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GRAPHS OF HECKE OPERATORS

OLIVER LORSCHEID

ABSTRACT. LetX be a curve overFq with function fieldF . In this paper, we define a graph for
each Hecke operator with fixed ramification. A priori, these graphs can be seen as a convenient
language to organize formulas for the action of Hecke operators on automorphic forms. However,
they will prove to be a powerful tool for explicit calculations and proofs of finite dimensionality
results.

We develop a structure theory for certain graphsGx of unramified Hecke operators, which is
of a similar vein to Serre’s theory of quotients of Bruhat Tits trees. To be precise,Gx is locally
a quotient of a Bruhat Tits tree and has finitely many components. An interpretation ofGx in
terms of rank2 bundles onX and methods from reduction theory show thatGx is the union of
finitely many cusps, which are infinite subgraphs of a simple nature, and a nucleus, which is a
finite subgraph that depends heavily on the arithmetics ofF .

We describe how one recovers unramified automorphic forms asfunctions on the graphsGx.
In the exemplary cases of the cuspidal and the toroidal condition, we show how a linear con-
dition on functions onGx leads to a finite dimensionality result. In particular, we re-obtain the
finite-dimensionality of the space of unramified cusp forms and the space of unramified toroidal
automorphic forms.

In an Appendix, we calculate a variety of examples of graphs over rational function fields.
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INTRODUCTION

Hecke operators play a central rôle in the theory of automorphic forms. For classical modular
forms, they are also computationally well understood. The theory of arithmetic quotients of the
Bruhat-Tits tree as studied by Serre in [19] allowed to studyHecke operator overp-adic fields
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2 OLIVER LORSCHEID

by geometric methods. In this paper, we consider how to compute with Hecke operators for
automorphic forms onPGL2 over a global function field. Our theory can be understood as a
global counterpart to Serre’s viewpoint overp-adic fields.

There are a few applications of Serre’s theory to automorphic forms over global fields, which,
however, mainly concentrate on rational function fields (cf. [4], [5] and [6]). The key ingredient
of this application is the strong approximation property ofSL2, as we will explain below. We
begin with reminding the reader of the definition of a Bruhat-Tits tree. Though this paper is
independent from Serre’s book [19], we review some aspects of it since the global theory (as
developed in this paper) and the local approach (as in Serre’s book) go hand in hand. In later
parts of the paper, we make a few remarks pointing out the connections with or the differences
to Serre’s theory.

Let F be a global function field andx be a fixed place. We denote byFx the comple-
tion of F at x, by Ox its integers, byπx ∈ Ox a uniformizer and byqx the cardinality of
the residue fieldOx / (πx) ≃ Fqx. The Bruhat-Tits treeTx of Fx is a graph with vertex set
PGL2(Fx) / PGL2(Ox). There is an edge between two cosets[g] and [g′] if and only if [g′]
containsg

(
1
πx

)
or g

(
πx b

1

)
for someb ∈ Fqx. Note that this condition is symmetric ing and

g′, soTx is a geometric graph. In fact,Tx is a(qx + 1)-regular tree.
Every subgroup ofPGL2(Fx) acts onTx by multiplication from the left. We shall be inter-

ested in the following case. LetOxF ⊂ F be the Dedekind ring of all elementsa ∈ F with
|a|y ≤ 1 for all placesy 6= x. PutΓ = PGL2(OxF ). Serre investigates in [19] the quotient graph
Γ \ Tx. It is the union of a finite connected graph with a finite numberof cusps. A cusp is an
infinite graph of the form

and each cusp corresponds to an element of the class group ofOxF .
An unramified automorphic form overFx can be interpreted as a functionf on the vertices

of G such that the space of functions generated by{T ix(f)}i≥0 is finite-dimensional where the
Hecke operatorTx is defined by the formula

Tx(f)([g]) =
∑

edgese with origin [g]
and terminus[g′]

[Stab Γ([g]) : Stab Γ(e)] · f([g
′])

for each coset[g] ∈ PGL2(Fx) / PGL2(Ox).
The inclusion ofPGL2(Fx) asx-component intoPGL2(A) induces a map

Γ \ PGL2(Fx) / PGL2(Ox) −→ PGL2(F ) \ PGL2(A) / PGL2(OA)

whereOA is the maximal compact subring of the adelesA of F . In the case thatF is a ra-
tional function field (as in [4], [5] and [6]), or, more generally, a function field with odd class
number, andx is a place of odd degree, this map is a bijection as a consequence of the strong
approximation property ofSL2. The double coset space on the right hand side is the domain of
automorphic forms overF , and the bijection is equivariant with respect to the Hecke operator
Tx and its global equivalentΦx.

In this sense, it is possible to approximate automorphic forms in this case and use the theory
from Serre’s book. However, the method of approximation breaks down if the function field
has even class number or if the Hecke operator of interest is attached to a place of even degree.
For automorphic forms over any function field (with possiblyeven class number) or for the
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investigation of Hecke operators at any place of a given function field respective a simultaneous
description of all Hecke operators, the method of strong approximation is thus insufficient, and
we see the need of a global analogon, which is the starting point of this paper.

The applications of this theory are primarily in explicit computations with automorphic
forms. For instance in [13], graphs of Hecke operators are used to calculate the dimensions
of spaces of cusp forms and toroidal automorphic forms. Froma more conceptual viewpoint, it
might be fruitful to explore the connections between graphsof Hecke operators and Drinfel′d
modules; in particular, it might contribute to the Langland’s program since there is a generalisa-
tion of graphs of Hecke operator to all reductive groups via adelic Bruhat-Tits buildings, which
we forgo to explain here.

We give an overview of the content of this paper. In section 1,we introduce the graph of a
Hecke operator as a graph with weighted edges that encodes the action of a Hecke operator on
automorphic forms. This definition applies to every Hecke operator ofPGL2(A) over a global
field. We collect first properties of these graphs and describe, how the algebraic structure of the
Hecke algebra is reflected in dependencies between the graphs. In section 2, we describe the
graphGx of the unramified Hecke operatorsΦx (which correspond to the local Hecke operators
Tx as introduced above) in terms of coset representatives. In section 3, we make the connection
to Bruhat-Tits trees precise: each component ofGx is a quotient ofTx by a certain subgroup of
PGL2(Fx), and the components ofGx are counted by the2-torsion of the class group ofOxF .
In section 4, we associate to each vertex ofGx a coset inClF/2ClF whereClF is the divisor
class group ofF . We describe how these labels are distributed inGx in dependence ofx.

In section 5, we give the vertices and edges ofGx a geometric meaning following ideas
connected to the geometric Langland’s program. Namely, thevertices correspond to the iso-
morphism classes ofP1-bundles on the smooth projective curveX with function fieldF , and
the edges correspond to certain exact sequences of sheaves onX. In section 6, we distinguish
three classes of rank2 bundles: those that decompose into a sum of two line bundles,those that
are the trace of a line bundle over the quadratic constant extensionX ′ of X and those that are
geometrically indecomposable. This divides the vertices of Gx into three subclassesPBundec

2 X,
PBuntr

2 X andPBungi
2 X. The former two sets of vertices have a simple description interms of

the divisor class groups ofX andX ′.
In section 7, we introduce the integer valued invariantδ on the set of vertices, which is closely

connected to reduction theory of rank2 bundles. This helps us to refine our view on the vertices:
PBuntr

2 X andPBungi
2 X are contained in the finite set of verticesv with δ(v) ≤ 2gX −2 where

gX is the genus ofX. In section 8. we describe the edges between vertices:Gx decomposes into
a finite graph, which depends heavily on the arithmetic ofF , and class number many cusps,
which are infinite weighted subgraphs of the form

1 1 11 qx qx qx

We conclude this section with a summary of results onGx and illustrate them in Figure 2.
In section 9, we explain, how abstract properties of unramified automorphic forms—with

name, the compact support of cusp forms and eigenvalue equations for Eisenstein series—lead
to an explicit description of them as functions on the vertices of the graphsGx. In section 10, we
show that the spaces of functions onVert Gx that satisfy the cuspidal respective toroidal con-
dition are finite dimensional. In particular, these spaces of functions contain only automorphic
forms.



4 OLIVER LORSCHEID

In Appendix A, we give a series of examples for a rational function field: Gx for deg x ≤ 5,
the graphs ofΦ2

x andΦ3
x for deg x = 1 and the graphs of two ramified Hecke operators. We

give short explanations on how to calculate these examples.

Acknowledgements:This paper is extracted from my thesis [12]. First of all, I would like to
thank Gunther Cornelissen for his advice during my graduatestudies. I would like to thank
Frits Beukers and Roelof Bruggeman for their numerous comments on a lecture series about
my studies.

1. DEFINITIONS

In this section, we set up the notations that are used throughout the paper and introduce the
notion of a graph of a Hecke operator. We collect first properties of these graphs and describe
how the algebraic structure of the Hecke algebra is reflectedin dependencies between the graphs
of different Hecke operators.

1.1. Letq be a prime power andF be the function field of a smooth projective curveX overFq.
Let |X| the set of closed points ofX, which we identify with the set of places ofF . We denote
by Fx the completion ofF atx ∈ |X| and byOx the integers ofFx. We choose a uniformizer
πx ∈ F for every placex. Let κx = Ox/(πx) be the residue field. Letdeg x be the degree ofx
and letqx = qdeg x be the cardinality ofκx. We denote by| |x the absolute value onFx resp.F
such that|πx|x = q−1

x .
Let A be the adele ring ofF andA× the idele group. PutOA =

∏
Ox where the product is

taken over all placesx of F . The idele norm is the quasi-character| | : A× → C× that sends
an idele(ax) ∈ A× to the product

∏
|ax|x over all local norms. By the product formula, this

defines a quasi-character on the idele class groupA× / F×.
Let G = PGL2. Following the habit of literature about automorphic forms, we will often

writeGA instead ofG(A) for the group of adelic points andGF instead ofG(F ) for the group
of F -valued points, et cetera. Note thatGA comes together with an adelic topology that turnsGA

into a locally compact group. LetK = GOA
be the standard maximal compact open subgroup

of GA. We fix the Haar-measure onGA for whichvolK = 1.
TheHecke algebraH for GA is the complex vector space of all compactly supported locally

constant functionsΦ : GA → C together with the convolution product

Φ1 ∗ Φ2 : g 7→

∫

GA

Φ1(gh
−1)Φ2(h) dh .

A Hecke operatorΦ ∈ H acts on the spaceV = C0(GA) of continuous functionsf : GA → C

by the formula

Φ(f)(g) =

∫

GA

Φ(h)f(gh) dh.

LetK ′ be a compact open subgroup ofGA. Then we denote byHK ′ the subalgebra ofH that
consists of all bi-K ′-invariant functions. The above action restricts to an action ofHK ′ onVK

′

,
the space of rightK ′-invariant functions.
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1.2.Lemma. For everyK ′ and everyΦ ∈ HK ′, there areh1, . . . , hr ∈ GA andm1, . . . , mr ∈
C for some integerr such that for allg ∈ GA and allf ∈ VK

′

,

Φ(f)(g) =

r∑

i=1

mi · f(ghi) .

Proof. SinceΦ is K ′-bi-invariant and compactly supported, it is a finite linearcombination of
characteristic functions on double cosets of the formK ′hK ′ with h ∈ GA. So we may reduce
the proof toΦ = charK ′hK ′. Again, sinceK ′hK ′ is compact, it equals the union of a finite
number of pairwise distinct cosetsh1K ′, . . . , hrK

′, and thus
∫

GA

charK ′hK ′(h′)f(gh′) dh′ =

r∑

i=1

∫

GA

charhiK ′(h′)f(gh′) dh =

r∑

i=1

vol(K ′)f(ghi)

for arbitraryg ∈ GA. �

We will write [g] ∈ GF \GA /K
′ for the class that is represented byg ∈ GA. Other cosets

will also occur in this paper, but it will be clear from the context what kind of class the square
brackets relate to.

1.3.Proposition. For all Φ ∈ HK ′ and [g] ∈ GF \GA /K
′, there is a unique set of pairwise

distinct classes[g1], . . . , [gr] ∈ GF \GA /K
′ and numbersm1, . . . , mr ∈ C

× such that for all
f ∈ VK

′

,

Φ(f)(g) =
r∑

i=1

mif(gi) .

Proof. Uniqueness is clear, and existence follows from Lemma 1.2 after we have taken care of
putting together values off in same classes ofGF \GA /K

′ and excluding the zero terms.�

1.4.Definition. With the notation of the preceding proposition we define

UΦ,K ′([g]) = {([g], [gi], mi)}i=1,...,r .

The classes[gi] are called theΦ-neighbours of[g] (relative toK ′), and themi are called their
weights.

ThegraphGΦ,K ′ of Φ (relative toK ′) consists of vertices

Vert GΦ,K ′ = GF \GA /K
′

and oriented weighted edges

Edge GΦ,K ′ =
⋃

v∈Vert G
Φ,K′

UΦ,K ′(v) .

1.5.Remark. The usual notation for an edge in a graph with weighted edges consists of pairs
that code the origin and the terminus, and an additional function on the set of edges that gives
the weight. For our purposes, it is more convenient to replace the set of edges by the graph
of the weight function and to call the resulting triples thatconsist of origin, terminus and the
weight the edges ofGΦ,K ′.
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1.6. We make the following drawing conventions to illustrate the graph of a Hecke operator:
vertices are represented by labelled dots, and an edge(v, v′, m) together with its originv and
its terminusv′ is drawn as

v v′

m

If there is precisely one edge fromv to v′ and precisely one fromv′ to v, which we call the
inverse edge, we draw

in place of and in place of .
v

m

v′
m′

v′
m′

m

v v

m

v

m

There are various examples for rational function fields in Appendix A, and in [13], one finds
graphs of Hecke operators for elliptic function fields.

1.7. We collect some properties that follow immediately from the definition of a graph of a
Hecke operatorΦ. Forf ∈ VK

′

and[g] ∈ GF \GA /K
′, we have that

Φ(f)(g) =
∑

([g],[g′],m′)
∈Edge G

Φ,K′

m′f(g′) .

Hence one can read off the action of a Hecke operator onf ∈ VK
′

from the illustration of the
graph:

[g]

[gr]

[g1]

mr

m1

SinceH =
⋃
HK ′, with K ′ running over all compact opens inGA, the notion of the graph

of a Hecke operator applies to anyΦ ∈ H. The set of vertices of the graph of a Hecke operator
Φ ∈ HK ′ only depends onK ′, and only the edges depend on the particular chosenΦ. There is
at most one edge for each two vertices and each direction, andthe weight of an edge is always
non-zero. Each vertex is connected with only finitely many other vertices.

The algebra structure ofHK ′ has the following implications on the structure of the set of
edges (with the convention that the empty sum is defined as0). For the zero element0 ∈ HK ′,
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the multiplicative unit1 ∈ HK ′, and arbitraryΦ1,Φ2 ∈ HK ′, r ∈ C× we obtain that

Edge G0,K ′ = ∅ ,

Edge G1,K ′ =
{
(v, v, 1)

}

v∈Vert G
1,K′

,

Edge GΦ1+Φ2,K ′ =
{
(v, v′, m)

∣
∣m =

∑

(v,v′,m′)∈Edge G
Φ1,K

′

m′ +
∑

(v,v′,m′′)∈Edge G
Φ2,K

′

m′′ 6= 0
}
,

Edge GrΦ1,K ′ =
{
(v, v′, rm)

∣
∣ (v, v′, m) ∈ Edge GΦ1,K ′

}
, and

Edge GΦ1∗Φ2,K ′ =
{
(v, v′, m)

∣
∣m =

∑

(v,v′′,m′)∈Edge G
Φ1,K

′

and
(v′′,v′,m′′)∈Edge G

Φ2,K
′

m′ ·m′′ 6= 0
}
.

If K ′′ < K ′ andΦ ∈ HK ′, then alsoΦ ∈ HK ′′ . This implies that we have a canonical map
P : GΦ,K ′′ → GΦ,K ′, which is given by

Vert GΦ,K ′′ = GF \GA /K
′′ P
−→ GF \GA /K

′ = Vert GΦ,K ′

and
Edge GΦ,K ′′

P
−→ Edge GΦ,K ′ .

(v, v′, m′) 7−→ (P (v), P (v′), m′)

1.8. One can also collect the data ofGΦ,K ′ in an infinite-dimensional matrixMΦ,K ′, which we
call the matrix associated toGΦ,K ′, by putting(MΦ,K ′)v′,v = m if (v, v′, m) ∈ Edge GΦ,K ′,
and(MΦ,K ′)v′,v = 0 otherwise. Thus each row and each column has only finitely many non-
vanishing entries.

The properties of the last paragraph imply:

M0,K ′ = 0, the zero matrix,

M1,K ′ = 1, the identity matrix,

MΦ1+Φ2,K ′ = MΦ1,K ′ +MΦ2,K ′ ,

MrΦ1,K ′ = rMΦ1,K ′ , and

MΦ1∗Φ2,K ′ = MΦ2,K ′MΦ1,K ′ .

Let J (K ′) ⊂ HK ′ be the ideal of operators that act trivially onV, then we may regard
HK ′/J (K ′) as a subalgebra of the algebra ofC-linear maps

⊕

GF \GA /K ′

C −→
⊕

GF \GA /K ′

C .

2. UNRAMIFIED HECKE OPERATORS

From now on we will restrict ourselves to unramified Hecke operators, which means, elements
in HK . In particular, we will investigate the graphsGx of certain generatorsΦx of HK in more
detail.

2.1. Consider the uniformizersπx ∈ F as ideles via the embeddingF× ⊂ F×
x ⊂ A× and define

for every placex the unramified Hecke operatorΦx as the characteristic function ofK
(
πx

1

)
K.
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It is well-known thatHK ≃ C[Φx]x∈|X| as an algebra, which means, in particular, thatHK is
commutative. By the relations from paragraph 1.7, it is enough to know the graphs of generators
to determine all graphs of unramified Hecke operators. We usethe shorthand notationGx for
the graphGΦx,K , andUx(v) for theΦx-neighboursUΦx,K(v) of v.

We introduce the“lower x convention”that says that a lower indexx on an algebraic group
defined over the adeles ofF will consist of only the component atx of the adelic points, for
example,Gx = GFx

. Analogously, we putKx = GOx
.

The “upper x convention”means that an upper indexx on an algebraic group defined over
the adeles ofF will consist of all components except for the one atx. In particular, we first
defineAx =

∏′
y 6=x Fy, the restricted product relative toOx =

∏

y 6=xOy over all placesy that
do not equalx. Another example isGx = GAx. We putKx = GOx.

2.2. We embedκx via κx ⊂ Fx ⊂ A, thus an elementb ∈ κx will be considered as the adele
whose component atx is b and whose other components are0. Let P1 be the projective line.
Define forw ∈ P1(κx),

ξw =





πx b
1



 if w = [1 : b] and ξw =





1
πx



 if w = [0 : 1].

It is well-known (cf. [7, Lemma 3.7]) that the domain ofΦx can be describe as

K





πx
1



K =
∐

w∈P1(κx)

ξwK .

Consequently the weights of edges inGx are positive integers (recall thatvolK = 1). We shall
also refer to the weights as themultiplicity of aΦx-neighbour. The above implies the following.

2.3. Proposition. TheΦx-neighbours of[g] are the classes[gξw] with ξw as in the previous
lemma, and the multiplicity of an edge from[g] to [g′] equals the number ofw ∈ P1(κx) such that
[gξw] = [g′]. The multiplicities of the edges originating in[g] sum up to# P1(κx) = qx+1. �

3. CONNECTION WITH BRUHAT-TITS TREES

Fix a placex. In this section we construct maps from Bruhat-Tits trees toGx. This will enable
us to determine the components ofGx.

3.1.Definition. TheBruhat-Tits treeTx for Fx is the (unweighted) graph with vertices

Vert Tx = Gx /Kx

and edges

Edge Tx = { ([g], [g′]) | ∃w ∈ P
1(κx), g ≡ g′ξw (mod Kx) } .

3.2. ConsiderGx to be embedded inGA as the component atx. For eachh ∈ GA, we define a
map

Ψx,h : Tx −→ Gx

by
Vert Tx = Gx /Kx −→ GF \GA /K = Vert Gx

[g] 7−→ [hg]



GRAPHS OF HECKE OPERATORS 9

and
Edge Tx −→ Edge Gx
([g], [g′]) 7−→ ([hg], [hg′], m)

with m being the number of vertices[g′′] that are adjacent to[g] in Tx such thatΨx,h([g
′′]) =

Ψx,h([g
′]).

By Proposition 2.3 and the definition of a Bruhat-Tits tree,Ψx,h is well-defined andlocally
surjective, i.e. it is locally surjective as a map between the associated simplicial complexes of
Tx andGx with suppressed weights.

Since Bruhat-Tits trees are indeed trees ([19, II.1, Thm. 1]), hence in particular connected,
the image of eachΨx,h is precisely one component ofGx, i.e. a subgraph that corresponds to a
connected component of the associated simplicial complex.

Every edge of the Bruhat-Tits tree has an inverse edge, whichimplies the analogous state-
ment for the graphsGx. Namely, if (v, v′, m) ∈ Edge Gx, then there is am′ ∈ C

× such that
(v′, v,m′) ∈ Edge Gx.

3.3. Remark. This symmetry of edges is a property that is particular to unramified Hecke
operators forG = PGL2. In case of ramification, the symmetry is broken, cf. ExampleA.7.

3.4. The algebraic groupSL2 has thestrong approximation property, i.e. for every placex,
SL2 F is a dense subset ofSL2A

x with respect to the adelic topology. This was proven by
Kneser ([9]) for number fields and was extended independently by Prasad ([17]) and Margulis
([15]) to global fields. See [11, Thm. E.2.1] for a direct reference. We explain, which im-
plication this has onPGL2. More detail for the outline in this paragraph can be found in[20,
(2.1.3)].

Letx be a place of degreed. In accordance to the the upperx convention, letOx =
∏

y 6=xOy.
The determinant map onGL2 induces a bijection on double cosets:

GL2(F ) \ GL2(A
x) / GL2(O

x)
det
−→ F× \ (Ax)× / (Ox)×.

The quotient groupF× \ (Ax)× / (Ox)× is nothing else but the ideal class groupClOxF of the
integersOxF =

⋂

y 6=x(Oy ∩ F ) coprime tox. Let ClF = F× \A× /O×
A

be the divisor class
group ofF andCl0 F = {[a] ∈ ClF | deg a = 0} be the ideal class group. Then we have
bijections

GL2(F ) \ GL2(A
x) / GL2(O

x) ≃ F× \ (Ax)× / (Ox)× ≃ ClOxF ≃ Cl0 F × Z/dZ .

Let S ⊂ GL2(A
x) be a set of representatives forGL2(F ) \ GL2(A

x) / GL2(Ox). Then every
g = gxgx ∈ GL2(A) (with gx ∈ GL2(A

x) andgx ∈ GL2(Fx)), there ares ∈ S, γ ∈ GL2(F )
andk ∈ GL2(Ox) such thatg = γskg̃x whereγsk equalsg in all componentsz 6= x and
g̃x = γ−1gx. The condition[det s] = [det gx] as cosets inF× \ (Ax)× / (Ox)× implies that
s ∈ S is uniquely determined bygx. LetZ be the center ofGL2, then

GL2(A) / GL2(OA)Zx =
(
GL2(A

x) / GL2(O
x)
)
×

(
Gx /Kx

)

=
(
GL2(A

x) / GL2(O
x)
)
×Vert Tx .

DefineΓs = GL2(F ) ∩ sGL2(Ox)s−1. Then we obtain the following (cf. [20, (2.1.3)]).
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3.5.Proposition. The decompositiong = γskg̃x induces a bijective map

GL2(F ) \ GL2(A
x) / GL2(OA)Zx −→

∐

s∈S

Γs \ Vert Tx .

[g] 7−→ (s, [g̃x])

Its inverse is obtained by putting together the componentss ∈ GL2(A
x) and g̃x ∈ Gx. �

3.6.Remark. On the right hand side of the bijection in Proposition 3.5, wehave a finite union
of quotients of the formΓs \ Vert Tx. If s is the identity elemente, thenΓ = Γe = GL2(O

x
F )

is an arithmetic group of the form that Serre considers in [19, II.2.3]. For generals, however, I
am not aware of any results aboutΓs \ Vert Tx in the literature.

3.7. So far, we have only divided out the action of thex-componentZx of the centre. We still
have to consider the action ofZx. If we restrict the determinant map to the centre and write
J = {z ∈ ZF \Zx /ZOx | |det z| = 1}, then we have an exact sequence of abelian groups

1 → J → ZF \Zx /ZOx
det
−→ ClOxF → ClOxF / 2ClO

x
F → 0 .

LetS be as in paragraph 3.4. The action ofZx onS factors through2ClOxF and the action ofZx

onΓs \ Vert Tx factors throughJ for eachs ∈ S. If we letS ′ ⊂ Gx be a set of representatives
for ClOxF / 2ClO

x
F (with respect to the determinant map), andh2 = #(ClF )[2] the cardinality

of the2-torsion, then we obtain:

3.8.Proposition. The decompositiong = γskg̃x induces a bijective map

GF \GA /K −→
∐

s∈S′

J Γs \ Vert Tx .

The inverse maps an element(s, [g̃x]) to the class of the adelic matrix with componentss ∈ Gx

and g̃x ∈ Gx. The number of components ofGx equals

#
(
ClOxF / 2ClO

x
F

)
= #(ClOx

F )[2] =

{
h2 if deg x is odd,
2h2 if deg x is even.

Proof. Everything follows from Proposition 3.5 and paragraph 3.7 except for the two equalities
in the last line. Regarding the former, observe that both dividing out the squares and taking
2-torsion commutes with products, so by the structure theorem of finite abelian groups, we can
reduce the proof to groups of the formZ/p̃mZ with p̃ prime. If p̃ 6= 2, then every element is
a square and there is no2-torsion, hence the equality holds. Ifp̃ = 2, thenZ/p̃mZ modulo
squares has one nontrivial class, and there is exactly one nontrivial element inZ/p̃mZ that is
2-torsion.

Regarding the latter equality, we have thatClOxF ≃ Cl0 F × Z/dZ, whered = deg x. As
above,Z/dZ modulo squares has a nontrivial class if and only ifd is even, and in this case there
is only one such class. �

4. A VERTEX LABELLING

In this section, we associate to each vertex ofGx an element ofClF / 2ClF and determine how
these labels are distributed over the components ofGx.
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4.1. LetQA = 〈a2 | a ∈ A×〉 be the subgroup of squares. We look once more at the determinant
map

Vert Gx = GF \GA /K
det
−→ F× \A× /O×

A
QA ≃ ClF / 2ClF .

This map assigns to every vertex inGx a label inClF / 2ClF . Note thatClF/2ClF has2h2
elements whereh2 = #(ClF )[2] for the same reason as used in the proof of Proposition 3.8.

4.2.Proposition. If the prime divisorx is a square in the divisor class group then all vertices
in the same component ofGx have the same label, and there are2h2 components, each of which
has a different label. Otherwise, the vertices of each component have one of two labels that
differ byx in ClF / 2ClF , and two adjacent vertices have different labels, so each connected
component is bipartite.

Proof. First of all, observe that each label is realised, since if werepresent a label by some idele
a, then the vertex represented by

(
a
1

)
has this label.

LetQx = 〈b2 | b ∈ F×
x 〉 andClFx = F×

x /O
×
x , a group isomorphic toZ. For the Bruhat-Tits

treeTx, the determinant map

Vert Tx = Gx /Kx
det
−→ F×

x /O
×
xQx ≃ ClFx / 2ClFx ≃ Z/2Z

defines a labelling of the vertices, and the two classes ofF×
x /O

×
xQx are represented by1 and

πx. Two adjacent vertices have the different labels since forg ∈ Gx andξw as in Definition 3.1,
det(gξw) = πx det g represents a class different fromdet g in Vert Tx.

Define fora ∈ A
× a mapψx,a : F×

x /O
×
xQx → F× \A× /O×

A
QA by ψx,a([b]) = [ab],

whereb is viewed as the idele concentrated inx. For everyh ∈ GA we obtain a commutative
diagram

Vert Tx

��

= Gx /Kx

det
��

Ψx,h
// GF \GA /K

det
��

= Vert Gx

��

ClFx / 2ClFx ≃ F×
x /O

×
xQx

ψx,deth
// F× \A× /O×

A
QA ≃ ClF / 2ClF .

This means that vertices with equal labels map to vertices with equal labels.
Each component ofGx lies in the image of a suitableΨx,h, thus has at most two labels. On

the other hand, the two labels ofTx map toψx,det h([1]) = [a] andψx,deth([πx]) = [aπx]. The
divisor classes of[a] and[aπx] differ by the class of the prime divisorx, and are equal if and
only if x is a square in the divisor class group. If so, according to Proposition 3.8, there must
be2h2 components so that the2h2 labels are spread over all components. Ifx is not a square
then by the local surjectivity ofΨx,h on edges two adjacent vertices ofGx also have different
labels. �

5. GEOMETRIC INTERPRETATION OF UNRAMIFIEDHECKE OPERATORS

A fundamental observation in the geometric Langland’s program (forPGL2, in this case) is
that the domain of automorphic forms (with a certain ramification level) corresponds to the
isomorphism classes ofP1-bundles (with a corresponding level structure). The action of Hecke
operators can be given a geometric meaning, which makes it possible to let algebraic geometry
enter the field. We will use this geometric view point for a closer examination of the graphs of
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unramified Hecke operators. We begin with recalling the geometric interpretation of unramified
Hecke operators. For more reference, see [3].

5.1. LetOX be the structure sheaf of the smooth projective curveX andη the generic point.
We can identify the stalksOX,x of the structure sheafOX at closed pointsx ∈ |X| and their
embeddings into the generic stalkOX,η with

OX,x ≃ Ox ∩ F −֒→ F ≃ OX,η .

We identify vector bundles onX with the corresponding locally free sheaf ([8, Ex. II.5.18]).
We denote byBunnX the set of isomorphism classes ofrankn bundlesoverX and byPicX the
Picard group. ForL1,L2 ∈ PicX, we use the shorthand notationL1L2 for L1⊗L2. The group
PicX acts onBunnX by tensor products. LetPBunnX be the orbit setBunnX / PicX,
which is nothing else but the set of isomorphism classes ofPn−1-bundles overX ([8, Ex.
II.7.10]).

We will call the elements ofPBun2X projective line bundles. If we regard the total space
of a projective line bundle as a scheme, then we obtain nothing else but a ruled surface, cf.
[8, Prop. V.2.2]. ThusPBun2X may also be seen as the set of isomorphism classes of ruled
surfaces overX.

If two vector bundlesM1 andM2 are in the same orbit of the action ofPicX, we write
M1 ∼ M2 and say thatM1 andM2 areprojectively equivalent. By [M] ∈ PBun2X, we
mean the class that is represented by the rank2 bundleM.

Let ClX = ClF be the divisor group ofX. Every divisorD ∈ ClX defines theassociated
line bundleLD, which defines an isomorphismClX → PicX of groups ([8, Prop. II.6.13]).
The degreedegM of a vector bundleM with detM≃ LD is defined asdegD. For a torsion
sheafF , the degree is defined bydegF =

∑

x∈|X| dimFq
(Fx). The degree is additive in short

exact sequences.

5.2.Remark. Note that ifD = x is a prime divisor, the notation for the associated line bundle
Lx coincides with the notation for the stalk ofL at x. In order to avoid confusion, we will
reserve the notationLx strictly for the associated line bundle. In case we have to consider the
stalk of a line bundle, we will use a symbol different fromL for the line bundle.

5.3. We associate to everyg = (gx) ∈ GL2(A) the rank2 bundleMg that is defined by the
embeddingsg−1

x : O2
X,x → F 2 of the stalks(Mg)x = O2

X,x at closed pointsx into the generic
stalk(Mg)η = F 2. This association induces a bijection

GL2(F ) \ GL2(A) / GL2(OA)
1:1
←→ Bun2X

[g] 7−→ Mg

such thatMg ⊗ La =Mag for a ∈ A×, anddegMg = deg(det g). Consequently, there is a
bijection

GF \GA /K
1:1
←→ PBun2X,

which allows us to identify the vertex setVert Gx = GF \GA /K with PBun2X.

5.4. The next task is to describe edges ofGx in geometric terms. We say that two exact se-
quences of sheaves

0→ F1 → F → F
′
1 → 0 and 0→ F2 → F → F

′
2 → 0 ,
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areisomorphic with fixedF if there are isomorphismsF1 → F2 andF ′
1 → F

′
2 such that

0 // F1
//

≃

��

F // F ′
1

//

≃
��

0

0 // F2
// F // F ′

2
// 0

commutes.
LetKx be the torsion sheaf that is supported atx and has stalkκx atx, whereκx is the residue

field atx. Fix a representativeM of [M] ∈ PBun2X. Then we definemx([M], [M′]) as the
number of isomorphism classes of exact sequences

0 //M′′ //M // Kx // 0 ,

with fixedM and withM′′ ∼ M′. This number is independent of the choice of the represent-
ativeM because for another choice, which would be a vector bundle ofthe formM⊗ L for
someL ∈ PicX, we have the bijection







isomorphism classes
0→M′′ →M→ Kx → 0

with fixedM






−→







isomorphism classes
0→M′′′ →M⊗L → Kx → 0

with fixedM⊗L






.

(0→M′′ →M→ Kx → 0) 7−→ (0→M′′ ⊗ L →M⊗L → Kx → 0)

5.5.Definition. Let x be a place. For a projective line bundle[M] ∈ PBun2X we define

Ux([M]) = {([M], [M′], m) |m = mx([M], [M′]) 6= 0} ,

and call the occurring[M′] theΦx-neighbours of[M], andmx([M], [M′]) theirmultiplicity.

5.6. We shall show that this concept of neighbours is the sameas the one defined for classes in
GF \GA /K (Definition 1.4). Recall that in Proposition 2.3, we determined theΦx-neighbours
of a class[g] ∈ GF \GA /K to be of the form[gξw] for aw ∈ P1(κx). The elementsξw define
exact sequences

0 //
∏

y∈|X|

O2
X,y

ξw
//
∏

y∈|X|

O2
X,y

// κx // 0 ,

of Fq-modules and consequently an exact sequence

0 //Mgξw
//Mg

// Kx // 0 .

of sheaves, whereMgξw andMg are the rank2 bundles associated togξw resp.g. This maps
w ∈ P1(κx) to the isomorphism class of

(
0 →Mgξw →Mg → Kx → 0

)
with fixedMg. On

the other hand, as we have chosen a basis for the stalk atx, each isomorphism class of sequences
(
0 → M′ → M → Kx → 0

)
with fixedM defines an element inP

(
O2
X,x / (πxOX,x)

2
)
=

P1(κx), which gives backw.
Thus for everyx ∈ |X|, the map

Ux([g]) −→ Ux([Mg])
([g], [g′], m) 7−→ ([Mg], [Mg′], m)

is a well-defined bijection. We finally obtain the geometric description of the graphGx of Φx.
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5.7.Proposition. Letx ∈ |X|. The graphGx of Φx is described in geometric terms as

Vert Gx = PBun2X and

Edge Gx =
∐

[M]∈PBun2X

Ux([M]) . �

5.8. Remark. This interpretation shows that the graphs that we consider are a global version
of the graphs of Serre ([19, Chapter II.2]). We are looking atall rank2 bundles onX modulo
the action of the Picard group ofX while Serre considers rank2 bundles that trivialise outside
a given placex modulo line bundles that trivialise outsidex. As already explained in Remark
3.6, we obtain a projection of the graph of Serre to the component of the trivial classc0.

Serre describes his graphs as quotients of Bruhat-Tits trees by the action of the groupΓ =
GOx

F
on both vertices and edges. This leads in general to multipleedges between vertices in

the quotient graph, see e.g. [19, 2.4.2c]. This does not happen with graphs of Hecke operators:
there is at most one edge with given origin and terminus.

Relative to the action ofΓ on Serre’s graphs, one can define the weight of an edge as the order
of the stabiliser of its origin in the stabiliser of the edge.The projection from Serre’s graphs
to graphs of Hecke operators identifies all the different edges between two vertices, adding up
their weights to obtain the weight of the image edge.

6. DESCRIPTION OF VERTICES

The aim of this section is to show that the set of isomorphism classes of projective line bundles
overX can be separated into subspaces corresponding to certain quotients of the the divisor
class group ofF , the divisor class group ofFq2F and geometrically indecomposable projective
line bundles. We recall a series of facts about vector bundles.

6.1. A vector bundleM is indecomposableif for every decompositionM =M1 ⊕M2 into
two subbundlesM1 andM2, one factor is trivial and the other is isomorphic toM. The Krull-
Schmidt theorem holds for the category of vector bundles over X, i.e. every vector bundleM
onX defined overFq has, up to permutation of factors, a unique decomposition into a direct
sum of indecomposable subbundles, see [2, Thm. 2].

The mapp : X ′ = X ⊗ Fqi → X defines theinverse imageor theconstant extensionof
vector bundles

p∗ : BunnX −→ BunnX
′ .

M 7−→ p∗M

The isomorphism classes of rankn bundles that after extension of constants toFqi become
isomorphic top∗M are classified byH1

(
Gal(Fqi/Fq),Aut(M ⊗ Fqi)

)
, cf. [1, Section 1].

The algebraic groupAut(M ⊗ Fqi) is an open subvariety of the connected algebraic group
End(M⊗ Fqi), and thus it is itself a connected algebraic group. As a consequence of Lang’s
theorem ([10, Cor. to Thm. 1]), we haveH1

(
Gal(Fqi/Fq),Aut(M⊗ Fqi)

)
= 1.

Thusp∗ is injective. In particular, one can consider the constant extension to the geometric
curveX = X ⊗Fq over an algebraic closureFq of Fq. Then two vector bundles are isomorphic
if and only if they are geometrically isomorphic, i.e. that their constant extensions toX are
isomorphic. We can therefore think ofBunnX as a subset ofBunnX ′ andBunnX.
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On the other hand,p : X ′ → X defines the direct image or thetraceof vector bundles

p∗ : BunnX
′ −→ BunniX .

M 7−→ p∗M

We have forM ∈ BunnX thatp∗p∗M ≃ Mi and forM ∈ BunnX
′ thatp∗p∗M ≃

⊕
Mτ

whereτ ranges overGal(Fqi/Fq) andMτ is defined by the stalksMτ
x =Mτ−1(x).

We call a vector bundlegeometrically indecomposableif its extension toX is indecompos-
able. In [1, Thm. 1.8], it is shown that every indecomposablevector bundle overX is the trace
of an geometrically indecomposable bundle over some constant extensionX ′ of X.

There are certain compatibilities of the constant extension and the trace with tensor products.
Namely, for a vector bundleM and a line bundleL overX, we havep∗(M⊗L) ≃ p∗M⊗p∗L
and for a vector bundleM′ overX ′, p∗M′ ⊗ L ≃ p∗(M′ ⊗ p∗L). Thusp∗ induces a map,
denoted by the same symbol,

p∗ : PBunnX −→ PBunnX
′ ,

[M] 7−→ [p∗M]

andp∗ induces
p∗ : BunnX

′ / p∗ PicX −→ PBunniX .
[M] 7−→ [p∗M]

6.2. We look at the situation forn = 2 and i = 2. Let σ be the nontrivial automorphism
of Fq2/Fq. The setPBun2X is the disjoint union of the set of classes of decomposable rank 2
bundles, i.e. rank2 bundles that are isomorphic to the direct sum of two line bundles, and the set
of classes of indecomposable bundles. We denote these sets by PBundec

2 X andPBunindec
2 X, re-

spectively. LetPBungi
2 X ⊂ PBunindec

2 X be the subset of classes of geometrically indecompos-
able bundles. Since the rank is2, the complementPBuntr

2 X = PBunindec
2 X − PBungi

2 X con-
sists of classes of tracesp∗L of certain line bundlesL ∈ PicX ′ that are defined over the quad-
ratic extensionX ′ = X ⊗ Fq2 . More precisely,p∗L decomposes if and only ifL ∈ p∗ PicX,
and thenp∗L ∼ OX ⊕OX . Thus, we have a disjoint union

PBun2X = PBundec
2 X ∐ PBuntr

2 X ∐ PBungi
2 X .

For [D] ∈ ClX, define

cD = [LD ⊕OX ] ∈ PBundec
2 X ,

and for a[D] ∈ ClX ′, define

tD = [p∗LD] ∈ PBuntr
2 X ∪ {c0} .

Note thatσ acts onClX ′ in a way compatible with the identificationClX ′ ≃ PicX ′. Since
p∗p∗(L) ≃ L⊕ Lσ ≃ p∗p∗(Lσ) for L ∈ PicX ′, and isomorphism classes of vector bundles are
stable under constant extensions, we havetD = tσD.

We derive the following characterisations ofPBundec
2 X andPBuntr

2 X:

6.3.Proposition.
ClX −→ PBundec

2 X
[D] 7−→ cD

is surjective with fibres of the form{[D], [−D]}.
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Proof. LetM decompose intoL1 ⊕ L2. Then

M ≃ L1 ⊕ L2 ∼
(
L1 ⊕L2

)
⊗ L−1

2 ≃ L1L
−1
2 ⊕OX ,

thus surjectivity follows. LetLD′ ⊕OX represent the same projective line bundle asLD⊕OX ,
then there is a line bundleL0 such that

LD ⊕OX ≃
(
LD′ ⊕OX

)
⊗ L0 ,

and thus eitherL0 ≃ OX andLD ≃ LD′ orL0 ≃ LD andLD′ ⊗LD ≃ OX . Hence[D′] equals
either[D] or [−D]. �

6.4.Proposition.
ClX ′ / ClX −→ PBuntr

2 X ∪ {c0}
[D] 7−→ tD

is surjective with fibres of the form{[D], [−D]}.

Proof. From the previous considerations it is clear that this map iswell-defined and surjective.
Assume that[D1], [D2] ∈ ClX ′ have the same image, then there is aL0 ∈ PicX such that

p∗L1 ≃ p∗L2 ⊗ L0 ,

where we briefly wroteLi for LDi
. Then inPBun2X

′, we see that

L1 ⊕L
σ
1 ≃ p∗p∗L1

≃ p∗p∗L2 ⊗ p
∗L0

≃ (L2 ⊗ p
∗L0)⊕ (Lσ2 ⊗ p

∗L0) ,

thus eitherL1 ≃ L2 ⊗ p∗L0, which implies thatD1 andD2 represent the same class in
ClX ′ / ClX, or L1 ≃ Lσ2 ⊗ p∗L0, which means thatD1 represents the same class asσD2.
But inClX ′ / ClX,

[σD2] = [σD2 +D2
︸ ︷︷ ︸

∈ClX

−D2] = [−D2] . �

6.5.Lemma. The constant extension restricts to an injective map

p∗ : PBundec
2 X ∐ PBuntr

2 X −֒→ PBundec
2 X ′ .

Proof. Sincep∗p∗(L) ≃ L ⊕ Lσ for a line bundleL overX ′, it is clear that the image is
contained inPBundec

2 X ′. The images ofPBundec
2 X andPBuntr

2 X are disjoint since elements
of the image of the latter set decompose into line bundles overX ′ that are not defined overX. If
we denote taking the inverse elements byinv, then by Proposition 6.3,p∗ is injective restricted
to PBundec

2 X because(ClX/ inv)→ (ClX ′/ inv) is. RegardingPBuntr
2 X, observe that

p∗(tD) = p∗p∗(LD)

≃ LD ⊕ LσD

∼ LD−σD ⊕OX

= cD−σD ,

where by Proposition 6.4,D represents an element in
(
ClX ′/ClX

)
/ inv, and by Proposition

6.3,D − σD represents an element inClX ′/ inv. If there are[D1], [D2] ∈ ClX ′ such that
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(D1 − σD1) = ±(D2 − σD2), then we haveD1 ∓ D2 = σ(D1 ∓ D2), and consequently
[D1 ∓D2] ∈ ClX. �

6.6.Remark. The constant extension also restricts to a map

p∗ : PBungi
2 X −→ PBungi

2 X
′ .

But this restriction is in general not injective in contrastto the previous result. For a counter-
example to injectivity, see [13, Rem. 2.7].

7. REDUCTION THEORY FOR RANK2 BUNDLES

In this section, we introduce reduction theory for rank2 bundles, i.e. an invariantδ which is
closely related to the slope of a vector bundle and reductiontheory. Namely, a rank2 bundleM
is (semi) stable if and only ifδ(M) is negative (non-positive). The invariantδ is also defined
for projective line bundles and will be help to determine thestructure of the graphsGx.

7.1. Vector bundles do not form a full subcategory of the category of sheaves, to wit, ifM1

andM2 are vector bundles andM1 → M2 is a morphism of sheaves, then the cokernel may
have nontrivial torsion, which does not occur for a morphismof vector bundles. Thus by aline
subbundleL →M of a vector bundleM, we mean an injective morphism of sheaves such that
the cokernelM/L is again a vector bundle.

But every locally free subsheafL → M of rank 1 extends to a uniquely determined line
subbundleL → M, viz. L is determined by the constraintL ⊂ L ([19, p. 100]). On the other
hand, every rank2 bundle has a line subbundle ([8, Corollary V.2.7]).

Two line subbundlesL →M andL′ →M are said to be the same if their images coincide,
or, in other words, if there is an isomorphismL ≃ L′ that commutes with the inclusions into
M.

For a line subbundleL →M of a rank2 bundleM, we define

δ(L,M) := degL − deg(M/L) = 2 degL − degM

and
δ(M) := sup

L→M
line subbundle

δ(L,M) .

If δ(M) = δ(L,M), then we callL a line subbundle of maximal degree, or briefly, amaximal
subbundle. Sinceδ(L ⊗ L′,M⊗L′) = δ(L,M) for a line bundleL′, the invariantδ is well-
defined onPBun2X, and we putδ([M]) = δ(M).

Let gX be the genus ofX. Then the Riemann-Roch theorem and Serre duality imply:

7.2.Proposition ([19, II.2.2, Prop. 6 and 7]). For every rank2 bundleM,

−2gX ≤ δ(M) <∞ .

If L →M is a line subbundle withδ(L,M) > 2gX − 2, thenM≃ L⊕M/L.

7.3. Every extension of a line bundleL′ by a line bundleL, i.e. every exact sequence of the
form

0 // L //M // L′ // 0 ,

determines a rank2 bundleM∈ Bun2X. This defines for allL,L′ ∈ PicX a map

Ext1(L,L′) −→ Bun2X ,
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which maps the zero element toL ⊕ L′. Remark that since decomposable bundles may have
line subbundles that differ from its given two factors, nontrivial elements can give rise to de-
composable bundles.

The unitsF×
q operate by multiplication on theFq-vector space

Ext1(L,L′) ≃
Serre
duality

Hom(L,L′ω∨
X)

whereωX is the canonical sheaf ofX. The multiplication of a morphismL → L′ω∨
X by ana ∈

F×
q is nothing else but multiplying the stalk(L)η by a−1 and all stalks(L′ω∨

X)x at closed points
x by a, which induces automorphisms on bothL andL′ω∨

X , respectively. Thus, two elements
of Ext1(L,L′) that areF×

q -multiples of each other define the same bundleM ∈ Bun2X. We
get a well-defined map

PExt1(L,L′) −→ Bun2X

where the projective spacePExt1(L,L′) is defined as the empty set whenExt1(L,L′) is trivial.
If we further project toPBun2X, we can reformulate the above properties of the invariantδ as
follows.

7.4.Proposition. The map
∐

−2gX≤degL≤2gX−2

PExt1(L,OX) −→ PBun2X

meets every element ofPBunindec
2 X, and the fibre of any[M] ∈ PBun2X is of the form

{

0→ L →M→ OX → 0
∣
∣
∣
δ(L,M)≥−2gX

andM≃/ L⊕OX

}

.

Proof. We know that every[M] ∈ PBun2X has a reduction

0 // L //M // L′ // 0

with δ(L,M) ≥ −2gX , where we may assume thatL′ = OX by replacingMwithM⊗(L′)−1,
henceδ(L,M) = degL. If degL > 2gX − 2, thenM decomposes, soExt1(L,OX) is trivial
andPExt1(L,OX) is the empty set. This explains the form of the fibres and thatPBunindec

2 X
is contained in the image. �

7.5.Corollary. There are only finitely many isomorphism classes of indecomposable projective
line bundles.

Proof. This is clear since
∐

−2gX≤degL≤2gX−2

PExt1(L,OX) is a finite union of finite sets. �

7.6.Lemma. If L →M is a maximal subbundle, then for every line subbundleL′ →M that
is different fromL →M,

δ(L′,M) ≤ − δ(L,M) .

Equality holds if and only ifM≃ L⊕ L′, i.e.M decomposes andL′ is a complement ofL in
M.

Proof. Compare with [18, Lemma 3.1.1.]. SinceL′ →M is different fromL →M, there is no
inclusionL′ → L that commutes with the inclusions intoM. Hence the composed morphism
L′ → M → M /L must be injective, anddegL′ ≤ degM /L = degM− degL. This
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implies thatδ(L′,M) = 2 degL′ − degM≤ degM− 2 degL = −δ(L,M). Equality holds
if and only if L′ → M /L′ is an isomorphism, and in this case, its inverse defines a section
M /L ≃ L′ →M. �

7.7.Proposition.

(i) A rank2 bundleM has at most one line subbundleL →M such thatδ(L,M) ≥ 1.
(ii) If L →M is a line subbundle withδ(L,M) ≥ 0, thenδ(M) = δ(L,M).

(iii) If δ(M) = 0, we distinguish three cases.
(1) M has only one maximal line bundle: this happens if and only ifM is indecom-

posable or ifM≃ L1 ⊕ L2 anddegL1 6= degL2.
(2) M has exactly two maximal subbundlesL1 →M andL2 →M: this happens if

and only ifM≃ L1 ⊕L2 anddegL1 = degL2, butL1 ≃/ L2.
(3) M has exactlyq+1 maximal subbundles: this happens if and only if all maximal

subbundles are of the same isomorphism typeL andM≃ L⊕L.
(iv) δ(cD) = |degD|.
(v) δ(M) is invariant under extension of constants for[M] ∈ PBundec

2 X.

Proof. Everything follows from the preceding lemmas, except for the fact thatL ⊕ L has pre-
ciselyq + 1 maximal subbundles in part (iii3), which needs some explanation.

First observe that by tensoring withL−1, we reduce the question to searching the maximal
subbundles ofOX ⊕ OX . This bundle has a canonical base at every stalk and the canonical
inclusionsO2

X,x →֒ O
2
X,η of the stalks at closed pointsx into the stalk at the generic pointη.

This allows us to choose for any line subbundleF → OX ⊕ OX a trivialisation with trivial
coordinate changes. Thus for every open subset over whichF trivialises, we obtain the same
1-dimensionalF -subspaceFη ⊂ O2

X,η = F 2. On the other hand, every1-dimensional subspace
Fη ⊂ O2

X,η gives back the line subbundle by the inclusion of stalksFx = Fη ∩ O2
X,x →֒ Fη.

We see that for every placex, degxF ≥ 0, and only the lines inO2
X,η = F 2 that are generated

by an element inF2
q ⊂ F 2 define line subbundlesF → OX ⊕ OX with degxF = 0 for every

placex. But there areq + 1 = #P1(Fq) different such line subbundles. �

7.8. Proposition. Let p : X ′ = X ⊗ Fq2 → X andL ∈ PicX ′, thenδ(p∗L) is an even
non-positive integer. It equals0 if and only ifL ∈ p∗ PicX.

Proof. OverX ′, we havep∗p∗L ≃ L⊕Lσ, anddegL = degLσ, thus by the previous paragraph,
a maximal subbundle ofp∗L has at most the same degree asL, or, equivalently,δ(p∗L) ≤ 0. A
maximal subbundle has the same degree asL if and only if it is isomorphic toL or Lσ which
can only be the case whenL already is defined overX. Finally, by the very definition ofδ(M)
for rank2 bundlesM, it follows that

δ(M) ≡ degM (mod 2) ,

anddeg(p∗L) = 2 degL is even. �

7.9.Remark. We see that for[M] ∈ PBuntr
2 X, the invariantδ(M)must get larger if we extend

constants toFq2, becausep∗(M) decomposes overX ′. This stays in contrast to the result for
classes inPBundec

2 X (Proposition 7.7 (v)).
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8. NUCLEUS AND CUSPS

In this section, we will define certain subgraphs ofGx for a placex, namely, the cusp of a divisor
class modulox, which is an infinite subgraph of a simple nature, and the nucleus, which is a
finite subgraph that depends heavily on the arithmetic ofF . Finally,Gx can be described as the
union of the nucleus with a finite number of cusps.

8.1. We use reduction theory to investigate sequences of theform

0 //M′ //M // Kx // 0 ,

which occur in the definition ofUx([M]). By additivity of the degree map (paragraph 5.1),
degM′ = degM− dx wheredx is the degree ofx.

If L → M is a line subbundle, then we say that it lifts toM′ if there exists a morphism
L →M′ such that the diagram

L

}}zz
z
z
z
z
z
z

��

M′ //M

commutes. In this case,L → M′ is indeed a subbundle since otherwise it would extend
non-trivially to a subbundleL → M′ ⊂ M and would contradict the hypothesis thatL is a
subbundle ofM. By exactness of the above sequence, a line subbundleL →M lifts toM′ if
and only if the image ofL in Kx is 0.

Let Ix ⊂ OX be the kernel ofOX → Kx. This is also a line bundle, sinceKx is a torsion
sheaf. For every line bundleL, we may think ofLIx as a subsheaf ofL. In PicX, the line
bundleIx represents the inverse ofLx, the line bundle associated to the divisorx. In particular,
deg Ix = degL−1

x = −dx.
If L → M does not lift to a subbundle ofM′, we have thatLIx ⊂ L → M lifts to a

subbundle ofM′:

IxL

��

⊂ L

��

M′ //M .

Note that every subbundleL → M′ is a locally free subsheafL → M, which extends to a
subbundleL →M. If thusL →M is a maximal subbundle that lifts to a subbundleL →M′,
thenL → M′ is a maximal subbundle. If, however,L → M is a maximal subbundle that
does not lift to a subbundleL →M′, thenLIx →M′ is a subbundle, which is not necessarily
maximal. These considerations imply that

δ(M′) ≤ 2 degL − degM′ = 2degL − (degM− dx) = δ(M) + dx and
δ(M′) ≥ 2 deg IxL − degM′ = 2degL − 2dx − (degM− dx) = δ(M)− dx .

Sinceδ(M′) ≡ degM′ = degM− dx (mod 2), we derive:

8.2.Lemma. If 0→M′ →M→ Kx → 0 is exact, then

δ(M′) ∈
{
δ(M)− dx, δ(M)− dx + 2, . . . , δ(M) + dx

}
. �
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8.3. Every line subbundleL →M defines a lineL/LIx in P1
(
M/(M⊗Ix)

)
. By the bijection

{
isomorphism classes of exact

0→M′→M→Kx→0

with fixedM

}

1:1
−→ P1

(
M / (M⊗Ix)

)
,

(
0→M′ →M→ Kx → 0

)
7−→ M′/(M⊗Ix)

(cf. paragraph 5.6) there is a unique

0 //M′ //M // Kx // 0 ,

up to isomorphism with fixedM, such thatL → M lifts to L → M′. We call this the
sequence associated toL → M relative toΦx, or for short theassociated sequence, and[M′]
theassociatedΦx-neighbour. It follows thatδ(M′) ≥ δ(L,M) + dx.

We summarise this.

8.4.Lemma. If L →M is a maximal subbundle, then the associatedΦx-neighbour[M′] has
δ(M′) = δ(M) + dx, and

∑

([M],[M′],m)∈Ux([M])

δ(M′)=δ(M)+dx

m = #
{

L ∈ P
1
(
M / (M⊗Ix)

)
∣
∣
∣
∃L→M maximal subbundle
with L≡L (mod M⊗Ix)

}

. �

8.5. Theorem. Let x be a place and[D] ∈ ClX be a divisor of non-negative degree. The
Φx-neighboursv of cD with δ(v) = degD + dx are given by the following list:

(c0, cx, q + 1) ∈ Ux(c0),

(cD, cD+x, 2) ∈ Ux(cD) if [D] ∈ (Cl0X)[2]− {0},

(cD, cD+x, 1), (cD, c−D+x, 1) ∈ Ux(cD) if [D] ∈ Cl0X − (Cl0X)[2], and

(cD, cD+x, 1) ∈ Ux(cD) if degD is positive.

For all Φx-neighboursv of cD not occurring in this list,δ(v) < δ(cD) + dx. If furthermore
degD > dx, thenδ(v) = degD−dx, and ifdegD > mX +dx wheremX = max{2gX−2, 0},
then

Ux(cD) = {(cD, cD−x, qx), (cD, cD+x, 1)} .

Proof. By Lemma 8.4, theΦx-neighboursv of cD with δ(v) = δ(cD) + dx counted with multi-
plicity correspond to the maximal subbundles of a rank2 bundleM that representscD. Since
δ(M) = δ(cD) ≥ 0, the list of allΦx-neighboursv of cD with δ(v) = degD+dx = δ(cD)+dx
follows from the different cases in Proposition (7.7) (i) and (iii). Be aware thatcD = c−D by
Proposition 6.3; hence it makes a difference whether or notD is 2-torsion.

For the latter statements, writeM = LD⊕OX and letM′ be a subsheaf ofM with cokernel
Kx such thatδ(M′) < δ(M) + dx. ThenLD →M does not lift toM′, butLDIx →M′ is a
line subbundle and

M′/LDIx ≃ (detM′)(LDIx)
∨ ≃ (detM)Ix(LDIx)

∨ ≃ LDIx(LDIx)
∨ ≃ OX .

If degD > dx, then

δ(LDIx,M
′) = degLDIx − degOX = degD − dx > 0 .
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Proposition 7.7 (i) implies thatLD → M is the unique maximal subbundle ofM′ and thus
δ(M′) = δ(M)− dx.

If δ(M) > mX + dx, thenδ(M′) > mX ≥ 2gX − 2, henceM′ decomposes and represents
cD−x. Since the multiplicities of allΦx-neighbours of a vertex sum up toqx + 1, this proves the
last part of our assertions. �

8.6.Definition. Letx be a place. Let the divisorD represent a class[D] ∈ ClOxX = ClX /〈x〉.
We define thecuspCx(D) (ofD in Gx) as the full subgraph ofGx with vertices

Vert Cx(D) =
{
cD′

∣
∣ [D′] ≡ [D] (mod 〈x〉), and degD′ > mX

}
,

and thenucleusNx (of Gx) as the full subgraph ofGx with vertices

Vert Nx =
{
[M] ∈ PBun2X

∣
∣ δ(M) ≤ mX + dx

}
.

8.7. Theorem 8.5 determines all edges of a cuspCx(D). If mX < degD ≤ mX + dx, the cusp
can be illustrated as in Figure 1. Note that a cusp is an infinite graph. It has a regular pattern
that repeats periodically. In diagrams we draw the pattern and indicate its periodic continuation
with dots.

1 1 11

cD+x cD+2x cD+3xcD

qx qx qx

FIGURE 1. A cusp

We summarise the theory so far in the following theorem that describes the general structure
of Gx.

8.8.Theorem. Letx be a place of degreedx andhX = #Cl0X be the class number.

(i) Gx hashXdx cusps and

Gx = Nx ∪
∐

[D]∈ClOx
F

Cx(D) ,

whereVert Nx ∩ Vert Cx(D) = {cD} if mX < degD ≤ mX + dx. The union of the
edges is disjoint. Different cups are disjoint subgraphs.

(ii) Nx is finite and has#
(
ClOxF / 2ClO

x
F

)
components. Each vertex ofNx is at distance

≤ (2gX +mX + dx)/dx from some cusp. The associated CW-complexes ofNx andGx
are homotopy equivalent.

(iii) If [D] ∈ ClOxF , thenVert Cx(D) ⊂ PBundec
2 X. Furthermore

PBundec
2 X ⊂ {v ∈ Vert Gx | δ(v) ≥ 0} ,

PBungi
2 X ⊂ {v ∈ Vert Gx | δ(v) ≤ 2g − 2} and

PBuntr
2 X ⊂ {v ∈ Vert Gx | δ(v) < 0 and even} .

8.9. (Remark on Figure 2) Defineh = hX , m = mX , d = dx andqx = qdeg x. Further let
D1, . . . , Dhd be representatives forClOxF with m < degDi ≤ m + d for i = 1 . . . , hd. The
cuspsCx(Di), i = 1, . . . , hd, can be seen in Figure 2 as the subgraphs in the dashed regionsthat
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11 qx1

cD1+x

δ
m m + d−2g

cD1+2x

11 qx1

cDhd+2xcDhd+x

1 1qxqx 1

cD2
cD2+x

−2−4 0

cusps

Cx(D1)

Cx(D2)cD2+2x

Cx(Dhd)

cD1

cDhd

qx

qx

PBungi
2 X

PBundec
2 X

PBuntr
2 X

Nx

FIGURE 2. General structure ofGx

are open to the right. The nucleusNx is contained in the dotted rectangle to the left. Since we
have no further information about the nucleus, we leave the area in the rectangle open.

Theδ-line on the bottom of the picture indicates the valueδ(v) for the verticesv in the graph
that lie vertically aboveδ(v).

The dotted regions refer to the sort of vertices, which are elements of eitherPBungi
2 X,

PBuntr
2 X, orPBundec

2 X. All lines are drawn with reference to theδ-line to reflect part (iii) of
the theorem.

Proof. The number of cusps is#ClOxX = #(ClX / 〈x〉) = #Cl0X ·#(Z/dxZ) = hXdx.
That the vertices of cusps are disjoint and only intersect inthe given point with the nucleus, is
clear by definition. Regarding the edges, recall from paragraph 3.2 that if there is an edge from
v tow in Gx, then there is also an edge fromw to v. But Theorem 8.5 implies that each vertex
of a cusp that does not lie in the nucleus only connects to a vertex of the same cusp, hence every
edge ofGx either lies in a cusp or in the nucleus. Different cusps are disjoint by definition. This
shows (i).

The nucleus is finite sincePBunindec
2 X is finite by Corollary 7.5 and since the intersection

PBundec
2 X ∩ Vert Nx is finite by the definition of the nucleus and Proposition 6.3.Since the

cusps are contractible as CW-complexes,Nx andGx have the same homotopy type. Therefore
Nx has#

(
ClOxF / 2O

x
F

)
components by Proposition 3.8. By Lemma 8.4, every vertexv has a

Φx-neighbourw with δ(w) = δ(v) + dx, thus the upper bound for the distance of vertices in the
nucleus to one of the cusps. This proves (ii).

The four statements of Part (iii) follow from the definition of a cusp, Proposition 7.7 (iv),
Proposition 7.2 and Proposition 7.8, respectively. �
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8.10. Example (The projective line). Let X be the projective line overFq. ThengX = 0,
hX = 1 andX has a closed pointx of degree1. This means that

PBundec
2 X = {cnx}n≥0 .

Since an indecomposable bundleM must satisfy bothδ(M) ≥ 0 and δ(M) ≤ −2 which
is impossible, all projective line bundles decompose. Theorem 8.5 together with the fact that
the weights around each vertex sum toq + 1 in the graph ofΦx determinesGx completely, as
illustrated in Figure 3.

q + 1 1 1 1

c0

q q q

c3xc2xcx

FIGURE 3. The graph ofΦx for a degree one placex of a rational function field

9. APPLICATION TO AUTOMORPHIC FORMS

In this section, we explain how to recover automorphic formsas functions on the graph and
indicate how unramified automorphic forms can be explicitlycalculated as functions on the
graph by solving a finite system of linear equations. We beginwith recalling the definition of
an automorphic form.

9.1. A functionf ∈ C0(GA) is called anautomorphic form (forPGL2 overF ) if there is a
compact open subgroupK ′ of GA such thatf is left GF -invariant and rightK ′-invariant and
if it generates a finite-dimensionalHK ′-subrepresentationHK ′(f) of C0(GA). We denote the
space of automorphic forms byA and note that the action ofH onC0(GA) restricts toA. We
denote the subspace of rightK ′-invariant automorphic forms byAK

′

, a space on whichHK ′

acts. We can reinterpret the elements inAK
′

as functions onGF \GA /K
′, which is the vertex

set of the graphGΦ,K ′ of a Hecke operatorΦ ∈ HK ′.
We shall investigate the spaceAK of unramified automorphic forms in more detail. We write

f(v) or f(M) for the valuef(g) if v = [g] is the class ofg inGF \GA /K andM =Mg is the
rank2 bundle that corresponds tog. In particular, we can seef also as a function onPBun2X.

The space of automorphic forms decomposes into a cuspidal part A0, a partE that is gener-
ated by derivatives of Eisenstein series and a partR that is generated by derivatives of residues
of Eisenstein series (for complete definitions, cf. [14]). The decomposition decents to unrami-
fied automorphic forms:AK = AK0 ⊕E

K⊕RK . We describe functions in these parts separately.

9.2. We start with some considerations forΦx-eigenfunctions as functions on a cuspCx(D)
whereD is a divisor withmX < degD ≤ mX + dx:

1 1 11

cD+x cD+2x cD+3xcD

qx qx qx

Let f ∈ AK satisfy the eigenvalue equationΦxf = λf , then we obtain for everyi ≥ 1,

(1) f(cD+(i+1)x) = λ f(cD+ix) − qx f(cD+(i−1)x) .

Thus the restriction off to Vert Cx(D) is determined by the eigenvalueλ once its values atcD
andcD+x are given. This consideration justifies that we only have to evaluate the eigenvalue
equation at vertices of the nucleus to determine the eigenfunctions ofΦx.
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9.3. The spaceAK0 has a basis ofHK-eigenfunctions and every unramified cusp form has a
compact, i.e. finite, support inGF \GA /K. By the eigenvalue equation (1) it follows that an
Hecke-eigenfunctionf ∈ AK0 must vanish on all vertices of a cusp in order to have compact
support. Thus the support of a cusp form is contained in the finite setV of verticesv with
δ(v) ≤ mX , andAK0 can be determined by considering a finite number of eigenvalue equations
for Φx.

These eigenvalue equations can be described in terms of the matrix Mx associated toΦx
(cf. paragraph 1.8). Namely,AK0 is generated by the eigenfunctions ofMx whose support is
contained inV . This problem can be rephrased into a question on the finite submatrixM ′

x =
(av,w)v∈V,w∈Vert Nx

of Mx = (av,w)v,w∈Vert Gx
, which we forgo to spell out.

In [16] one finds a finite setS of places such that anHK-eigenfunctionf ∈ AK0 is already
characterised (up to multiple) by itsΦx-eigenvalues forx ∈ S. This means that one finds
the cuspidalHK-eigenfunctions by considering the eigenvalue equations for the finitely many
verticesv ∈ V and the finitely many Hecke operatorsΦx for x ∈ S.

9.4. We proceed withEK ⊕ RK . This space decomposes into a direct sum of generalised
(infinite-dimensional) Hecke-eigenspacesE(χ) whereχ runs through all unramified Hecke
characters, i.e. continuous group homomorphismsχ : F× \A× /O×

A
→ C× modulo inver-

sion; in particular,E(χ) = E(χ−1). The generalised eigenspaceE(χ) is characterised by its
unique Hecke-eigenfunctioñE( · , χ) (up to scalar multiple), which in turn is determined by its
Φx-eigenvaluesλx(χ) = q

1/2
x

(
χ(πx) + χ−1(πx)

)
for x ∈ |X|. We haveE(χ) ⊂ E if and only if

χ2 6= | |±1, in which caseẼ( · , χ) is an Eisenstein series. Forχ2 = | |±1, Ẽ( · , χ) is a residue
of an Eisenstein series. For details, see [14]; in particular, Theorem 11.10.

We say that a subsetS ⊂ |X| generatesClX if the classes of the prime divisors correspond-
ing to the places inS generateClX. Let S be a set of places that generatesClX and satisfies
that for every decompositionS = S+ ∪ S− either2ClX = 2〈S+〉 or 2ClX = 2〈S−〉. This set
can be chosen to be finite. Then the Hecke eigenfunctionẼ( · , χ) is uniquely determined (up
to scalar multiples) by theΦx-eigenvaluesλx(χ). For details, see [12, pg. 3.7.10].

In order to describe an Eisenstein series or a residue of an Eisenstein series, one only needs to
consider the finitely many eigenvalue equations for verticesv ∈ V for the finitely many Hecke-
operatorsΦx with x ∈ S. Derivatives of Eisenstein series or residues are similarly determined
by generalised eigenvalue equations, see [14, Lemmas 11.2 and 11.7] for the explicit formulas.

In the case of a residue, i.e.χ2 = | |±1, the functionf = Ẽ( · , χ) has a particular simple
form. Namely,χ is of the formω | |±1/2 whereω2 = 1, and thus

λx(χ) = q1/2x

(
ω(πx) |πx|

±1/2 + ω(πx) |πx|
∓1/2) = ω(πx)(qx + 1).

Since every vertexv has precisely(qx+1) Φx-neighbors (counted with multiplicities), we have
f(v) = ω(πx)f(w) for all adjacent verticesv andw.

9.5.Remark. The methods of this paragraph will be applied in [13] to determine the space of
unramified cusp forms for an elliptic function field and to show that there are no unramified
toroidal cusp forms in this this case.
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10. FINITE-DIMENSIONALITY RESULTS

In this section, we will show how the theory of the last sections can be used to show finite
dimensionality of subspaces ofC0(GA)

K whose elementsf are defined by a condition of the
form

n∑

i=1

miΦ(f)(gi) = 0

for all Φ ∈ HK (with mi ∈ C andgi ∈ GA being fixed). We will explain a general technique
and apply it to show that the spaces of functions inC0(GA)

K satisfying the cuspidal condi-
tion respective the toroidal condition are finite-dimensional. In particular, this implies that all
functions satisfying one of these conditions are automorphic forms.

10.1. WriteClprX for the set of divisor classes that are represented by prime divisors and
Cleff X for the semigroup they generate, viz. for all classes that are represented by effective
divisors. In particular,Cleff X contains0, the class of the zero divisor, and for all other[D] ∈
Cleff X, we havedegD > 0. Denote byCldX the set of divisor classes of degreed and by
Cl≥dX the set of divisor classes of degree at leastd. Let gX be the genus ofX.

10.2.Lemma.
Cl≥gX X ⊂ Cleff X .

Proof. LetC be a canonical divisor onX, which is of degree2gX − 2. For a divisorD, define
l(D) = dimFq

H0(X,LD). We have[D] ∈ Cleff X if and only if l(D) > 0, cf. [8, Section IV.1].
The Riemann-Roch theorem is

l(D) − l(D − C) = degD + 1 − gX ,

cf. [8, Thm. IV.1.3].
If now [D] ∈ Cl≥gX X, thendegD ≥ gX and the Riemann-Roch theorem implies that

l(D) ≥ degD + 1− gX > 0. �

10.3. LetD be an effective divisor. Then it can be written in a unique wayup to permutation
of terms as a sum of prime divisorsD = x1 + . . .+ xn. We setΦD = Φx1 · · ·Φxn . SinceHK is
commutative,ΦD is well-defined. Further we briefly writeGD for the graphGΦD ,K of ΦD, and
UD(v) for UΦD ,K(v).

Let [D] ∈ ClX. Recall from paragraph 5.1 thatLD denotes the associated line bundle and
from paragraph 6.2 thatcD denotes the vertex that is represented byLD ⊕OX . Recall from
Proposition 7.7 (iv) thatδ(cD) = |degD| whereδ is defined as in paragraph 7.1.

10.4.Lemma. LetD be a non-trivial effective divisor.

(i) Let v, v′ ∈ Vert GD. If v′ is aΦD-neighbour ofv, then|δ(v′)− δ(v)| ≤ degD.
(ii) Let [M] ∈ Vert GD. Every maximal subbundleL → M lifts to a maximal subbundle
L →M′ of a uniquely determined rank2 bundleM′ such that[M′] is aΦD-neighbor
of [M] with δ(M′) = δ(M) + degD. Conversely, every maximal subbundleL →
M′ extends to a maximal subbundleL → M if [M′] is a ΦD-neighbor of[M] with
δ(M′) = δ(M) + degD.

Proof. We do induction on the number of factors inΦD = Φx1 · · ·Φxn with x1, . . . , xn being
prime divisors. Putx = xn.
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If n = 1, thenΦD = Φx. Assertion (i) follows from Proposition 8.2 and assertion (ii) follows
from Lemma 8.4 and Theorem 8.5.

If n > 1, we can writeΦD = ΦD′Φx for the effective divisorD′ = x1+· · ·+xn−1, which is of
positive degreedegD′ = degD−deg x. Assume that (i) and (ii) hold forD′. We prove (i). Let
v′ be aΦD-neighbour ofv. As explained in paragraph 1.7, there is av′′ that is aΦD′-neighbour
of v and aΦx-neighbour ofv′, thus the inductive hypothesis and Proposition 8.2 imply

|δ(v′)− δ(v)| ≤ |δ(v′)− δ(v′′)|+ |δ(v′′)− δ(v)| ≤ degD′ + deg x = degD .

We prove (ii). By the inductive hypothesis, theΦD′-neighbours[M′] of [M] with δ(M′) −
δ(M) = degD′ correspond to the maximal subbundlesL′ → M, which lift to maximal sub-
bundlesL′ →M′. On the other hand, every maximal subbundleL →M′ of aΦD′-neighbours
[M′] of [M] with δ(M′)− δ(M) = degD′ is of this form since

δ(M) = δ(M′)− degD′ = δ(L,M′)− degD′ = δ(L,M),

thusL → M must be a maximal subbundle. We now apply Lemma 8.4 to each of theΦD′-
neighborsM′ ofM and obtain the first statement of (ii). The second statement of (ii) follows
from Theorem 8.5. �

10.5. We demonstrate how to use the lemma for to show that the spaceV0 of all unramified
functions onGA that satisfy the cuspidal condition is finite-dimensional.Namely, letN ⊂ G
be a unipotent subgroup, then the cuspidal condition forf ∈ C0(GA)

K is that
∫

NF \NA

Φ(f)(n) dn = 0

for all Φ ∈ HK . If f is an automorphic form, then this condition defines a cusp form. A
posteriori it will be clear thatV0 contains only automorphic forms and thus equals the space
AK0 of unramified cusp forms.

10.6.Theorem. The dimension ofV0 is finite and bounded by

dimV0 ≤ #{[M] ∈ PBun2X|δ(M) ≤ mX}.

Proof. Note that there are only finitely many projective line bundles [M] with δ(M) ≤ mX

sincePBunindec
2 X is finite andPBundec

2 X has only finitely many classes[M] with δ(M) ≤
mX . So the finite-dimensionality ofV0 will follow from the inequality.

We proceed with the proof of the inequality. The geometric equivalent of the cuspidal condi-
tion is that ∑

M∈Ext1(OX ,OX)

Φ(f)(M) = 0

for all Φ ∈ HK (cf. [3]).
Sinceδ(OX ,M) = 0 for M ∈ Ext1(OX ,OX), we have thatOX → M is a maximal

subbundle by Proposition 7.7(ii), and only in the case of thetrivial extensionM≃ OX ⊕OX ,
there are other maximal subbundles, namely, there exist(q+1) different subbundles of the form
OX →M. Note that in any caseδ(M) = 0.

LetD be a nontrivial effective divisor. In caseM is the trivial extensionOX⊕OX , the vertex
c0 = [M] has the uniqueΦD-neighbourv′ = cD with δ(v′) = degD which is of multiplicity
q + 1. In case,M is a non-trivial extension ofOX by itself, the vertexv = [M] has a unique
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ΦD-neighbourv′ = [M′] with δ(v′)− δ(v) = degD, which has a unique maximal subbundle,
namely,OX →M′.

Thus for everyM ∈ Ext1(OX ,OX) and everyΦD-neighbor[M′] of [M] with δ(M′) =
degD, the maximal subbundles ofM′ are of the formOX →M′. Thus ifdegD > mX , then
[M′] = cD by Proposition 7.2.

We finish the proof of the theorem by showing that everyf ∈ V0 is determined by its values
in the verticesv with δ(v) ≤ mX . We make an induction ond = δ(cD), wherecD varies
through all verticesv with δ(v) > mX .

Let d > mX . Assume that the values off in all verticesv with δ(v) < d are given (which is
the case whend = mX + 1; thus the initial step). Letv be a vertex withδ(v) = d, thenv = cD
for an effective divisorD by Lemma 10.2 sincemX = max{0, 2gX − 2} ≥ gX − 1. For the
Hecke operatorΦD, the cuspidal condition reads by the previous argumentation and Lemma
10.4 as

(q + qe1) · f(cD) +
∑

δ(v′)<d

av′f(v
′) = 0

for certainav′ ande1 = dimExt1(OX ,OX). Thusf(v) is determined by the valuesf(v′) in
verticesv′ with δ(v′) < d, which proves the theorem. �

10.7. While the finite-dimensionality ofV0 can also be established without the techniques of
this paper, we do not know any other method to prove corresponding fact for toroidal functions.
For more details on the following definitions, see [14].

Choose a basis ofFq2 overFq. This defines an embedding ofE = Fq2F into the algebra
of 2 × 2-matrices with entries inF . The image ofE× is contained inGL2(F ) and defines a
non-split torusT ′ of GL2. The image ofT ′ in G = GL2 /Z defines a non-split torusT of G.

A functionf ∈ C0(GA)
K isE-toroidal if for all Φ ∈ HK ,

∫

TF \TA

f(t) dt = 0.

We denote the space of allE-toroidal functionsf ∈ C0(GA)
K by Vtor. Note that in [14] one

finds a toroidal condition, which is stronger thanE-toroidality. Namely,f has to beE ′-toroidal
for all separable quadratic algebra extensionsE ′ of F . We forgo to recall complete definitions,
but remark that the finite-dimensionality of the space of alltoroidalf ∈ C0(GA)

K follows since
it is a subspace ofVtor.

Let p : X ′ → X be the map of curves that corresponds to the field extensionE/F , and let
e =

(
1
1

)
.

10.8.Theorem. Let cT = vol(TF \ TA) /#
(
PicX ′ / p∗(PicX)

)
. Then for allf ∈ C0(GA)

K ,

fT (e) = cT ·
∑

[L]∈PicX′ / p∗(PicX)

f([p∗L]) .

Proof. Let AE be the adeles ofE. To avoid confusion, we writeAF for A. We introduce the
following notation. For anx ∈ |X| that is inert inE/F , we defineOE,x := OE,y, wherey
is the unique place that lies overx. For anx ∈ |X| that is split inE/F , we defineOE,x :=
OE,y1 ⊕ OE,y2, wherey1 andy2 are the two places that lie overx. Note that there is no place
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that ramifies. LetOEx
denote the completion ofOE,x. ThenOEx

is a free module of rank2
overOFx

= Ox for everyx ∈ |X|.
Let ΘE : A×

E → GL2(AF ) be the base extension of the embeddingE× → GL2(F ) that
definesT ′, which corresponds to the chosen basis ofE overF that is contained inFq2 . This
basis is also a basis ofOEx

overOFx
for everyx ∈ |X|. This shows thatΘ−1

E (GL2(OAF
)) =

O×
AE

and that the diagram

E× \A×
E /O

×
AE

1:1
//

ΘE

��

PicX ′

p∗

��

GL2(F ) \ GL2(AF ) / GL2(OAF
)

1:1
// Bun2X

commutes, where the horizontal arrows are the bijections asdescribed in paragraph 5.3.
The action ofAF onE× \A×

E /O
×
AE

andGL2(F ) \ GL2(AF ) / GL2(OAF
) by scalar multi-

plication is compatible with the action ofPicX onPicX ′ andBun2X by tensoring in the sense
that all maps in the above diagram are equivariant if we identify PicX with F× \A×

F /O
×
AF

.
Taking orbits under these compatible actions yields the commutative diagram

E×
A

×
F \A

×
E /O

×
AE

1:1
//

ΘE

��

PicX ′ / p∗PicX

p∗

��

GF \GAF
/K

1:1
// PBun2X .

Sincef is rightK-invariant, we may take the quotient of the domain of integration byTAF
∩K

from the right, which is the image ofO×
AE

in GAF
. We obtain the assertion of the theorem for

some still undetermined value ofc. The value ofc is computed by plugging in a constant
function forf . �

10.9.Theorem. The dimension of the space of unramified toroidal functions is finite, bounded
by

dimVtor ≤ #
(
PBun2X − {cD}[D]∈Cleff X

)
.

Proof. First remark that given the inequality in the theorem, finite-dimensionality follows since
the right hand set is finite. Indeed, by Lemma 10.2,

PBun2X − {cD}[D]∈Cleff X ⊂
{
v ∈ PBun2X | δ(v) ≤ mX

}

sincemX ≥ gX − 1, and the latter set is finite.
We now proceed with the proof of the inequality. Letf ∈ Vtor. We will show by induction

on d = degD that the value off at a vertexcD with [D] ∈ Cleff X is uniquely determined by
the values off at the elements ofPBun2X − {cD}[D]∈Cleff X . This will prove the theorem.

By Theorem 10.8, the condition forf to lie in Vtor reads
∑

[L]∈(PicX′ / p∗ PicX)

Φ(f)([p∗L]) = 0 , for all Φ ∈ H.

If d = 0, takeΦ as the identity element inHK . We know from Proposition 7.8 that
p∗(PicX

′ / p∗ PicX) = PBuntr
2 X ∪ {c0}, sof(c0) equals a linear combination of values off
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at verticesv in PBuntr
2 X, which all satisfyδ(v) < 0. Since the zero divisor class is the only

class inCleff X of degree0, we have proven the cased = 0.
Next, letD be an effective divisor of degreed > 0 and putΦ = ΦD. If v is aΦD-neighbour

of w, thenδ(v) andδ(w) can differ at most byd (Lemma 10.4 (i)). Therefore allΦD-neighbours
v of vertices inPBuntr

2 X haveδ(v) < d. The vertexcD is the onlyΦD-neighbourv of c0 with
δ(v) = d (Lemma 10.4 (ii)). Thus

0 =
∑

L∈(PicX′ / p∗ PicX)

ΦD(f)([p∗L]) = (q + 1) f(cD) +
∑

L∈(PicX′ / p∗ PicX),

([p∗L],v,λ)∈UD([p∗L]),

δ(v)<d

λ f(v)

determinesf(cD) as the linear combination of values off at verticesv with δ(v) < d. By the
inductive hypothesis,f(cD) is already determined by the values off at vertices that are not
contained in{cD}[D]∈Cleff X . �

10.10.Example. If X is the projective line overFq, then all verticesv are of the formcD for
some effective divisorD (see Example 8.10). ThusVtor is trivial. Since onlyv = c0 satisfies
δ(v) ≤ mX , all values off ∈ V0 are multiples off(c0). However,Ext1(OX ,OX) is trivial,
thus the cuspidal condition (applied to the trivial Hecke operator) isf(c0) = 0. Thus alsoV0 is
trivial. See [13] for the corresponding spaces in the case ofan elliptic curve.

APPENDIX A. EXAMPLES FOR RATIONAL FUNCTION FIELDS

The appendix contains examples of graphs of Hecke operatorsfor a rational function field,
which can be calculated by elementary matrix manipulations. We do not exercise all calcula-
tions, but hint on how to do them. The reader will find examplesfor elliptic function fields that
are determined by geometric methods in [13].

LetF beFq(T ), the function field of the projective line overFq, which hasq + 1 Fq-rational
points and trivial class group. Fix a placex of degree1.

A.1. Using strong approximation forSL2 (cf. Proposition 3.8, whereJ is trivial in this case),
we see that the map obtained by adding the identity matrixe at all placesy 6= x,

Γ \Gx /Kx −→ GF \GA /K ,
[gx] 7−→ [(gx, e)]

is a bijection.
We introduce some notation. Elements ofOxF =

⋂

y 6=x(Oy ∩ F ) can be written in the form
∑0

i=m biπ
i
x with bi ∈ Fq for i = m, . . . , 0 for some integerm ≤ 0. Let K̃x = GL2(Ox),

where we viewOx as the collection of all power series
∑

i≥0 biπ
i
x with bi ∈ Fq for i ≥ 0. Let

Γ = GL2(OxF ) and letZ be the center ofGL2.

A.2. For better readability, we writeπ for the uniformizerπx atx andg for a matrix inGx. We
sayg ∼ g′ if they represent the same class[g] = [g′] in Γ \Gx /Kx, and indicate by subscripts
to ‘∼’ how to alter one representative to another. The following changes of the representativeg
of a class[g] ∈ Γ \Gx /Kx provide an algorithm to determine a standard representative for the
class of any matrixg ∈ Gx:
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(i) By the Iwasawa decomposition, every class inΓ \Gx /Kx is represented by an upper
triangular matrix, and





a b
d



 ∼
/ Zx





a b
d









d−1

d−1



 =





a/d b/d
1



 .

(ii) Write a/d = rπn for some integern andr ∈ O×
x , then withb′ = b/d, we have





rπn b′

1



 ∼
/ K̃x





rπn b′

1









r−1

1



 =





πn b′

1



 .

(iii) If b′ =
∑

i≥m biπ
i for some integerm and coefficientsbi ∈ Fq for i ≥ m, then





πn
∑

i≥m biπ
i

1



 ∼
/ K̃x





πn
∑

i≥m biπ
i

1









1 −π−n(
∑

i≥n biπ
i)

1





=





πn bmπ + . . .+ bn−1π
n−1

1



 .

(iv) One can further perform the following step:




πn bmπ
m + . . .+ bn−1π

n−1

1





∼
Γ \





1 −(bmπm + . . .+ b0π
0)

1









πn bmπ
m + . . .+ bn−1π

n−1

1





=





πn b1π + . . .+ bn−1π
n−1

1



 .

(v) If b = b1π + . . .+ bn−1π
n−1 6= 0, thenb = sπk with 1 ≤ k ≤ n− 1, s ∈ O×

x and




πn s πk

1



 ∼
Γ \ /Zx K̃x





1
1









πn s πk

1









s−1π−k

s−1π−k









−s2

sπn−k 1





=





πn−2k s−1π−k

1



 .

(vi) The last trick is




πn

1



 ∼
Γ \ /Zx K̃x





1
1









πn

1









π−n

π−n









1
1



 =





π−n

1



 .

Executing these steps (possibly (iii)–(v) several times) will finally lead to a matrix of the form

pn =





π−n

1





for somen ≥ 0. The matrixpn represents the vertexcnx in Vert GΦ,K = {cnx}n≥0 whereΦ is
any unramified Hecke operator (cf. Example 8.10).Thus we found a way to determine the vertex
cnx that is represented by an arbitrary matrixg ∈ Gx ⊂ GA.

A.3. Example (Graph of0 and1). According to paragraph 1.7, the graphs for the zero element
0 and the identity1 inHK are as illustrated in Figures 4 and 5, respectively.
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c0 c3xc2xcx

FIGURE 4. The graph of the zero element inHK

1 1 1 1

c0 c3xc2xcx

FIGURE 5. The graph of the identity inHK

A.4. Example (Graph ofΦx). By Proposition 2.3 theΦx-neighbors ofpi are of the formpiξw.
With help of the reduction steps (i)–(vi) in paragraph A.2 one can determine easily the standard
representativepj of piξw. We reobtain the graph ofΦx as illustrated in Figure 6 (cf. Example
8.10).

q + 1 1 1 1

c0

q q q

c3xc2xcx

FIGURE 6. The graph ofΦx

A.5. Example (Graph ofΦy for y 6= x). If we want to determine the edges ofGy for a placey
of degreed that differs fromx, we have to find the standard representativepj for elements

pi





πy b
1



 with b ∈ κy, and pi





1
πy



 .

As F has class number1, we can assume thatπy ∈ F has nontrivial valuation iny andx only.
Let γ ∈ GF denote the inverse of one of the matrices

(
πy b

1

)
,
(
1
πy

)
. For all placesz 6= x, y, the

canonical embeddingGF → Gz sendsγ to a matrixγz ∈ Kz sincevz(πy) = 0 by assumption.
Thus multiplying withγ ∈ GF from the left, which operates diagonally on the components of
all places, and multiplying componentwise withγ−1

z ∈ Kz from the right for allz 6= x, y, gives
an element that is nontrivial only inx (also compare with [7, Lemma 3.7]). The matrices that
we obtain in this way are:





πdx b0 + · · ·+ bd−1π
d−1
x

1



 pi with bi ∈ κx for i = 0, . . . , d− 1, and




1
πdx



 pi .

The reduction steps (i)–(vi) of paragraph A.2 tell us which classes are represented, and we are
able to determine the edges similarly to the previous example. Thus we obtain thatGy only
depends on the degree ofy. Note that ify is of degree1, thenGy equalsGx. Figures 7, 8, 11,
and 12 show the graphs for degrees2, 3, 4 and5, respectively.

A.6. Example (The graph of powers ofΦx). It is interesting to compare the graph ofΦy with
deg y = d to the graph ofΦdx. The latter graph is easily deduced fromGx by means of paragraph
1.7. Namely, a vertexv′ is aΦdx-neighbour of a vertexv in GΦd

x,K
if there is a path of lengthd

from v to v′ in Gx, i.e. a sequence(v0, v1, . . . , vd) of vertices inGx with v0 = v andvd = v′ such
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c4xc2x

c3x c5x

c0

cx

q + 1

1

q2 1

q2 1

q2 1

q2 1

q2
− q

q2

FIGURE 7. The graph ofΦy for a placey of degree2

c5x

1

c4x

1

c3x

1

c2x

1 q3

q31q3
− q2

q3

q3
− q

c0
cx

q + 1

q2

q3

FIGURE 8. The graph ofΦy for a placey of degree3

2q 2q

2q 2q

c4xc2x

c3x c5x

c0

cx

q + 1

1

q2 1 q2 1

q2 1 q2 1
q2 + 2q

q2 + q

FIGURE 9. The graph ofΦ2
x

1

cxc0 q + 1

1

c3x

1q3 1q3

c6x

1 q3 1
q3

1q3 1q3

3q2
3q2

3q

3q23q

3q

3q2
3q2

3q

3q23q

3q

3q
q3 + 3q2

q3 + 3q2 + 2q
q2 + 3q

q3 + 2q2

c2x c5x c8x

c4x c7x

FIGURE 10. The graph ofΦ3
x
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c0

1

c4x

1

c5x

1

c3x

1

c2x

cx

c6xq + 1

1
q2

q4
− q3

q3
− q

1 q4

q4

q4

q4

q4
− q2

q3

q4
− q3

FIGURE 11. The graph ofΦy for a placey of degree4

c4x

1

c5x

1

1q5

1q5

c3x

1q5

c6x

c7x

c8x

c0 cx

1
q2

c2x
1

q4
− q2

q3

q + 1

q4
− q2

q5
− q4 + q2

− q

q5
− q4

q5
− q3

q4

1

q5

q5

q5
− q4

FIGURE 12. The graph ofΦy for a placey of degree5

that for all i = 1, . . . , d, there is an edge(vi−1, vi, mi) in Gx. The weight of an edge fromv to
v′ in the graph ofGdx is obtained by taking the sum of the productsm1 · . . . ·md over all paths
of lengthd from v to v′ in Gx.

Figure 9 and 10 show the graphs ofΦ2
x andΦ3

x, respectively, and we see that fordeg y = 2, we
haveΦ2

x ≡ Φy+2q ·1 (modJ (K)) and fordeg y = 3, we haveΦ3
x ≡ Φy+3q ·Φx (modJ (K))

whereJ (K) is the ideal ofHK of Hecke operators that operate trivial onC0(GA).

A.7. Example (The graphs of two ramified Hecke operators). It is also possible to determine
examples for Hecke operators inHK ′ by elementary matrix manipulations, whenK ′ < K is a
subgroup of finite index. We will show two examples, which areillustrated in Figures 13 and
14. We omit the calculation, but only point out why the crucial differences between the two
graphs occur.

ForK ′ = {k ∈ K | kx ≡
(
1
1

)
(mod πx)}, the fibres of the projection

P : GF \GA /K
′ −→ GF \GA /K
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c′0

1

1

1

q

q

q 1

1

1q

q

q

1

1

1

c′
x,[1:0]

c′
x,[1:q−1]

c′
x,[0:1] c′2x,[0:1]

c′2x,[1:q−1]

c′2x,[1:0]

FIGURE 13. Graph ofΦ′
y,e as defined in Example A.7

c′
x,[1:0]

c′
x,[0:1] c′2x,[0:1]

c′0

1

q

q

c′2x,[1:0]

q

c′
x,[1:q−1]

1

q

c′2x,[1:q−1]
1 1

11

FIGURE 14. Graph ofΦ′
x as defined in Example A.7

are given byP−1(c0) = {[p0]} and for positiven, by P−1(cnx) = {[pnxϑw]}w∈P1(κx) with
ϑ[1:c] =

(
1 c
1

)
andϑ[0:1] =

(
1

1

)
. The union of these fibres equals the set of vertices of a Hecke

operator inHK ′. We shall denote the vertices byc′0 = [p0] andc′nx,w = [pnxϑw] for n ≥ 1 and
w ∈ P1(κx). Note thatGFq

= Gκx acts onP1(κx) from the right, so ifγ ∈ GFq
, thenw 7→ wγ

permutes the elements ofP1(κx).
The first Hecke operatorΦ′

y,γ ∈ HK ′ that we consider is(volK/ volK ′) times the charac-
teristic function ofK ′

( πy
1

)
γK ′, wherey is a degree one place different tox andγ ∈ GA is a

matrix whose only nontrivial component isγx ∈ GFq
. (The factor(volK/ volK ′) is included

to obtain integer weights). SinceK ′
( πy

1

)
γK ′ ⊂ K

( πy
1

)
γK, the graph ofΦ′

y,γ relative toK ′

can have an edge fromv to w only if Gy has an edge fromP (v) to P (w). BecauseK ′
y = Ky,

we argue as forK thatK ′
( πy

1

)
γK ′ =

∐

w∈P1(κy)
ξwγK

′. Applying the same methods as in
Example A.5, one obtains that

UΦ′

y,γ ,K
′(c′0) = {(c′0, c

′
x,w, 1)}w∈P1(κx)

and for everyn ≥ 1 andw ∈ P1(κx) that

UΦ′

y,γ ,K
′(c′nx,w) = {(c′nx,w, c

′
(n+1)x,wγ, 1), (c

′
nx,w, c

′
(n−1)x,wγ, q)} .
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For the case thatγ equals the identity matrixe, the graph is illustrated in Figure 13. Note that
for generalγ, an edge does not necessarily have an inverse edge sincewγ2 does not have to
equalw.

The second Hecke operatorΦ′
x ∈ HK ′ is (volK/ volK ′) times the characteristic function of

K ′
(
πx

1

)
K ′. This case behaves differently, sinceK ′

x andKx are not equal; in particular, we
haveK ′

(
πx

1

)
K ′ =

∐

b∈κx

(
πx bπx

1

)
K ′. This allows us to compute the edges as illustrated in

Figure 14. Note that forn ≥ 1, the vertices of the formc′nx,[1:0] andc′nx,[0:1] behave particularly.
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