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ON LOWER EIGENVALUE BOUNDS FOR TOEPLITZ OPERATORS

WITH RADIAL SYMBOLS IN BERGMAN SPACES

GRIGORI ROZENBLUM

Abstract. We consider Toeplitz operators in different Bergman type spaces, having ra-
dial symbols with variable sign. We show that if the symbol has compact support or decays
rapidly, the eigenvalues of such operators cannot decay too fast, essentially faster than for
a sign-definite symbol with the same kind. On the other hand, if the symbol decays not
sufficiently rapidly, the eigenvalues of the corresponding operator may decay faster than
for the operator corresponding to the absolute value of the symbol.

1. Introduction

Toeplitz operators arise in many fields of Analysis. The general setting is the following.
Let H be a Hilbert space of functions and B be a closed subspace in H. For a function V ,
called the symbol further on, the Toeplitz operator TV : B → B acts as TV : u 7→ PV u,
where P is the orthogonal projection from H onto B. Of course, it is supposed that the
operator of multiplication by V maps B into H.
In the present paper we consider Toeplitz operators in some Bergman type spaces. Let Ω

be a domain in Rd, or Cd, H be the space L2(Ω) with respect to some measure µ and B be
the subspace in H consisting of solutions of some elliptic equation or system. The leading
example here is provided by Bergman-Toeplitz operators, where Ω is a bounded domain
with nice boundary and B consists of harmonic functions in H (the harmonic Bergman
space), and, in the complex case, B consists of analytical functions in Ω (the analytical
Bergman space). Another series of examples is given by Bargmann-Toeplitz operators,
where Ω is the whole (real or complex) space, H = L2(Ω) with respect to the Gaussian
measure and B consists of harmonic or (in the complex case) analytical functions in H.
We are interested in the spectral properties of Toeplitz operators for the case when the

symbol V , which is supposed to be real and bounded, has compact support (when Ω is a
ball) or decays rapidly at infinity (when Ω is the whole space). One can easily see that
such operator is compact, and our question is about determining how fast the eigenvalues
of TV tend to zero. The interest to this topic grew recently due to the close relation of the
spectral properties of Toeplitz operators to the spectral analysis of the perturbed Landau
Hamiltonian describing the quantum particle in a homogeneous magnetic field.
For a sign-definite symbol, in the complex Bargmann case, rather complete results were

obtained in [14], [11] and, in dimension d = 1, improved in [6], see also references therein.
Even earlier, the case of complex Bergman spaces in dimension d = 1 has been studied in
[12]. It was proved that the eigenvalues of the Toeplitz operator follow an asymptotic law,
of an exponential type for the Bergman case and super-exponential type for the Bargmann
one.
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For the case of the symbol V having variable sign, it was for a long time unclear, even
whether it is possible that the positive and negative parts V± of V can compensate each other
almost completely, so that the spectrum of TV is finite. It has been proved only recently, see
[8], that such complete cancelation is impossible, in other words, for a nontrivial symbol V
with compact support the Toeplitz operator cannot have finite rank; see [15] for the most
complete results on the finite rank problem and related references. A further analysis in
[13] has shown that the (infinite now) spectrum of the Toeplitz operator depends essentially
on the geometry of the support of V±. In particular, if, say, the support of V+ surrounds
the support of V− (in a proper meaning) then the negative spectrum of TV is finite and the
asymptotic behavior of the positive eigenvalues is the same as if V− were absent. On the
other hand, if V± are supported in geometrically well separated sets, then both the positive
and the negative spectra of TV are infinite, and, taken together, obey the same asymptotic
law as if V were sign-definite (in the Bargmann case); these results can be understood that
no cancelation of V± takes place for this class of symbols, as it concerns the properties of
the spectrum.
In the present paper we continue the study of the spectrum of Toeplitz operators with

non-sign-definite symbol. We consider the model case of the symbol V being radial, i.e.,
depending only on the the distance to the origin; no restrictions on the supports of V±

are imposed. We find out that there is essential difference in the spectral properties of
Toeplitz operators with rapidly decaying symbols (including compactly supported ones,
the exact definitions are given in the paper), on the one hand, and symbols decaying not
that rapidly, on the other. In the former case we establish that, although no information
on the positive and negative spectra of TV separately can be obtained, the distribution
function of the positive and negative eigenvalues counted together, i.e. of singular numbers
of the operator, is subject to lower asymptotical bounds that have the same order and even
the same coefficient as if the symbol were sign definite. This is expressed, in a general form,
by the relation (4.1). So, again, no cancelation happens. On the other hand, in the latter
case it is possible that the eigenvalues of the Toeplitz operator decay considerably faster
than for the operator with the corresponding sign-definite symbol.
We start in Section 2 with describing the Bergman type spaces under consideration

(we consider operators in the Bergman and Bargmann spaces of analytical and harmonic
functions as well as in the spaces of solutions of the Helmholtz equation) and finding
the expression for the eigenvalues. These expressions are quite explicit. The asymptotic
formulas for eigenvalues are obtained, first for V being the characteristic function of a ball,
and then these results are carried over to general sign-definite compactly supported case
by means of simple monotonicity arguments. For Bargmann spaces a class of symbols with
rapid decay at infinity is considered as well. Some of these results are well known, the
remaining are obtained in a more or less standard way – we, however, present them all here
for further reference. In the end of Section 2 we show that, similarly to the results in [13],
the same asymptotics holds even for non-sign-definite symbols, as long as geometrically the
support of V+ surrounds the support of V− (or the other way round).
Passing to general non-sign-definite radial symbols, we encounter a serious inconvenience.

We still can write the explicit expression for the eigenvalues, however the numbering of the
eigenvalues in the non-increasing or the non-decreasing order does not coincide with their
natural numbering, stemming from the one in the separation of variables, and the relation
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between two numberings is rather hard to control. To handle this circumstance, we need
certain considerations from infinite combinatorics (Proposition 3.1). In order to prove that
the eigenvalues cannot decay too fast, we need rather advanced results in complex analysis,
and these results are also presented in Sect 3. The main results of the paper on the lower
eigenvalue estimates for general non-sign-definite radial symbols are presented in Sect.4,
see Theorems 4.1, 4.2. Finally, in Sect.5, we describe examples showing that a considerable
cancelation may take place for not sufficiently rapidly decaying fast oscillatory symbols.

2. Eigenvalues of Toeplitz operators with radial weight

In this Section we calculate the eigenvalue asymptotics for Toeplitz operators with radial
symbols in the spaces under consideration. For sign-definite symbols some of these results
are known, others are obtained in a standard way using the explicit expression for eigenval-
ues. Further on, we extend these results to a class of symbols, not necessarily sign-definite,
but having a constant sign at the periphery of the support.

2.1. Eigenvalues and re-ordering – 1. For each of operators TV under consideration in
the paper, we are going to find explicitly the sequence of eigenvalues Λk having multiplicities
dk. To describe the ordered set of eigenvalues, counting multiplicities, one should consider
the set of the numbers Λk, each Λk counted dk times, and then re-order the positive numbers
in the non-increasing way and the negative ones in the nondecreasing way. Thus we obtain
two (finite or infinite) sequences λ±

n of eigenvalues of TV . The union of the the sequences
±λ±

n is the sequence of s-numbers, numerated in the nonincreasing order sn = sn(TV ).
For problems under consideration, it is often more convenient to describe the spectrum

by means of the counting functions defined as

n±(λ) = #{n : ±λ±
n > λ}, n(λ) = n+(λ) + n−(λ) = #{n : sn > λ}; (2.1)

we will include the designation of the operator and the space in question in the notation,
when needed. In the terms of multiplicities, we, obviously, have

n±(λ) =
∑

±Λk>λ

dk, n(λ) =
∑

|Λk|>λ

dk. (2.2)

In most simple cases below, the sequence Λk is non-negative and already non-increasing,
and thus no re-ordering is needed. However, generally, we should not expect that the
sequence |Λk| is monotonous, and thus the question arises, how the estimates for |Λk| are
related to estimates of this sequence monotonously re-ordered. In one direction, the result
is obvious. We, however, formulate it in order to be able to refer to it later on.

Proposition 2.1. Let ak, bk, k = 0, 1, . . . , be two sequence of real numbers, so that bk > 0,
bk → 0 monotonously. Suppose that |ak| ≤ bk. Denote by a∗k the sequence obtained by the
non-increasing re-ordering of the sequence |ak|. Then a∗k ≤ bk.

Of course, generally, one should not expect the direct conversion of Proposition 2.1 to be
correct: an estimate for the monotonously re-ordered sequence cannot be carried over to
the initial sequence. It turns out, however, that in a certain sense Proposition 2.1 can be
partially conversed, see Proposition 3.3.
The operators we consider in this paper have very fast, exponential or even super-

exponential rate of decay of eigenvalues. Since these eigenvalues have very high multiplicity,
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the eigenvalues λ±
n , counting multiplicity, do not follow any regular asymptotic law, unlike

the well-studied case of elliptic operators. Therefore it is more convenient to consider the
behavior of the eigenvalues in the logarithmic scale, where the oscillations caused by high
multiplicities are suppressed and a regular asymptotics exists. In this scale, in particular,
the leading term of the asymptotics does not change when the symbol V (and thus the
eigenvalues of the Toeplitz operator) is multiplied by a positive constant. Alternatively, the
asymptotical behavior of eigenvalues can be described by their counting function. Unlike
the case of power-like asymptotics, typical for elliptic boundary problems, the asymptotic
formula for the counting function is not equivalent to the one for the eigenvalues, however
it is equivalent to the asymptotic eigenvalue formula in the logarithmic scale. We will use
this equivalence persistently.
We will use the following notation. For functions f and g of a real or integer argument

t, the symbol f(t) ∼ g(t) means, as usual, f(t)/g(t) → 1 as t → ∞ or t → 0, which is
always clear from the context. The relation f(t) . g(t) means that lim sup f(t)/g(t) ≤ 1,
the obvious meaning has the notation f(t) & g(t). Finally, f(t) ≍ g(t) is used when
cf(t) ≤ g(t) ≤ Cf(t) for sufficiently large (or small) t and for some positive constants c, C.

2.2. Bergman type spaces and quadratic forms.

2.2.1. The spaces. The following Bergman type spaces will be considered in this paper.

(1) Bergman spaces.
• The Bergman spaces of analytical functions in the ball. Let D2d ⊂ Cd, d ≥ 1
be the ball with radius R. The space H is the space L2(D2d) with respect to
the Lebesgue measure and B = BC

R
⊂ H consists of analytical functions.

Remark 2.2. In the literature, Bergman spaces with the Lebesgue measure with
weight (1− (|z|/R)2)α are considered as well. The results of the paper extend
to this case almost automatically.

• The Bergman spaces of harmonic functions in the ball. Let Dd ⊂ Rd, d > 1, be
the ball with radius R. The space H is L2(Dd) with respect to the Lebesgue
measure and B = BR

R
⊂ H consists of harmonic functions.

• The Bergman spaces of solutions of the Helmholtz equation. The space H is,
again, L2(Dd) and B = BH

R
⊂ H consists of solutions of the Helmholtz equation

∆u+ u = 0.
(2) Bargmann spaces.

• The Bargmann spaces of analytical functions in Cd. Here H is L2(Cd) with

respect to the Lebesgue measure with Gaussian weight e−|z|2 and B = BC ⊂ H
consists of analytical functions.

• The Bargmann spaces of harmonic functions in Rd. Here H is L2(Rd) with

respect to the Lebesgue measure with Gaussian weight e−|x|2 and B = BR ⊂ H
consists of harmonic functions.

• The Bargmann spaces of solutions of the Helmholtz equation in Rd. Here H is
L2(Rd) with respect to the Lebesgue measure with Gaussian weight e−|x|2 and
B = BH ⊂ H consists of solutions of the Helmholtz equation.
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(3) The Agmon-Hörmander space H = B∗, see [1], [17], is defined as consisting of
(equivalence classes of) functions u ∈ L2

loc(R
d) such that the norm

‖u‖B∗ =

(

sup
r∈(0,∞)

r−1

∫

|x|<r

|u|2dx

)
1

2

(2.3)

is finite. All functions u in this space, satisfying the Helmholtz equation, form a
closed subspace B = BAH. For u ∈ BAH, the limit

|||u|||2 = lim
r→∞

r−1

∫

|x|<r

|u|2dx (2.4)

exists, and it defines the norm equivalent to (2.3) (see [17], Lemma 3.2.)

2.2.2. Toeplitz operators and quadratic forms. The convenient way to study the eigenvalues
of Toeplitz operators is by using the quadratic form setting. Let B ⊂ H be the Bergman
type space under study and < ·, · > and ‖·‖ be the corresponding scalar product and norm.
The Toeplitz operator TV in B is defined by the quadratic form hV [u] =< V u, u >, u ∈ B.
It is convenient to use this definition even in the case when one does not consider the
embracing space, as, for example, for B = BAH: having a Bergman type space B we will
still call the operator TV defined by the quadratic form

∫

V |u|2dµ in B the Toeplitz operator
in B with symbol V . As soon as a complete system of functions un ∈ B is found, which
diagonalizes both quadratic forms ‖u‖2 and hV [u], this system can serve as a complete
system of eigenfunctions of TV , with eigenvalues hV [un]/‖un‖

2. We emphasize here again
that these eigenvalues should be properly re-ordered.
In this paper we are going to study Toeplitz operators with radial symbols, i.e., V (z) =

V (|z|) in the complex case and V (x) = V (|x|) in the real case. For such symbols the
eigenfunctions and eigenvalues of the Toeplitz operator can be found explicitly by means
of passing to spherical co-ordinates.

2.3. Operators in Bergman spaces. In the sections to follow we collect the results on
the eigenvalue asymptotic formulas for Toeplitz operators in Bergman spaces. Some of
them are known, the rest are obtained in a standard way, using the explicit expressions for
the eigenvalues.

2.3.1. Complex Bergman spaces. Denote by PC

k the space of homogeneous polynomials of

degree k of variables z1, . . . , zd. It has dimension dC

k =
(

k+d−1
d−1

)

= kd−1

(d−1)!
(1 + O(k−1)). In

the space of functions of the form Z(ω) = p(z)|z|−k, p ∈ PC

k , ω = z|z|−1 ∈ S2d−1, we
choose a basis Zk,j(ω), j ∈ [1,dC

k ], orthonormal with respect to the Lebesgue measure on
the sphere S2d−1 (complex spherical functions). The functions uk,j(z) = |z|kZk,j(ω), k =
0, 1, . . . , j ∈ [1,dC

k ], form an orthogonal basis in the space BC

R
. For a radial function V (|z|),

this system of functions diagonalize also the quadratic form
∫

V (|z|)|u(z)|2dµ. Therefore,
the functions uk,j form a complete system of eigenfunctions of the Toeplitz operator TV in
BC

R
with eigenvalues

Λk = ΛC

k (V ) =
< V uk,j, uk,j >

‖uk,j‖2BC

R

= (2k + 2d)R−(2k+2d)

∫

R

0

V (r)r2k+2d−1dr, (2.5)
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having multiplicity dC

k . By re-ordering, see Sect.2.1, we obtain two sequences λ±
n of eigen-

values of TV . By the results of [2] (see also [15]), at least one of these sequences is infinite.
Let V be the characteristic function of the ball Db with center at the origin and radius

b ∈ (0,R). Then there are no negative eigenvalues, and the positive eigenvalues, by (2.5),
are Λk = (b/R)2k+2d with multiplicities dC

k . Taking into account the asymptotics dC

k ∼
kd−1/(d− 1)!, we have in terms of the counting function,

n(λ;TV ,B
C

R
) ∼

∑

(b/R)2k+2d>λ

kd−1

(d− 1)!
∼ (d!)−1(2| log(b/R)|)−d| log λ|d, λ → 0, (2.6)

or, in the logarithmic scale,

log(λ+
n ) = log(sn(TV )) ∼ 2(nd!)

1

d log(b/R). (2.7)

2.3.2. Harmonic Bergman spaces. Denote by PR

k the space of degree k homogeneous har-

monic polynomials of the variables x1, . . . , xd. This space has dimension dR

k =
(

d+k−1
d−1

)

−
(

d+k−2
d−2

)

= 2
(d−2)!

kd−2(1 + O(k−1)) (see, e.g., calculations in [16], Sect.22). In the space of

functions of the form Y (ω) = p(x)|x|−k, p ∈ PR

k , ω = x|x|−1 ∈ Sd, we choose a basis Yk,j(ω),
j ∈ [1,dR

k ], orthonormal with respect to the Lebesgue measure on the sphere Sd−1, i.e., the
usual spherical functions. The functions uk,j(x) = |x|kYk,j(ω), k = 0, 1, . . . , j ∈ [1,dR

k ], form
an orthogonal basis in the space BR

R
. For a radial function V (|x|), this system of functions

diagonalizes also the quadratic form
∫

V (|x|)|u(x)|2dµ. Therefore, the functions uk,j form
a complete system of eigenfunctions of the Toeplitz operator TV in BR

R
with eigenvalues ΛR

k

given by

Λk = ΛR

k (V ) = (2k + d)R−2k−d

∫

R

0

V (r)r2k+d−1dr (2.8)

and multiplicities dR

k . Taking into account the multiplicities and reordering, as in Section
2.3.1, we obtain the eigenvalue sequences λ±

n and the sequence of s−numbers sn. Again, as
it is shown in [2], the sequence sn and at least one of the sequences λ±

n are infinite.
For V being the characteristic function of the ball Db, the eigenvalues ΛR

k are equal to
ΛR

k = (b/R)2k+d, by (2.8). Thus, there are no negative eigenvalues λ−
n , while for the positive

eigenvalues λ+
n we have the asymptotics

n(λ;TV ,B
R

R
) ∼

∑

(b/R)2k+d>λ

2
kd−2

(d− 2)!
∼ 2((d− 1)!)−1(2| log(b/R)|)−d+1| log λ|d−1, λ → 0,

(2.9)
and, in the logarithmic scale,

log λ+
n ∼ 2 log(b/R)((d− 1)!/2)

1

d−1n
1

d−1 , n → ∞. (2.10)

2.3.3. Helmholtz Bergman spaces. After passing to spherical co-ordinates in the Helmholtz
equation, we arrive at the orthogonal system of functions

uk,j(x) = Yk,j(ω)|x|
− d−2

2 Jk+ d−2

2

(|x|); ω = x|x|−1 ∈ Sd−1, k = 0, 1, . . . , j = 1, . . . ,dR

k ,

(2.11)
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where Jν(r) are the Bessel functions and Yk,j are the real spherical functions as in Sect.2.3.2.
For a radial symbol V (|x|), the eigenvalues of the Toeplitz operator equal

Λk = ΛH

k (TV ) =

∫

R

0
V (r)J2

k+ d−2

2

(r)rdr
∫

R

0
J2
k+ d−2

2

(r)rdr
, (2.12)

with multiplicity dR

k . The integral in the denominator in (2.12) is estimated by means of
the identity (see, e.g., [18])

∫ R

0

J2
ν (r)rdr =

R2

2
[J2

ν (R)− Jν−1(R)Jν+1(R)], (2.13)

and the asymptotics (see, again [18]), uniform in r on any finite interval [a, b] ⊂ [0,∞):

Jν(r) ∼

(

r2

2

)ν

(Γ(ν + 1))−1, |ν| → +∞,Re ν ≥ 0. (2.14)

So, we obtain
∫

R

0

J2
k+ d−2

2

(r)rdr ∼

(

R2

2

)k+d/2
1

Γ(k + d
2
)Γ(k + d+2

2
)
, k → ∞. (2.15)

Again, as before, the numbers ΛH

k , counted with multiplicities dR

k and properly re-ordered,
form the sequences λ±

n = λ±
n (TV ) of eigenvalues of TV , and the union of the sequences ±λ±

n

is the sequence of s-numbers sn = sn(TV ). It is proved in [15] that for d > 2 at least one of
the sequences λ±

n is infinite. The proof in [15] does not cover the case d = 2, and the above
infiniteness will follow from the results of the present paper.
For V being the characteristic function of the ball |x| ≤ b < R, the numbers ΛH

k (V )
have, by (2.13), (2.14), and (2.15), the asymptotics

ΛH

k ∼ (b/R)2k+d. (2.16)

Therefore, taking into account multiplicities, the eigenvalues λ+
n obey the asymptotic law

(2.9), (2.10), the same as for the harmonic Bergman space.

2.4. Operators in Bargmann and AH spaces.

2.4.1. Complex Bargmann spaces. The functions uk,j(z) = Zk,j(ω)|z|
k, j ∈ [1,dC

k ], form an
orthogonal basis in the Bargmann space BC. Thus, the eigenvalues of the Toeplitz operator
TV in BC equal

ΛC

k =

∫∞

0
V (r)r2k+2d−1e−r2dr
∫∞

0
r2k+2d−1e−r2dr

= 2

∫∞

0
V (r)r2k+2d−1e−r2dr

Γ(k + d)
. (2.17)

For the case of V (r) being the characteristic function of Db, 0 < b < ∞, obviously,
∣

∣

∣

∣

log

∫ ∞

0

V (r)r2k+2d−1e−r2dr

∣

∣

∣

∣

≍ k,

and, therefore, by the Stirling formula,

| log ΛC

k | ∼ k log k. (2.18)
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Taking into account the multiplicities, we obtain for the eigenvalues of TV :

n(λ) =
∑

ΛC

k>λ

dC

k ∼
1

d!

(

| log λ|

log | log λ|

)d

, (2.19)

or, in the logarithmic scale, inverting (2.19):

log(λ+
n ) = log(sn) ∼ −d−1(d!)

1

dn
1

d logn. (2.20)

Remark 2.3. The asymptotic relation (2.19) was found in [11] (in [14] for d = 1); it was
discovered there, in particular, that the leading term in the eigenvalue asymptotics of
Bargmann-Toeplitz operators does not depend on the symbol V ≥ 0 with compact support
(of course, provided it is not identically zero). In [6], for d = 1, the second term of the
asymptotics in (2.20) was found, depending on the logarithmic capacity of suppV .

2.4.2. Harmonic Bargmann spaces. The functions uk,j(x) = Yk,j(ω)|x|
k, j ∈ [1,dR

k ], form an
orthogonal basis in the Bargmann space BR. Thus, the eigenvalues of the Toeplitz operator
TV in BR equal

ΛR

k =

∫∞

0
V (r)r2k+d−1e−r2dr
∫∞

0
r2k+d−1e−r2dr

= 2

∫∞

0
V (r)r2k+d−1e−r2dr

Γ(k + d
2
)

. (2.21)

For V being the characteristic function of the interval ball Db we obtain for the eigenvalues
of TV , taking into account the multiplicities:

n(λ) =
∑

ΛR

k>λ

dR

k ∼ 2((d− 1)!)−1

(

| log λ|

log | log λ|

)d−1

, (2.22)

or, in the logarithmic scale, inverting (2.22),

log(λ+
n ) = log(sn) ∼ −(d− 1)−1((d− 1)!/2)

1

d−1 (n
1

d−1 log n), n → ∞. (2.23)

2.4.3. Helmholtz Bargmann spaces. The functions

uk,j(x) = Yk,j(ω)|x|
− d−2

2 Jk+ d−2

2

(|x|); k = 0, 1, . . . , j = 1, . . . ,dR

k ,

form an orthogonal basis in the space BH. Thus, the eigenvalues of TV in BH equal

Λk = ΛH

k (V ) =

∫∞

0
V (r)Jk+ d−2

2

(r)2re−r2dr
∫∞

0
Jk+ d−2

2

(r)2e−r2rdr
, (2.24)

with multiplicity dR

k . The denominator in (2.24) equals 1
2
exp(−1

2
)Ik+ d−1

2

(1
2
), where Iν is the

modified Bessel function (see [7], 6.663.2). By (2.14), this denominator has the asymptotics
(

1
2

)k+ d−1

2 exp(−1
2
)Γ(k + d+1

2
)−1.

For V being the characteristic function of the ballDb, the numerator in (2.24) is estimated

from above and from below by constants times b2k+d
(

Γ(k + d
2
)Γ(k + d+1

2
)
)−1

. Therefore, in

this case, the eigenvalues ΛH

k obey two-sided asymptotic estimates

ΛH

k ≍

(

1

2

)k+ d
2

b2k+d(Γ(k +
d+ 1

2
))−1. (2.25)
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Taking into account multiplicities, the eigenvalues of the Toeplitz operator TV in the space
BH have the same asymptotics (2.22), (2.23) as for the harmonic Bargmann space.

2.4.4. The Agmon-Hörmander space. The functions

uk,j(x) = Yk,j(ω)|x|
− d−2

2 Jk+ d−2

2

(|x|); k = 0, 1, . . . , j = 1, . . . ,dR

k ,

form an orthogonal basis in the space BAH. The AH norm of these functions equals 1
π
(see,

e.g., [17], p. 63). Thus, the eigenvalues of the Toeplitz operator TV in BAH equal

ΛAH

k = π

∫ ∞

0

V (r)Jk+ d−2

2

(|r|)2rdr. (2.26)

For V being the characteristic function of Db, these eigenvalues have the asymptotics

ΛAH

k ∼ π

(

b2

k

)k+ d−2

2

(Γ(k +
d

2
))−2. (2.27)

So, the eigenvalues of the Toeplitz operator in the space AH decay considerably faster
than in the space BH, with the same symbol. Counting multiplicities, we obtain for the
eigenvalues of TV the asymptotics

log λn = log(sn) ∼ −
1

d− 1
((d− 1)!/2)

2

d−1 (n
2

d−1 logn), n → ∞ (2.28)

and

n(λ) ∼ 2((d− 1)!)−1

(

| log λ|

log | log λ|

)
d−1

2

. (2.29)

2.5. Sign-definite radial symbols with compact support. We introduce the following
notion.

Definition 2.4. Let the function V (r), r ≥ 0, have compact support. The number b is
called the exact support radius (ESR) for V if V (r) = 0 for r > b, while for any b′ ∈ (0, b),

∫ b

b′
|V (r)|dr > 0.

Proposition 2.5. Suppose that b > 0 is the ESR for V ≥ 0. Then for the operator TV

in the spaces BC

R
,BR

R
,BH

R
,BC,BR,BH,BAH hold the asymptotic formulas (2.7), respectively,

(2.9), (2.9), (2.20), (2.22), (2.22), and (2.28) (as well as the corresponding asymptotic
formulas for the counting function.)

Proof. In all cases, the asymptotic estimate from above is trivial, since the numerator in
the expression for the eigenvalues Λk increases when V is replaced by the characteristic
function of the ball with radius b, multiplied by some positive constant, and this constant
is not felt in the logarithmic scale. As for the lower estimates, the reasoning is similar for
all cases. We present it, as an example, for operator in the space BC

R
.

For the operator TV in BC

R
, fix some b′ < b. We have

∫ b

0

V (r)r2k+2d−1dr ≥

∫ b

b′
V (r)r2k+2d−1dr ≥ (b′)2k+2d−1

∫ b

b′
V (r)dr. (2.30)
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Passing to the logarithmic scale, we obtain

log(λ+
n ) = log(sn(TV )) & n1/d(d!)

1

d log(b′/R),

which gives the required lower asymptotic estimate, due to the arbitrariness of b′. �

2.6. Rapidly decaying sign-definite symbols.

Definition 2.6. A bounded function V (r), r ∈ [0,∞), is called rapidly decaying, V ∈ RD,
if

V (r) = o(exp(−rς)), r → ∞ for any ς > 0, (2.31)

or, equivalently, log |V (r)| < −Crς , C > 0, for any ς > 0.

For further reference, we formulate here an important property of functions in RD, which
is easily established by a proper change of variables.

Lemma 2.7. If V ∈ RD, then
∣

∣

∣

∣

∫ ∞

0

V (r)rsdr

∣

∣

∣

∣

= O(Γ(ǫs)), s → ∞, (2.32)

for any ǫ > 0.

Proposition 2.8. Let V ≥ 0, V ∈ RD. Then for the eigenvalues of the operator TV in
the spaces BC,BR,BH,BAH the eigenvalue asymptotic formulas (2.20), respectively, (2.22),
(2.22), and (2.28) hold (as well as the corresponding asymptotic formulas for the counting
function.)

Proof. Consider the complex Bargmann space first. If V ∈ RD, V ≥ 0, the numbers ΛC

k

are given by the same formula (2.17). By monotonicity and Lemma 2.7,

| log

∣

∣

∣

∣

∫ ∞

0

V (r)rkdr

∣

∣

∣

∣

| = o(k log k), k → ∞, (2.33)

and therefore, for the numbers log ΛC

k we have the same asymptotics (2.18) as for a com-
pactly supported symbol, which leads to the asymptotics (2.19) for the counting function
of the operator TV . The same reasoning takes care of the space BR.
Consider now the operator in the space BH. For a general V ∈ RD, for estimating the

numerator in (2.24), we use the representation formula for Bessel functions,

Jν(r) =
(r

2

)ν

[Γ(ν + 1/2)Γ(1/2)]−1

∫ 1

−1

(1− t2)ν−1/2 cos(rt)dt, Re ν > −
1

2
, (2.34)

see, e.g., [7], 8.411.8. It follows from (2.34) that |Jk+ d−2

2

(r)| ≤ Crk+
d−2

2 Γ(k + d−1
2
)−1;

substituting this bound into (2.24), we obtain

Λk ≤ C2k(Γ(k +
d+ 1

2
))−1

[
∫ ∞

0

V (r)rk+ddr

]2

. (2.35)

By Lemma 2.7, the integral in (2.35) is majorated by Γ(ǫ(k + d)) for any ǫ > 0. So, in
logarithmic scale,

log Λk ∼ − log(Γ(k +
d+ 1

2
)) + o(k log k), (2.36)
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which gives the same asymptotics for log Λk, as in the case of V with compact support. So,
for V ∈ RD the same asymptotics (2.20), (2.19) hold.
The same reasonings takes care of operators in the Agmon-Hörmander spaces. �

Remark 2.9. So, the asymptotic formulas for n(λ) are the same for a compactly supported V
and for V ∈ RD. On the other hand, it was established in [14] (see Theorem 2.1 there) that
if a reasonably regular V does not belong to RD, the asymptotics of n(λ;BC) is different.
This circumstance justifies the introduction of the class RD. Further on, in Section 5 we
consider oscillating symbols not belonging to RD.

2.7. Radial symbols, sign-definite at the periphery. As it was found in [13] for
Toeplitz operator in BC in dimension d = 1, the asymptotics of eigenvalues is determined
only by the sign of V at the periphery of its support. It turns out that such effect is present
in other dimensions and other spaces as well. We explain the corresponding results for the
case of a radial symbol, however, with a proper formulation, they hold also in much more
general case.

Proposition 2.10. Suppose that the ESR for the function V (r) equals b > 0, 0 < b ≤ ∞,
and for some b0 < b, V (r) ≥ 0 for r ∈ (b0, b). Then for such V there are only finitely many
negative eigenvalues and the assertion of Proposition 2.5 holds true.

Proof. The proof follows the ideas of Theorem 1.1 in [13]. All cases are treated in a similar
way, so we consider only the operator in BH as an example.
The upper asymptotic estimate is, again, trivial. For the lower estimate, fix b′ ∈ (b0, b).

Let GR(x, y) be the Green function for the Dirichlet problem in the ball DR : r < R for
the Helmholtz equation. Such function exists as long as zero is not an eigenvalue of the
Helmholtz operator with Dirichlet boundary conditions in DR. Such exceptional values of
R form a discrete set, therefore we can find an interval (b1, b2) ⊂ (b′, b), such that GR exists
for all R ∈ (b1, b2). By our condition, the interval (b1, b2) can be also chosen in such way

that
∫ b2
b1

V (r)dr > 0. Note that the function GR(x, y) is smooth for x 6= y.

Let u(x) be a solution of the Helmholtz equation in Rd. For x ∈ Db0 and R ∈ (b1, b2),
the following integral representation is valid

u(x) =

∫

∂DR

u(y)K(x, y;R)dSR(y), (2.37)

where K(x, y;R) = Gν(y)(x, y) is the derivative of G in the direction of the outer normal
to ∂DR at the point y ∈ ∂DR and dSR(y) is the normalized surface measure on ∂SR(y).
We multiply (2.37) by V (R)Rd−1 and integrate in R ∈ (b1, b2). Thus we obtain the integral
representation

u(x) =

(
∫ b2

b1

V (R)Rd−1dR

)−1 ∫

|y|∈(b1,b2)

K(x, y;R)u(y)V (|y|)dy. (2.38)

Since K(x, y;R) is a smooth bounded function for |x| ≤ b0 and |y| ≥ b2, the integral
operator (2.38) assigning the function u(x), restricted to Db0 and considered as an element
in L2(Db0), to the same function considered as an element of L2(Db0) with weight V , is
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compact. Therefore, the quadratic form

ab0 [u] ≡

∫

Db0

V (|x|)|u(x)|2dx (2.39)

is compact with respect to the quadratic form
∫

Db\Db0

V (|x|)|u(x)|2dx, (2.40)

all forms, recall, being considered on the space of solutions of the Helmholtz equation.
Now we represent the quadratic forms ratio for the operator TV as

< TV u, u >

< u, u >
=

[

1 +

∫

Db0
V |u|2dx

∫

|x|>b0
V |u|2dx

]
∫

Db
Vb0 |u|

2dx

< u, u >
, u ∈ BH, (2.41)

where Vb0(r) = 0, r < b0, Vb0(r) = V (r) otherwise.
Due to the compactness, explained above, for any ǫ > 0, there exists a subspace Lǫ ⊂ BH,

having finite dimension κ(ǫ) < ∞, and such that
∣

∣

∣

∣

∣

∫

Db0
V |u|2dx

∫

|x|>b0
V |u|2dx

∣

∣

∣

∣

∣

< ǫ for u ∈ BH, orthogonal to Lǫ. (2.42)

For ǫ = 1/2, this means that there are no more than κ(1/2) negative eigenvalues of TV .
Further on, by the variational principle, for the positive eigenvalues of TV the estimate
holds

λ+
n (TV ) ≥

1

2
λn+κ(1/2)(TVb0

).

Now the required lower estimate follows from Proposition 2.5 applied to the nonnegative
symbol Vb0 . �

3. Auxiliary theorems

3.1. Re-ordering – 2. As it was explained in the Introduction, the main complication
for proving lower estimates for eigenvalues lies in the need of reordering of the sequence of
eigenvalues Λk obtained by the explicit formulas in Sect. 2. So, supposing that the lower
estimate is wrong, and thus a contradicting upper estimate holds, we can obtain a bound
for the re-ordered sequence of the numbers Λk, which, however, does not imply directly any
estimate for the numbers Λk themselves. In order to deal with this circumstance, we need
the following statement which plays a key role in the sequel.

Proposition 3.1. Let k 7→ mk be a bijection of the set of nonnegative integers Z+. For
β > 1, we denote by Eβ the set {k ∈ Z+ : mk ≤ βk}, Fβ = {mk : k ∈ Eβ.}. Then

#{Fβ ∩ [0, N ]} ≥
β − 1

β
N, (3.1)

for any natural N.

In other words, the Proposition states that, under a bijection, a controllably nonzero
share of integers mk are not too large, compared with k.
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Proof. Suppose that mk ∈ [0, N ] \ Fβ. Then k < mk/β ≤ N/β. And therefore #{Fβ ∩

[0, N ]} > N + 1−N/β ≥ β−1
β
(N + 1)− 1

β
. �

Remark 3.2. The constant β−1
β

in Proposition 3.1 is sharp. In fact, set mk = [βk] + 1 for

k ∈ N \ 2N, while for integers powers of 2 we define mk so that to obtain a bijection. Then
lim supN−1#{Fβ ∩ [0, N ]} = β−1

β
.

Proposition 3.1 leads to the following partial conversion of Proposition 2.1, mentioned in
Sect. 2.1.

Proposition 3.3. Suppose that ak, bk are real sequences, bk > 0 is non-increasing, and for
the non-increasing permutation a∗k of |ak|, we have

a∗k ≤ bk. (3.2)

Then for any β > 1 there exists a subsequence akl, k1 < k2 < . . . , such that

|akl| ≤ b[kl/β] (3.3)

and kl ≤ [ β
β−1

l] + 1.

The statement means that if the sequence ak, after being non-increasingly reordered,
satisfies some sort of monotonous estimate, then in the initial sequence there exists a con-
trollably dense subsequence, for which a similar but slightly weaker estimate holds.

Proof. Let the non-increasing permutation of the sequence |ak| be given by the bijection
j 7→ mj : |amj

| = a∗j , so that |amj
| ≤ bj . Thus, for any mj ∈ Fβ , we have mj ≤ jβ, therefore

j ≥ mj/β and bj ≤ b[mj/β]. Now we take as the subsequence kl, the elements mj ∈ Fβ

taken in the increasing order. The inequality (3.3) is therefore fulfilled. By Proposition
3.1, #{Fβ ∩ [0, N ]} ≥ β

β−1
N for any N , which is equivalent to the second inequality we

need. �

We will also need a simple consequence of Proposition 3.1 concerning the rate of diver-
gence of the series composed of the inverse values of m ∈ Fβ.

Proposition 3.4. Under the conditions of Proposition 3.1,

lim sup
N→∞

(logN)−1
∑

m∈Fβ∩[0,N ]

m−1 ≥
β − 1

β
. (3.4)

3.2. Estimates for functions analytical in a half-plane. There are a number of results
in the classical complex analysis relating the estimates along the real axis of a function
analytical in the half-plane Re ζ > 0, ζ = ξ + iη, with estimates of its values at some
sequence of points. The first of such results we need, with ideas originating in [10], was
obtained in [3], p. 200.

Theorem 3.5. Let f(ζ) be a function, analytical in the right half-plane, of exponential
type, satisfying

∫ ∞

−∞

log+ |f(iη)|

1 + η2
dη < ∞. (3.5)



14 G. ROZENBLUM

Suppose that µl is a monotone sequence of real points tending to infinity so that |µl−µl−1| ≥
δ > 0 and

∑

µ−1
l = ∞. Then

lim sup
l→∞

log |f(µl)|

µl
= lim sup

ξ→+∞

log |f(ξ)|

ξ
. (3.6)

Remark 3.6. In [10] and in [3] the additional condition lim lµ−1
l = 0 was imposed. However,

it was shown in [9] that this condition is excessive and can be deleted.

Theorem 3.5 will be used for the study of the spectrum of operators in Bergman spaces.
For the case of Bargmann spaces another result about estimates of functions, not of expo-
nential type, will be used. We cite its version from [4], see also [5], with an obvious typo
corrected.

Theorem 3.7. Let the function f(ζ) be analytical in the half-plane Re ζ = ξ > 0 and
satisfy the estimate

|f(ρeiϕ)| = O(exp[ρ(a log ρ cosϕ+ πc| sinϕ|+ b cosϕ)]), |ϕ| < π/2, ρ → ∞, (3.7)

for some a ≥ 0, c ≥ −a/2. Suppose also that the growing sequence µl of positive numbers
satisfies µl+1 − µl ≥ δ > 0 and

lim sup
N→∞

[

∑

µl≤N

µ−1
l − (c+ a/2) logN

]

= ∞. (3.8)

Then the bound

lim sup
l→∞

log |f(µl)|

µl logµl
< −2c (3.9)

implies that f(ζ) ≡ 0.

This theorem improves the classical result by N. Levinson, see [10], Theorem XLI, in the
sense that it does not require any regularity of the sequence µl.

4. Eigenvalues of Toeplitz operators with non-sign-definite weight

This Section contains the main results of the paper. These results can be expressed in
the following way:

lim sup
λ→0

n(λ;TV )

n(λ;T|V |)
= 1, (4.1)

in all spaces under consideration, where the radial function V has compact support for
Ω = DR, and V ∈ RD for the case of Ω = C

d or Ω = R
d. Further on, we consider the

concrete cases in detail.

4.1. Operators in Bergman spaces. In this section the symbol V is supposed to be an
arbitrary real bounded radial function with ESR b < R.

Theorem 4.1. For the singular numbers of the operator TV in the Bergman spaces the
following asymptotic formulas hold.
For the complex space BC

R
,

lim sup
λ→0

n(λ)| log λ|−d = (d!)−1(2| log(b/R)|)−d; n(λ) = n(λ;TV ,B
C

R
). (4.2)
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For the harmonic and Helmholtz spaces BR

R
and BH

R
:

lim sup
λ→0

n(λ)| log λ|−d = 2((d− 1)!)−1(2| log(b/R)|)−d+1; (4.3)

for n(λ) = n(λ;TV ,B
C

R
) or n(λ) = n(λ;TV ,B

H

R
).

Proof. The proofs for the analytical and harmonic cases are almost identical; we present
the first one.
The upper estimate in (4.2) follows from Proposition 2.5 by monotonicity and Proposition

2.1. We will prove the lower estimate. Suppose that it is wrong; this means that

n(λ;TV ,B
C

R
) < γ(d!)−1(2| log(b/R)|)−d| log λ|d (4.4)

for some γ < 1 and for λ small enough.
The singular numbers of TV are equal to the numbers |Λk| defined in (2.5), permuted in

the non-increasing order (we denote by σm this permuted sequence), with multiplicities dC

k

given in Sect.2. So, σmk
= |Λk|, where k 7→ mk is some bijection of Z+.

By (2.6),

n(λ) =
∑

|Λk|>λ

dC

k =
∑

σmk
>λ

dC

k . (4.5)

Since the numbers dC

k increase with k growing, the quantity in (4.5) can only decrease if
we replace in (4.5) the values of k by their smallest possible values, i.e.,

n(λ) ≥

n0(λ)
∑

k=0

dC

k , (4.6)

where n0(λ) = #{j : σj > λ}.
So, since dC

k = (1 +O(k−1))kd−1((d− 1)!)−1 for large k, we have

n(λ) ≥

n0(λ)
∑

k=0

kd−1(1 +O(k−1))

(d− 1)!
≥ (1 +O(n0(λ)

−1))
n0(λ)

d

d!
. (4.7)

Substituting (4.7) into (4.4), we obtain

n0(λ) ≤ (1 +O(| logλ|−1))γ
1

d | log λ|, orσm .

(

γ′ b

R

)2m

, (4.8)

for λ small enough, resp., m large enough and some γ′ < 1. Our next aim is to derive an
estimate for Λk from (4.8).
We fix some β > 1, to be determined later, and apply Proposition 3.3 to the sequences

ak = |Λk|, bk =
(

γ′ β
R

)2m
. Thus there exists a subsequence Λkl such that

|Λkl| ≤ C

(

γ′ b

R

)2klβ
−1

. (4.9)

We are going to show now that the inequality (4.9) holds not only for the subsequence
Λkl but for all Λk, probably, with slightly worse constants. To do this, we introduce the
complex variable ζ = ξ + iη and consider the function
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f(ζ) = (2ζ + 2d)R−(2ζ+2d)

∫

R

0

V (r)r2ζ+2d−1dr. (4.10)

The function f(ζ) is analytical and bounded in the half-plane Re ζ = ξ > 0, so the
condition (3.5) is satisfied. The values of f at integer points k coincide with the numbers
Λk, due to (2.5). By the second inequality in (4.8), the series

∑

(kl)
−1 diverges. So, all

conditions or Theorem 3.5 are fulfilled and, therefore,

lim sup
k→∞

log |Λk|

k
= lim sup

l→∞

log |Λkl|

kl
,

or, returning back from the logarithmic scale,

Λk ≤ C

(

γ′ b

R

)2k/β′

(4.11)

for any β ′ > β. Since γ′ < 1, we can choose the parameter β and then β ′ > 1 in the above
reasoning so close to 1 that

(

γ′ b

R

)2/β′

<

(

θ
b

R

)2

(4.12)

for some θ < 1. We substitute (2.5) into (4.11) and obtain

R
∫

0

V (r)r2k+2d−1dr = O((θb)2k). (4.13)

It remains to apply a classical theorem about the properties of the moments problem,
say, Theorem 6.9.5 in [3], saying that (4.13) implies supp V ⊂ [0, θb], and this inclusion
contradicts our condition that b is the ESR for V .
Now we pass to the proof for the Helmholtz case. Again, suppose that (4.3) is wrong;

this means that

n(λ;TV ,B
H

R
)| logλ|−d+1 < 2γ((d− 1)!)−1(2| log(b/R)|)−d+1 (4.14)

with some γ < 1, for small λ. In the same way as for the case of the complex spaces,
(4.14) implies the estimate for the numbers σm, the monotonically re-ordered sequence of
the numbers Λk = ΛH

k :

σm ≤

(

γ
b

R

)2m

. (4.15)

We can further proceed as before, to derive from (4.15) the estimate for a sufficiently dense
subsequence in Λm :

|Λkl| ≤ C

(

γ
b

R

)2kl/β
′

, (4.16)

with kl ≤
β

β−1
l.
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Next, as before, we need to carry over the estimate (4.16) from the subsequence to the
whole sequence Λk, and even to the fractional k. To achieve this, we consider the auxiliary
function f(ζ) analytical in the half-plane ξ = Re ζ > 0 :

f(ζ) = Γ(ζ + d/2)Γ(ζ + (d+ 2)/2))

∫

R

0

V (r)J2
ζ+ d−2

2

(r)rdr. (4.17)

By the known asymptotics of Bessel functions for the large index (see (2.14)), the function
f(ζ) is bounded in the half-plane Re ζ > 0, moreover, by (2.12), (2.13), and (2.15), its
values the integer points ζ = k are asymptotically equal to the numbers Λk.
Therefore, we can apply Theorem 3.5 to the function f(ζ), similarly to the reasoning for

the complex case above, thus obtaining for real ξ > 0 and some γ′ ∈ (γ, 1)

|f(ξ)| ≤ C

(

γ′ b

R

)2ξ/β

, ξ → ∞, (4.18)

which means
∫

R

0

V (r)J2
ξ+ d−2

2

(r)rdr ≤ C[Γ(ξ + d/2)Γ(ξ + (d+ 2)/2)]−1

(

γ′ b

R

)2ξ/β

, ξ → ∞. (4.19)

Now we need to consider the cases of even and odd d separately.
For the case of an even dimension d, we write (4.19) for integer values ξ = k :

∫

R

0

V (r)Jk+ d−2

2

(r)2rdr ≤ C[Γ(κ+ d/2)Γ(k + (d+ 2)/2)]−1

(

γ′ b

R

)2k/β

. (4.20)

We use now C.Neumann’s formula, see [18], 2.72(2), or [7], 8.536.2:
∞
∑

j=m

Γ(m+ j)

jΓ(j −m+ 1)
J2
j (r) =

(2m)!

(m!)2

(r

2

)2m

, m ∈ Z+. (4.21)

It is easy to see from the Stirling formula that the series in (4.21) converges uniformly on
finite intervals, and, asymptotically in m, the leading term prevails. We substitute the

expression for r2m with m = k + d−2
2

from (4.21) into
∫

R

0
r2(k+

d−2

2
)V (r)dr :

∫

R

0

r2mV (r)rdr = 22m
(m!)2

(2m)!

∞
∑

j=m

jΓ(m+ j)

Γ(j −m+ 1)

∫

R

0

V (r)J2
j (r)rdr. (4.22)

For each term in (4.22), we apply the estimate (4.20). Calculations with Γ-functions show
that

∫

R

0

r2kV (r)rd−1dr = O((γ′b)
2k/β

). (4.23)

Finally, since γ′ < 1, we can choose β > 1 so close to 1 that (γ′b)1/β < θb, θ < 1. Now we
can again apply Theorem 6.9.5 in [3], which gives supp V ⊂ [0, θb], θ < 1 which contradicts
our assumption that b is the ESR for V .
A similar reasoning works for case of an odd dimension d. We however consider (4.19) for

half-integer ξ, ξ = k+1/2. Then, since (d− 2)/2 is half-integer, (4.19) gives an estimate of
integrals containing Bessel functions with integer index. The final step in the proof is the
same. �
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4.2. Operators in Bargmann and AH-spaces. For the case of Bargmann and AH
spaces, the consideration follows the same idea as for the Bergman spaces, with minor
modifications.

Theorem 4.2. Let the radial symbol V belong to RD. Then (i) For B = BC(Cd),

lim sup
λ→0

[

n(λ)

(

| log λ|

log | log λ|

)−d
]

= (d!)−1. (4.24)

(ii) For B = BR(Rd), or BH(Rd)

lim sup
λ→0

[

n(λ)

(

| logλ|

log | log λ|

)−d+1
]

= ((d− 1)!)−1. (4.25)

(iii) For Bc = BAH(Rd)

lim sup
λ→0

[

n(λ)

(

| log λ|

log | log λ|

)−d+1
]

= 2((d− 1)!)−1. (4.26)

Proof. All cases are proved in a similar manner. We give the proof of the part (i) of Theorem
4.2 in detail and then explain the changes needed for other cases.
The proof starts in the same way, as for Theorem 4.1. The estimate from above in (4.24)

is already established. Suppose that the lower bound in (4.24) is wrong. This means that
for some γ < 1, the inequality

n(λ) < γ(d!)−1

(

| log λ|

log | logλ|

)d

(4.27)

holds for all sufficiently small λ > 0. The singular numbers of the operator TV are equal
to the numbers |Λk|, see (2.17), permuted in the non-increasing order, with multiplicities
dC

k (defined in Sect. 2.3.1). So, these singular numbers equal σmk
= |Λk|, where k 7→ mk is

some bijection of Z+. By (2.2),

n(λ) =
∑

|Λk|>λ

dC

k =
∑

σmk
>λ

dC

k . (4.28)

Since the multiplicities dC

k are non-decreasing as k grows, the quantity (4.28) can only
decrease if we replace in the sum in (4.28) the values of k by their smallest possible values,

n(λ) ≥

n0(λ)
∑

k=0

dC

k , (4.29)

where n0(λ) = #{σm > λ}. So, since dC

k = kd−1((d− 1)!)−1(1 +O(k−1)), we have

n(λ) ≥

n0(λ)
∑

k=0

kd

(d− 1)!
(1 +O(k−1)) = (1 +O(n0(λ)

−1))
n0(λ)

d

d!
. (4.30)

We substitute (4.30) into (4.27) and obtain

γ′n0(λ) ≤ (1 + o(1))
| log λ|

log | log λ|
, γ′ ∈ (1, γ− 1

d ). (4.31)
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We rewrite (4.31) in terms of an estimate for σm :

σm . Γ(γ′m)−1. (4.32)

We derive now an estimate for log |Λk| from (4.32). Fix some β > 1, to be determined later,
and apply Proposition 3.3 to the sequences ak = |Λk|, bk = Γ(γ′mk)

−1. Thus there exists a
subsequence Λkl such that

|Λkl| . Γ(γ′kl/β)
−1, (4.33)

or, in the logarithmic scale,

log |Λkl| ≤ −γ′β−1kl log(kl/β)(1 + o(1)). (4.34)

Now we introduce the complex variable ζ = ξ + iη and consider in the half-plane ξ > 0
the function

f(ζ) = 2

∫ ∞

0

V (r)r2ζ+2d−1e−r2dr. (4.35)

This function coincides with ΛkΓ(k + d) at the integer points ζ = k. Therefore, by (4.34)
at the points ζ = kl, the function f(ζ) satisfies

log |f(kl)| < log Γ(kl/β)− γ′β−1kl log(kl/β)(1 + o(1)) . (1− γ′/β) log Γ(kl/β). (4.36)

By Lemma 2.7, for ζ = ρeiϕ,

|f(ζ)| = O

(
∫ ∞

0

|V (r)|r2ρ cosϕ+2d−1e−r2dr

)

= O(Γ(ǫρ cosϕ)), ρ → +∞ (4.37)

for any ǫ > 0. Taking into account the asymptotics for the Γ-function for large real values
of argument, we obtain that the estimate (3.7) is satisfied for any a > 0, c > 0. Now, we
choose β > 1 so that γ′/β > 1. After this, we fix a, c > 0 so small that β−1

β
> a + c/2 and

2c < γ′/β − 1. Then, by Proposition 3.4, the sequence of integers {µl} obtained by the
increasing reordering of the sequence {kl}, satisfies the conditions (3.8) and (3.9). So, all
conditions of Theorem 3.7 are satisfied, and we can conclude that f(ζ) = 0 for all ζ.

It remain to notice that f(−ζ) is the Mellin transform of the function V (r)r2d−1e−r2 ,
and by the inversion theorem for the Mellin transform we conclude that V (r) ≡ 0, and this
takes care of the proof for the complex Bargmann space.
The proof for the space BR follows the reasoning above, only with d replaced by d− 1.
Now we consider the operator in the Helmholtz Bargmann space, where some more

changes are needed.
Similar to (4.27), we suppose that (4.25) is wrong, and this would mean that n(λ) ≤

γ((d − 1)!)−1
(

| log λ|
log | log λ

)d−1

for small λ and some γ < 1. By repeating the calculations in

(4.28)-(4.30), we obtain for the distribution function n0(λ) (now, of the numbers Λk = ΛH

k )
an estimate of the form (4.31), with some γ′ > 1. After this, we apply again Proposition
3.3 to obtain for a (sufficiently dense) subsequence Λkl the estimate (4.34). Starting from
this point, the reasoning is somewhat different.
We introduce the complex variable ζ = ξ + iη, ξ ≥ 0, and consider the function

f(ζ) = Γ2 (ζ + (d− 2)/2)

∫ ∞

0

J2
ζ+ d−2

2

V (r)e−r2rdr. (4.38)
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This function is analytical in the half-plane ξ > −1
2
. It follows also from (2.34) that

|f(ζ)| ≤ C

∫ ∞

0

r2(ζ+d/2)|V (r)|e−r2dr, (4.39)

and by (2.32), f(ζ) satisfies

|f(ζ)| = O(|Γ(ǫζ)|) (4.40)

for any ǫ > 0 as |ζ | → ∞, Re ζ > −1
2
. It follows that the function f(ζ) satisfies condition

(3.7) of Theorem 3.7, with arbitrarily small positive values of a, c.
After this property has been established, the proof follows the one for the complex

Bargmann space. For real integer ζ = k we have |f(k)| ≍ |Λk|Γ(k + (d− 2)/2). Therefore,
by (4.31), the values of f(ζ) at the points ζ = kl satisfy (4.36). We take β > 1 so close to
1 that γ′/β > 1 and then fix a, c so small that β−1

β
> a+ c/2 and 2c < γ′/β − 1. Then the

sequence of integers µl obtained by the increasing re-ordering of the sequence kl, satisfies
all conditions of Theorem 3.7, and therefore f(ζ) ≡ 0. This means, in particular, that all
numbers Λk are zeros, therefore TV = 0. To prove that this implies V = 0, we use (4.21)

to express
∫∞

0
r2mV (r)e−r2dr as a linear combination of the numbers Λk, all of them being

equal to zero. Therefore we obtain that the function g(ζ) =
∫∞

0
r2ζ+2dV (r)e−r2dr takes

zero values at all integer points. Finally, we note that, again by Lemma 2.7, function g(ζ)
satisfies the conditions of Theorem 3.7 with arbitrarily small positive a, c, and therefore
g ≡ 0. The proof that V ≡ 0 concludes again by the inversion theorem for the Mellin
transform.
The case of the space BAH is proved in the same way, with minimal changes.. �

5. Not that rapidly decaying symbols. A counterexample

The results of Sect.4 might lead to the impression that, probably, one should expect the
absence of cancelation of the positive and negative parts of the symbol in a more general
situation as well. The author was of such opinion for a certain time. However, the example
given in this Section shows that such impression is wrong.
We present here a construction of symbols that decay at infinity rather fast but not

sufficiently fast to get into the RD class. This symbols oscillate very rapidly at infinity.
We show that the s-numbers of the Toeplitz operator with symbol V decay essentially
faster than the ones for the operator with symbol |V |, so an analogy with theorems in Sect.
4 does not hold. In order to simplify the calculations, we restrict ourselves here to the
operators in the space BC in the one-dimensional case, d = 1. The same constructions work
in any dimension, and for the spaces BR as well. We suppose that for other spaces under
consideration a similar construction produces proper examples.
We consider the symbol

V (r) = Vp,q(r) = e−r2p+r2 sin(r2q) (5.1)

with p > 1, q > p.

Theorem 5.1. For the operator TV

lim sup
λ→0

n(λ, TV )
log | log λ|

| log λ|
≤

q

q − 1
, (5.2)



LOWER EIGENVALUE BOUNDS 21

while

n(λ, T|V |) ∼ n(λ, TV+
) ∼ n(λ, TV+

) ∼
p

p− 1

| log λ|

log | log λ|
, λ → 0. (5.3)

The difference in coefficients in front of | log λ|
log | log λ|

in (5.2), (5.3) transforms into a large

difference in the decay order of the eigenvalues:

log sn(TV ) .
q(p− 1)

p(q − 1)
log sn(T|V |), (5.4)

so, in fact, a rather strong cancelation takes place.

Proof. In order to prove (5.3), we need to estimate the numerator in (2.17), i.e., the integral

I(k) =

∫ ∞

0

e−r2p+r2 sin
(

r2q
)

e−r2r2k+1dr. (5.5)

After the change of variables t = r2q, (5.5) transforms to

I(k) = (2q + 1)−1

∫ ∞

0

t
k+2

q
−1e−tp/q sin tdt = ℑ(2q + 1)−1

∫ ∞

0

t
k+2

q
−1e−tp/q exp(it)dt. (5.6)

We consider here t as complex variable living on the positive real half-line and the whole
expression (5.6) as the integral in along this half-line.
Now we replace the integration line by means of rotating it to the line arg t = π/2. The

integral in (5.6) does not change due to the factor e−tp/q which decays fast in the whole first
quarter. So, by setting t = iτ , τ ∈ (0, 1), we have

|I(k)| ≤ (2q + 1)−1

∫ ∞

0

τ
k+2

q
−1e−τdτ = Γ((k + 2)/q). (5.7)

Finally, taking into account the expression for the denominator in (2.17) and Stirling’s
formula we arrive at (5.2).
To prove (5.3), we estimate the integral, say,

I+(k) =

∫ ∞

0

t
k+2

q
−1e−tp/q sin+(t)dt

from below. To do this we consider the intervals Ij = (2π/3 + 4πj, 4π/3 + 4πj). On each
of these intervals, for j large enough, sin(t) > 1

2
. This inequality easily implies a lower

estimate for I+(k) :

I+(k) ≥
∑

j

1

2

∫

Ij

k + 2

q
− 1e−tp/q sin+(t)dt ≥ C

∫ ∞

0

t
k+2

q
−1e−tp/qdt = CΓ

(

k + 2

p

)

,

which leads to (5.3). �
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