxin Lin’s famous theorem on almost commut-
ing matrices. There are applications to physics of Lin’s original theorem
and both new cases. The self-dual case applies specifically to systems
that respect time reversal. Along the way we develop some theory for
semiprojective real C∗-algebras.
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1 INTRODUCTION

1 Introduction

In 1997 Lin proved an important theorem about almost commuting matrices
[18]. Nowadays it is know as Lin’s theorem. Loosely speaking it states that
two almost commuting self-adjoint matrices are close to commuting self-adjoint
matrices, and in a way that is uniform over all dimensions. Formally it says:

Theorem. (Lin) For all ε > 0 there exists a δ > 0 such that for all n ∈ N
the following holds: Whenever A,B ∈Mn(C) are two self-adjoint matrices such
that ‖AB−BA‖ < δ there exists self-adjoint matrices A′, B′ ∈Mn(C) such that
A′B′ = B′A′ and

‖A−A′‖, ‖B −B′‖ < ε.

Lin proved this result on complex matrices using C∗-algebra techniques, with
an eye on corollaries in classification of C∗-algebras, KK-theory and the exten-
sions of C∗-algebras (e.g [17]). However the theorem itself does not mention
C∗-algebra, and it seems to have siblings and applications outside of C∗-algebra
theory.

A famous algorithm, developed by Cardoso and Souloumiac for use in blind
source separation [5], is “Joint Approximate Diagonalization” (JADE). This
algorithm takes two (or more) matrices, either real or complex, and finds a
change of basis to make both matrices approximately diagonal. This is closely
related to the problem of finding a small perturbation of an almost commuting
pair of matrices to a commuting pair. Of course there are various interpretations
of “small perturbation” and of “approximately diagonal” and JADE is only
claiming to minimize off-diagonal parts, not promising small off-diagonal parts.
Nevertheless, we feel this is a connection to be explored.

Hastings discovered a connection between Lin’s theorem and finite systems
in condensed matter physics [11]. The versions of Lin’s theorem that we prove
here involve an additional symmetry beyond being self-adjoint. This type of
symmetry, which we call a reflection, is needed when working with systems in
condensed matter physics that have time-reversal symmetry [13, 14, 21, 24, 25].
The use of reflections (or equivalently, generalized conjugations) in physics is
certainly not restricted to condensed matter physics. For example, this sort of
symmetry arises in Connes’ derivation of the standard model, section 2 of [6].

We have two main theorems, which we state as one.

Theorem 1. For all ε > 0 there exists a δ > 0 such that for all n ∈ N the
following holds: Whenever A,B are two n-by-n, self-adjoint, real (resp. self-
dual) matrices such that ‖AB − BA‖ < δ there exists n-by-n, self-adjoint, real
(resp. self-dual) matrices A′, B′ such that A′B′ = B′A′ and

‖A−A′‖, ‖B −B′‖ < ε.

There are essentially three known ways to prove (the complex case of) Lin’s
theorem: Lin’s original proof; the Friis-Rørdam proof ([9]) that utilizes semipro-
jectivity results and generalizes the result to work in C∗-algebras of “low topo-
logical dimension”; Hastings’ quantitative proof ([12]) that is valid only in the
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1 INTRODUCTION

matrix case but gives a relation ship between ε and δ. We modeled our proof
on that of that of Friis and Rørdam, and so had to develop some theory of
semiprojectivity of real C∗-algebras. We made this choice since this was the
most natural proof for us, and since we felt that some of the real C∗-algebra
techniques we would study would have independent interest. Our proof is limited
to the matrix case, although the semiprojectivity results are for semiprojectivity
with respect to general real C∗-algebras.

3



2 REAL C∗-ALGEBRAS

2 Real C∗-algebras

2.1 Two types of real C∗-algebras

In the past, there have been two ways to talk about real C∗-algebras. There
have been real C∗-algebras (that is, with lowercase r) and Real C∗-algebras
(with uppercase R). For general background on real/Real C∗-algebras, see [10]
and [16]. Real and real C∗-algebras are different objects, and even though
they are closely related the similar names cause confusion (especially in verbal
communication). We are not the first to feel this way. See, for example, [22,
page 698] regarding Atiyah’s [1] use of Real and real as distinct terms. Adding
to the confusion is that fact the Real C∗-algebras have C as their scalar field.
In fairness to Atiyah we should mention that the category of spaces sits nicely
inside the category of Real spaces, thus reducing potential confusion. This,
however, is not true for noncommutative C∗-algebra. To minimize confusion we
suggest new names.

First we describe a class of algebras with scalar field R.
Definition 2.1. Given a real Banach ∗-algebra we let AC be the set of formal
sums a1 ∔ i · a2, a1, a2 ∈ A. Letting a1, a2, b1, b2 ∈ A and α, β ∈ R we define
algebraic operations on AC by:

(a1 ∔ i · a2) + (b1 ∔ i · b2) = (a1 + b1)∔ i · (a2 + b2),

(a1 ∔ i · a2)(b1 ∔ i · b2) = (a1b1 − a2b2)∔ i · (a2b1 + a1b2),

(a1 ∔ i · a2)∗ = a∗1 ∔ i · (−a∗2),
(α+ βi)(a1 ∔ i · a2) = (αa1 − βa2)∔ i · (αa2 + βa1).

With those operations AC is a complex ∗-algebra. We call it the complexification
of A.

Definition 2.2. A real Banach ∗-algebra A is called an R∗-algebra if the there
exist a norm on AC such that AC becomes a C∗-algebra, and the norm on AC
extends the norm on A.

Remark 2.3. An R∗-algebra is known in the literature as a real C∗-algebra [23].

We have the obvious morphisms, and with those we have a category.

Definition 2.4. A map φ : A → B between two R∗-algebras is called an R∗-
homomorphism if it is R-linear, multiplicative and ∗-preserving.

Definition 2.5. Denote by R∗ the category with objects all R∗-algebras and
morphisms all R∗-homomorphisms. Denote by R∗

1
the category of unital R∗-

algebras and morphisms.

We will also define a class of algebras that is seemingly closer to C∗-algebras.
The motivation for this is that the real matrices can be described as those where
A∗ = AT . We define something similar to the transpose in a more general
setting.
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2.2 Connections between R∗ and C∗,τ 2 REAL C∗-ALGEBRAS

Definition 2.6. Let A be a C∗-algebra. A linear and ∗-preserving map τ : A→
A such that τ(ab) = τ(b)τ(a), and τ(τ(a)) = a for all a, b ∈ A is called a
reflection on A.

Remark 2.7. A reflection is just an isomorphism between A and its opposite,
with the range changed. Thus it is automatically norm preserving and contin-
uous. Furthermore, the 0 element in A must be mapped to 0 by τ , if A has a
unit it too must be mapped to it self by τ , and for any a ∈ A the spectrum of
a equals that of τ(a)

Definition 2.8. A C∗,τ -algebra is a pair (A, τ) where A is a C∗-algebra and τ
is a reflection of A. We will often write τ(a) as aτ .

Similar to how the letter d is almost always used to represent a generic
metric, we will write (A, τ) when we do not know anything special about τ .

Remark 2.9. The Real C∗-algebras correspond to C∗,τ -algebras.

We also have morphisms between C∗,τ -algebras, and so we also get a cate-
gory.

Definition 2.10. By a C∗,τ -homomorphism (or ∗-τ-homomorphism) we mean
a map φ : (A, τ) → (B, τ) such that φ is a ∗-homomorphism from A to B and
φ(aτ ) = φ(a)τ for all a ∈ A.

Definition 2.11. Let C∗,τ be the category with objects all C∗,τ -algebras and
morphisms all ∗-τ-homomorphisms. Let C

∗,τ
1

be the category of unital C∗,τ -
algebras and morphisms.

2.2 Connections between R∗ and C∗,τ

We will now consider the close relationship between R∗-algebras and C∗,τ -
algebras. We have a notion of real elements inside a C∗,τ -algebra.

Definition 2.12. Given a ∈ (A, τ) we let ℜτ (a) = (a+ a∗τ )/2.

We will say that a is a real element or is in the real part of (A, τ) if ℜτ (a) = a.
This happens precisely when a∗ = aτ .

Lemma 2.13. If a ∈ (A, τ) then

a = ℜτ (a)− iℜτ (ia).

Lemma 2.14. If a ∈ (A, τ) and we can write a = a1 + ia2 with a1 and a2 in
the real part of A then a1 = ℜτ (a) and a2 = ℜτ (−ia).

We use this newfound knowledge to show that inside all C∗,τ -algebras lives
an R∗-algebra.

Proposition 2.15. If (A, τ) is a C∗,τ -algebra then {a ∈ A | a∗ = aτ} is an
R∗-algebra.
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2.3 Two examples 2 REAL C∗-ALGEBRAS

Proof. Let A0 = {a ∈ A | a∗ = aτ}. The map from A to (A0)C sending a ∈ A
to ℜτ (a)∔ i · ℜτ (−ia) is an R∗-isomorphism.

We now define a functor from R∗ to C∗,τ .

Definition 2.16. Define ℜ : C∗,τ → R∗ on objects by

ℜ((A, τ)) = {a ∈ A | a∗ = aτ},

and if φ : (A, τ) → (B, τ) we let

ℜ(φ) = φ|ℜ(A,τ),

where we co-restrict the right hand side to ℜ((B, τ)).

We also wish to have a functor from R∗ to C∗,τ .

Lemma 2.17. If A is an R∗-algebra then ∗̄ : AC → AC given by

(a1 ∔ i · a2)∗̄ = a∗1 ∔ i · a∗2,

is a reflection on AC. Furthermore ℜ(AC, ∗̄) ∼= A.

Definition 2.18. Define ⋆ to be the functor from R∗ to C∗,τ that maps R∗-
algebras A to (AC, ∗̄) and R∗-homomorphism φ : A → B to ⋆(φ) : (AC, ∗̄) →
(BC, ∗̄) given by

⋆(φ)(a1 ∔ i · a2) = φ(a1)∔ i · φ(a2).

It is not obvious that ⋆ is a functor, but on the other hand it is not hard
to prove.

Remark 2.19. The functor ⋆ maps surjections to surjections and injections to
injections.

It can shown that our two functors are almost inverses, that is if A is an
R∗-algebra and (B, τ) is a C∗,τ -algebra, then

⋆(ℜ(B, τ)) ∼= (B, τ), and ℜ(⋆(A)) ∼= A.

In fact it is know that they both yield categorical equivalences. As such a lot of
the study of R∗-algebras can be done using C∗,τ algebras. That is the approach
we will take through out this paper. The reasoning behind this choice is that
the C∗,τ -algebras lets us utilize a lot of our C∗-algebra knowledge. Hence there
is less reproving of theorems.

2.3 Two examples

Example 2.20. We modeled a reflection on the transpose so of course it is a
reflection, and ℜ(Mn(C), T ) =Mn(R).
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2.4 Ideals in and operations on 2 REAL C∗-ALGEBRAS

There is another reflection on M2n(C). If A ∈ M2n(C) we let Aij be the
n× n blocks and define

(
A11 A12

A21 A22

)♯
=

(
AT22 −AT12
−AT21 AT11

)
.

This is a reflection, and ℜ(M2n(C), ♯) = Mn(H), where H is the quaternions.
This is an imporant operation in physics, as is dicussed in the survey [27] of
applications of random matrices in physics.

Example 2.21. Consider the C∗-algebra of continuous complex-valued functions
on the circle, i.e. C(S1). Since C(S1) is abelian a reflection is just a an order-two
isomorphism. Hence any reflection will come from an order-two homeomorphism
of the circle. From [7] we glean that there are only three such maps (up to
conjugation), namely:

1. z 7→ −z,

2. z 7→ z, and,

3. z 7→ z.

Each gives rise to a C∗,τ algebra by defining for instance f τ (z) = f(−z). The
real parts will be

1. {f ∈ C(S1,C) | f(z) = f(−z) for all z ∈ S1},

2. {f ∈ C(S1,C) | f(z) = f(z) for all z ∈ S1}, and,

3. {f ∈ C(S1,C) | f(z) = f(z)} ∼= C(S1,R).
As there are two essentially distinct reflections on M2n(C) and three on

C(S1), we immediately find six replacements in the real case for

U2n(A) ∼= hom
(
C(S1),M2n(A)

)
.

We are therefore unsurprised to find that K1(A) gets replaced by six odd K-
groups, counting degrees 1, 3, 5 and 7 in KO and degrees 1 and 3 in self-
conjugate K-theory [1, 4].

2.4 Ideals in and operations on

We wish to study ideals in C∗,τ algebras. In C∗-algebras the ideals are precisely
the kernels of ∗-homomorphisms. The kernel of C∗,τ -homomorphism will be
self-τ (that is, if x ∈ kerφ then xτ ∈ kerφ), but there are C∗-ideals that need
not be self-τ . We wish to eliminate those ideals, and so we give the following
definition.

Definition 2.22. Let (A, τ) be a C∗,τ -algebra. We say that I ⊆ A is an ideal
in (A, τ) if I is a C∗-ideal in A and I is self-τ . We will sometimes write I ⊳τ A
or I ⊳ (A, τ).
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2.4 Ideals in and operations on 2 REAL C∗-ALGEBRAS

With ideals at hand, we can define quotients.

Lemma 2.23. If I ⊳ (A, τ) then (I, τ |I) is a C∗,τ -algebra. Let π : A → A/I
be the C∗ quotient map. The map π(a)τ 7→ π(aτ ) defines a reflection on A/I.
Thus A/I is naturally a C∗,τ -algebra and π is C∗,τ -homomorphism.

We note that we now have obtained what we wanted: The C∗,τ ideals are
precisely the kernels of the C∗,τ -homomorphisms.

The following lemma and theorem tells us that we have direct sums and
pullbacks in the category C∗,τ .

Lemma 2.24. Given two C∗,τ -algebras (A, τ) and (B, σ) the map τ ⊕ σ : A⊕
B → A⊕B will be a reflection.

Theorem 2.25. Suppose ϕ1 : (A1, τ) → (C, τ) and ϕ2 : (A1, τ) → (C, τ) are
∗-τ-homomorphisms, and form the pull-back C∗-algebra

A1 ⊕C A2 =
{
(a1, a2) ∈ A1 ⊕A2

∣∣ϕ1(a1) = ϕ2(a2)
}
.

This becomes a C∗,τ -algebra with

(a1, a2)
τ = (aτ1 , a

τ
2)

and it gives us the pull-back of the given C∗,τ -algebras, where we are using the
restricted projection maps πj : (A1, τ)⊕(C,τ) (A2, τ) → (Aj , τ).

Proof. We need to check some axioms, but all are clear. Given ψj : (D, τ) →
(Aj , τ) with ϕ1 ◦ψ1 = ϕ2 ◦ψ2, we know from the underlying ∗-homomorphisms
that we have a unique ∗-homomorphisms

ψ : D → A1 ⊕C A2

for which πj ◦ ψ = ψj . It is defined by

ψ(d) = (ψ1(d), ψ2(d))

and

ψ(dτ ) = (ψ1(d
τ ), ψ2(d

τ )) = (ψ1(d)
τ , ψ2(d)

τ ) = (ψ1(d), ψ2(d))
τ = ψ(d)τ .

We can also define what it means to unitize a C∗,τ -algebra.

Lemma 2.26. Let (A, τ) be a C∗,τ algebra. The formula

(a+ λ1)σ = aτ + λ1, a ∈ A, λ ∈ C,
defines a reflection on Ã. Thus (Ã, σ) is a C∗,τ -algebra. And it is the only way
to unitize (A, τ) while preserving the reflection on A.

8



2.4 Ideals in and operations on 2 REAL C∗-ALGEBRAS

Proof. Let a, b ∈ A and let λ, µ ∈ C. We must check that σ is linear, anti-
multiplicative and ∗-preserving. The only thing that is not immediately obvious
is that σ is anti-multiplicative. To see that we compute:

((a+ λ1)(b + µ1))σ = ((ab+ µa+ λb) + (λµ)1)σ
= (ab+ µa+ λb)τ + (λµ)1
= bτaτ + µaτ + λbτ + λµ1
= (bτ + µ1)(aτ + λ1)
= (b+ µ1)σ(a+ λ)σ.

Since any reflection must preserve the unit σ is defined in the only possible
way.

Definition 2.27. If (A, τ) is a C∗,τ -algebra we will also denote by τ the ex-
tension of τ to Ã given in lemma 2.26 (this should cause no confusion, as the
lemma shows this extension is unique). The C∗,τ -algebra (Ã, τ) we denoted by

(̃A, τ) or (A, τ)∼, and call the unitization of (A, τ).

Example 2.28. We will compute the unitization of the C∗,τ -algebraC0((0, 1), id).
Since C0((0, 1))

∼ ∼= C(S1), we have that (C0((0, 1), id))
∼ ∼= C(S1, τ), where τ

is a reflection that extends id. Since the unit is always self-τ and everything
in C0((0, 1), id) is self-id, we have that all elements of C0((0, 1), id)

∼ are self-τ .
Thus we have C0((0, 1), id)

∼ ∼= C(S1, id).
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3 (SEMI) PROJECTIVE REAL C∗-ALGEBRAS

3 (Semi) Projective real C∗-algebras

The definition of a semiprojective C∗-algebra that we use today was given by
Blackadar in [2]. We will modify that definition so we can use it for C∗,τ -
algebras. The theory of semiprojective C∗-algebras is well developed, for good
resources on the subject see [3], [20], and the references therein. In what follows
we try to develop some theory of semiprojective C∗,τ -algebras. To do so we
borrow proof ideas from across the field of semiprojective C∗-algebras without
further references.

3.1 Definitions

We give the obvious definitions of projectivity and semiprojectivity in the cat-
egories C∗,τ and C

∗,τ
1

.

Definition 3.1. Let C be one of the categories C∗,τ or C∗,τ
1

. An object A in C

is said to be projective, if whenever J is an ideal in B, another object in C, and
we have a morphism φ : A→ B/J in C, we can find a morphism ψ : A→ B in
C such that π ◦ ψ = φ, where π it the quotient map from B to B/J .

Definition 3.2. Let C be one of the categories C∗,τ or C∗,τ
1

. An object A in C

is said to be semiprojective, if whenever J1 ⊆ J2 ⊆ · · · is an increasing sequence
of ideals in B, another object in C, and we have a morphism φ : A → B/J ,
J = ∪nJn, in C, we can find an m ∈ N and morphism ψ : A → B/Jm in C

such that πm,∞ ◦ ψ = φ, where πm,∞ it the quotient map from B/Jm to B/J .

Notation. Whenever we have a C∗,τ -algebra B containing an increasing se-
quence of τ -invariant ideals J1 ⊆ J2 ⊆ · · · we denote the quotient maps as
follows:

πn : B ։ B/Jn,

πn,m : B/Jn ։ B/Jm,

πm,∞ : B/Jm ։ B/J,

π∞ : B ։ B/J,

where n < m are natural numbers and J = ∪nJn.

Of course one could just as easily define semiprojective R∗-algebras. Study-
ing how the functors ℜ and⋆ behave with respect to ideals and lifting problems,
the following two propositions can be proved. For reasons of brevity we have
chosen not to include proofs of these propositions.

Proposition 3.3. If A,B are R∗-algebras, J is an ideal in B, and φ : A→ B/J
is an R∗-homomorphism, then we can find an R∗-homomorphism ψ : A → B
such that π ◦ψ = φ if and only if we can find a ∗-τ-homomorphism χ : ⋆(A) →
⋆(B) such that ⋆(π) ◦ ψ = ⋆(φ).
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3.1 Definitions 3 (SEMI) PROJECTIVE REAL C∗-ALGEBRAS

Proposition 3.4. If A is an R∗-algebra then A is (semi-) projective if and only
if ⋆(A) is. If (B, τ) is a C∗,τ -algebra then (B, τ) is (semi-) projective if and
only if ℜ(B, τ) is.

Just as in the C∗-case we can somewhat simplify the task of proving semipro-
jectivity.

Proposition 3.5. To show that a C∗,τ -algebra (B, τ) is semiprojective it suf-
fices to solve lifting problems

(B, τ)

(B/Jn, τ)

(A, τ)
φ

(B/J, τ)

where φ is either injective, surjective or both.

Proof. This is well know in the C∗-case [20], and is no harder in the C∗,τ -case.
To get injective we replace φ with φ ⊕ id : (A, τ) → (B/J ⊕ A, τ ⊕ τ). To get
surjective we focus on the image of φ.

Functional calculus is indispensable when working with lifting problems.
The following lemma tells some of the story about C∗,τ -algebras and functional
calculus.

Lemma 3.6. Suppose a is normal element in a C∗,τ -algebra (A, τ). If f is a
continuous function from σ(a) to C then f(a)τ = f(aτ ).

If b ∈ (A, τ) is a normal and self-τ element and σ(b) ⊆ X ⊆ C then the
C∗-homomorphism φ : C0(X) → A given by f 7→ f(b) is a C∗,τ -homomorphism
from C(X, id) to (A, τ).

Proof. We remind the reader that σ(a) = σ(aτ ). Since τ is linear we have
p(a)τ = p(aτ ), for any polynomial p. By continuity of τ we now get f(a)τ =
f(aτ ) for any function f ∈ C(σ(a)).

For any function f ∈ C0(X) we have

f(b)τ = f(bτ ) = f(b) = (f ◦ id)(b).

With that lemma at our disposal, we can give some basic examples of (semi-)
projective C∗,τ -algebras.

11



3.2 Closure results 3 (SEMI) PROJECTIVE REAL C∗-ALGEBRAS

Example 3.7. We will show that the C∗,τ -algebra C0((0, 1], id) is projective.
Suppose we are given the following lifting problem:

(B, τ)

π

C0((0, 1], id)
φ

(B/J, τ)

Let h = φ(t 7→ t). Then h is a self-τ positive contraction. Let x be a positive
contractive lift of h, and let k = (x + xτ )/2. Then k is a self-τ , positive
contraction, and π(x) = h. By Lemma 3.6 the map f 7→ f(k) is a C∗,τ -
homomorphism. It is a lift of φ by standard C∗-theory.

Example 3.8. We will show that the C∗,τ -algebra (C, id) is semiprojective. Sup-
pose we are given the following lifting problem:

(B, τ)

πn

(B/Jn, τ)

πn,∞

(A, τ)
φ

(B/J, τ)

Let p = φ(1). Then p is a self-τ projection. Let y ∈ (B, τ) be any self-adjoint
lift of p. If we let x = (y+yτ )/2 then x is a self-τ and self-adjoint lift of p. Since
πn(x

2 − x) → 0 as n → ∞ we can find some m ∈ N such that 1/2 /∈ σ(πm(x)).
Now let f be the function that is 0 on (−∞; 1/2) and 1 on (1/2;∞). Then
q = f(πm(x)) is a projection and a lift of p. Since x is self-τ q will be self-τ . We
can now define a C∗,τ homomorphism from C to B/Jm by λ 7→ λq (Lemma 3.6).
It is a lift of φ.

3.2 Closure results

3.2.1 Unitizing

We aim to get the C∗,τ equivalent of C∗ result that A is semiprojective if and
only if Ã is. First we show that if A is unital it suffices to solve unital lifting
problems.

Lemma 3.9. A unital C∗,τ -algebra is semiprojective in C∗,τ if and only if it is
semiprojective in C

∗,τ
1

.

Proof. Let (A, τ) be a unital C∗,τ -algebra.
The proof that (A, τ) semiprojective in C∗,τ implies that it is semiprojective

in C
∗,τ
1

is precisely the same as in the C∗-case.

12



3.2 Closure results 3 (SEMI) PROJECTIVE REAL C∗-ALGEBRAS

Suppose that (A, τ) is semiprojective in C
∗,τ
1

. Let (B, τ) be a C∗,τ -algebra
containing an increasing sequence of C∗,τ ideals I1 ⊆ I2 ⊆ · · · , let I = ∪nIn, and
let φ : (A, τ) → (B/I, τ) be a C∗,τ -homomorphism. Put p = φ(1A). Then p is
a self-τ projection in (B/J, τ). Since (C, id) is semiprojective, we can find some
n0 ∈ N and self-τ projection q ∈ B/Jn0

such that πn0,∞(q) = p. For each n ≥ n0

define qn = πn0,n(q). Since all the qn are self-τ all the corners qn(B/Jn)qn are
self-τ . Hence for all n ≥ n0 we have that qn(B/Jn)qn ∼= (qBq)/(qJnq) and that
by restricting the τ ’s we get the following commutative diagram of C∗,τ -algebras:

(qn0
(B/Jn0

)qn0
, τ) ֒ (B/Jn0

, τ)

(qn(B/Jn)qn, τ) ֒ (B/Jn, τ)

(A, τ)
φ

(p(B/J)p, τ) ֒ (B/J, τ)

In the two left most columns there are only unital maps and algebras, so since
(A, τ) is semiprojective in the unital category, we can find a lift for some n ≥ n0.
This lifting combines with the inclusion qn(B/Jn)qn →֒ B/Jn to show that
(A, τ) is semiprojective.

The lemma is a stepping stone towards a goal, but it also has its own appli-
cations.

Example 3.10. The C∗,τ -algebras C(S1, id), C(S1, z 7→ z) and C(S1, z 7→ −z)
are all semiprojective. We will only show the first one, but the remaining proofs
are similar. By Lemma 3.9 it suffices to solve lifting problems of the form:

(B, τ)

πn

(B/Jn, τ)

πn,∞

(C(S1), id)
φ

(B/J, τ)

where everything is unital. Let u = φ(z 7→ z). Then u is a self-τ unitary. Let y
be any self-τ lift of u. We can find an m such that x = πm(x) satisfies that xx∗

and x∗x are invertible. Now define v = x(x∗x)−1/2. The v is a unitary lift of u
and, by Lemma 3.6 and a standard functional calculus trick,

vτ = ((x∗x)−1/2)τxτ = ((x∗x)τ )−1/2x = (xx∗)−1/2x = x(x∗x)−1/2 = v.

There is C∗-homomorphism from C(S1) to B/Jm given by ψ(f) = f(v). Since
v is self-τ and every element in C(S1, id) is self-τ , this is actually a C∗,τ homo-
morphism from C(S1, id) to (B/Jm, τ). Because v is a lift of u, ψ is a lift of
φ.
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3.2 Closure results 3 (SEMI) PROJECTIVE REAL C∗-ALGEBRAS

Lemma 3.11. A C∗,τ -algebra (A, τ) is semiprojective if and only if (̃A, τ) is
semiprojective in the unital C∗,τ category.

Corollary 3.12. A C∗,τ -algebra is semiprojective if and only if its unitization
is.

Example 3.13. Since (C((0, 1), id)∼ ∼= C(S1, id) and the latter is semiprojective,
C((0; 1), id) is semiprojective.

3.2.2 Direct sums

In this section we aim to show the following.

Proposition 3.14. If (A, τ), (B, σ) are separable semiprojective C∗,τ -algebras,
then (A⊕B, τ ⊕ σ) is a semiprojective C∗,τ -algebra.

Before we can do that however, we need to set up some theory.

Lemma 3.15. The relations 0 ≤ h, k ≤ 1, h = hτ , k = kτ , hk = 0 are liftable.

Proof. Suppose we are given a τ -invariant ideal J in a C∗,τ -algebra B, and
suppose h, k ∈ B/J satisfy the relations. Let a = h − k. Then a is a a self-τ
self-adjoint contraction. Thus we can lift it to a self-adjoint self-τ contraction
in B, â say. Define f : R → R by f(x) = (x + |x|)/2. Then we know from
C∗-algebra theory that f(â) is a positive contractive lift of h, that f(−â) is a
positive contractive lift of k, and that f(â)f(−â) = 0. Lemma 3.6 tells us that
f(â) and f(−â) are self-τ .

Lemma 3.16. Let (B, τ) be a C∗,τ -algebra. If h ∈ (B, τ) is strictly positive in
B then so is hτ . Hence ℜτ (b) is strictly positive.

Proof. Let φ : B → C be a linear positive functional. Then we have, writing τ
as a function,

φ(hτ ) = φ(τ(h)) = (φ ◦ τ)(h).
Since τ is linear and maps positive elements to positive elements φ ◦ τ is a
positive linear functional. But then if φ is non-zero we have

φ(hτ ) = (φ ◦ τ)(h) > 0.

Corollary 3.17. If (B, τ) is a separable C∗,τ -algebra then it contains a self-τ
positive element h such that hBh = B.

A discussion of hereditary subalgebras in the context of real C∗-algebras is
to be found in [26].

We are now ready to prove Proposition 3.14.

14



3.2 Closure results 3 (SEMI) PROJECTIVE REAL C∗-ALGEBRAS

Proof of Proposition 3.14. Since both (A, τ) and (B, σ) are separable we can
use Corollary 3.17 to find h ∈ A and k ∈ B, positive contractions such that
hτ = h, kσ = k, hAh = A and kBk = B. Suppose we are given a C∗,τ -algebra
(D, τ) containing an increasing sequence of τ -invariant ideals J1 ⊆ J2 ⊆ · · · and
a C∗,τ -homomorphism

φ : (A⊕B, τ ⊕ σ) → (D/J, τ),

where J = ∪nJn. Let ĥ = φ((h, 0)) and k̂ = φ((k, 0)). Since ĥ and k̂ are or-
thogonal positive contractions we can, by Lemma 3.15, find positive orthogonal
contractive lifts h̃, k̃ of them in B. For each n ∈ N ∪ {∞} let hn = πn(h̃),
kn = πn(k̃), An = hn(D/Jn)hn, and Bn = kn(D/Jn)kn. For each n ∈ N ∪ {∞}
the map γn = τ |An

⊕ τ |Bn
is a reflection since hn and kn are self-τ . Observe

that we have

ĥ(D/J)ĥ = h∞(D/J)h∞ = A∞ and k̂(D/J)k̂ = k∞(D/J)k∞) = B∞.

Define for each n ∈ N ∪ {∞} a map

αn : (An ⊕Bn, γn) → (D/Jn, τ),

by α((x, y)) = x+y. It will be an C∗,τ -homomorphism since hnkn = 0. Noticing
that

π(h̃Dh̃) = A∞ and π(k̃Dk̃) = B∞,

we see there must be a C∗,τ -homomorphism

ψ : (A⊕B, τ ⊕ σ) → (A∞ ⊕ B∞, γ),

such that φ : α∞ ◦ ψ. Hence we get the following commutative diagram for all
n ∈ N

(An ⊕Bn, γn)
αn

(D/Jn, τ)

(A⊕B, τ ⊕ σ)

φ

ψ
(A∞ ⊕B∞, γ∞)

α∞

(D/J, τ)

Since γ is a direct sum of two reflections, we can use the semiprojective of (A, τ)
and (B, σ), one at a time, to show that (A⊕B, τ ⊕ σ) is semiprojective.

Remark 3.18. We observe that we only used (A, τ) and (B, τ) separable to get
strictly positive real elements h, k. So we might as well have assumed that A
and B were σ-unital. Lemma 3.16 tells us that whether we define (A, τ) to be
σ-unital when A is or when (A, τ) contains a strictly positive real element, we
get the same class of algebras.

The knowledge we have accumulated so far lets us take a small step towards
showing that if X is a finite one-dimensional CW-complex then C(X, id) is
semiprojective.

15
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Proposition 3.19. If X is a wedge of circles (a bouquet) then C(X, id) is
semiprojective.

Proof. By assumption

C(X, id) ∼=
(

n⊕

i=1

C0((0, 1), id)

)˜

,

for some n ∈ N. By Proposition 3.14
⊕n

i=1 C0((0, 1), id) is semiprojective since
each summand is. So by Corollary 3.11 C(X, id) is semiprojective.

The above proposition will later be the basis step of an induction proof.

Remark 3.20. If X is a wedge of two circles, then we can put a reflection on
C(X) by mapping one circle to the other. This reflection is not a direct sum of
two reflections on the circle. Hence showing that the C∗,τ -algebra it defines is
semiprojective requires different techniques than the ones we have just used.
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4 MULTIPLIER ALGEBRAS

4 Multiplier algebras

In this section we will study multiplier and corona algebras of C∗,τ -algebras.
The idea is that we already have multiplier algebras at our disposal. So the
main body of work lies in showing that we can extend a reflection on A to a
reflection on M(A).

4.1 A reflection on M(A)

The following theorem is in [15]. We present it here with a few more details.

Theorem 4.1. Suppose (A, τ) is a C∗,τ -algebra. There is an operation τ on
M(A) defined by

mτa = (aτm)
τ
, and amτ = (maτ )

τ

for a in A and m in M(A), and (M(A), τ) is a C∗,τ -algebra, and the C∗-
inclusion

ι : A→M(A),

is also a C∗,τ -homomorphism.

Proof. Consider for a moment a fixedm inM(A). Define L : A→ A and R : A→
A by

L(a) = (aτm)τ and R(a) = (maτ )τ .

For all a and b in A,

L(ab) = (bτaτm)τ = (aτm)τ b = L(a)b,

R(ab) = (mbτaτ )
τ
= a (mbτ )

τ
= aR(b),

and
R(a)b = (maτ )

τ
b = (bτmaτ )

τ
= a (bτm)

τ
= aL(b),

so (L,M) is an element of M(A), which we denote mτ . Notice mτ is specified
within all multipliers by either one of the formulas

mτa = (aτm)
τ
, or amτ = (maτ )

τ
.

We claim that the operation defined above, on all multipliers m 7→ mτ , makes
M(A) a C∗,τ -algebra. For any multiplier m, and any a in A,

mττa = (aτmτ )
τ
= (maττ)

ττ
= ma,

so τ ◦ τ = id. For n in M(A) and α in C,
(αm+ n)τa = (aτ (αm+ n))

τ
= αmτa+ nτa = (αmτ + nτ )a,

(mn)τa = (aτmn)
τ
= ((mτa)τn)τ = nτ (mτa) = (nτmτ )a,

17
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and
(m∗)

τ
a = (aτm∗)

τ
= (ma∗τ )

∗τ
= (a∗mτ )∗ = (mτ )∗a,

which means τ commutes with ∗, is anti-multiplicative, and C-linear.
If a is in A, them for any other b in A,

ι(a)τ b = (bτ ι(a))τ = (bτa)τ = aτb = ι(aτ )b,

so ι(a)τ = ι(aτ ).

Lemma 4.2. Suppose A is a C∗,τ -subalgebra of B, where (B, τ) is a given
C∗,τ -algebra. The idealizer

I(A : B) =
{
b ∈ B

∣∣ bA+Ab ⊆ A
}
,

is self-τ, and so a C∗,τ -subalgebra of B containing A as a self-τ ideal.

Proof. Suppose b is in the idealizer and a is in A. Then aτ ∈ A and so

(bτa)
τ
= aτ b ∈ A =⇒ bτa ∈ A,

and
(abτ )

τ
= baτ ∈ A =⇒ abτ ∈ A,

proving bτ is also in the idealizer.

Theorem 4.3. Suppose (B, τ) is a C∗,τ -algebra and A⊳ (B, τ) is a self-τ ideal.
The unique ∗-homomorphism θ : B → M(A) for which θ(a) = ι(a) for all a in
A, is automatically a ∗-τ-homomorphism.

Proof. We know θ(b)a = ba defines the only possible ∗-homomorphism from B
to M(A) satisfying θ(a) = ι(a). For b in B and a in A we compute

θ(b)τa = (aτθ(b))
τ
= (θ(aτ b))

τ
= θ((aτ b)τ ) = θ(bτa) = θ(bτ )a,

which proves θ is τ -preserving.

Lemma 4.4. If ϕ : (A, τ) → (B, τ) is a proper ∗-τ-homomorphism between
σ-unital C∗,τ -algebras, then the unique ∗-homomorphism ϕ̂ : M(A) → M(B)
that extends ϕ is actually a ∗-τ-homomorphism.

Proof. The fact that ϕ is proper tells us B = ϕ(A)B = Bϕ(A). The defining
formulas for ϕ̂ are

ϕ̂(m)ϕ(a)b = ϕ(ma)b

and
bϕ(a)ϕ̂(m) = bϕ(am).

18
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Therefore

ϕ̂(m)τϕ(a)b = ((ϕ(a)b)τ ϕ̂(m))τ

= (bτϕ(aτ )ϕ̂(m))τ

= (bτϕ(aτm))τ

= ϕ(mτa)b

= ϕ̂(mτ )ϕ(a)b.

We get “multiplier realization” for free.

Theorem 4.5. Let C(E) denote the corona of a σ-unital C∗,τ -algebra (E, τ),
and let D and N be separable C∗,τ -subalgebras of C(E). Suppose

A ⊆ C(E) ∩D′ ∩N⊥,

is a σ-unital C∗,τ -subalgebra. Then the ∗-τ-homomorphism

θ : I(A : C(E) ∩D′ ∩N⊥) →M(A)

is onto.

Proof. We know that θ is onto, by Corollary 3.2 of [8]. All we are asserting here
is that this map is now a morphism in the category of C∗,τ -algebras.

4.2 Corona extendible morphisms

Definition 4.6. We say a morphism of C∗,τ -algebras γ : (A, τ) → (B, τ) is
corona extendible if, for every ∗-τ-homomorphism ϕ : A → C(E) with E a σ-
unital C∗,τ -algebra, there exists a ∗-τ-homomorphism ϕ̂ : A → C(E) so that
ϕ̂ ◦ γ = ϕ.

Theorem 4.7. Suppose 0 → A → X → P → 0 is a short-exact sequence of
σ-unital C∗,τ -algebras If P is projective then the inclusion A → X is corona
extendible. Moreover, the unitization of this map Ã → X̃ is also corona ex-
tendible.

Proof. Except for the ∗-τ -homomorphism claim, this is Theorem 3.4 of [8] com-
bined with the usual universal property of a split extension, as in Theorem 7.3.6
of [20]. We summarize those proofs and verify that various maps can be selected
to be ∗-τ -homomorphisms.

Since P is projective, the exact sequence has a splitting by a ∗-τ -homomor-
phism λ : P → X. We assume we are given a ∗-τ -homomorphism ϕ : A→ C(E)
with E being σ-unital. As in the proof of Theorem 3.4 of [8], we have the
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commutative diagram, ignoring for now ψ0,

0 A B P
λ

ψ0

0

A M(A)

ϕ(A) M(ϕ(A))

ϕ(A) I(ϕ(A) : C(E))

where the map A→ ϕ(A) is the co-restriction of ϕ making it onto. The essential
fact that the arrow up from the idealizer to the multiplier algebra is both sur-
jective and a ∗-τ -homomorphism is Theorem 4.5. The map from B to M(A) in
the top square is a ∗-τ -homomorphism by Theorem 4.3. The map fromM(A) to
M(ϕ(A)) in the middle square is a ∗-τ -homomorphism by Lemma 4.4. We use
the projectivity, in the ∗-τ -sense, of P to get a ∗-τ -homomorphism ψ0 making
the diagram commute.

Following ψ0 by the inclusion into the corona algebra give us a ∗-τ -homomor-
phism ψ : P → C(E) such that

ψ(p)ϕ(a) = ϕ(µ(p)a)

for all p in P and a in A. This induces a ∗-homomorphism

Ψ: X → C(E)

extending ϕ by
Ψ(a+ λ(p)) = ϕ(a) + ψ(p)

which is evidently a ∗-τ -homomorphism.
To get the last claim, we must use more of the power of Theorem 4.5. We

are given Ã → C(E) which we regard as a ∗-τ -homomorphism ϕ : A → C(E)
together with a projection p in C(E) such that pϕ(a) = ϕ(a) for all a in A. We
can replace I(ϕ(A) : C(E)) in the big diagram by

I(ϕ(A) : C(E)) ∩ (1− p)⊥.

We still have the needed surjectivity onto M(ϕ(A)) and end up with Ψ : B →
C(E) with the property pΨ(b) = Ψ(b) for all b in B.

Corollary 4.8. Suppose X is a compact metrizable space and Y ⊆ X is a closed
subset of X homeomorphic to the closed interval [0; 1]. Let X1 be the quotient
of X obtained by collapsing Y to a point. The inclusion C(X1, id) →֒ C(X, id)
of abelian C∗,τ -algebras is corona extendible.
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Proof. Let y0 denote the point in Y associated to 0 in [0; 1]. Let y∗ be the point
in X1 that is the image of Y in the quotient map. We have an exact sequence

0 C0(X1 \ {y∗}) C(X \ {y0}) C0(0; 1] 0

where all C∗-algebras are equipped with the trivial τ operation. Thus we are
done by Theorem 4.7 and Example 3.7.

4.3 Corona (semi-) projective

Just as in the C∗-case, the work of showing semiprojectivity can be reduced
using corona algebras. Most of the proof of the following two theorems can be
copied from the proof of [20, Theorem 14.1.7] if one only remembers to change
category. The only change is that we have not studied the Calkin algebra in a

C∗,τ setting. To avoid using that, use the corona algebra of
⊕∞

n=1 (̃A, τ).

Theorem 4.9. Suppose A is a separable C∗,τ -algebra. The following are equiv-
alent:

1. A is projective;

2. we can solve the lifting problem for A whenever ρ is the quotient map
M(E) → C(E) for a separable C∗,τ -algebra E and ϕ is injective;

3. we can solve the lifting problem for A whenever ρ is the quotient map
M(E) → C(E) for a separable C∗,τ -algebra E;

4. we can solve the lifting problem for A whenever ρ is the quotient map
B → B/I for a separable C∗,τ -algebra B and closed τ-closed ideal I.

Theorem 4.10. Suppose A is a separable C∗,τ -algebra. The following are equiv-
alent:

1. A is semiprojective;

2. we can solve the partial lifting problem for A whenever B = M(E) for
a separable C∗,τ -algebra E and

⋃
Ek = E for some chain of τ-invariant

ideals of E and ϕ is injective;

3. we can solve the partial lifting problem for A whenever B = M(E) for
a separable C∗,τ -algebra E and

⋃
Ek = E for some chain of τ-invariant

ideals of E;

4. we can solve the partial lifting problem for A whenever B is separable.

Theorem 4.11. Suppose 0 → I → A → B → 0 is an exact sequence of
separable C∗,τ -algebras. If A and B are projective then I is projective.

Proof. We need only lift morphisms of the form I → C(E). These extend to
morphisms B → C(E), and those morphisms lift.
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Theorem 4.12. Suppose 0 → I → A → B → 0 is an exact sequence of
separable C∗,τ -algebras. If A is semiprojective and B is projective then I is
semiprojective.
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5 Functions on graphs

In this section we show semiprojectivity of continuous functions on finite one-
dimensional CW-complexes with the trivial reflection. The proof follows the
ideas put forth in [19]. In that paper semiprojectivity of “dimension drop
graphs” is shown. Since we have a specific goal in mind, we have chosen to
drop the matrix algebras.

Theorem 5.1. If X is a finite one-dimensional CW complex, then C(X, id) is
a semiprojective C∗,τ -algebra.

Proof. Since semiprojectivity is closed under direct sums, we can assume that
X is connected. We will do the proof by induction on the number of vertices in
X .

The case where X has only one vertex is Proposition 3.19.
Suppose now any one-dimensional CW complex with k vertices gives rise to

a semiprojective C∗,τ -algebra. Let X be a one-dimensional CW complex with
k + 1 vertices. Fix two vertices, v1 and v2 say. Let X̃ be a topological copy of
X . Denote the copies of v1 and v2 and X̃ by w1 and w2 respectively. Choose a
continuous function h0 : X̃ → [−1; 2] such that h−1

0 ([−1; 0]) consists of the union
of closed subintervals, containing w1, of each of the edges adjacent to w1, and
such that h−1

0 ([1, 2]) consists of the same for the edges adjacent to w2, and also
h−1
0 ({−1}) = {w1} and h−1

0 ({2}) = {w2}. We will identify X with the quotient
of X̃ obtained by collapsing h−1

0 ([−1; 0]) to one point and h−1
0 ([1; 2]) to another.

Let γX : X̃ ։ X be the quotient map. Collapsing v1 and v2 to one point we
obtain a space, Y say. Let η : X → Y be the quotient map. Collapsing w1 and
w2 in X̃ we get a space Ỹ , call the quotient map η̃. And we can collapse arcs
in Ỹ to obtain Y , with quotient map γY say. Thus we have a nice commuting
square of quotient maps

X̃
γX

η̃

X

η

Ỹ γY
Y

We will view C(X, id), C(Ỹ , id) and C(Y, id) as sub-algebras of C(X̃, id) using
the following identifications:

C(X, id) ∼=
{
f ∈ C(X̃, id) | f(x) = f(w1) if h0(x) ≤ 0

f(x) = f(w2) if h0(x) ≥ 1

}
,

C(Ỹ , id) ∼= {f ∈ C(X̃, id) | f(w1) = f(w2)},
C(Y, id) ∼= {f ∈ C(X̃, id) | f(x) = f(w1) if h0(x) ≤ 0 or h0(x) ≥ 1}.

Define h1 : X̃ → [0, 1] by

h1(x) =





0, h0(x) ≤ 0
h0(x), 0 ≤ h0(x) ≤ 1
1, 1 ≤ h0(x)

.

23



5 FUNCTIONS ON GRAPHS

Note that h1 and C(Y, id) generate C(X, id).
Suppose now that we are given a C∗,τ -algebra (E, τ) containing an increasing

sequence of τ -invariant ideals E1 ⊆ E2 ⊆ · · · such that ∪nEn = E, and an
injective C∗,τ -homomorphism φ : C(X, id) → (C(E), τ). Putting some of the
quotient maps and φ into one diagram, we have the following.

C(Ỹ , id)

(η̃)∗

C(X̃, id) C(X, id)
γX∗

φ
(C(E), τ)

where −∗ denotes the induced maps. Using Corollary 4.8 repeatedly we get a
C∗,τ -homomorphism φ̂ : C(X̃, id) → (C(E), id) such that φ = φ̂ ◦ γX∗. Using
that Ỹ is a one-dimensional CW complex with one vertex less thanX we get that
C(Ỹ , id) is semiprojective, so we can find an n ∈ N and a C∗,τ -homomorphism

ψ : C(Ỹ , id) → (M(E)/En, τ) such that πn,∞ ◦ ψ = φ̂ ◦ (η̃)∗. All in all we have
the following commutative diagram

C(Ỹ , id)
ψ

(η̃)∗

(M(E)/En, τ)

πn,∞

C(X̃, id)

φ̂

C(X, id)
(γX )∗ φ

(C(E), τ)

We will now find a positive contractive self-τ lift of φ̂(h1) in (M(E)/En, τ)

that commutes with (ψ ◦ (γY )∗)(C(Y, id)). Since φ̂(h1) is positive and contrac-
tive, we can find a positive and contractive lift. Averaging this lift with τ of
it, we get a self-τ positive contractive lift of φ̂(h1). Let us call it H . Define
functions l,m, k : [−1; 2] → [0; 1] by

l(t) =





0, −1 ≤ t ≤ 0,
t, 0 ≤ t ≤ 1,
2− t, 1 ≤ t ≤ 2

,

m(t) =





−t, −1 ≤ t ≤ 0,
0, 0 ≤ t ≤ 1,
t− 1, 1 ≤ t ≤ 2

,

k(t) =





0, −1 ≤ t ≤ 0,
t, 0 ≤ t ≤ 1,
1, 1 ≤ t ≤ 2

.

Observe that l+mk = k, that k ◦ h0 = h1, and that l ◦ h0 and m ◦ h0 both are
in C(Ỹ , id). Hence we can define

H̃ = ψ(l ◦ h0) + ψ((m ◦ h0)1/2)Hψ((m ◦ h0)1/2).
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Since all the functions are real valued we get that H̃ is self-adjoint. Since every
thing else is self-τ so is H̃ . It is a lift of φ̂(h1) since

πn,∞(H̃) = φ̂(l ◦ h0) + φ̂((m ◦ h0)1/2)φ̂(h1)φ̂((m ◦ h0)1/2)
= φ̂((l ◦ h0) + (m ◦ h0)h1) = φ̂((l ◦ h0) + (m ◦ h0)(k ◦ h0))
= φ̂((l +mk) ◦ h0) = φ̂(k ◦ h0) = φ̂(h1).

By functional calculus can replace H̃ with Ĥ = k(H̃) to obtain a positive

contractive lift of φ̂(h1). By Lemma 3.6 Ĥ is self-τ . To show that this lifts
commutes with (ψ ◦ (γY )∗)(C(Y, id)) it suffices to show that H̃ does. Let f ∈
C(Y, id). Then f(m ◦ h0) = 0 so we must have

ψ((γY )∗(f))ψ(m ◦ h0) = 0.

Hence ψ((γY )∗(f)) commutes with H̃ .
Let D = C(Y × [0, 1]). We have shown that given a C∗,τ -homomorphism

φ : C(X, id) → (C(E), τ) we can find an n0 ∈ N and a C∗-homomorphism
χ : D →M(E)/En0

such that the following diagram commutes

D
χ

β

M(E)/En0

πn0,∞

C(X, id)
φ

C(E)

Where β denotes that map induced by sending C(Y,R) (inside D) to C(Y,R)
(inside C(X,R)) and h to h1. Since Ĥ is self-τ Lemma 3.6 gives that χ is actually
τ -preserving. Hence we can view the above diagram as being a commutative
diagram in the C∗,τ category.

For each n ≥ n0 define χn = πn0,n ◦ χ and let Dn = D/ kerχn. Then if
n0 ≤ n ≤ m we have a surjection Dn ։ Dm. Since D = C(Y × [0; 1]) and each
Dn, n ≥ n0, is a quotient of D, there must be spaces Yn, n ≥ n0, such that
Dn

∼= C(Yn). Thus we have an inductive system

D ։ C(Yn0
) ։ C(Yn0+1) ։ C(Yn0+2) ։ · · ·

Call the bonding maps δk,l. This is an inductive system in the category of
C∗-algebras, so we can compute the limit as

D/ ker(πn0,∞ ◦ χ) ∼= (πn0,∞ ◦ χ)(D) = (φ ◦ β)(D) = φ(C(X)) ∼= C(X).

Since X is an ANR we can find anm ≥ n0 and a C∗-homomorphism λ : C(X) →
C(Ym) such that δm,∞ ◦ λ = id. Clearly λ and δm,∞ are C∗,τ -homomorphisms
if we equip all the commutative algebras with the identity reflection.
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5 FUNCTIONS ON GRAPHS

Consider the the following commutative diagram.

(D, id)
χ

δn

(M(E)/En0
, τ)

πn0,n

(C(Yn), id)

δn,∞

(M(E)/En, τ)

πn,∞

C(X, id)
φ

(C(E), τ)

Since all the vertical maps are quotient maps, we can fit a C∗,τ -homomorphism
on the dashed arrow in such a way that the diagram continues to commute.
Call this homomorphism µn. We claim that µm ◦ λ is a lift of φ. To see that,
we compute

πm,∞ ◦ µm ◦ λ = φ ◦ δm,∞ ◦ λ = φ.
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6 VARIATIONS ON LIN’S THEOREM

6 Variations on Lin’s theorem

From here on out we more less just follow the proof in [9], modifying their
techniques to keep track of reflections.

In this section we write Mn for Mn(C).
6.1 Approximating normal elements

The following lemma gives a kind of self-τ stable rank for (Mn, τ).

Lemma 6.1. Let τ be a reflection on Mn. For any ε > 0 and any self-τ matrix
A ∈ (Mn, τ) we can find a self-τ invertible matrix B such that ‖A−B‖ < ε.

Proof. If A is invertible there is nothing to prove. So suppose A is not invertible.
Consider the path of self-τ matrices Bt = (1 − t)A + tI. Define a function
p : [0, 1] → C by

p(t) = det(Bt).

By definition of det and Bt the function p is a polynomial. Since p(0) =
det(B0) = det(A) = 0 and p(1) = det(B1) = det(I) = 1, p is not constant.
Hence it has only finitely many zeros. Thus for any ε > 0 we can find a t0 such
that 0 < t0 < ε/(‖A− I‖) and p(t0) 6= 0. Then Bt0 is self-τ and invertible, and

‖A−Bt0‖ = ‖At0 − It0‖ ≤ t0‖A− I‖ < ε.

Lemma 6.2. Let a be a self-τ invertible element in a unital C∗,τ -algebra (A, τ).
Then a can be written as a = up where u is a self-τ-unitary and p = (a∗a)1/2.

Proof. Since a is invertible so is a∗a. Hence we can define u = a(a∗a)−1/2 and
p = (a∗a)1/2. Then u is a unitary and up = a. By using Lemma 3.6 and
standard functional calculus tricks, we get

uτ = ((a∗a)−1/2)τaτ = ((a∗a)τ )−1/2a = (aa∗)−1/2a = a(a∗a)−1/2 = u

Let (nj) be a sequence of natural numbers and let τj be a reflections onMnj
.

Define
(M, τ) =

∏

j

(Mnj
, τj), (A, τ) =

⊕

j

(Mnj
, τj).

Let π : (M, τ) → (M/A, τ) denote the quotient map.

Lemma 6.3. For any self-τ element a ∈ (M/A, τ) there exists a self-τ unitary
u ∈ (M/A, τ) such that a = up, where p = (a∗a)1/2.
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6.1 Approximating normal elements6 VARIATIONS ON LIN’S THEOREM

Proof. Let x = (xj) be any self-τ lift of a. Using Lemma 6.1 we can for all j ∈ N
find an invertible self-τ element yj ∈ (Mnj

, τj) such that ‖xj − yj‖ < 1/j. Then
the sequence (yj) is in (M, τ) and π(y) = π(x) = a. By Lemma 6.2 we can,
for each j ∈ N, find a self-τ unitary vj ∈ (Mnj

, τj) such that yj = vjqj , where

qj = (y∗j yj)
1/2. If we let v = (vj) and q = (qj) then y = vq and v is a self-τ

unitary. Now put u = π(v) and p = π(q). Then a = π(y) = π(v)π(q) = up, u is
a self-τ unitary, and

p = π(q) = π((y∗y)1/2) = (π(y)∗π(y))1/2 = (a∗a)1/2.

Lemma 6.4. If x ∈ (M/a, τ) is normal and self-τ then for every ε > 0 there
is a normal self-τ invertible element y ∈ (M/A, τ) such that ‖x− y‖ < ε.

Proof. By Lemma 6.3 we can write x = up where u is a self-τ unitary and
p = (x∗x)1/2. Since we assumed x to be normal u and p commute by standard
functional calculus. Define y = u(p+(ε/2)I), where I is the unit inM/A. Since
y is the product of two commuting normal and invertible elements it is normal
and invertible. By Lemma 3.6 we have

pτ =
(
(x∗x)τ

)1/2
=
(
xx∗

)1/2
=
(
x∗x

)1/2
= p.

From that it follows that y is self-τ . Finally we see that

‖x− y‖ = ‖up− (up+ (ε/2)u)‖ = ‖(ε/2)u‖ = ε/2 < ε.

Lemma 6.5. Let λ ∈ C be given. If x ∈ (M/A, τ) is normal and self-τ then for
every ε > 0 there is a normal self-τ element y ∈ (M/A, τ) with λ /∈ σ(y), and
such that ‖x− y‖ < ε.

Proof. Let x̃ = x−λI. Then x̃ is normal and self-τ so by Lemma 6.4 we can find
a normal, self-τ and invertible ỹ ∈M/A such that ‖ỹ− x̃‖ < ε. Let y = ỹ+λI.
Then y is normal and self-τ , and

‖y − x‖ = ‖ỹ + λI − x‖ = ‖ỹ − (x − λI)‖ = ‖ỹ − x̃‖ < ε.

We note that since 0 is not in the spectrum of ỹ we have λ /∈ σ(y).

Lemma 6.6. Let F be an at most countable subset of C. If x ∈ (M/A, τ)
is normal and self-τ then for every ε > 0 there is a normal self-τ element
y ∈ (M/A, τ) with F ∩ σ(y) = ∅, and such that ‖x− y‖ < ε.

Proof. Let X be the set of normal and self-τ elements in (M/A, τ). This is a
closed subset of M/A, so it is a complete metric space. Let F = {λ1, λ2, . . .}.
For each n ∈ N let Un be the set of self-τ normal elements in (M/A, τ) that do
not have λn in their spectrum. By Lemma 6.5 all the Un are dense in X . Since
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6.2 The proof of Theorem 1 6 VARIATIONS ON LIN’S THEOREM

the set of invertible elements in a C∗-algebra is open all the Un are open in the
relative topology of X . By Baire’s theorem the set

⋂
n Un is dense in X . That

is, the set of normal self-τ elements whose spectrum does not contain F is dense
in the set of normal self-τ elements.

For any complex number z we denote by ℜ(z) and ℑ(z) the real and imagi-
nary parts of z. For all ε > 0 define

Γε = {z ∈ C | ℜ(z) ∈ εZ or ℑ(z) ∈ εZ},
Σε = {z ∈ C | ℜ(z) ∈ ε(Z+

1

2
) and ℑ(z) ∈ ε(Z+

1

2
)}.

Proposition 6.7. If x ∈ (M/A, τ) is normal and self-τ then for every ε > 0
there is a normal self-τ element y ∈ (M/A, τ) with σ(y) = Γε, and such that
‖x− y‖ < ε.

Proof. By Lemma 6.6 we can find a normal and self-τ element ỹ ∈ (M/A, τ)
with

σ(ỹ) ∩ Σε = ∅, and ‖ỹ − x‖ <
(
1−

√
2

2

)
ε.

There is a continuous retraction f : C \ Σε → Γε with |f(z)− z| < (1−
√
2
2 ) for

all z. Let y = f(ỹ). Then y is normal, has the right spectrum, and is ε close to
x. By Lemma 3.6 we have

yτ = f(ỹ)τ = f(ỹτ ) = f(ỹ) = y.

6.2 The proof of Theorem 1

Proposition 6.8. Suppose (An, τn) is a sequence of C∗,τ -algebras. If x is a
normal self-τ element in

(Q, τ) =

∞∏

n=1

(An, τn)

/ ∞⊕

n=1

(An, τn)

with spectrum contained in some finite graph, then there is a lift of x to a normal
self-τ element in

∏∞
n=1(An, τn).

Proof. Let Γ be a finite graph such that σ(x) ⊆ Γ. By Lemma 3.6 the map
f 7→ f(x) is a C∗,τ -homomorphism from C(Γ, id) to (Q, τ). Since C(Γ, id) is
semiprojective, we can find an m ∈ N and a normal self-τ element

y ∈
∞∏

n=1

(An, τn)

/
m⊕

n=1

(An, τ) ,
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6.2 The proof of Theorem 1 6 VARIATIONS ON LIN’S THEOREM

such that y is a lift of x. Identifying

∞∏

n=1

(An, τn)

/
m⊕

n=1

(An, τ)

with
∞∏

n=m

(An, τ),

we see that if we pad y with leading zeros we get a self-τ and normal lift of x
in
∏∞
n=1(An, τn).

We are now ready to prove real versions of Lin’s theorem. First we do the
case of normal matrices.

Theorem 6.9. For every ε > 0 there is a δ > 0 such that for any n ∈ N, any
reflection τ on Mn and self-τ matrix X ∈ (Mn, τ) with ‖X‖ ≤ 1 and

‖X∗X −XX∗‖ < δ,

there exists a normal self-τ matrix X ′ ∈ (Mn, τ) with

‖X −X ′‖ < ε.

Proof. Suppose there was an ε that had no accompanying δ. Then there must
exist a sequence (nj) of natural numbers, reflections τj on Mnj

, and self-τ
contractive matrices Xj ∈ (Mnj

, τj) such that

‖X∗
jXj −XjX

∗
j ‖ → 0,

but every Xj is at least ε away from all normal self-τ matrices in (Mnj
, τj).

Let, as in Section 6.1,

(M, τ) =
∏

j

(Mnj
, τj), (A, τ) =

⊕

j

(Mnj
, τj).

Let x = (Xj) and let y = π(x), where π is the quotient map from (M, τ) to
(M/A, τ). Then y is a normal and self-τ element. By Lemma 6.6 we can find a
normal self-τ element z ∈ (M/A, τ) with spectrum contained in a finite graph
and ‖y − z‖ < ε/4. Using Proposition 6.8 we can find a normal self-τ element
x′ ∈ (M, τ) such that π(x′) = z. The definition of the norm in (M/A, τ) tells
us that there exists (Aj) = a ∈ A such that

‖(x− x′)− a‖ = ‖y − z‖+ ε/4 < ε/2.

Now pick a j0 such that ‖Aj0‖ < ε/2. Then we have

‖Xj0 −X ′
j0‖ ≤ ‖(Xj0 −X ′

j0)−Aj0‖+ ‖Aj0‖ < ‖(x− x′)− a‖+ ε/2 < ε.

Which contradicts our assumption about all the Xj being at least ε away from
any normal self-τ element.
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6.2 The proof of Theorem 1 6 VARIATIONS ON LIN’S THEOREM

Theorem 6.10. For every ε > 0 there is a δ > 0 such that for any n ∈ N, any
reflection τ on Mn and any pair A,B ∈ (Mn, τ) of self-adjoint, self-τ matrices
such that ‖A‖, ‖B‖ ≤ 1 and

‖AB −BA‖ < δ,

there exists a commuting pair A′, B′ ∈ (Mn, τ) of self-adjoint and self-τ matrices
with

‖A−A′‖+ ‖B −B′‖ < ε.

Proof. Let ε > 0 be given. Use Theorem 6.9 to find a δ matching ε/2. Let
A,B ∈ (Mn, τ) be given as in the theorem. Define X = (A+ iB)/2. Then

‖XX∗ −X∗X‖ = ‖AB −BA‖ < δ.

Hence we can find a normal self-τ matrix X ′ ∈Mn such that ‖X −X ′‖ < ε/2.
Now let

A′ = X ′ +X ′∗ and B′ = −i(X ′ −X ′∗).

Then A′ and B′ are self-adjoint and self-τ . Since X ′ is normal they commute.
As

‖A−A′‖ = ‖(X +X∗)− (X ′ +X ′∗)‖ ≤ ‖X −X ′‖+ ‖X∗ −X ′∗‖ < ε,

and likewise for ‖B − B′‖, A′ and B′ show that we can approximate A and B
by commuting self-adjoint, self-τ matrices.

Setting τ equal the transpose in Theorem 6.10 we obtain the extension of
Lin’s theorem to real matrices. Using the dual operation, τ = ♯, we obtain the
extension of Lin’s theorem to self-dual matrices.
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