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GRAPHS OF HECKE OPERATORS
OLIVER LORSCHEID

ABSTRACT. LetX be a curve ovelF, with function field £ In this paper, we define a graph for
each Hecke operator with fixed ramification. A priori, thesgpips can be seen as a convenient
language to organize formulas for the action of Hecke opesain automorphic forms. However,
they will prove to be a powerful tool for explicit calculatis and proofs of finite dimensionality
results.

We develop a structure theory for certain graphf unramified Hecke operators, which is
of a similar vein to Serre’s theory of quotients of BruhasTitees. To be precis§, is locally
a quotient of a Bruhat Tits tree and has finitely many comptmefn interpretation ofj,. in
terms of rank2 bundles onX and methods from reduction theory show tfatis the union of
finitely many cusps, which are infinite subgraphs of a simpleire, and a nucleus, which is a
finite subgraph that depends heavily on the arithmetids.of

We describe how one recovers unramified automorphic fornfisrections on the graphg, .
In the exemplary cases of the cuspidal and the toroidal tiondiwe show how a linear con-
dition on functions org, leads to a finite dimensionality result. In particular, weot®ain the
finite-dimensionality of the space of unramified cusp formd the space of unramified toroidal
automorphic forms.

In an Appendix, we calculate a variety of examples of grapies cational function fields.
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INTRODUCTION

Hecke operators play a central role in the theory of automorforms. For classical modular
forms, they are also computationally well understood. Heety of arithmetic quotients of the

Bruhat-Tits tree as studied by Serrelin][19] allowed to stdégke operator over-adic fields
1
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by geometric methods. In this paper, we consider how to coenpith Hecke operators for
automorphic forms oPGL, over a global function field. Our theory can be understood as a
global counterpart to Serre’s viewpoint oyeadic fields.

There are a few applications of Serre’s theory to automarfainms over global fields, which,
however, mainly concentrate on rational function fields [&}, [5] and [6]). The key ingredient
of this application is the strong approximation propertysaf, as we will explain below. We
begin with reminding the reader of the definition of a Brulids tree. Though this paper is
independent from Serre’s bodk [19], we review some aspddtssimce the global theory (as
developed in this paper) and the local approach (as in Sdyoglk) go hand in hand. In later
parts of the paper, we make a few remarks pointing out theaxiimomns with or the differences
to Serre’s theory.

Let F' be a global function field and be a fixed place. We denote Wy, the comple-
tion of F' at x, by O, its integers, byr, € O, a uniformizer and by, the cardinality of
the residue field, / (r,) ~ F,.. The Bruhat-Tits tre€/, of F, is a graph with vertex set
PGLy(F,)/ PGLy(O,). There is an edge between two cosgisand [¢'] if and only if [¢']
containsg( ' . ) org(™ %) for someb € F,,. Note that this condition is symmetric inand
g', s07, is a geometric graph. In facl, is a(q, + 1)-regular tree.

Every subgroup oPGL,(F),) acts on7, by multiplication from the left. We shall be inter-
ested in the following case. L&?7. C F be the Dedekind ring of all elementse F' with
la|,, < 1forall placesy # z. Putl’ = PGLy(O%). Serre investigates in [19] the quotient graph
['\ 7. Itis the union of a finite connected graph with a finite numblecusps. A cusp is an
infinite graph of the form

and each cusp corresponds to an element of the class gra@ip. of

An unramified automorphic form ovét, can be interpreted as a functignon the vertices
of G such that the space of functions generated BY /) }:>o is finite-dimensional where the
Hecke operator’, is defined by the formula

T.(NHg)) = > [Stabr([g]) : Stabr(e)] - f([g'])

edgese with origin [g]
and terminugg’|
for each coselly] € PGLy(F,) / PGL2(O,).
The inclusion ofPGL,(F,) asz-component intdGL,(A) induces a map

I'\ PGLy(F,)/ PGLy(0,) — PGLy(F)\ PGLy(A)/ PGLy(O4)

whereQ, is the maximal compact subring of the adefe®f F. In the case that’ is a ra-
tional function field (as in[4],[[5] and_[6]), or, more genllyaa function field with odd class
number, and: is a place of odd degree, this map is a bijection as a consequ#rihe strong
approximation property dfL,. The double coset space on the right hand side is the domain of
automorphic forms ovef’, and the bijection is equivariant with respect to the Hegberator
T, and its global equivalen,..

In this sense, it is possible to approximate automorphim$oin this case and use the theory
from Serre’s book. However, the method of approximatioraksedown if the function field
has even class number or if the Hecke operator of interesibisheed to a place of even degree.
For automorphic forms over any function field (with possiblyen class number) or for the
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investigation of Hecke operators at any place of a giventfandield respective a simultaneous
description of all Hecke operators, the method of strong@pmation is thus insufficient, and
we see the need of a global analogon, which is the starting pbthis paper.

The applications of this theory are primarily in explicitraputations with automorphic
forms. For instance in_[13], graphs of Hecke operators aeel tis calculate the dimensions
of spaces of cusp forms and toroidal automorphic forms. Faenore conceptual viewpoint, it
might be fruitful to explore the connections between grapihidecke operators and Drinfdl
modules; in particular, it might contribute to the Langlaqarogram since there is a generalisa-
tion of graphs of Hecke operator to all reductive groups dilia Bruhat-Tits buildings, which
we forgo to explain here.

We give an overview of the content of this paper. In sediiowd jntroduce the graph of a
Hecke operator as a graph with weighted edges that encoelestion of a Hecke operator on
automorphic forms. This definition applies to every Heckerapor ofPGLy(A) over a global
field. We collect first properties of these graphs and deschibw the algebraic structure of the
Hecke algebra is reflected in dependencies between theggraplsectiod 2, we describe the
graphg, of the unramified Hecke operatobs (which correspond to the local Hecke operators
T, as introduced above) in terms of coset representativegchios[3, we make the connection
to Bruhat-Tits trees precise: each componerg,ofs a quotient of7, by a certain subgroup of
PGL,y(F,), and the components ¢f, are counted by the-torsion of the class group @7..

In sectiori 4, we associate to each vertegph coset inCl F'/2 C1 F whereCl F is the divisor
class group of". We describe how these labels are distributed,im dependence of.

In sectionb, we give the vertices and edgegjpfa geometric meaning following ideas
connected to the geometric Langland’s program. Namelyyéngces correspond to the iso-
morphism classes d!-bundles on the smooth projective curewith function field ', and
the edges correspond to certain exact sequences of sheaaXeslo sectiorl 6, we distinguish
three classes of rarikkbundles: those that decompose into a sum of two line buritlese that
are the trace of a line bundle over the quadratic constaehexinX’ of X and those that are
geometrically indecomposable. This divides the vertides,anto three subclass@Buni® X,
PBunf X andPBung' X. The former two sets of vertices have a simple descriptidarims of
the divisor class groups of and.X’.

In sectiorLY, we introduce the integer valued invariaomn the set of vertices, which is closely
connected to reduction theory of rankundles. This helps us to refine our view on the vertices:
PBuny X andPBun§ X are contained in the finite set of verticewith §(v) < 29y — 2 where
gx is the genus o . In sectior B. we describe the edges between vertizedecomposes into
a finite graph, which depends heavily on the arithmetid'piand class number many cusps,
which are infinite weighted subgraphs of the form

_ 1 Q. 1 Q. 1 qx 1

We conclude this section with a summary of resultsjorand illustrate them in Figufg 2.

In section[®, we explain, how abstract properties of unrahifiutomorphic forms—with
name, the compact support of cusp forms and eigenvalueiengsdbr Eisenstein series—Ilead
to an explicit description of them as functions on the vestiof the graph§,.. In sectior 1D, we
show that the spaces of functions Bart G, that satisfy the cuspidal respective toroidal con-
dition are finite dimensional. In particular, these spaddsmctions contain only automorphic
forms.
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In AppendixA, we give a series of examples for a rational fiorcfield: G, for degx < 5,
the graphs ofb? and®? for deg x = 1 and the graphs of two ramified Hecke operators. We
give short explanations on how to calculate these examples.

Acknowledgements: This paper is extracted from my thedis|[12]. First of all, luAdlike to
thank Gunther Cornelissen for his advice during my gradsaidies. | would like to thank
Frits Beukers and Roelof Bruggeman for their numerous contsnen a lecture series about
my studies.

1. DEFINITIONS

In this section, we set up the notations that are used thmughe paper and introduce the
notion of a graph of a Hecke operator. We collect first propsivf these graphs and describe
how the algebraic structure of the Hecke algebra is reflentdedpendencies between the graphs
of different Hecke operators.

1.1. Letg be a prime power anfél' be the function field of a smooth projective cut¥eoverF,,.
Let |.X | the set of closed points of, which we identify with the set of places &f. We denote
by F, the completion off" atz € | X| and byO, the integers of’,. We choose a uniformizer
7. € F for every placer. Letk, = O,/(m,) be the residue field. Leleg x be the degree of
and letg, = ¢**¢* be the cardinality of.,. We denote by |, the absolute value ofi, resp.F’
such thatr,|, = ¢, '

Let A be the adele ring of' andA* the idele group. Pub, = [] O, where the product is
taken over all places of F'. The idele norm is the quasi-charactér. A* — C* that sends
an idele(a,) € A* to the produc{T] |a.|, over all local norms. By the product formula, this
defines a quasi-character on the idele class gfoup /*.

Let G = PGL,. Following the habit of literature about automorphic form& will often
write G, instead ofGG(A) for the group of adelic points an@y instead ofGG(F’) for the group
of F-valued points, et cetera. Note tliat comes together with an adelic topology that tuths
into a locally compact group. Let’ = G, be the standard maximal compact open subgroup
of G. We fix the Haar-measure @, for whichvol K = 1.

TheHecke algebrg for G, is the complex vector space of all compactly supported lpcal
constant function® : G, — C together with the convolution product

Oy x Dy g /(I)l(ghl)(l)g(h) dh .
Ga

A Hecke operato € H acts on the space = C°(G,) of continuous functiong : G, — C
by the formula

o(f)(g) = /CI)(h)f(gh) dh.
Ga
Let K’ be a compact open subgroup®@f. Then we denote b the subalgebra of that

consists of all bix”-invariant functions. The above action restricts to ancewctif . on VX',
the space of righk’-invariant functions.
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1.2.Lemma. For everyK’ and everyd € Hy, there arehy, ..., h, € Gy andmy,...,m, €
C for some integer such that for ally € G, and all f € VX',

o(f)(9) = Z m; - f(ghi) .

Proof. Since® is K’'-bi-invariant and compactly supported, it is a finite lineambination of
characteristic functions on double cosets of the fagffh K’ with h € G. So we may reduce
the proof to® = charg/,x/. Again, sinceK’hK’ is compact, it equals the union of a finite

number of pairwise distinct coseiskK’, . .., h,K’, and thus
/ char gonser (') f (gh') db' =) / chary, g/ (W) f(gh') dh = >~ vol(K") f(gh;)
Gy =1 Gy =1
for arbitraryg € G,. O

We will write [¢] € G\ G4 / K’ for the class that is represented ¥ G,. Other cosets
will also occur in this paper, but it will be clear from the ¢ext what kind of class the square
brackets relate to.

1.3.Proposition. For all ® € Hy: and[g] € Gr\ G/ K’, there is a unique set of pairwise
distinct classe$q], ..., [¢9-] € Gr\ G4/ K’ and numbersn, ..., m, € C* such that for all
feVvr,

f)9) = S mif(9)

Proof. Uniqueness is clear, and existence follows from Lerhmh 12 afe have taken care of
putting together values gf in same classes ¢f - \ G, / K’ and excluding the zero terms[]

1.4.Definition. With the notation of the preceding proposition we define

Us 1([g]) = {([g]; [9], mi) Fimr, v -

The classe$y;| are called theb-neighbours ofg| (relative to K”), and them; are called their
weights
ThegraphGg i of @ (relative to K’) consists of vertices

Vert gq>7K/ = GF\GA/K/

and oriented weighted edges

Edge gcp’K/ = U U¢7K/(U) .

veVert Gg s

1.5.Remark. The usual notation for an edge in a graph with weighted edgesists of pairs
that code the origin and the terminus, and an additionaltionon the set of edges that gives
the weight. For our purposes, it is more convenient to repthe set of edges by the graph
of the weight function and to call the resulting triples tlansist of origin, terminus and the
weight the edges @y x-.
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1.6. We make the following drawing conventions to illustréfte graph of a Hecke operator:
vertices are represented by labelled dots, and an @da@é m) together with its originv and
its terminusy’ is drawn as

If there is precisely one edge fromto v’ and precisely one from’ to v, which we call the
inverse edge, we draw

. . m
m__ ™ in place of @ and @ in place of Q .
v v v v v v

There are various examples for rational function fields ipé&pdix[A, and in[[1B], one finds
graphs of Hecke operators for elliptic function fields.

1.7. We collect some properties that follow immediatelynirthe definition of a graph of a
Hecke operato®. For f € VX" and[g] € G\ G4 / K', we have that

(lg]:[g"];m")
€Edge Gg g/

Hence one can read off the action of a Hecke operatof enV®’ from the illustration of the
graph:

[gr]

SinceH = |JHx, with K’ running over all compact opens (#,, the notion of the graph
of a Hecke operator applies to aftyc 4. The set of vertices of the graph of a Hecke operator
® € Hy only depends orf’, and only the edges depend on the particular chéserhere is
at most one edge for each two vertices and each directiorthensleight of an edge is always
non-zero. Each vertex is connected with only finitely marheotertices.

The algebra structure @ i+ has the following implications on the structure of the set of
edges (with the convention that the empty sum is defindl).asor the zero elemeitt € H g,



GRAPHS OF HECKE OPERATORS 7

the multiplicative unitl € H g, and arbitraryd,, &5 € H -+, r € C* we obtain that
Edge Gor = 0,
Edge G x» = { (v,v,1) }ve\/ert G, ot
{(

v,v',m)|m = Z m + Z m" # 0},

Edge G, 10,0 =

(v,0";m’)eEdge chl’K/ (v,0",m'")eEdge g<1>2,1<’
Edge Gro, 0 = {(v,v,rm) ’ (v,v',m) € Edge Go, k' } , and
Edge g<1>1*<I>g,K/ - { (U7 ,Ula m) } m = Z m/ . m” # 0 }

(" m’)EEdge Gg | K
and
(0" ' ;m)ERdge Gg,,

If K" < K" and® € Hyg, then alsod € Hx». This implies that we have a canonical map
P : Go x» — Go i, Which is given by

P

Vert gq>7KN = GF\GA/K” — GF\GA/K/ = Vert gq>7K/
and

Edge gq>7KN i) Edge gq>7K/ .
(v,v',m') +— (P(v), P(v"),m')

1.8. One can also collect the datadf - in an infinite-dimensional matri®/s k-, which we
call the matrix associated tGs x, by putting(Me i), = m if (v,0',m) € Edge Go k',
and (Ms k), » = 0 otherwise. Thus each row and each column has only finitelyyman-
vanishing entries.

The properties of the last paragraph imply:

Mok = 0, the zero matrix,
M, g = 1, theidentity matrix,
My, 1o, k0 = Ms, g+ Mo, k',
Mo, kv = rMg, r, and
My, w0, k0 = Mo, k' Ms, g .

Let J(K’) C Hk be the ideal of operators that act trivially a4 then we may regard
Hy /T (K') as a subalgebra of the algebra®finear maps

b c — b c.

Grp\Gy /K’ Grp\Gp /K’

2. UNRAMIFIED HECKE OPERATORS

From now on we will restrict ourselves to unramified Heckerapm's, which means, elements
in Hx. In particular, we will investigate the grapbs of certain generator®, of H; in more
detail.

2.1. Consider the uniformizers, € F as ideles viathe embeddidg* C F* C A* and define
for every placer the unramified Hecke operatér, as the characteristic function ﬁf( e )K.
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It is well-known thatH  ~ C[®x]xe|X\ as an algebra, which means, in particular, tHat is
commutative. By the relations from paragraph 1.7, it is g/iie know the graphs of generators
to determine all graphs of unramified Hecke operators. Weheshorthand notatio§, for
the graphGe, x, andif,(v) for the @,-neighbourdfs, x(v) of v.

We introduce thélower x convention’that says that a lower indexon an algebraic group
defined over the adeles &f will consist of only the component at of the adelic points, for
exampleG, = Gr,. Analogously, we pukl, = Go, .

The“upper = convention’means that an upper indexon an algebraic group defined over
the adeles of” will consist of all components except for the oneratin particular, we first
defineA” = H;Héx F,, the restricted product relative 0* = Hy# O, over all placeg, that
do not equak. Another example i&”* = G .. We putK* = Goe.

2.2. We embed;, viax, C F, C A, thus an elemernt € x, will be considered as the adele
whose component at is b and whose other components éreLet P! be the projective line.
Define forw € P*(x,),

€ = (”w Z{) ifw=[1:5 and &, = (1 ﬂ) it w=1[0:1].

It is well-known (cf. [7, Lemma 3.7]) that the domain &f. can be describe as
ﬂ-l‘ —
K( 1) K= ][] &EK.
U)EHJ)I(HI)

Consequently the weights of edgeginare positive integers (recall thatl X' = 1). We shall
also refer to the weights as thaultiplicity of a ®,-neighbour. The above implies the following.

2.3. Proposition. The ®,-neighbours ofg] are the classe§¢, ] with &, as in the previous
lemma, and the multiplicity of an edge frogto [¢'] equals the number af € P!(x,) such that
l9€.] = [¢']. The multiplicities of the edges originatingigl sum up to# P(x,) = ¢, +1. O

3. CONNECTION WITH BRUHAT-TITS TREES

Fix a placez. In this section we construct maps from Bruhat-Tits treeg,toThis will enable
us to determine the componentstht

3.1.Definition. TheBruhat-Tits tre€7,, for F, is the (unweighted) graph with vertices
Vert T, = G,/ K,
and edges
Edge . = { ([g].[9]) | Fw € P(k,), g=¢'&w (mod K,) } .

3.2. Consider7, to be embedded it¥, as the component at For eachh, € GG, we define a
map

Von:Te — G
by
Vert T, =G, /K, — Gp\Gy/K = Vert G,
lg]  +—  [hg]
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and

Edge 7, — Edge G,

(lgl, 1) — (lhg], [hg'),m)
with m being the number of verticdg”] that are adjacent ty] in 7, such that¥, ,([¢"]) =
\I/m,h([g/])-

By Propositior 2.3 and the definition of a Bruhat-Tits trée,, is well-defined andocally
surjective i.e. it is locally surjective as a map between the assatisit@plicial complexes of
T, andg, with suppressed weights.

Since Bruhat-Tits trees are indeed treés|([19, 1l.1, Thrj).Hénce in particular connected,
the image of eacl, , is precisely one component gf, i.e. a subgraph that corresponds to a
connected component of the associated simplicial complex.

Every edge of the Bruhat-Tits tree has an inverse edge, whiphes the analogous state-
ment for the graphg,.. Namely, if (v,v',m) € Edge G,, then there is an’ € C* such that
(v',v,m') € Edge G,.

3.3. Remark. This symmetry of edges is a property that is particular tcammfied Hecke
operators folG = PG L,. In case of ramification, the symmetry is broken, cf. Exarifplé

3.4. The algebraic grouplL, has thestrong approximation propertyi.e. for every placer,
SL, F' is a dense subset 6fl., A” with respect to the adelic topology. This was proven by
Kneser ([9]) for number fields and was extended indepengégtPrasad ([17]) and Margulis
([15]) to global fields. See [11, Thm. E.2.1] for a direct refece. We explain, which im-
plication this has oiPGL,. More detail for the outline in this paragraph can be foun{2m
(2.1.3)].

Letz be a place of degre& In accordance to the the uppeconvention, letO* = Hy# O,.
The determinant map 0AL, induces a bijection on double cosets:

GLo(F)\ GLo(AT) / GLy(07) 2% X\ (A7) /(07"

The quotient groug™ \ (A®)* / (O*)* is nothing else but the ideal class groupO7. of the
integersOf. = (), (O, N F) coprime toxz. LetClF = F*\ A* /Oy be the divisor class
group of F andC1I° F = {[a] € ClF|dega = 0} be the ideal class group. Then we have
bijections

GLo(F)\ GLy(A") / GLy(O%) ~ F*\ (A")* /(O0")* ~ ClO} ~ CI°F x Z/dZ .

Let S C GLy(A”) be a set of representatives G, (F) \ GLy(A”) / GL2(O%). Then every
g = 9%g. € GLy(A) (with ¢* € GLy(A”) andg, € GLy(F,)), there ares € S, v € GLy(F)

andk € GLQ((’)””) such thaty = ~skg, where~sk equalsg in all components: # = and
Gx = 7 'g.. The condition[det s] = [det ¢°] as cosets i\ (A%)* / (O*)* implies that
s € S'is uniquely determined by”*. Let Z be the center of:L,, then

GLy(A) / GL2(04)Z, = (GLa2(A%) / GL2(0%)) x (G, [ K)
= (GLy(A") / GLy(O")) x Vert T, .
Definel', = GLy(F) N s GLy(O%)s~ 1. Then we obtain the following (cfi]20, (2.1.3)]).
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3.5.Proposition. The decomposition = vskg, induces a bijective map

GLy(F)\ GLy(A") / GLy(On)Z, — [] Ts\ Vert T, .

seS
lg] — (s,10:])
Its inverse is obtained by putting together the componertss1L,(A*) andg, € G.,. O

3.6.Remark. On the right hand side of the bijection in Proposition 3.5,hage a finite union
of quotients of the forni’y \ Vert 7. If s is the identity element, thenl’ = I'. = GL,(O%)
is an arithmetic group of the form that Serre considers i [19.3]. For generak, however, |
am not aware of any results abdut\ Vert 7, in the literature.

3.7. So far, we have only divided out the action of theomponentZ,. of the centre. We still
have to consider the action &f*. If we restrict the determinant map to the centre and write
J={z€Zpr\Z" ] Zo= | |det z| = 1}, then we have an exact sequence of abelian groups

1 = J = Zp\Z%) Zoe 2% ClOT — ClO%/2C1O0% — 0.
Let S be as in paragrapph 3.4. The actionffon S factors througle C1 0% and the action of*
onl,\ Vert 7, factors through/ for eachs € S. If we let.S” C G* be a set of representatives
for C1 0% / 2 C1O% (with respect to the determinant map), and= #(Cl F')[2] the cardinality
of the 2-torsion, then we obtain:

3.8.Proposition. The decomposition = yskg, induces a bijective map

Gp\Ga/K — ] JTs\ Vert T, .

ses’
The inverse maps an elemént[g.|) to the class of the adelic matrix with components G*
andg, € G,. The number of components®f equals

i N . h if degx is odd,
#(CIOF/QCMQF) = #(CLOp)[2] = { 2;12 if deix is even.

Proof. Everything follows from Proposition 3.5 and paragraph Xdept for the two equalities
in the last line. Regarding the former, observe that botiddig out the squares and taking
2-torsion commutes with products, so by the structure thraaEfinite abelian groups, we can
reduce the proof to groups of the fordYp™Z with p prime. If p # 2, then every element is
a square and there is rwtorsion, hence the equality holds. gf= 2, thenZ/p™Z modulo
squares has one nontrivial class, and there is exactly omivial element inZ/p™Z that is
2-torsion.

Regarding the latter equality, we have that0% ~ C1° F' x Z/dZ, whered = degz. As
above/Z/d7 modulo squares has a nontrivial class if and onlyig even, and in this case there
is only one such class. O

4. A VERTEX LABELLING

In this section, we associate to each verteg 0én element o€l ' / 2 C1 F' and determine how
these labels are distributed over the componengs, of
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4.1. LetQ, = (a®|a € A*) be the subgroup of squares. We look once more at the determina
map

Vert G, = Gp\ Gy /K 2% F*\A*/0;Q, ~ CIF/2CIF .

This map assigns to every vertexdn a label inC1 F' /2 C1 F'. Note thatCl F//2 C1 F' has2h,
elements wheré, = #(Cl1 F')[2] for the same reason as used in the proof of Proposifidn 3.8.

4.2.Proposition. If the prime divisorz is a square in the divisor class group then all vertices
in the same component@f have the same label, and there &fg, components, each of which
has a different label. Otherwise, the vertices of each corapbhave one of two labels that
differ byx in C1 F' /2 C1 F, and two adjacent vertices have different labels, so eacmected
component is bipartite.

Proof. First of all, observe that each label is realised, since ifepeesent a label by some idele
a, then the vertex represented py, ) has this label.

LetQ, = (1? | b€ F)andCl F, = F* / OX, agroup isomorphic t@. For the Bruhat-Tits
tree7,, the determinant map

Vert T, = G,/ K, 2% FX/0XQ, ~ CIF, /2C1F, ~ 7/2Z

defines a labelling of the vertices, and the two classds)of O Q, are represented blyand
.. Two adjacent vertices have the different labels since ferG, and¢,, as in Definitiori3.1L,
det(g¢,,) = m, det g represents a class different fratat g in Vert 7.

Define fora € A* amapy,, : F) /0 Q, — F*\A*/O;Qx by ¢, .([b]) = [ab],
whereb is viewed as the idele concentratedirinFor everyh € G, we obtain a commutative
diagram
Uy

Vert T, = G,/ K, Gp\Gy /K = Vert G,

e e

wz,det h

ClF,/2C1F, ~ FX/0XQ, ““X"FX\A*/0;Qu ~ CIF/2CIF.

This means that vertices with equal labels map to verticés @gual labels.

Each component of, lies in the image of a suitabM, ;,, thus has at most two labels. On
the other hand, the two labels @ map t0v, actn([1]) = [a] and v, getrn([72]) = [am,]. The
divisor classes ofu] and[ar,| differ by the class of the prime divisar, and are equal if and
only if = is a square in the divisor class group. If so, according t@&siion[3.8, there must
be 2h, components so that th¥, labels are spread over all componentsz 1§ not a square
then by the local surjectivity o¥,, , on edges two adjacent vertices@f also have different
labels. OJ

5. GEOMETRIC INTERPRETATION OF UNRAMIFIEDHECKE OPERATORS

A fundamental observation in the geometric Langland’s pog(for PGL,, in this case) is
that the domain of automorphic forms (with a certain ramifaralevel) corresponds to the
isomorphism classes & -bundles (with a corresponding level structure). The actibHecke
operators can be given a geometric meaning, which makessilge to let algebraic geometry
enter the field. We will use this geometric view point for asdoexamination of the graphs of
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unramified Hecke operators. We begin with recalling the getominterpretation of unramified
Hecke operators. For more reference, sée [3].

5.1. LetOx be the structure sheaf of the smooth projective cufvandr the generic point.
We can identify the stalk®y , of the structure sheax at closed points: € |X| and their
embeddings into the generic staflk ,, with

OX@ ~ OxﬂF — F ~ OX,n-

We identify vector bundles oX with the corresponding locally free sheafl([8, Ex. 11.5)18]
We denote byBun,, X the set ofisomorphism classesahkn bundlesover X and byPic X the
Picard group ForL,, £, € Pic X, we use the shorthand notatign., for £; ® L. The group
Pic X acts onBun,, X by tensor products. LéPBun, X be the orbit seBun,, X / Pic X,
which is nothing else but the set of isomorphism classeB"of-bundles overX ([8, Ex.
11.7.10]).

We will call the elements oPBun, X projective line bundlesif we regard the total space
of a projective line bundle as a scheme, then we obtain ngtéise but a ruled surface, cf.
[8, Prop. V.2.2]. Thu®Bun, X may also be seen as the set of isomorphism classes of ruled
surfaces oveX .

If two vector bundlesM; and M, are in the same orbit of the action Bfc X, we write
M; ~ M, and say thatM; and M, areprojectively equivalentBy [M] € PBun,; X, we
mean the class that is represented by the pankndle M.

Let C1.X = CI F be the divisor group ok . Every divisorD € Cl X defines theassociated
line bundleL, which defines an isomorphis@l X — Pic X of groups ([8, Prop. 11.6.13]).
The degreeleg M of a vector bundleV with det M ~ L is defined asleg D. For a torsion
sheafF, the degree is defined bieg 7 =} | dimg, (7). The degree is additive in short
exact sequences.

5.2.Remark. Note that if D = x is a prime divisor, the notation for the associated line beind
L. coincides with the notation for the stalk @f at . In order to avoid confusion, we will
reserve the notatiog, strictly for the associated line bundle. In case we have tsicer the
stalk of a line bundle, we will use a symbol different frafrfor the line bundle.

5.3. We associate to evety= (g,) € GL3(A) the rank2 bundle M, that is defined by the
embeddingg; ' : 0%, — F? of the stalk M, ), = O%, at closed points: into the generic
stalk(M,),, = F2. This association induces a bijection

GLy(F)\ GLa(A) / GLy(0,) 5 Bumy X
9] — M,

such thatM, ® £, = M,, for a € A*, anddeg M, = deg(det g). Consequently, there is a
bijection

Gp\Gy/K <% PBuny X,
which allows us to identify the vertex s€trt G, = Gr \ G, / K with PBun, X.

5.4. The next task is to describe edgeg/efin geometric terms. We say that two exact se-
guences of sheaves

0—F —F—F —0 and 00— Fp—F— Fp—0,
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areisomorphic with fixedF if there are isomorphisms; — F, andF; — F, such that

0 Fi F Fi 0
0 Fo F 5 0

commutes.

Let K, be the torsion sheaf that is supported and has stalk, atx, wherex, is the residue
field atz. Fix a representativét of [M] € PBun, X. Then we definen, ([M], [M’]) as the
number of isomorphism classes of exact sequences

0 M M K. 0,

with fixed M and withM"” ~ M’. This number is independent of the choice of the represent-
ative M because for another choice, which would be a vector bundieeoform M ® L for
someL € Pic X, we have the bijection

isomorphism classes isomorphism classes
0O-M->M-=K,—0 — 0O—-M"- MRIL—-K, =0 » .
with fixed M with fixed M @ L

O0—->M->M-—=K,—0) — 0> ML ML K, —0)

5.5.Definition. Letz be a place. For a projective line bundlet] € PBun, X we define
Us([M]) = {(IM], IM],m) | m = my([M],[M]) #0}
and call the occurringM’] the ®,.-neighbours of M|, andm,. ([M], [M']) their multiplicity.

5.6. We shall show that this concept of neighbours is the sestiiee one defined for classes in
Gr\ G, / K (Definition[1.4). Recall that in Proposition 2.3, we detered thed,-neighbours
of aclasgg] € Gr\ G,/ K to be of the formg¢,,| for aw € P*(x,). The elements,, define
exact sequences
00— H Og(,yi> H Og(,y—> Ke—=0 ,
ye|X| ye|X|
of IF,-modules and consequently an exact sequence

0 — Mye, M, K. 0 .

of sheaves, wherg1 . and M, are the rank bundles associated ig,, resp.g. This maps
w € P'(k,) to the isomorphism class ¢ — M, — M, — K, — 0) with fixed M,. On
the other hand, as we have chosen a basis for the stalleath isomorphism class of sequences
(0= M = M — K, — 0) with fixed M defines an element i8(0% , / (m.0x,)?) =
P!(x.), which gives backo.

Thus for everyr € | X|, the map

U(lg])  — Us([My])
([g]a[gl]am) — ([Mg]a[Mg’]am)

is a well-defined bijection. We finally obtain the geometrasdription of the graply, of @,.
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5.7.Proposition. Letz € | X|. The graphg, of @, is described in geometric terms as
Vert G, = PBun, X and
Edge G, = ] U(M). O

[M]€PBuns X

5.8.Remark. This interpretation shows that the graphs that we consiaeaaylobal version
of the graphs of Serre ([19, Chapter 11.2]). We are lookinglatank 2 bundles onX modulo
the action of the Picard group of while Serre considers rarikbundles that trivialise outside
a given placer modulo line bundles that trivialise outside As already explained in Remark
[3.6, we obtain a projection of the graph of Serre to the corapbaf the trivial clasg;.

Serre describes his graphs as quotients of Bruhat-Tits trge¢he action of the group =
Gosz on both vertices and edges. This leads in general to mukigies between vertices in
the quotient graph, see e.n.]19, 2.4.2c]. This does notdrapjith graphs of Hecke operators:
there is at most one edge with given origin and terminus.

Relative to the action df on Serre’s graphs, one can define the weight of an edge asiée or
of the stabiliser of its origin in the stabiliser of the edgéhe projection from Serre’s graphs
to graphs of Hecke operators identifies all the differentesdgetween two vertices, adding up
their weights to obtain the weight of the image edge.

6. DESCRIPTION OF VERTICES

The aim of this section is to show that the set of isomorphisses of projective line bundles
over X can be separated into subspaces corresponding to certatiergga of the the divisor
class group of", the divisor class group df,. /" and geometrically indecomposable projective
line bundles. We recall a series of facts about vector bsndle

6.1. A vector bundleM is indecomposablé for every decompositioo\t = M; & M, into
two subbundles\1; and M., one factor is trivial and the other is isomorphictd. The Krull-
Schmidt theorem holds for the category of vector bundles &Vd.e. every vector bundlé1
on X defined ovelF, has, up to permutation of factors, a unique decomposititmardirect
sum of indecomposable subbundles, sée [2, Thm. 2].

The mapp : X' = X @ F; — X defines thénverse imager the constant extensionof
vector bundles

p*: Bun, X — Bun, X’.
M — p*M

The isomorphism classes of ramkbundles that after extension of constantsfto become
isomorphic top*M are classified byi/* ( Gal(F,: /F,), Aut(M ® F,)), cf. [, Section 1].
The algebraic group\ut(M ® F,:) is an open subvariety of the connected algebraic group
End(M ® F,:), and thus it is itself a connected algebraic group. As a apresece of Lang’s
theorem ([10, Cor. to Thm. 1]), we havé' ( Gal(F,: /F,), Aut(M @ F))= 1.

Thusp* is injective. In particular, one can consider the constatgresion to the geometric
curveX = X ® I, over an algebraic closuf®, of F,. Then two vector bundles are isomorphic
if and only if they are geometrically isomorphic, i.e. thaeir constant extensions {8 are
isomorphic. We can therefore think Bfin,, X as a subset dBun,, X’ andBun,, X.



GRAPHS OF HECKE OPERATORS 15

On the other hang; : X’ — X defines the direct image or thece of vector bundles

py: Bun, X’ — Bun,; X .
M — P M

We have forM € Bun, X thatp.p*M ~ M"and forM € Bun, X' thatp*p,.M ~ @ M"
wherer ranges oveGal(FF,: /F,) and M" is defined by the stalk$1] = M -1(,.

We call a vector bundlgeometrically indecomposabifeits extension toX is indecompos-
able. In[1, Thm. 1.8], it is shown that every indecomposakletor bundle oveX is the trace
of an geometrically indecomposable bundle over some conskéensionX’ of X.

There are certain compatibilities of the constant extanaial the trace with tensor products.
Namely, for a vector bundl#1 and a line bundl& over X, we havep*( M ® L) ~ p* M @p*L
and for a vector bundlg1’ over X', p. M’ ® L ~ p, (M’ ® p*L). Thusp* induces a map,
denoted by the same symbol,

p*: PBun, X — PBun, X',
Ml = ' M]
andp, induces
ps: Bun, X' /p*PicX — PBun, X .
M] —  [pM]

6.2. We look at the situation fot = 2 andi = 2. Let o be the nontrivial automorphism
of F2/IF,. The setPBun, X is the disjoint union of the set of classes of decomposalolie 2a
bundles, i.e. rank bundles that are isomorphic to the direct sum of two line tesénd the set

of classes of indecomposable bundles. We denote theseygeiising* X andPBun'* X, re-
spectively. LetE”Bungi X C PBun* X be the subset of classes of geometrically indecompos-
able bundles. Since the rankdisthe complemerPBuny X = PBuni"® X — PBung X con-
sists of classes of traces. of certain line bundle€ € Pic X’ that are defined over the quad-
ratic extensionX’ = X ® F,.. More preciselyp. £ decomposes if and only £ € p* Pic X,

and therp,.L ~ Ox @ Ox. Thus, we have a disjoint union

PBuny X = PBund® X II PBun% X II PBunf X .
For[D] € Cl1 X, define
cp = [Lp @ Ox] € PBuny* X ,
and for a[D] € C1 X', define
tp = [p.Lp] € PBuny X U{co} .

Note thato acts onCl X’ in a way compatible with the identificatiod] X’ ~ Pic X’. Since
PP (L) ~ LD L ~ p*p,. (L) for L € Pic X', and isomorphism classes of vector bundles are
stable under constant extensions, we have- t,p.

We derive the following characterisations®iBuni™ X andPBun X:

6.3.Proposition.
ClX — PBuny*X
[D] — CpD
is surjective with fibres of the forgiD], [—D]}.
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Proof. Let M decompose intd; & L. Then
M ~ 21@22 ~ (Ll@ﬁz) ®£51 ~ ﬁlﬁgl@OX y

thus surjectivity follows. LelZ ,» & Ox represent the same projective line bundl€asd Oy,
then there is a line bundl&, such that

Lp®Ox ~ (Lp®Ox)® Ly,
and thus eithe, ~ Oy andLp ~ Lp or Ly ~ Lp andLp @ Lp ~ Ox. Hence[D'| equals
either[D] or [-D]. O

6.4.Proposition.
Cl1X'/ClX — PBuny X U{c}
[D] — tp

is surjective with fibres of the forgiD], [—D]}.
Proof. From the previous considerations it is clear that this mapei-defined and surjective.
Assume thafD, ], [Dy] € C1 X’ have the same image, then there §,ac Pic X such that

p*£1 = p*‘CQ ® EO )
where we briefly wroteC; for L£p.. Then inPBun, X', we see that

El @ET ~ p*p*£1

~ p'p.Lo®p Ly

~ (£2 ®p*£o) D (Cg ®p*£0) ,
thus eitherl; ~ L, ® p*Ly, which implies thatD, and D, represent the same class in

ClX'/ ClX, or £y ~ L3 ® p*Ly, which means thaD; represents the same classods;.
ButinCl X’/ Cl X,

[O'DQ] = [O’D2+D2 —DQ] = [—DQ] g

————
eClX

6.5.Lemma. The constant extension restricts to an injective map
p*: PBun® X II PBuny X «—— PBunj® X’ .

Proof. Sincep*p.(L) ~ L @ L° for a line bundleL over X', it is clear that the image is
contained ifPBuni® X’. The images oPBuni® X andPBun X are disjoint since elements
of the image of the latter set decompose into line bundles &¥¢hat are not defined ove¥. If
we denote taking the inverse elementsiy, then by Proposition 613" is injective restricted
to PBuny* X becauséCl X/ inv) — (Cl X’/ inv) is. Regarding®Buny X, observe that
p*(tp) = p'p«(Lp)
=~ CD S7) £O’D
~ Lp_op ®Ox

= Cp—06D

where by Proposition 6.4) represents an element (@1 X'/ CIX)/ inv, and by Proposition
6.3, D — oD represents an element @ X'/ inv. If there are[D,],[Dy] € Cl X’ such that
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(D1 — oDy) = £(Dy — 0Dy), then we haveD, = Dy = o(D; F D), and consequently
Dy T D,] € C1X. O

6.6.Remark. The constant extension also restricts to a map
p*: PBung X — PBung X'.

But this restriction is in general not injective in contrésthe previous result. For a counter-
example to injectivity, seé [13, Rem. 2.7].

7. REDUCTION THEORY FOR RANKZ2 BUNDLES

In this section, we introduce reduction theory for ranhkundles, i.e. an invariardt which is
closely related to the slope of a vector bundle and redutiieary. Namely, a rank bundle M
is (semi) stable if and only i#(M) is negative (non-positive). The invariahis also defined
for projective line bundles and will be help to determine sheicture of the graphg, .

7.1. Vector bundles do not form a full subcategory of the gate of sheaves, to wit, i\,

and M, are vector bundles antt; — M, is a morphism of sheaves, then the cokernel may
have nontrivial torsion, which does not occur for a morph@fnaector bundles. Thus bylae
subbundleC — M of a vector bundleM, we mean an injective morphism of sheaves such that
the cokernelM /L is again a vector bundle.

But every locally free subshedf — M of rank 1 extends to a uniquely determined line
subbundleC — M, viz. £ is determined by the constraigtc £ ([19, p. 100]). On the other
hand, every rank bundle has a line subbundI&]([8, Corollary V.2.7]).

Two line subbundleg — M andf’ — M are said to be the same if their images coincide,
or, in other words, if there is an isomorphisin~ £’ that commutes with the inclusions into
M.

For a line subbundl€ — M of a rank2 bundle M, we define

(L,M) = degL —deg(M/L) = 2deg L — deg M

and
(M) == sup (L,M).
LM
line subbundle

If 5(M) = (L, M), then we callC aline subbundle of maximal degrea briefly, amaximal
subbundle Sinced (L @ L', M & L") = §(L, M) for a line bundle’’, the invariant is well-
defined onPBun, X, and we put([M]) = 6(M).

Let gx be the genus oK. Then the Riemann-Roch theorem and Serre duality imply:
7.2.Proposition ([19, 11.2.2, Prop. 6 and 7])For every rank2 bundle M,
If £ — M is aline subbundle with(£, M) > 2¢gx — 2, thenM ~ L & M /L.

7.3. Every extension of a line bund# by a line bundleZ, i.e. every exact sequence of the
form

0 L M L 0,
determines a rank bundleM € Bun, X. This defines for al, £’ € Pic X a map

Ext'(£,£) — Buny X ,
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which maps the zero element tb& £’. Remark that since decomposable bundles may have
line subbundles that differ from its given two factors, nmosmél elements can give rise to de-
composable bundles.

The unitsF operate by multiplication on thi,-vector space

Ext! (L, L) = Hom(L, L'wY)
duality
wherewy is the canonical sheaf of. The multiplication of a morphisd — £'wy by ana €
IFx is nothing else but multiplying the stallC),, by a~! and all stalkg £'wY,). at closed points
x by a, which induces automorphisms on bathand £'wY, respectively. Thus, two elements
of Ext'(£, £') that areF*-multiples of each other define the same buntilec Bun, X. We
get a well-defined map
PExt'(£,L£') — Buny X
where the projective spadetixt’ (£, £') is defined as the empty set whEnt' (£, £') is trivial.
If we further project taPBun, X, we can reformulate the above properties of the invariag
follows.

7.4.Proposition. The map
1T PExt'(£,0x) — PBuny X

—2gx <deg L<2gx —2

meets every elementBBun** X, and the fibre of anyM| € PBun, X is of the form

5(£7M)2729X
{0—>£—>M—>(’)X—>O R } .

Proof. We know that everyM| € PBun, X has a reduction
0 L M L' 0

with §(£, M) > —2gx, where we may assume that= Oy by replacingM with M® (L),
henced(£, M) = deg L. If deg L > 2gx — 2, then M decomposes, sbxt' (£, Oy) is trivial
andPExt! (£, Ox) is the empty set. This explains the form of the fibres andBfatnl 4 X
is contained in the image. O

7.5.Corollary. There are only finitely many isomorphism classes of indeosaige projective
line bundles.

Proof. This is clear since [T PExt'(L£,Ox) is afinite union of finite sets. O
—2gx <deg LL2gx —2
7.6.Lemma. If £ — M is a maximal subbundle, then for every line subburtlle> M that
is different fromC — M,
(L M) < —6(L, M) .
Equality holds if and only iiM ~ £ & £/, i.e. M decomposes and’ is a complement of in
M.

Proof. Compare with[[1B, Lemma 3.1.1.]. Sin€é — M is different from£ — M, there is no
inclusion£’ — L that commutes with the inclusions infef. Hence the composed morphism
L — M — M/ L must be injective, andeg £’ < deg M /L = degM — deg L. This
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implies that§ (£, M) = 2deg L' — deg M < deg M — 2deg L = —§(L, M). Equality holds
if and only if £/ — M /L' is an isomorphism, and in this case, its inverse defines &gect
M/L~L — M. O

7.7.Proposition.

(i) Arank2 bundleM has at most one line subbundle— M such thaty(£, M) > 1.
(i) If £ — M s aline subbundle with(£, M) > 0, thend(M) = 6(L, M).
(iii) If (M) = 0, we distinguish three cases.
(1) M has only one maximal line bundle: this happens if and onlytifs indecom-
posable or itM ~ L, ® L, anddeg L1 # deg Ls.
(2) M has exactly two maximal subbundiés — M and £, — M: this happens if
and Only ifM ~ Ll @D £2 anddeg Ll = deg £2, bUtLl Z)é £2.
(3) M has exactly; + 1 maximal subbundles: this happens if and only if all maximal
subbundles are of the same isomorphism W@ead M ~ L @ L.
(iv) d(cp) = |deg DI.
(v) §(M) is invariant under extension of constants far] € PBunj® X.

Proof. Everything follows from the preceding lemmas, except far féct thatC & £ has pre-
ciselyq + 1 maximal subbundles in paft_(ili3), which needs some exjlana

First observe that by tensoring withr !, we reduce the question to searching the maximal
subbundles 0Oy & Ox. This bundle has a canonical base at every stalk and the icahon
inclusionsO% , — 0%, of the stalks at closed poinsinto the stalk at the generic point
This allows us to choose for any line subbundie— Ox @ Ox a trivialisation with trivial
coordinate changes. Thus for every open subset over whitivialises, we obtain the same
1-dimensionalF’-subspacer, C (93(777 = [2. On the other hand, evettydimensional subspace
F, C 0%, gives back the line subbundle by the inclusion of sta#ks= F, N 0%, — F,.
We see that for every place deg, F > 0, and only the lines inf)gm7 = F? that are generated
by an element iff2 C F* define line subbundle® — Ox @ Ox with deg, F = 0 for every
placez. But there are; + 1 = #P'(F,) different such line subbundles. O

7.8. Proposition. Letp : X' = X ® F2 — X and £ € PicX’, thend(p.L) is an even
non-positive integer. It equalsif and only if£ € p* Pic X.

Proof. Over X', we haven*p,. L ~ LB L, anddeg L = deg L7, thus by the previous paragraph,
a maximal subbundle ¢f, £ has at most the same degreeasr, equivalentlyj(p.£) < 0. A
maximal subbundle has the same degre€ &and only if it is isomorphic tol or £7 which
can only be the case whehalready is defined oveX . Finally, by the very definition of (M)
for rank2 bundlesM, it follows that

(M) = degM  (mod 2) ,
anddeg(p.L) = 2deg L is even. O

7.9.Remark. We see that fopM] € PBuny X, the invariant (M) must get larger if we extend
constants td 2, because* (M) decomposes oveX’. This stays in contrast to the result for
classes iPBunj® X (Propositior Z17{v)).
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8. NUCLEUS AND CUSPS

In this section, we will define certain subgraphgjoffor a placer, namely, the cusp of a divisor
class modular, which is an infinite subgraph of a simple nature, and theeus;lwhich is a
finite subgraph that depends heavily on the arithmeti€ ofFinally, G, can be described as the
union of the nucleus with a finite number of cusps.

8.1. We use reduction theory to investigate sequences dbtire

0 M’ M K. 0,

which occur in the definition o/, ([M]). By additivity of the degree map (paragrdphl5.1),
deg M' = deg M — d, whered,, is the degree af.

If L — M is a line subbundle, then we say that it lifts Ad’ if there exists a morphism
L — M’ such that the diagram

L

.

M ——=M

commutes. In this case, — M’ is indeed a subbundle since otherwise it would extend
non-trivially to a subbundl&€ — M’ ¢ M and would contradict the hypothesis thais a
subbundle ofM. By exactness of the above sequence, a line subbuhete M lifts to M’ if

and only if the image of in IC,, is 0.

LetZ, C Ox be the kernel oDy — K,. This is also a line bundle, sind€, is a torsion
sheaf. For every line bundl&, we may think ofLZ, as a subsheaf of. In Pic X, the line
bundleZ, represents the inverse 6f,, the line bundle associated to the divisonn particular,
degZ, = deg L' = —d,.

If £ — M does not lift to a subbundle of1’, we have thatlZ, ¢ £ — M lifts to a
subbundle ofM’:

L c [
M — M.

Note that every subbundigé — M’ is a locally free subsheaf — M, which extends to a
subbundlef — M. If thus£ — M is a maximal subbundle that lifts to a subbundles M/,
thenL — M’ is a maximal subbundle. If, howevef, — M is a maximal subbundle that
does not lift to a subbundlé — M’, thenLZ, — M’ is a subbundle, which is not necessarily
maximal. These considerations imply that

(M) < 2degL —deg M’ = 2deg L — (deg M — d,) = d(M)+d, and
(M) > 2degZ, L —degM' = 2deg L —2d, — (degM —d,) = §(M)

Sinced(M') = deg M’ = deg M — d,, (mod 2), we derive:
82.Lemma. If 0->M —- M —= K, — 0 isexact, then

S(M) € {o(M)—d,, d(M)—d,+2,...,5M)+d,}. O
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8.3. Every line subbundlé — M defines alineC/LZ, in P! (M /(M ®Z,)). By the bijection

isomorphism classes of exagt 11
0= M’ M—Kz—0 = P'(M/(M®I,)),
with fixed M

0—=Ma>M=K,—0) — M /(M &T,)
(cf. paragraph 5]6) there is a unique

0 M M K. 0,

up to isomorphism with fixed\, such that. — M lifts to £L — M’. We call this the
sequence associated fo— M relative to®,, or for short theassociated sequencend[ M|
theassociatedb,-neighbour It follows that§(M') > 6(L, M) + d,.

We summarise this.

8.4.Lemma. If L — M is a maximal subbundle, then the associateeneighbour|M’] has
(M) =0(M) +d,, and

> omo= #{ZeP(M/(MoL) |G} - O
(M, [M];m)€ Us ([M])
S(M)=6(M)+da

8.5. Theorem. Let = be a place andD] € Cl X be a divisor of non-negative degree. The
®,.-neighboursy of ¢p with §(v) = deg D + d, are given by the following list:
(007 Ce, g + 1) € ux(CO)a
(cp,cpia,2) € Up(cp) if [D] € (CI° X)[2] — {0},
(¢D,¢pias 1), (¢Dycpia 1) € Un(cp) i [D] € CI°X — (CI° X)[2], and
(¢p,cpie, 1) € Uy(cp) if deg D is positive.
For all ®,-neighboursv of ¢, not occurring in this list,d(v) < d(cp) + d,.. If furthermore

deg D > d,, thenj(v) = deg D —d,, and ifdeg D > mx + d, wheremy = max{2gx — 2,0},
then

U.(cp) = {(cp,¢ep_s,qz), (CDs D1y 1)} .

Proof. By Lemma8.4, thed,-neighbours of ¢p with §(v) = 6(cp) + d, counted with multi-
plicity correspond to the maximal subbundles of a rardundle M that represents,. Since
d(M) = d(cp) > 0, the list of all®,-neighbours of cp with §(v) = deg D+d, = §(cp) + d,
follows from the different cases in Propositidn (7.7) (iJdafii). Be aware thatp = c_p by
Propositiod 6.3; hence it makes a difference whether of’hist2-torsion.

For the latter statements, writel = £Lp ® Ox and letM’ be a subsheaf 0§41 with cokernel
K. such thab(M’) < §(M) + d,. ThenLp — M does not lift toM’, butLpZ, — M'isa
line subbundle and

M//ﬁDI ~ (det./\/l')(CDIx)v >~ (detM)Ix(CDIx)v >~ EDIag(ﬁDIm)v ~ OX .
If deg D > d,, then
(LpZ,, M) = deg LpZ, —degOx = degD —d, > 0.
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Propositior_ZJ7[{i) implies tha , — M is the unique maximal subbundle #f" and thus
(M) =d(M) —d,.

If §(M) > mx + d,, thend(M’) > mx > 2¢gx — 2, henceM’ decomposes and represents
cp_z. Since the multiplicities of alb,-neighbours of a vertex sum up g9+ 1, this proves the
last part of our assertions. O

8.6.Definition. Letz be a place. Let the divisdp represent a clag®] € C1O% = C1 X /(z).
We define theuspC, (D) (of D in G,) as the full subgraph d, with vertices

Vert C,(D) = { ¢p |[D']=[D] (mod (z)), anddeg D" > mx } ,
and thenucleusV, (of G,) as the full subgraph df, with vertices
Vert N, = {[M] € PBuny X |6(M) < mx +d, } .
8.7. Theorem 8]5 determines all edges of a augp). If mx < deg D < mx + d,, the cusp
can be illustrated as in Figuké 1. Note that a cusp is an iefgniaph. It has a regular pattern

that repeats periodically. In diagrams we draw the pattechirdicate its periodic continuation
with dots.

_ 1 dx 1 Gz 1 qz 1

CD CD+z CD+2x CD+3x

FIGURE 1. Acusp

We summarise the theory so far in the following theorem tleastdbes the general structure
of G,.
8.8.Theorem. Letz be a place of degreé, andhy = # C1° X be the class number.
() G, hashxd, cusps and
[D]eC1O%,
whereVert N, N Vert C,(D) = {cp} if mx < deg D < mx + d,. The union of the
edges is disjoint. Different cups are disjoint subgraphs.
(i) N, is finite and haséé(Cl 07 /2Cl (’)i%) components. Each vertex.bf, is at distance
< (2g9x + mx + d,)/d, from some cusp. The associated CW-complexas @ndg,

are homotopy equivalent.
(iii) If [D] € C1O%, thenVert C,(D) C PBuny™ X. Furthermore

PBung* X c {v & Vert G, | 6(v) > 0},
PBung X C {v € Vert G, | 6(v) < 2¢ — 2} and
PBuny X C {v € Vert G, | 6(v) < 0 and even .

8.9. (Remark on Figurel 2) Define = hx, m = myx, d = d, andg, = ¢*&*. Further let
Dy, ..., Dy, be representatives f@l O3 with m < degD; < m+dfori =1... hd. The
cusp<L,(D;),i=1,...,hd, can be seen in Figureé 2 as the subgraphs in the dashed régbns



GRAPHS OF HECKE OPERATORS 23

I
|
| gi ' * C.(Dy)
| ]P)BUIIQ X | CDl CDl +x CDl +2x r
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FIGURE 2. General structure @,

are open to the right. The nuclel§. is contained in the dotted rectangle to the left. Since we
have no further information about the nucleus, we leave itha & the rectangle open.
Thed-line on the bottom of the picture indicates the val(e) for the vertices in the graph
that lie vertically abové(v).
The dotted regions refer to the sort of vertices, which agnehts of eithe®Bun§ X,
PBuny X, or PBunj® X. All lines are drawn with reference to tldine to reflect part[{ii) of
the theorem.

Proof. The number of cusps i§ C10% = #(C1X / (z)) = #CI° X - #(Z/d,7) = hxd,.
That the vertices of cusps are disjoint and only intersetiéngiven point with the nucleus, is
clear by definition. Regarding the edges, recall from papigi3.2 that if there is an edge from
vtow in G,, then there is also an edge framto v. But Theoreni 8J5 implies that each vertex
of a cusp that does not lie in the nucleus only connects totaxef the same cusp, hence every
edge ofG, either lies in a cusp or in the nucleus. Different cusps asptit by definition. This
shows ().

The nucleus is finite sincBBun'** X is finite by Corollary( 7.5 and since the intersection
PBung™ X N Vert N, is finite by the definition of the nucleus and Proposifiod G#ice the
cusps are contractible as CW-complexgs,andg, have the same homotopy type. Therefore
N, has#(C10f / 207) components by Propositign 8.8. By Lemmal 8.4, every verteas a
d,-neighbourw with 6(w) = é(v) + d,, thus the upper bound for the distance of vertices in the
nucleus to one of the cusps. This provés (ii).

The four statements of Pafi[iii) follow from the definitioh @ cusp, Proposition_7.7 (iv),
Propositio . Z.2 and Propositibn 1.8, respectively. O
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8.10. Example (The projective line) Let X be the projective line oveF,. Thengyx = 0,
hx = 1 andX has a closed point of degreel. This means that

IP’BungeCX = {Cnz}tn>0 -

Since an indecomposable bundlg¢ must satisfy both(M) > 0 andd(M) < —2 which
is impossible, all projective line bundles decompose. Ta®d8.% together with the fact that
the weights around each vertex sumgte 1 in the graph ofd, determinegj, completely, as
illustrated in Figuré13.

q+1 q 1 qg 1 g 1

Co (& Cox C3x

FIGURE 3. The graph ofp, for a degree one placeof a rational function field

9. APPLICATION TO AUTOMORPHIC FORMS

In this section, we explain how to recover automorphic foasgunctions on the graph and
indicate how unramified automorphic forms can be expliciiyculated as functions on the
graph by solving a finite system of linear equations. We begih recalling the definition of
an automorphic form.

9.1. A functionf € C°G,) is called anautomorphic form (foPGL, over F) if there is a
compact open subgroufg’ of GG, such thatf is left G-invariant and rightK’-invariant and
if it generates a finite-dimensional x--subrepresentatiol - ( f) of C°(G,). We denote the
space of automorphic forms by and note that the action 6 on C°(G,) restricts tod. We
denote the subspace of right-invariant automorphic forms byl*’, a space on which -
acts. We can reinterpret the elementsdfi’ as functions orti - \ G / K, which is the vertex
set of the graplts - of a Hecke operatob € H .

We shall investigate the spagg® of unramified automorphic forms in more detail. We write
f(v) or f(M) for the valuef(g) if v = [g] isthe class of in G\ G, / K andM = M, is the
rank2 bundle that corresponds o In particular, we can segalso as a function oRBun, X.

The space of automorphic forms decomposes into a cuspidalpaa part€ that is gener-
ated by derivatives of Eisenstein series and aRattat is generated by derivatives of residues
of Eisenstein series (for complete definitions, cf] [14]heTdecomposition decents to unrami-
fied automorphic forms4® = AKX @ EX oRE. We describe functions in these parts separately.

9.2. We start with some considerations fbf-eigenfunctions as functions on a cusg D)
whereD is a divisor withm x < deg D < mx + d,:
1 o 1 o 1 gz 1

CD CD+x CD+2x CD+3zx

Let f ¢ AX satisfy the eigenvalue equatidn f = \f, then we obtain for every> 1,

1) f(CDJr(iJrl)m) = )‘f(CD—f—ix) — Qx f(CDJr(zel)x) .

Thus the restriction of to Vert C,(D) is determined by the eigenvalueonce its values aty
andcp,, are given. This consideration justifies that we only havevaluate the eigenvalue
equation at vertices of the nucleus to determine the eigetfuns ofd,.
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9.3. The spaced] has a basis oH x-eigenfunctions and every unramified cusp form has a
compact, i.e. finite, support i¥ - \ G, / K. By the eigenvalue equationl (1) it follows that an
Hecke-eigenfunctiorf € AL must vanish on all vertices of a cusp in order to have compact
support. Thus the support of a cusp form is contained in theefgetl of verticesv with

§(v) < my, andAL can be determined by considering a finite number of eigepveduiations

for ®,.

These eigenvalue equations can be described in terms of atvéexm/, associated t@,

(cf. paragrapii1]8). NamelyX is generated by the eigenfunctionsaf, whose support is
contained inl/. This problem can be rephrased into a question on the finimatrix M| =
(@yw)vevwevert N, OF My = (ay.w)vwevert g,» Which we forgo to spell out.

In [16] one finds a finite se$ of places such that aH x-eigenfunctionf € A is already
characterised (up to multiple) by it8,-eigenvalues forr € S. This means that one finds
the cuspidalH x-eigenfunctions by considering the eigenvalue equationghe finitely many
verticesv € V' and the finitely many Hecke operatabs for z € S.

9.4. We proceed witl€® @ RX. This space decomposes into a direct sum of generalised
(infinite-dimensional) Hecke-eigenspac&gy) where y runs through all unramified Hecke
characters, i.e. continuous group homomorphigms £\ A* /Of — C* modulo inver-
sion; in particularg(y) = £(x~'). The generalised eigenspaggy) is characterised by its
unique Hecke-eigenfunctioﬁ( -, x) (up to scalar multiple), which in turn is determined by its
d,-eigenvalues\, (y) = qi/Q(X(m) + x"!(m,)) for z € | X|. We haveg(x) C £ if and only if

x2 # | |™, in which caseF( -, y) is an Eisenstein series. Fot = | |=', E( -, x) is a residue

of an Eisenstein series. For details, $ee [14]; in particlilaeorem 11.10.

We say that a subsétC | X | generate€’] X if the classes of the prime divisors correspond-
ing to the places it generate”l X. Let S be a set of places that generatdsX and satisfies
that for every decompositiofi = S, U S_ either2 C1 X = 2(S5,) or2Cl X = 2(S_). This set
can be chosen to be finite. Then the Hecke eigenfunc&i@n, X) is uniquely determined (up
to scalar multiples) by thé,-eigenvalues\,(y). For details, see [12, pg. 3.7.10].

In order to describe an Eisenstein series or a residue ofsmamiiein series, one only needs to
consider the finitely many eigenvalue equations for vestice V' for the finitely many Hecke-
operatorsb, with = € S. Derivatives of Eisenstein series or residues are sirgidgtermined
by generalised eigenvalue equations, 5ee [14, Lemmas dd.21a7] for the explicit formulas.

In the case of a residue, i.g? = | |ﬂ, the functionf = E( -, ) has a particular simple
form. Namely,y is of the formw | |“/* wherew? = 1, and thus

1/2

A(x) = ¢ =z

(W(WJ:) |7Tx| + w(7TJ1) |7Tx|$1/2) = w(ﬂ-m)(qgc + 1)-

Since every vertex has preciselyq, + 1) ®,-neighbors (counted with multiplicities), we have
f(v) = w(m,) f(w) for all adjacent vertices andw.

9.5.Remark. The methods of this paragraph will be applied[in/[13] to deiae the space of
unramified cusp forms for an elliptic function field and to shihat there are no unramified
toroidal cusp forms in this this case.
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10. ANITE-DIMENSIONALITY RESULTS

In this section, we will show how the theory of the last setsi@an be used to show finite
dimensionality of subspaces 6f(G, )" whose elementg are defined by a condition of the
form

> mi(f)(g) = 0

for all ® € Hx (with m; € C andg; € G, being fixed). We will explain a general technique
and apply it to show that the spaces of function&t{G)¥ satisfying the cuspidal condi-
tion respective the toroidal condition are finite-dimemnsib In particular, this implies that all
functions satisfying one of these conditions are automorfoinms.

10.1. WriteCIP* X for the set of divisor classes that are represented by primsods and
CI¢f X for the semigroup they generate, viz. for all classes thatrepresented by effective
divisors. In particularCl® X contains), the class of the zero divisor, and for all othér] €
Clf X, we havedeg D > 0. Denote byCl? X the set of divisor classes of degréand by
C1=? X the set of divisor classes of degree at leadtet g be the genus ak.

10.2.Lemma.
CEx X < Crfx.

Proof. Let C be a canonical divisor o', which is of degre@gx — 2. For a divisorD, define
(D) = dimp, H°(X, Lp). We havgD] € CI*" X if and only if /(D) > 0, cf. [8, Section IV.1].
The Riemann-Roch theorem is

(D) —(D-C) = degD + 1 — g ,

cf. [8, Thm. IV.1.3].
If now [D] € CIZ9% X, thendeg D > gy and the Riemann-Roch theorem implies that
(D) >degD+1—gx > 0. O

10.3. LetD be an effective divisor. Then it can be written in a unique wpyto permutation
of terms as a sum of prime divisof$= z; + ...+ z,. We setbp, = &, --- D, . SinceH is
commutative®, is well-defined. Further we briefly writg,, for the graphGs ,, x of ¢, and
UD(U) for Z/[CDD,K(U)-

Let [D] € Cl1X. Recall from paragraph 3.1 thét, denotes the associated line bundle and
from paragrapli 612 that, denotes the vertex that is representedthy® Ox. Recall from
Proposition ZJ7[{iIv) thad(cp) = |deg D| whered is defined as in paragraph1.1.

10.4.Lemma. Let D be a non-trivial effective divisor.
(i) Letwv,v" € Vert Gp. If v" is a®p-neighbour ofy, then|d(v') — d(v)| < deg D.
(i) Let[M] € Vert Gp. Every maximal subbundié — M lifts to a maximal subbundle
L — M’ of a uniquely determined rarikbundle M’ such thai M'] is a @ ,-neighbor
of [M] with 6(M’) = §(M) + deg D. Conversely, every maximal subbundle—
M’ extends to a maximal subbundle— M if [M'] is a ¢ p-neighbor of[ M] with
S(M') = 6(M) + deg D.

Proof. We do induction on the number of factorsdr, = &, --- ¢, with zq,..., 2z, being
prime divisors. Put = z,,.
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If n =1, then®p = ®,. Assertionl[(i) follows from Propositidn 8.2 and assertimnféllows
from Lemmd 8.4 and Theorem 8.5.

If n > 1, we can writed, = &, ®,, for the effective divisolD’ = z,+- - -+x,,_1, which is of
positive degredeg D' = deg D — deg x. Assume tha{{i) and{ii) hold fob’. We provel(i). Let
v" be ad®p-neighbour ofv. As explained in paragraph 1.7, there is’ahat is a® ,,-neighbour
of v and a®,-neighbour of’, thus the inductive hypothesis and Proposifion 8.2 imply

16(v") = d(v)| < 16(v") —8(W")|+16(v") —d(v)| < deg D' +degx = deg D .
We prove[(il). By the inductive hypothesis, the, -neighbourg M’| of [M] with 6(M’) —
d(M) = deg D’ correspond to the maximal subbund&s— M, which lift to maximal sub-

bundles.’ — M’. On the other hand, every maximal subbunfle> M’ of a® ,-neighbours
[M] of [M] with (M) — §(M) = deg D’ is of this form since

SM) = S(M)—degD = §LM)—degD = &(L,M),

thus£ — M must be a maximal subbundle. We now apply Lenhimé 8.4 to eadhedb 4 -
neighborsM’ of M and obtain the first statement &1 (ii). The second statemfefi éollows
from Theoreni 85. O

10.5. We demonstrate how to use the lemma for to show thatptheed, of all unramified
functions onG, that satisfy the cuspidal condition is finite-dimensiondamely, letN C G
be a unipotent subgroup, then the cuspidal conditiorf farC?(G )X is that

/ S(f)n)dn = 0
NF\NA

forall ® € Hg. If fis an automorphic form, then this condition defines a cusmfoA
posteriori it will be clear thal), contains only automorphic forms and thus equals the space
AE of unramified cusp forms.

10.6.Theorem. The dimension o}, is finite and bounded by
dimVy < #{[M] € PBuny X|6(M) < mx}.

Proof. Note that there are only finitely many projective line buisdl&t] with (M) < my
sincePBun** X is finite andPBunj® X has only finitely many classég] with §(M) <
my. So the finite-dimensionality df, will follow from the inequality.

We proceed with the proof of the inequality. The geometrigiegjent of the cuspidal condi-

tion is that
Yoo e(hHm) = 0
MEExt! (Ox,0x)
for all & € Hy (cf. [3]).

Sinced(Ox, M) = 0 for M € Ext'(Ox,Ox), we have thatDy — M is a maximal
subbundle by Propositidn 7[7(ii), and only in the case ofttivéal extensionM ~ Ox & Oy,
there are other maximal subbundles, namely, there gxist ) different subbundles of the form
Ox — M. Note that in any cas& M) = 0.

Let D be a nontrivial effective divisor. In caset is the trivial extensio® y ® Oy, the vertex
co = [M] has the uniqu@ p-neighboury’ = ¢p with §(v") = deg D which is of multiplicity
q + 1. In case M is a non-trivial extension o®x by itself, the vertex = [M] has a unique
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P p-neighboury’ = [M’] with §(v") — 6(v) = deg D, which has a unique maximal subbundle,
namely,Ox — M'.

Thus for everyM € Ext'(Ox, Ox) and everyd ,-neighbor[M’] of [M] with §(M’) =
deg D, the maximal subbundles g#1’ are of the formOyx — M’. Thus ifdeg D > mx, then
[M'] = ¢p by Propositio 712.

We finish the proof of the theorem by showing that evéry V), is determined by its values
in the verticesv with §(v) < myx. We make an induction od = ¢(cp), wherecp, varies
through all vertices with §(v) > myx.

Letd > mx. Assume that the values gfin all verticesv with §(v) < d are given (which is
the case wher = mx + 1; thus the initial step). Let be a vertex with(v) = d, thenv = ¢p
for an effective divisorD by Lemmd10.R sincerx = max{0,2gx — 2} > gx — 1. For the
Hecke operato, the cuspidal condition reads by the previous argumemtatial Lemma
[10.4 as

(q+q") - flep)+ D awf() = 0

s(v')<d

for certaina,, ande; = dim Ext'(Ox, Ox). Thusf(v) is determined by the valueqv’) in
verticesv’ with §(v’) < d, which proves the theorem. O

10.7. While the finite-dimensionality df, can also be established without the techniques of
this paper, we do not know any other method to prove corredipgriact for toroidal functions.
For more details on the following definitions, seel[14].

Choose a basis df 2 overF,. This defines an embedding &f = F . F' into the algebra
of 2 x 2-matrices with entries irf". The image of£* is contained inGLy(F") and defines a
non-split torus!” of GL,. The image off” in G = GL, / Z defines a non-split torus of G.

A function f € C°(G,)¥ is E-toroidal if for all ® € Hy,

/ fda = o

Tr\Tx

We denote the space of dll-toroidal functionsf € C°(G,)¥ by V.. Note that in[[14] one
finds a toroidal condition, which is stronger thartoroidality. Namely,f has to bel’-toroidal
for all separable quadratic algebra extensighsf F. We forgo to recall complete definitions,
but remark that the finite-dimensionality of the space ofalbidal f € C°(G4)* follows since
it is a subspace of;,.

Letp : X’ — X be the map of curves that corresponds to the field extensjdn, and let

e=(1,).

10.8.Theorem. Letcy = vol(Tr \ Ty) / #(Pic X' / p*(Pic X)). Then for allf € C°(G4)¥,

fre) = e - > flp.LD).

[£]€Pic X' [ p*(Pic X)

Proof. Let Ax be the adeles of’. To avoid confusion, we writé - for A. We introduce the
following notation. For anc € |X| that is inert inE/F, we defineOg, = Og,, Wherey
is the unique place that lies over For anz € |X| that is split in£/F, we defineQp , :=
Og., ® Og,,, Wherey, andy, are the two places that lie over Note that there is no place
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that ramifies. LeQOg, denote the completion @z .. ThenOyg, is a free module of rank
overOp, = O, for everyz € | X|.

Let O : A7, — GLy(Ap) be the base extension of the embeddirg — GL,(F) that
definesI”, which corresponds to the chosen basigiobver F' that is contained if" .. This
basis is also a basis @1, over O, for everyz € |X|. This shows tha®,'(GLy(O,,.)) =
05, and that the diagram

EX\AL /O, = Pic X'
l@}jj P«
GLy(F)\ GLy(Ap)/ GLy(O4,) —2 Bun, X

commutes, where the horizontal arrows are the bijectioteasribed in paragraph®.3.

The action ofAp on E* \ Af, / Of andGLy(F)\ GLy(Ar) / GL2(Oy,) by scalar multi-
plication is compatible with the action &ic X onPic X’ andBun, X by tensoring in the sense
that all maps in the above diagram are equivariant if we ifledtic X with 7\ A5 / Of .
Taking orbits under these compatible actions yields theroatative diagram

E*AX\AY /O, Bl . Pic X' /p*Pic X

l@E lp*

Gp\Ga, | K “ PBun, X .

Sincef is right K -invariant, we may take the quotient of the domain of intégreby 7, . N K
from the right, which is the image @ in G,,. We obtain the assertion of the theorem for
some still undetermined value of The value ofc is computed by plugging in a constant
function for f. O

10.9.Theorem. The dimension of the space of unramified toroidal functisrigite, bounded
by
dim Vtor S # (PBUHQX — {CD}[D]GCIGHX) .

Proof. First remark that given the inequality in the theorem, fhgilmensionality follows since
the right hand set is finite. Indeed, by Lemima10.2,

PBUHQX - {CD}[D}ECIGEX C {U € ]PBHHQX ‘ 5(1}) S mX}

sincemyx > gx — 1, and the latter set is finite.

We now proceed with the proof of the inequality. LeE V... We will show by induction
ond = deg D that the value off at a vertex:p with [D] € CI°T X is uniquely determined by
the values off at the elements dfBun, X — {cp }pjecien x. This will prove the theorem.

By Theoreni 108, the condition fgtto lie in V,,, reads

> o(f)([p.L]) =0, forallde.
[L]e(Pic X’ / p* Pic X)

If d = 0, take ® as the identity element if{x. We know from Propositiofn_718 that
p«(Pic X' / p* Pic X) = PBuny’ X U {co}, S0 f(co) equals a linear combination of values fof
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at verticesv in PBuny’ X, which all satisfyj(v) < 0. Since the zero divisor class is the only
class inC1° X of degree), we have proven the cage= 0.

Next, let D be an effective divisor of degree> 0 and putd = ®,. If v is a®p-neighbour
of w, thend(v) andd(w) can differ at most byl (Lemmd10.4[{i)). Therefore adt ,-neighbours
v of vertices inPBun’ X haved(v) < d. The vertexp is the only® ,-neighboum of ¢, with

d(v) = d (LemmaZ10.4((i)). Thus

0 = > pNpL) = (@+Dfleo) + Y, Af(v)
Le(Pic X’ / p* Pic X) Le(Pic X' / p* Pic X),
([p«L],0,\)eUp ([p«L]),

o(v)<d

determinesf(cp) as the linear combination of values pfat verticesv with §(v) < d. By the
inductive hypothesisf(cp) is already determined by the values ofat vertices that are not
contained in{cp }pjecier x- O

10.10.Example. If X is the projective line oveF,, then all vertices are of the formc, for

some effective divisoD (see Examplé 8.10). Thug,, is trivial. Since onlyv = ¢, satisfies
§(v) < my, all values off € V, are multiples off(c;). However,Ext'(Ox, Ox) is trivial,

thus the cuspidal condition (applied to the trivial Heckeaor) isf (co) = 0. Thus alsoV, is

trivial. See [13] for the corresponding spaces in the casad@liptic curve.

APPENDIXA. EXAMPLES FOR RATIONAL FUNCTION FIELDS

The appendix contains examples of graphs of Hecke opertipis rational function field,
which can be calculated by elementary matrix manipulatiéie do not exercise all calcula-
tions, but hint on how to do them. The reader will find exampdelliptic function fields that
are determined by geometric methods.in [13].

Let /" beF,(7T), the function field of the projective line ov&y, which hasy + 1 F,-rational
points and trivial class group. Fix a placef degreel.

A.1. Using strong approximation f&L, (cf. Propositio 3.8, wherd is trivial in this case),
we see that the map obtained by adding the identity maitaitxall places; # z,

[9.] — [(gar€)]
is a bijection.

We introduce some notation. Elements@f = (1, .(O, N F') can be written in the form
Z?:m biwl with b; € F, for i = m,...,0 for some integerm < 0. Let K, = GL2(0,),
where we view®, as the collection of all power seriés.., b;r. with b; € F, fori > 0. Let
I' = GLy(0O7%) and letZ be the center ofzLs.

i>0

A.2. For better readability, we write for the uniformizerr, atx andg for a matrix inG,.. We
sayg ~ ¢’ if they represent the same cldgs= [¢'] in '\ G, / K, and indicate by subscripts
to ‘~’ how to alter one representative to another. The followihgrges of the representatiye
of aclasqg] € I'\ G, / K, provide an algorithm to determine a standard represeantiithe
class of any matriy € G,:
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(i) By the lwasawa decomposition, every class'iRG, / K, is represented by an upper
triangular matrix, and

(Y 5 0 () - ()

(i) Write a/d = ro™ for some integen andr € O}, then witht = b/d, we have

ra U N ra U r—! Y & s
1) k. 1 1) 1)
(i) If o' =3, b;w for some integem and coefficient$; € F, for i > m, then
" ZiZm b ~ " ZiZm b’ 1 _7_n<zi2n b’
1 /K. 1 1

- (7?" b+ ...+ bn_lﬂnl)
= ) .

(iv) One can further perform the following step:
(7?" byym™ 4+ ...+ bnlﬂ'n_1>
1

1 1
(7‘(‘" bym+...+ bn_17T"1>

(1 —(bpm™ + ...+ boﬁ0)> (7?" by, ™™ 4 ...+ bnlﬂ'n_1>

1
(V) Ifb:blﬁ—l—...ern_lﬂ”*l#O,thenb:swkwithlSkﬁn—l,sEO; and

7" gk N 1 a" snk s~ig=k —52
1 T\ /Zs Ko \1 1 s~ig—k stk 1
7.(.n72lc Sflﬂ_fk:
- (T

(vi) The last trick is

() e 0D 6 = )

Executing these steps (possilily (iijz-(v) several timed)fimally lead to a matrix of the form

()

for somen > 0. The matrixp, represents the vertex, in Vert Go x = {¢nz }n>0 Whered is
any unramified Hecke operator (cf. Examiple 8.10).Thus wadauway to determine the vertex
cne that is represented by an arbitrary mayix G, C G,.

A.3. Example (Graph of0 and1). According to paragragh 1.7, the graphs for the zero element
0 and the identityl in Hj are as illustrated in Figurés 4 and 5, respectively.
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[ J [ ] [ ] [ ]
Co Cy Cox C3x

FIGURE 4. The graph of the zero elementify

o o O O

Co Cy Cox C3x
FIGURE 5. The graph of the identity i x

A.4. Example (Graph of®,). By Propositio 2.8 th&_-neighbors ofy; are of the fornp;&,.
With help of the reduction steps (i)=[vi) in paragraphlA.2@an determine easily the standard
representative; of p;&,,. We reobtain the graph @, as illustrated in Figurgl6 (cf. Example
B.10).

qg+1 q 1 q 1 q 1

Co (& Cox C3z

FIGURE 6. The graph ofb,

A.5. Example (Graph of®, for y # ). If we want to determine the edges @f for a placey
of degreed that differs fromz, we have to find the standard representgtivior elements

pi [T b with b € k,,, and p; 1 .
1 Ty

As F' has class numbdr, we can assume thaf, € F' has nontrivial valuation iy andz only.
Lety € G denote the inverse of one of the matri¢és ), (' . ). For all places # .y, the
canonical embedding» — G, sendsy to a matrixy, € K, sincev,(r,) = 0 by assumption.
Thus multiplying withy € G from the left, which operates diagonally on the componehts o
all places, and multiplying componentwise with! € K, from the right for allz # z, y, gives

an element that is nontrivial only in (also compare with [7, Lemma 3.7]). The matrices that
we obtain in this way are:

d d—1
<7TJ: b0—|—~-~—|1bd,1ﬂ-a: )pz Withbz‘elfxforl.zo,...,d—l, and (1 7Td> Di -
The reduction step§l (i)=(vi) of paragrdph A.2 tell us whitdsses are represented, and we are
able to determine the edges similarly to the previous examphus we obtain thaf, only
depends on the degree f Note that ify is of degreel, thenG, equalsg,. Figured¥[ B[ 111,
and 12 show the graphs for degr&es, 4 and5, respectively.

A.6. Example (The graph of powers ob,). Itis interesting to compare the graph®f with
degy = d to the graph ofb?. The latter graph is easily deduced frginby means of paragraph
[L7. Namely, a vertex’ is a®¢-neighbour of a vertex in Gy  if there is a path of length
fromvtov'in G,, i.e. a sequenc@y, vy, . . ., v4) Of vertices inG, with v, = v andv, = v’ such



GRAPHS OF HECKE OPERATORS 33

Cy C3z Csz

2q 2q
qg+1 q> 1 q> 1
¢ +q s °
Co Cog C4z
2q 2q
1 2 1 2 1
7> +2q 4 . 4 .
Cy C3z Csg

FIGURE 10. The graph of3
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Csx

FIGURE 12. The graph o, for a placey of degrees

that for alli = 1,...,d, there is an edgév;_1,v;, m;) in G,.. The weight of an edge fromto
v’ in the graph ofG? is obtained by taking the sum of the produsts - ... - m, over all paths
of lengthd fromv to v in G,.

Figurel® an@ 10 show the graphsif and®?, respectively, and we see that farg y = 2, we
have®? = ¢,+2¢-1 (modJ (K)) and fordeg y = 3, we haved? = ¢, + 3¢- P, (modJ (K))
where 7 (K) is the ideal ofH of Hecke operators that operate trivial 6A(G ).

A.7. Example (The graphs of two ramified Hecke operatori)is also possible to determine
examples for Hecke operatorsHy,: by elementary matrix manipulations, whéil < K is a
subgroup of finite index. We will show two examples, which gitestrated in Figureg 13 and
[14. We omit the calculation, but only point out why the crliciéferences between the two
graphs occur.

ForK'={ke K |k, = (') (mod 7,)}, the fibres of the projection

PGF\GA/K/HGF\GA/K
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Ca:,[l:O] 621,[110]

1 q 1

Cl
z,[1:g—1] 2z,[1:q—1]

1 q 1

/
Ca:,[O:l] 621,[011]

FIGURE 13. Graph ofP , as defined in Example A.7

/ /
Cz,[0:1] Cog,[0:1]

FIGURE 14. Graph ofp’, as defined in Examp[eA.7

are given byP~'(co) = {[po]} and for positiven, by P~ (¢,;) = {[Pnalu]}twer (s,) With

Vg = (1 §) anddp.q; = (1 ). The union of these fibres equals the set of vertices of a Hecke
operator it x-. We shall denote the vertices by = [po] andc;,, ., = [pne¥.] forn > 1 and

w € P'(k,). Note thatGy, = G, acts onP'(x,) from the right, so ify € Gr,, thenw — w~y
permutes the elements Bf (x..).

The first Hecke operatob, . € H - that we consider igvol K/ vol K') times the charac-
teristic function ofK’(”y 1 )7K’, wherey is a degree one place differentt@andy € G, is a
matrix whose only nontrivial componentis € Gr,. (The factor(vol K/ vol K') is included
to obtain integer weights). Sinde’(™ | )yK’' ¢ K(™ | )yK, the graph oft] _ relative toX”
can have an edge fromto w only if G, has an edge fron®(v) to P(w). BecauseK’ K,,
we argue as foi that K’(”” 1)7[(’ = ]_[wep1 gwyK’ Applying the same methods as in
ExampldA.b, one obtains that

Z/[CI);/”Y’K/(CE]) = {(0670/17107 1)}w€P1(nz)
and for everyn > 1 andw € P!(k,) that

uq’{, + K’ (C/n:c,w) = {(C/n:v,un C/(n+1)x,w77 1)7 (C;m,wv C,(nfl)m,w'w q)} :
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For the case that equals the identity matrix, the graph is illustrated in Figufe113. Note that
for generaly, an edge does not necessarily have an inverse edge:siyfcdoes not have to
equalw.

The second Hecke operatdf, € H - is (vol K/ vol K') times the characteristic function of
K’(“’ 1 )K’. This case behaves differently, sin&& and K, are not equal; in particular, we
have K'(™ | )K" = [],e,. (™ "7 ) K’. This allows us to compute the edges as illustrated in

Figure[14. Note that fon > 1, the vertices of the formy , ,; andc/,, ..,; behave particularly.
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