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EXPANSIONS OF SUBFIELDS OF THE REAL FIELD BY A

DISCRETE SET

PHILIPP HIERONYMI

Abstract. Let K be a subfield of the real field, D ⊆ K be a closed and
discrete set and f : Dn → K be such that f(Dn) is somewhere dense. Then
(K, f) defines Z. We present several applications of this result. We show that
K expanded by predicates for different cyclic multiplicative subgroups defines
Z. Moreover, we prove that every definably complete expansion of a subfield
of the real field satisfies an analogue of the Baire Category Theorem.

1. Introduction

Let K be a subfield of the field of real numbers.

Theorem A. Let D ⊆ K be discrete and let f : Dn → K be such that f(D) is
somewhere dense. Then (K, f) defines Z.

This result generalizes earlier work of the author in [6] where Theorem A is
shown in the case that K = R and D is closed and discrete. The proof in [6] relies
crucially on the topological completeness of R and hence does not work for subfields
of the real field. One can even construct a subfield K and a function f : D → K
that satisfy the assumptions of Theorem A, but the parameter-free formula that
defines Z in (R, f) does not define Z in (K, f). The work in the current paper shows
how results from [6] can still be used to establish Theorem A.

There are discrete subsets D of subfields K of R that are closed in the induced
topology on K, but that are not closed in the order topology on R. Such discrete
sets may even fail to be well ordered by the ordering on R. To make use of the
results of [6] we etablish the following theorem.

Theorem B. Let D ⊆ K be a discrete set. Then there is a discrete set E ⊆ K
such that E is closed as a subset of R, (K,D) and (K,E) are interdefinable and
there is a surjection g : E → D definable in (K,D).

The proof of Theorem A will be presented in the section 4. In section 2 we prove
a generalization of Miller’s Lemma on Asymptotic Extraction of Groups from [7]
that plays a key role in the proof of Theorem A. Section 3 gives a proof of Theorem
B. In the rest of this section, several applications of Theorem A and B will be
discussed.
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Two discrete subgroups. For any α ∈ K×, let

αZ := {αk : k ∈ Z}.

In [1] van den Dries established that the structure (K,αZ) is model theoretically
tame, when K is a real closed field subfield of the real field. In particular, he showed
that Z is not definable in that structure. Theorem A allows us to show that this is
not the case in the structure (K,αZ, βZ).

Theorem C. Let α, β ∈ K>0 with logα(β) /∈ Q. Then (K,αZ, βZ) defines Z.

Proof. The set αN∪βN is discrete and definable in (K,αZ, βZ). Let g : K>0×K>0 →
K be the function mapping (a, b) to a

b
. The image of (αN ∪ βN)× (αN ∪ βN) under

g is dense in K>0. Hence (K,αZ, βZ) defines Z by Theorem A. �

An analogue of the Baire Category Theorem. An expansion K of K is
definably complete if every bounded subset of K definable in K has a supremum in
K. Given a subset Y of K2 and a ∈ K, we denote {b : (b, a) ∈ Y } by Ya.

Theorem D. Let K be a definably complete expansion of K. Then K is definably
Baire; that is there exists no set Y ⊆ K2

>0 definable in K such that

(i) Yt is nowhere dense for t ∈ K>0,
(ii) Ys ⊆ Yt for s, t ∈ K>0 with s < t, and
(iii)

⋃

t∈K>0
Yt = K.

Proof. Suppose K is not definably Baire. By [3, Corollary 6.6], there is a closed
and discrete set D ⊆ K definable in K and f : D → K definable in K such that the
image of f is dense in K. By Theorem A, Z is definable in K. Thus K is Baire by
[3, Lemma 6.2]. �

Definable versions of standard facts from real analysis hold in definably complete
expansions of ordered fields that satisfy the conclusion of Theorem D. For details,
see the work of Fornasiero and Servi in [4].

Optimality of dichotomies over R. By Theorem B, the dichotomy in [6, The-
orem 1.2] extends to discrete subsets of R as follows.

Theorem E. Let R be an o-minimal expansion of R and let D ⊆ R be discrete.
Then either

• (R, D) defines Z or
• every subset of R definable in (R, D) has interior or is nowhere dense.

However, by the following result neither in Theorem E nor in [6, Theorem 1.2]
can the statement ‘is nowhere dense’ be replaced by ‘is a finite union of discrete

sets’.

Theorem F. There is a closed and discrete set D ⊆ R such that (R, D) does not
define Z, but defines a set that neither has interior nor is a union of finitely many
discrete sets.

Proof. By [5, 2.3] there is a discrete set D such that (R, D) does not define Z, but
sets on every level of the projective hierarchy. By Theorem B, we can assume that
D is closed. Since the union of finitely many discrete sets and an open sets is Fσ,
there is a set definable in (R, D) that is not of that form. �
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Notation. In the rest of the paperK will always be a fixed subfield of R. As before,
we do not distinguish between the field K and its underlying set. We will use a, b, c
for elements of K. The letters l, n,m,N will always denote natural numbers. When
we say definable, we mean definable with parameters. Given a subset A ofKn×Km

and a ∈ Km, we denote the set {b : (b, a) ∈ A} by Aa.

2. Asymptotic extraction

We will show the following generalization of Miller’s Lemma on Asymptotic
Extraction of Groups from [7].

Lemma 1. Let K be an expansion of K and let S ⊆ K>0 ×K l be definable in K
such that for every n ∈ N and every ε ∈ K>0, there is b ∈ K l such that

(1) Sb ⊆
⋃

m∈N,m≤n(m− ε,m+ ε), and

(2) |Sb ∩ (m− ε,m+ ε)| = 1 for m ≤ n.

Then K defines Z.

Proof. For ε ∈ K>0 define Bε as the set of all b ∈ K l that satisfy the following two
properties:

(i) |a1 − a2| > 1− ε, for all a1, a2 ∈ Sb with a1 6= a2 and
(ii) |a1 − a2| < 1 + ε for all a1, a2 ∈ Sb with Sb ∩ (a1, a2) = ∅.

For b ∈ Bε, let λ(b) be the smallest element of Sb. Such an element exists, since
Sb ⊆ K>0. Set

S′
b := {a− λ(b) : a ∈ Sb}.

Finally, define

W := {c ∈ K : ∀ε ∈ K>0∃b ∈ Bε(c− ε, c+ ε) ∩ S′
b 6= ∅}.

We will finish the proof by showing that W = N.
Let n ∈ N and ε ∈ K>0. By our assumption on S, there is b ∈ K l such that

Sb ⊆
⋃

m≤n

(m−
ε

2
,m+

ε

2
) and |Sb ∩ (m−

ε

2
,m+

ε

2
)| = 1

for m ≤ n. Hence |a1 − a2| ∈ (1 − ε, 1 + ε) for two adjacent elements a1, a2 ∈ Sb.
Thus b ∈ Bε. Since λ(b) ∈ (0, ε

2 ), we have that |S′
b ∩ (n − ε, n + ε)| = 1. Hence

n ∈ W .
Let c ∈ K be such that c ∈ (n, n + 1) for some n ∈ N. Let ε ∈ K>0 be such that
2(n+ 1)ε ≤ min{c− n, n+ 1− c} and let b ∈ Bε. Since b ∈ Bε,

S′
b ∩ (n, n+ 1) ⊆ (n− nε, n+ nε) ∩ (n+ 1− (n+ 1)ε, n+ 1 + (n+ 1)ε).

Because of our choice of ε, we have c − ε > n + nε and c + ε < n + 1 − (n + 1)ε.
Hence (c− ε, c+ ε) ∩ S′

b = ∅ and c /∈ W . �
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3. Proof of Theorem B

We say a set X ⊆ K is closed as a subset of R if it is closed in the order topology
on R.

Lemma 2. Let D ⊆ K>0 be discrete and closed as a subset of R. There are
E ⊆ K>0 and a bijection g : D → E such that g is definable in (K,D) and
|a− b| ≥ 1 for all distinct a, b ∈ E.

Proof. Let σ : D → D be the successor function on the well-ordered set (D,<).
Define g : D → K by

d 7→ d ·max
(

{(σ(e)− e)−1 : e ∈ D, e < d} ∪ {1}
)

.

The maximum in the definition of g always exists in K, because the set {e ∈ D :
e < d} is finite. The function g is strictly increasing and definable in (K,D). The
image of D under g is discrete and closed as subset of R. By construction, the
distance between two elements of g(D) is at least 1. �

Lemma 3. Let D ⊆ K>0 be an infinite discrete set. Then (K,D) defines an
unbounded discrete set E that is closed as a subset of R.

Proof. For every ε ∈ K>0, we define1

Bε := {d ∈ D : (d− ε, d+ ε) ∩D = {d}}.

Note that Bε ⊇ Bδ, for ε, δ ∈ K>0 with ε ≤ δ. If there is ε ∈ K such that Bε is
infinite, then this Bε is unbounded, discrete and closed as a subset of R. So we can
reduce to the case that Bε is finite for every ε ∈ K.
Let g : K>0 → D be the function that maps

ε 7→ the smallest d ∈ Bε \





⋃

δ>ε,Bδ 6=Bε

Bδ



 .

Then g(K) is infinite, since D is. Consider the function h : K>0 → K defined by

ε 7→ max
(

{(d1 − d2)
−1, d1 − d2 : d1, d2 ∈ g(K≥ε), d1 > d2} ∪ {1}

)

.

The maximum in the definition of h exists in K, since Bε is finite. Since g(K) is
infinite, h(K) must be unbounded. Since g(K≥ε) is finite, h(K)∩ (0, a) is finite for
every a ∈ K. Hence h(K) is closed as a subset of R. �

Proof of Theorem B. Let D be a discrete subset of K. We can assume that D ⊆
K>0. By Lemma 2 and 3, there is an infinite set A ⊆ K>0 definable in (K,D) such
that |a1 − a2| ≥ 1 for all a1, a2 ∈ A with a1 6= a2. Let σ : A → A be the successor
function on the well ordered set (A,<). We now construct a discrete set E that is
closed as a subset of R and encodes all the information about D. For every a ∈ A,
set

Ba := {d ∈ D : 0 < d < a and (d− a−1, d+ a−1) ∩D = {d}}.

The set Ba is finite and definable in (K,D) for every a ∈ A. Moreover, Ba1
⊆ Ba2

for a1, a2 ∈ A with a1 ≤ a2. Since D is discrete, D =
⋃

a∈A Ba. Further for a ∈ A,
define

Ca := {a+
d

a
: d ∈ Ba}.

1This definition was first used by Fornasiero in [2] for studying definably complete expansions
of fields.
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Then Ca is finite, definable in (K,D) and

Ca ⊆ (a, a+ 1) ⊆ (a, σ(a)).

Finally set F :=
⋃

a∈A Ca. Since F ∩ (a, σ(a)) = Ca is finite for every a ∈ A, the
set F is discrete and closed as a subset of R. Now define

E := F ∪ {−a : a ∈ A}.

Then E is discrete and closed as a subset of R, since A and F are. Moreover, A
and F are definable in (K,E), because A,F ⊆ K>0.
It is only left to show that D is definable in (K,E). Let h : K → A be a function
mapping a real number x to the largest a ∈ A with a < x if such an a exists, and
to 0 otherwise. Note that h is definable in (K,E), because A is. Define a function
g : K → K by

g(a) := h(a)(a− h(a)).

The image of Ca under g is Ba for each a ∈ A, because Ca ⊆ (a, σ(a)). Hence the
image of F under g is D, since D =

⋃

a∈ACa. Hence D is definable in (K,E), since
g and F are. �

Lemma 4. Let D ⊆ K>0 be discrete and closed as a subset of R. There are
E ⊆ K>0 and a bijection g : Dn → E such that g is definable in (K,D) and E
discrete and closed as a subset of R.

Proof. By Lemma 2, we can assume that the distance between two elements of D
is at least 1. Let h : K>0 ×Kn → K be defined by

(x0, x1, ..., xn) 7→ x0 +
n
∑

i=1

xi

(nx0)i
.

Consider g : Dn → K defined by

(d1, ..., dn) := h(max{d1, ..., dn}, d1, ..., dn).

It is easy to show that g is injective and g(Dn) is discrete and closed as a subset of
R. �

4. Proof of Theorem A

Let D be a discrete subset of K and let f : Dn → K be a function such that
f(Dn) is somewhere dense. By Theorem B we can assume that D is closed as a
subset of R. By Lemma 2 and 4 we can assume that n = 1 and that the distance
between two distinct elements of D is at least 1. By composing f by a semialgebraic
function we can even assume that f(D) ⊆ (1, 2).

We recall several definitions from [6]. Let ϕ(x, y) be the formula

∀u ∈ D(f(u) < y < f(u)(1 + u−2)) → (u < x
1

7 ∨ u > x).

Note that for all a, b ∈ K

(R, f) |= ϕ(a, b) iff (K, f) |= ϕ(a, b).

For c ∈ R, define

Ac := {d ∈ D : f(d) < c < f(d) · (1 + d−2) ∧ ϕ(d)}.
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Further for c ∈ R let vc : D \ {c} → R be given by

vc(x) :=
x−2f(x)

c− f(x)
.

The following Fact is an immediate corollary of the proof of [6, Theorem 1.1] (see
statements (1) and (2) on p. 2167 of [6]).

Fact 5. [6] There are c ∈ R, N ∈ N and d ∈ D such that

(i) νc(Ac ∩D>d) ⊆
⋃

m∈N>N
(m,m+ 1

m
),

(ii) |νc(Ac ∩D>d) ∩ (m,m+ 1
m
)| = 1 for m > N , and

(iii) νc is an increasing function on Ac ∩D>d.

Lemma 6. For every n ∈ N, there are c ∈ K, d1, d2 ∈ D and N ∈ N such that

(i) νc(Ac ∩ [d1, d2]) ⊆
⋃

m∈[N,N+n](m,m+ 1
m
) and

(ii) |νc(Ac ∩ [d1, d2]) ∩ (m,m+ 1
m
)| = 1 for m ∈ [N,N + n].

(iii) νc is an increasing function on Ac ∩ [d1, d2].

Proof. By Fact 5 there are c ∈ R, N ∈ N and d1, d2 ∈ D such that (i)-(iii) hold.
Since D is closed and discrete, D ∩ [d1, d2] is finite. As Ac and νc depend continu-
ously on c, we can take c′ ∈ K so close to c such that

Ac ∩ [d1, d2] = Ac′ ∩ [d1, d2]

and

νc(d) ∈ (m,m+
1

m
) iff νc′(d) ∈ (m,m+

1

m
)

for every d ∈ Ac′ ∩ [d1, d2]. Hence (i)-(iii) holds for c′, N, d1, d2. �

Proof of Theorem A. Let S ⊆ K>0 ×K3 be

{(a, b1, b2, b3) ∈ K>0 ×K3 : b2, b3 ∈ Ab1 ∧ a+ νb1(b2) ∈ νb1(Ab1 ∩ [b2, b3])}.

We will now show that S satisfies the assumption of Lemma 1. Let n ∈ N and
ε ∈ K>0. Choose N ∈ N so large such that N−1 < ε. By Lemma 6, there is c ∈ K
and d1, d2 ∈ Ac such that

νc(Ac ∩ [d1, d2]) ⊆
⋃

m∈[N,N+n]

(m,m+
1

m
)

and

|νc(Ac ∩ [d1, d2]) ∩ (m,m+
1

m
)| = 1, for m ∈ [N,N + n].

Since N−1 < ε, we get that

S(c,d1,d2) ⊆
⋃

m≤n

(m− ε,m+ ε)

and |S(c,d1,d2) ∩ (m− ε,m+ ε)| = 1 for m ≤ n. �
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