
ar
X

iv
:1

01
2.

35
47

v1
 [

m
at

h.
G

R
]

 1
6

D
ec

 2
01

0 Knuth-Bendix algorithm and the conjugacy

problems in monoids

Fabienne Chouraqui

Abstract

We present an algorithmic approach to the conjugacy problems in
monoids, using rewriting systems. We extend the classical theory of
rewriting developed by Knuth and Bendix to a rewriting that takes
into account the cyclic conjugates.

1 Introduction

The use of string rewriting systems or Thue systems has been proved to
be a very efficient tool to solve the word problem. Indeed, Book shows that
there is a linear-time algorithm to decide the word problem for a monoid
that is defined by a finite and complete rewriting system [1]. A question
that arises naturally is whether the use of rewriting systems may be an
efficient tool for solving other decision problems, specifically the conjugacy
problem. Several authors have studied this question, see [9, 8], [11], and
[12]. The complexity of this question is due to some facts. One point is that
for monoids the conjugacy problem and the word problem are independent
of each other [11]. This is different from the situation for groups. Another
point is that in semigroups and monoids, there are several different notions
of conjugacy that are not equivalent in general. We describe them in the
following.

Let M be a monoid (or a semigroup) generated by Σ and let u and v

be two words in the free monoid Σ∗. The right conjugacy problem asks
if there is a word x in the free monoid Σ∗ such that xv =M ux, and is
denoted by RConj. The left conjugacy problem asks if there is a word
y in the free monoid Σ∗ such that vy =M yu, and is denoted by LConj.
The conjunction of the left and the right conjugacy problems is denoted by
Conj. The relations LConj and RConj are reflexive and transitive but not

1

http://arxiv.org/abs/1012.3547v1

necessarily symmetric, while Conj is an equivalence relation. A different
generalization of conjugacy asks if there are words x, y in the free monoid
such that u =M xy and v =M yx. This is called the transposition problem
and it is denoted by Trans. This relation is reflexive and symmetric, but
not necessarily transitive.

In general, if the answer to this question is positive then the answer to
the above questions is also positive, that is Trans ⊆ Conj ⊆ LConj,RConj.
For free monoids, Lentin and Schutzenberger show that Trans = Conj =
LConj = RConj [6] and for monoids with a special presentation (that is all
the relations have the form r = 1) Zhang shows that Trans = RConj [15].
We denote by Trans* the transitive closure of Trans. Choffrut shows that
Trans* = Conj = LConj = RConj holds in a free inverse monoid FIM(X)
when restricted to the set of non-idempotents [3]. He shows that LConj is
an equivalence relation on FIM(X) and he proves the decidability of this
problem in this case. Silva generalized the results of Choffrut to a certain
class of one-relator inverse monoids. He proves the decidability of Trans for
FIM(X) with one idempotent relator [13].

In this work, we use rewriting systems in order to solve the conjugacy
problems presented above in some semigroups and monoids. A special
rewriting system satisfies the condition that all the rules have the form
l → 1, where l is any word. Otto shows that Trans = Conj = LConj for a
monoid with a special complete rewriting system and that Trans is an equiv-
alence relation. Moreover, he shows that whenever the rewriting system is
finite then the conjugacy problems are solvable [11]. Narendran and Otto
show that LConj and Conj are decidable for a finite, length-decreasing and
complete rewriting system [8] and that Trans is not decidable [9]. We de-
scribe our approach to solve the conjugacy problems using rewriting systems
in the following.

Let M be the finitely presented monoid Mon〈Σ | R〉 and let ℜ be a
complete rewriting system for M . Let u be a word in Σ∗, we consider u

and all its cyclic conjugates in Σ∗, {u1 = u, u2, .., uk}, and we apply on each
element ui rules from ℜ (whenever this is possible). We say that a word u is
cyclically irreducible if u and all its cyclic conjugates are irreducible modulo
ℜ. If for some 1 ≤ i ≤ n, ui reduces to v, then we say that u cyclically
reduces to v and we denote it by u # v, where # denotes a binary relation
on the words in Σ∗.

We define on # the properties of terminating and confluent in the same
way as for → and if # is terminating and confluent then each word u

reduces to a unique cyclically irreducible element denoted by ρ(u). We have
the following result that describes the relation between # and the conjugacy

2

problems, we write ρ(u) ≏ ρ(v) for ρ(u) and ρ(v) are cyclic conjugates in
the free monoid Σ∗.

Theorem 1. Let M be the finitely presented monoid Mon〈Σ | R〉 and let ℜ
be a complete rewriting system for M . Let u and v be words in Σ∗. Assume
that # is terminating and confluent. Then
(i) If u and v are transposed, then ρ(u) ≏ ρ(v).
(ii) If ρ(u) ≏ ρ(v), then u and v are left and right conjugates.

A completely simple semigroup is a semigroup that has no non-trivial
two-sided ideals and that possesses minimal one-sided ideals. Using the
results of McKnight and Storey in [7], it holds that Trans = Conj in a com-
pletely simple semigroup. So, in the case of completely simple semigroups
and monoids with a finite special complete rewriting system, our result gives
a solution to the conjugacy problems, whenever # is terminating and con-
fluent. Assuming that # is terminating, we find a sufficient condition for
the confluence of # that is based on an analysis of the rules in ℜ. Using this
condition, we give an algorithm of cyclical completion that is very much in-
spired by the Knuth-Bendix algorithm of completion. We have the following
main result.

Theorem 2. Let M be the finitely presented monoid Mon〈Σ | R〉 and let ℜ
be a complete rewriting system for M . Assume that # is terminating. Then
there exists an algorithm that gives as an output an equivalent relation #+

that is terminating and confluent (whenever it converges).

The paper is organized as follows. In Section 2, we define the binary
relation # on the words in Σ∗ and we establish its main properties. In
Section 3, we describe the connection between a terminating and confluent
relation # and the conjugacy problems. In Section 4, we adopt a local
approach as it is very difficult to decide wether a relation # is terminating,
we define there the notion of triple that is c̃-defined. In Section 5, we give
a sufficient condition for the confluence of #, given that it terminates. In
Section 6, using the results from Section 5, we give an algorithm of cyclical
completion that is very much inspired by the Knuth-Bendix algorithm of
completion. Given a terminating relation #, if it is not confluent then some
new cyclical reductions are added in order to obtain an equivalent relation
#+ that is terminating and confluent. At last, in Section 7, we address the
case of length-preserving rewriting systems. All along this paper, ℜ denotes
a complete rewriting system, not necessarily a finite one.

3

Acknowledgment. This work is a part of the author’s PhD research, done
at the Technion. I am very grateful to Professor Arye Juhasz, for his pa-
tience, his encouragement and his many helpful remarks. I am also grateful
to Professor Stuart Margolis for his comments on this result. I would like
to thank the anonymous referee for his comments which significantly helped
in improving the presentation of the paper.

2 Definition of the relation #

Let Σ be a non-empty set. We denote by Σ∗ the free monoid generated
by Σ; elements of Σ∗ are finite sequences called words and the empty word
will be denoted by 1. A rewriting system ℜ on Σ is a set of ordered pairs
in Σ∗ × Σ∗. If (l, r) ∈ ℜ then for any words u and v in Σ∗, we say that
the word ulv reduces to the word urv and we write ulv → urv . A word w

is said to be reducible if there is a word z such that w → z. If there is no
such z we call w irreducible. A rewriting system ℜ is called terminating (or
Noetherian) if there is no infinite sequence of reductions.

We denote by “→∗” the reflexive transitive closure of the relation “→”.
A rewriting system ℜ is called confluent if for any words u, v, w in Σ∗ ,
w →∗ u and w →∗ v implies that there is a word z in Σ∗ such that u →∗ z and
v →∗ z (that is if u and v have a common ancestor then they have a common
descendant). A rewriting system ℜ is called complete (or convergent) if ℜ is
terminating and confluent. If ℜ is complete then every word w in Σ∗ has a
unique irreducible equivalent word that is called the normal form of w. We
refer the reader to [2, 14, 10] for more details.

Let Mon〈Σ | R〉 be a finitely presented monoidM and let ℜ be a complete
rewriting system for M . Let u and v be elements in Σ∗. We define the
following binary relation u 	1 v if v is a cyclic conjugate of u obtained by
moving the first letter of u to be the last letter of v. We define u 	i v if v
is a cyclic conjugate of u obtained from i successive applications of 	1. We
allow i being 0 and in this case if u 	0 v then v = u in the free monoid Σ∗.
As an example, let u be the word abcdef in Σ∗. If u 	1 v and u 	4 w, then
v is the word bcdefa and w is the word efabcd in Σ∗.

We now translate the operation of taking cyclic conjugates and reducing
them using the rewriting system ℜ in terms of a binary relation. We say
that u cyclically reduces to v and we write

u # v (2.1)

4

if there is a sequence

u 	
i ũ → v (2.2)

From its definition, the relation # is not compatible with concatenation.
We define by #∗ the reflexive and transitive closure of #, that is u #∗ v if
there is a sequence u # u1 # u2 # ...uk−1 # v. We call such a sequence
a sequence of cyclical reductions. A sequence of cyclical reductions is trivial
if it is equivalent to 	∗. We use the following notation:
- ũ denotes a cyclic conjugate of u in the free monoid Σ∗.
- u ≏ v if u and v are cyclic conjugates in the free monoid Σ∗.
- u =M v if the words u and v are equal as elements in M .
- u = v if the words u and v are equal in the free monoid Σ∗.
Now, we define the properties of terminating and confluent for # in the
same way as it is done for →. Note that given words u and v if we write
u # v or u #∗ v, we assume implicitly that this is done in a finite number
of steps.

Definition 2.1. We say that ℜ is cyclically terminating (or # is terminat-
ing) if there is no (non-trivial) infinite sequence of cyclical reductions. We
say that ℜ is cyclically confluent (or # is confluent) if for any words u, v, w
in Σ∗, w #∗ u and w #∗ v implies that there exist cyclically conjugates
words z and z′ in Σ∗ such that u #∗ z and v #∗ z′. We say that ℜ is locally
cyclically confluent (or # is locally confluent) if for any words u, v, w in Σ∗,
w # u and w # v implies that there exist cyclically conjugates words z and
z′ in Σ∗ such that u #∗ z and v #∗ z′. We say that ℜ is cyclically complete
if ℜ is cyclically terminating and cyclically confluent.

Example 2.2. Let ℜ = {ab → bc, cd → da}, ℜ is a complete and finite
rewriting system. Consider the word bcd, we have bcd → bda 	2 abd →
bcd → .., that is there is an infinite sequence of cyclical reductions. So, ℜ is
not cyclically terminating.

Definition 2.3. We say that a word u is cyclically irreducible if u and all its
cyclic conjugates are irreducible modulo ℜ, that is there is no v in Σ∗ such
that u # v (unless u ≏ v). We define a cyclically irreducible form of u (if
it exists) to be a cyclically irreducible word v (up to ≏) such that u #∗ v.
We denote by ρ(u) a cyclically irreducible form of u, if it exists.

Example 2.4. Let ℜ = {ab → bc, cd → da} as before. From Ex. 2.2, bcd does
not have any cyclically irreducible form. But, the word acd has a unique
cyclically irreducible form ada since acd → ada and no rule from ℜ can be
applied on ada or on any cyclic conjugate of ada in Σ∗.

5

As in the case of →, the following facts hold also for # with a very
similar proof. If ℜ is cyclically terminating, then each word in Σ∗ has at
least one cyclically irreducible form. If ℜ is cyclically confluent, then each
word in Σ∗ has at most one cyclically irreducible form. So, if ℜ is cyclically
complete, then each word in Σ∗ has a unique cyclically irreducible form.
Moreover, if w ≏ w′, then w and w′ have the same cyclically irreducible
form (up to ≏). Given that # is terminating, ℜ is cyclically confluent if
and only if ℜ is locally cyclically confluent.

Example 2.5. In [5], Hermiller and Meier construct a finite and complete
rewriting system for the group Gp〈a, b | aba = bab〉, using another set of
generators. For the monoid with the same presentation, the set of gen-
erators is: {a, b, ab, ba,∆ = aba}, where the underlining of a sequence
of letters means that it is a generator in the new generating set. The
complete and finite rewriting system is ℜ = {ab → ab, ba → ba, aba →
∆, aba → ∆, bab → ∆, ab ab → a∆, bab → ∆, ba ba → b∆,∆a → b∆,∆b →
a∆,∆ab → ba∆,∆ba → ab∆}. Let consider the word ab, then ab → ab and
ab 	1 ba → ba. That is, ab # ab and ab # ba, where both ab and ba are
cyclically irreducible, so ℜ is not cyclically confluent (nor locally cyclically
confluent).

3 The relation # and the conjugacy problems

We denote by u ≡M v the following equivalence relation: there are words
x, y in Σ∗ such that ux =M xv and yu =M vy, that is u and v are left and
right conjugates. We describe the connection between the relations #, ≡
and the transposition problem.

Proposition 3.1. Let M denote the finitely presented monoid Mon〈Σ | R〉
and let ℜ be a complete rewriting system for M . Let u and v be in Σ∗.
(i) If u #∗ v, then the pair (u, v) is in the transitive closure of the transpo-
sition relation and therefore u ≡M v.
(ii) If ρ(u) ≏ ρ(v), then u ≡M v (whenever ρ(u) and ρ(v) exist).

Proof. (i) If the sequence of cyclical reductions has the following form: u 	i

ũ →∗ v, then u and v are transposed. Otherwise, if u = u1 	i ũ →∗ u2 	i

ũ2 →
∗ u3... →

∗ uk = v, then each pair (ui, ui+1) is transposed. So, the pair
(u, v) is in the transitive closure of the transposition relation and therefore
u ≡M v. (ii) From (i), u ≡M ρ(u) and v ≡M ρ(v), so u ≡M v, since
ρ(u) ≏ ρ(v) and ≡M is an equivalence relation.

6

The converse of (ii) is not true in general, namely u ≡M v does not imply
that ρ(u) ≏ ρ(v). Let ℜ = {bab → aba, banba → aba2bn−1, n ≥ 2}. Then ℜ
is a complete and infinite rewriting system for the braid monoid presented
by Mon〈a, b | aba = bab〉. It holds that a ≡M b, since a(aba) =M (aba)b
and (aba)a =M b(aba), but ρ(a) = a and ρ(b) = b and they are not cyclic
conjugates. This example is due to Patrick Dehornoy.

Lemma 3.2. Let ℜ be a complete and cyclically complete rewriting system
for M . Let u and v be words in Σ∗. If u =M v, then ρ(u) ≏ ρ(v).

Proof. Assume that u #∗ z and v #∗ z′, where z, z′ are cyclically irre-
ducible. We show that z ≏ z′. Since ℜ is a complete rewriting system,
equivalent words (modulo ℜ) reduce to the same normal form. Here u =M v,
so there is a unique irreducible word w such that u →∗ w and v →∗ w.

We have the following diagram:

u #∗ z

ց∗

w

ր∗

v #∗ z′

Assume that w #∗ z′′, so u #∗ z′′ and v #∗ z′′. But u #∗ z and v #∗ z′

and ℜ is cyclically complete, so z ≏ z′′ ≏ z′.

Theorem 3.3. Let ℜ be a complete and cyclically complete rewriting system
for M . Let u and v be words in Σ∗.
(i) If u and v are transposed, then ρ(u) ≏ ρ(v).
(ii) If ρ(u) ≏ ρ(v), then u ≡M v.

Proof. (i) Since u and v are transposed, there are words x and y in Σ∗ such
that u =M xy and v =M yx. From lemma 3.2, ρ(xy) ≏ ρ(u) and ρ(yx) ≏
ρ(v). Moreover, since xy ≏ yx and ℜ is cyclically complete, ρ(xy) ≏ ρ(yx),
so ρ(u) ≏ ρ(v). (ii) holds from Proposition 3.1 in a more general context.

4 A local approach for #: definition of Allseq(w)

Given a complete rewriting system ℜ, it is a very hard task to determine
if ℜ is cyclically terminating, since we have to check a potentially infinite
number of words. So, we adopt a local approach, that is for each word w in
Σ∗ we consider all the possible sequences of cyclical reductions that begin
by each word from {w1, .., wk}, where w1 = w,w2, .., wk are all the cyclic
conjugates of w in Σ∗. We call the set of all these sequences Allseq(w).
We say that Allseq(w) terminates if there is no infinite sequence of cyclical

7

reductions in Allseq(w). Clearly, ℜ is cyclically terminating if and only if
Allseq(w) terminates for every w in Σ∗.

Example 4.1. Let ℜ = {bab → aba, banba → aba2bn−1, where n ≥ 2}. Then
ℜ is a complete and infinite rewriting system for the braid monoid presented
by Mon〈a, b | aba = bab〉. We denote by w the word ba2ba. We have the
following infinite sequence of cyclical reductions: ba2ba → aba2b 	1 ba2ba,
that is Allseq(w) does not terminate. This holds also for banba for each
n ≥ 2.

We say that Allseq(w) converges if a unique cyclically irreducible form
is achieved in Allseq(w) (up to ≏). Clearly, if ℜ is cyclically confluent then
Allseq(w) converges for every w in Σ∗. The converse is true only if ℜ is
cyclically terminating. We illustrate this with an example.

Example 4.2. Let ℜ = {bab → aba, banba → aba2bn−1, where n ≥ 2} as
in Ex. 4.1. It holds that Allseq(ba2ba) does not terminate (see Ex. 4.1).
Yet, Allseq(ba2ba) converges, since a3ba is the unique cyclically irreducible
form achieved in Allseq(w). Indeed, there is the following sequence of cycli-
cal reductions: ba2ba 	1 a2bab → a3ba and all the cyclic conjugates of w
cyclically reduce to a3ba. So, although Allseq(ba2ba) does not terminate, a
unique cyclically irreducible form a3ba is achieved.

We find a condition that ensures that Allseq(w) converges, given that
Allseq(w) terminates. Before we proceed, we give the following definition.

Definition 4.3. Let ℜ be a complete rewriting system and let w be a word
in Σ∗. Let r1 and r2 be rules in ℜ such that r1 can be applied on a cyclic
conjugate of w and r2 can be applied on another one. We say that the triple
(w, r1, r2) is c̃-defined if there is a cyclic conjugate w̃ of w such that both
rules r1 and r2 can be applied on w̃. We allow an empty entry in a triple
(w, r1, r2), that is only r1 or r2 can be applied.

Example 4.4. Let Mon〈x, y, z | xy = yz = zx〉, this is the Wirtinger pre-
sentation of the trefoil knot group. Let ℜ = {xy → zx, yz → zx, xznx →
zxzyn−1, n ≥ 1} be a complete and infinite rewriting system for the monoid
with this presentation (see [4]). Let consider the word yxz2x, yxz2x and
xyxz2 are cyclic conjugates on which the rules xz2x → zxzy and xy →
zx can be applied respectively. We claim that the triple (yxz2x, xz2x →
zxzy, xy → zx) is c̃-defined. Indeed, there is the cyclic conjugate xz2xy on
which both the rules xz2x → zxzy and xy → zx can be applied. But, as an
example the triple (xz2xz3, xz2x → zxzy, xz3x → zxzy2) is not c̃-defined.

In what follows, we show that if Allseq(w) terminates and all the triples
occurring there are c̃-defined, then Allseq(w) converges. The following

8

lemma is the induction basis of the proof. For brevity, we write u #r1 v1
for u 	 u1 →r1 v1, where u1 →r1 v1 means that v1 is obtained from the
application of the rule r1 on u1.

Lemma 4.5. Let the triple (w, r1, r2) be c̃-defined. Assume that w #r1 v1
and w #r2 v2, then there are cyclically conjugates words z1 and z2 such that
v1 #

∗ z1 and v2 #
∗ z2.

Proof. We denote by ℓ1 and ℓ2 the left-hand sides of the rules r1 and r2
respectively and by m1 and m2 the corresponding right-hand sides. Then ℓ1
has an occurrence in w1 and ℓ2 has an occurrence in w2, where w1 ≏ w2 ≏ w.
Since (w, r1, r2) is c̃-defined, there exists w̃ such that w̃ ≏ w and ℓ1 and ℓ2
both have an occurrence in w̃. Then one of the following holds:
(i) w̃ = xℓ1yℓ2s, where x, y, s are words.
(ii) w̃ = xℓ2yℓ1s, where x, y, s are words.
(iii) w̃ = xℓ1ℓ

′′

2y, where x, y are words, ℓ1 = ℓ′1ℓ
′′

1, ℓ2 = ℓ′2ℓ
′′

2 and ℓ′′1 = ℓ′2.
(iv) w̃ = xℓ2ℓ

′′

1y, where x, y are words, ℓ1 = ℓ′1ℓ
′′

1, ℓ2 = ℓ′2ℓ
′′

2 and ℓ′′2 = ℓ′1.
(v) w̃ = xℓ2y, where x, y are words, ℓ1 is a subword of ℓ2.
(vi) w̃ = xℓ1y, where x, y are words, ℓ2 is a subword of ℓ1.
We check the cases (i), (iii) and (v) and the other three cases are symmetric.
If both ℓ1 and ℓ2 have an occurrence in w1 and in w2, then obviously there
are words z1 and z2 such that v1 # z1 and v2 # z2, where z1 ≏ z2. So,
assume that ℓ1 has no occurrence in w2 and ℓ2 has no occurrence in w1.
Case (i): Assume that w̃ = xℓ1yℓ2s. Then the words w1 and w2 have the
following form: w1 = ℓ′′2sxℓ1yℓ

′

2 and w2 = ℓ′′1yℓ2sxℓ
′

1, where ℓ1 = ℓ′1ℓ
′′

1 and
ℓ2 = ℓ′2ℓ

′′

2. This is due to the fact that ℓ1 has no occurrence in w2 and ℓ2 has
no occurrence in w1. So, w1 = ℓ′′2sxℓ1yℓ

′

2 → ℓ′′2sxm1yℓ
′

2 	i sxm1yℓ
′

2ℓ
′′

2 →
sxm1ym2 and w2 = ℓ′′1yℓ2sxℓ

′

1 → ℓ′′1ym2sxℓ
′

1 	j ym2sxℓ
′

1ℓ
′′

1 → ym2sxm1.
We take then z1 to be sxm1ym2 and z2 to be ym2sxm1.
Case (iii): Assume that w̃ = xℓ1ℓ

′′

2y, where ℓ′′1 = ℓ′2. There is an overlap
ambiguity between these rules which resolve, since ℜ is complete:

ℓ′1ℓ
′′

1ℓ
′′

2

ւ ց
m1ℓ

′′

2 ℓ′1m2

ց∗ ւ∗

z

The words w1 and w2 have the following form: w1 = ℓ′′2yxℓ1 and w2 =
ℓ2yxℓ

′

1. So, w1 = ℓ′′2yxℓ1 → ℓ′′2yxm1 	
i m1ℓ

′′

2yx →∗ zyx and w2 = ℓ2yxℓ
′

1 →
m2yxℓ

′

1 	
j ℓ′1m2yx →∗ zyx. So, we take z1 and z2 to be zyx.

Case (v): Assume that w̃ = xℓ2y, where ℓ2 = sℓ1t. There is an inclusion
ambiguity between these rules which resolve, since ℜ is complete:

9

ℓ2 = sℓ1t

ւ ց
sm1t m2

ց∗ ւ∗

z

The words w1 and w2 have the following form: w1 = tyxsℓ1 and w2 = w̃ =
xℓ2y. So, w1 = tyxsℓ1 → tyxsm1 	i sm1tyx →∗ zyx and w2 = xℓ2y →
xm2y →∗ xzy. So, we take z1 to be zyx and z2 to be xzy.

Proposition 4.6. Let w be a word in Σ∗ and assume that Allseq(w) ter-
minates. Assume all the triples in Allseq(w) are c̃-defined, then Allseq(w)
converges.

Proof. We show that the restriction of # to Allseq(w) is confluent. Since
Allseq(w) terminates, it is enough to show that the restriction of # to
Allseq(w) is locally confluent. All the triples in Allseq(w) are c̃-defined, so
from lemma 4.5 the restriction of # to Allseq(w) is locally confluent.

5 A sufficient condition for the confluence of #

We find a sufficient condition for the confluence of #, that is based on
an analysis of the rules in ℜ. For that, we translate the signification of a
triple that is not c̃-defined in terms of the rules in ℜ.

Definition 5.1. Let w = x1x2x3..xk be a word, where the xi are generators
for 1 ≤ i ≤ k. Then we define the following sets of words:
pre(w) = {x1, x1x2, x1x2x3, .., x1x2x3..xk}
suf(w) = {xk, xk−1xk, xk−2xk−1xk, .., x1x2x3..xk}

Lemma 5.2. Let (w, r1, r2) be a triple and let ℓ1 and ℓ2 denote the left-
hand sides of the rules r1 and r2, respectively. If pre(ℓ2) ∩ suf(ℓ1) = ∅ or
pre(ℓ1) ∩ suf(ℓ2) = ∅, then the triple (w, r1, r2) is c̃-defined.

Proof. From the assumption, ℓ1 is a subword of w1 and ℓ2 is a subword of
w2, where w1 and w2 are cyclic conjugates of w. We show that there exists
a cyclic conjugate of w, w̃, such that both ℓ1 and ℓ2 are subwords of w̃. If
pre(ℓ2)∩ suf(ℓ1) = ∅ and pre(ℓ1)∩ suf(ℓ2) = ∅ or if pre(ℓ2)∩ suf(ℓ1) 6= ∅ and
pre(ℓ1)∩suf(ℓ2) = ∅, take w̃ to be such that it ends in ℓ2 and then ℓ1 will also
have an occurrence in w̃. If pre(ℓ2) ∩ suf(ℓ1) = ∅ and pre(ℓ1) ∩ suf(ℓ2) 6= ∅,
take w̃ to be such that it ends in ℓ1 and then ℓ2 will also have an occurrence
in w̃.

10

Note that if pre(ℓ2) ∩ suf(ℓ1) 6= ∅ and pre(ℓ1) ∩ suf(ℓ2) 6= ∅, then it
does not necessarily imply that all the triples of the form (w, r1, r2) are not
c̃-defined. Yet, as the following example illustrates it, there exists a triple
(w, r1, r2) that is not c̃-defined.

Example 5.3. Let ℜ = {xy → zx, yz → zx, xznx → zxzyn−1, n ≥ 1} from
Ex. 4.4. The rules xz2x → zxzy and xz3x → zxzy2 satisfy pre(xz2x) ∩
suf(xz3x) = {x} and pre(xz3x)∩ suf(xz2x) = {x}. Yet, the triple (xz2xz3x,
xz2x → zxzy, xz3x → zxzy2) is c̃-defined, but the triple (xz2xz3, xz2x →
zxzy, xz3x → zxzy2) is not c̃-defined.

Lemma 5.4. Let (w, r1, r2) be a triple and we denote by ℓ1 and ℓ2 the left-
hand sides of the rules r1 and r2, respectively. Assume that (w, r1, r2) is not
c̃-defined. Then ℓ1 = xuy and ℓ2 = yvx, where u, v are words and x, y are
non-empty words.

Proof. The triple (w, r1, r2) is not c̃-defined, so from lemma 5.2, pre(ℓ2) ∩
suf(ℓ1) 6= ∅ and pre(ℓ1) ∩ suf(ℓ2) 6= ∅. Assume that pre(ℓ2) ∩ suf(ℓ1) ⊇ {x}
and pre(ℓ1) ∩ suf(ℓ2) ⊇ {y}, where x, y are non-empty words. So, ℓ1 and ℓ2
have one of the following forms:
(i) ℓ1 = xuy and ℓ2 = yvx, where u, v are words.
(ii) ℓ1 = xy and ℓ2 = yx′′, where x = x′x′′, y = y′y′′ and y′′ = x′.
(iii) ℓ1 = xy′′ and ℓ2 = yx, where x = x′x′′, y = y′y′′ and x′′ = y′.
(iv) ℓ1 = xy′′ and ℓ2 = yx′′, where x = x′x′′, y = y′y′′, and y′′ = x′, x′′ = y′.
We show that only case (i) occurs, by showing that in the cases (ii), (iii)
and (iv) the triple (w, r1, r2) is c̃-defined. This is done by describing w̃ on
which both r1 and r2 can be applied. In any case, w1 has to contain an
occurrence of ℓ1 and w2 has to contain an occurrence of ℓ2, where w1 and
w2 are cyclic conjugates of w. In case (ii), ℓ1 = x′x′′y′y′′ and ℓ2 = y′y′′x′′,
where y′′ = x′, so there exists w̃ = x′x′′y′y′′x′′ that contains an occurrence
of ℓ1 and an occurrence of ℓ2. Case (iii) is symmetric to case (ii) and we
consider case (iv). In case (iv), ℓ1 = x′x′′y′′ and ℓ2 = y′y′′x′′, where y′′ = x′

and x′′ = y′, so using the same argument as before, take w̃ to be x′x′′y′′x′′.
So, case (i) occurs and w has the form xuyv.

Definition 5.5. We say that there is a cyclical overlap between rules, if
there are two rules in ℜ of the form xuy → u′ and yvx → v′, where u′, v′

are words, u, v, x, y are non-empty words and such that u′v and v′u are not
cyclic conjugates in Σ∗. We say that there is a cyclical inclusion if there
are two rules in ℜ, l → v and l′ → v′, where l, v, l′, v′ are words and l′ is
a cyclic conjugate of l or l′ is a proper subword of a cyclic conjugate of l.
Whenever l′ is a cyclic conjugate of l, v and v′ are not cyclic conjugates in

11

Σ∗ and whenever l′ is a proper subword of ℓ1, where ℓ1 is a cyclic conjugate
of l (there is a non-empty word u such that ℓ1 = ul′), then it holds that
l → r and l 	i ℓ1 = ul′ → uv′ and v and uv′ are not cyclic conjugates in Σ∗.

In Example 5.3, there is a cyclical overlap between the rules xz2x → zxzy

and xz3x → zxzy2. In Example 2.5, there is a cyclical inclusion between
the rules ab → ab and ba → ba, since ab is a cyclic conjugate of ba. In
Example 4.1, there is a cyclical inclusion of the rule bab → aba in the rule
ba2ba → aba2b, since bab is a subword of baba2 (a cyclic conjugate of ba2ba).

Lemma 5.6. Let (w, r1, r2) be a triple and let ℓ1 and ℓ2 be the left-hand
sides of the rules r1 and r2, respectively. Assume that the triple (w, r1, r2) is
not c̃-defined. Then there is a cyclical overlap or a cyclical inclusion between
r1 and r2.

Proof. The triple (w, r1, r2) is not c̃-defined, so from lemma 5.4, ℓ1 = xuy

and ℓ2 = yvx, where x, y are non-empty words and u, v are words. If u and
v are both the empty word, then ℓ1 and ℓ2 are cyclic conjugates, that is
there is a cyclical inclusion. If u is the empty word but v is not the empty
word, then ℓ1 = xy and ℓ2 = yvx, which means that ℓ1 is a subword of a
cyclic conjugate of ℓ2. So, in this case and in the symmetric case (that is v
is the empty word but u is not the empty word) there is a cyclical inclusion.
If none of u and v is the empty word, then ℓ1 = xuy and ℓ2 = yvx, that is
there is a cyclical overlap between these two rules.

Proposition 5.7. Let w be a word in Σ∗ and assume that Allseq(w) termi-
nates. If there are no cyclical overlaps and cyclical inclusions in Allseq(w),
then Allseq(w) converges.

Proof. If Allseq(w) does not converge, then from Proposition 4.6, this im-
plies that there is a triple (w, r1, r2) in Allseq(w) that is not c̃−defined.
From lemma 5.6, this implies that there is a cyclical overlap or a cyclical
inclusion in Allseq(w).

Note that the converse is not necessarily true, that is there may be a
cyclical overlap or a cyclical inclusion in Allseq(w) and yet a unique cyclically
irreducible form is achieved in Allseq(w), as in the following example.

Example 5.8. Let ℜ = {bab → aba, banba → aba2bn−1, n ≥ 2}. Let w =
ba2ba, then Allseq(w) does not terminate (see Ex. 4.1). The triple (w, bab →
aba, ba2ba → aba2b) is not c̃−defined since there is a cyclical inclusion of the
rule bab → aba in the rule ba2ba → aba2b. Nevertheless, w has a unique
cyclically irreducible form ba4 (up to ≏): ba2ba → aba2b 	4 baba2 → abaa2.

12

In fact, each w = banba where n ≥ 2 has a unique cyclically irreducible form
ban+2 (up to ≏).

Theorem 5.9. Let ℜ be a complete rewriting system that is cyclically termi-
nating. If there are no rules in ℜ with cyclical overlaps or cyclical inclusions,
then ℜ is cyclically confluent.

Proof. From Proposition 5.7, if there are no rules in ℜ with cyclical overlaps
or cyclical inclusions then Allseq(w) converges for all w. Since ℜ is cyclically
terminating, ℜ is cyclically confluent if and only if Allseq(w) converges for
all w, so the proof is done.

6 The algorithm of cyclical completion

Knuth and Bendix have elaborated an algorithm which for a given finite
and terminating rewriting system ℜ, tests its completeness and if ℜ is not
complete then new rules are added to complete it. This procedure can have
one of three outcomes: success in finding a finite and complete system,
failure in finding anything or looping and and generating an infinite number
of rules (see [10]). Instead of testing the confluence of ℜ, the algorithm tests
the locally confluence of ℜ, since for a terminating rewriting system locally
confluence and confluence are equivalent. Two rewriting systems ℜ and ℜ′

are said to be equivalent if : w1 ↔∗ w2 modulo ℜ if and only if w1 ↔∗ w2

modulo ℜ′. So, by applying the Knuth-Bendix algorithm on a terminating
rewriting system ℜ a complete rewriting system ℜ′ that is equivalent to ℜ
can be found (if the algorithm does not fail). Our aim in this section is to
provide an algorithm of cyclical completion which is much inspired by the
Knuth-Bendix algorithm of completion.

Let ℜ be a complete and cyclically terminating rewriting system, we
assume that ℜ is finite. From Theorem 5.9, if there are no cyclical overlaps
or cyclical inclusions then ℜ is cyclically confluent. Nevertheless, if there is
a cyclical overlap or a cyclical inclusion, we define when it resolves in the
following way. We say that the cyclical overlap between the rules xuy → u′

and yvx → v′, where u, v, u′, v′ are words, x, y are non-empty words resolves
if there exist cyclically conjugate words z and z′ such that u′v #∗ z and
uv′ #∗ z′. If there is a cyclical inclusion between the rules l → v and l′ → v′,
where l, v, l′, v′ are words and l′ is a cyclic conjugate of l or l′ is a proper
subword of a cyclic conjugate of l, then we say that it resolves if there exist
cyclically conjugate words z and z′ such that v #∗ z and v′ #∗ z′ in the
first case or v #∗ z and uv′ #∗ z′ in the second case (z ≏ z′).

13

Example 6.1. We consider the complete and finite rewriting system from
Ex. 2.5. Since there is a cyclical inclusion between the rules ab → ab and
ba → ba, it holds that ab # ab and ab # ba, where ab and ba are cyclically
irreducible. We can decide arbitrarily wether ab #+ ba or ba #+ ab, in any
case this cyclical inclusion resolves.

In the following, we describe the algorithm of cyclical completion in
which we add some new cyclical reductions. We denote by ℜ+ the rewriting
system with the added cyclical reductions and we add “+” in #+ for each
cyclical reduction that is added in the process of cyclical completion. We
assume that ℜ is a finite, complete and cyclically terminating rewriting
system. The algorithm is described in the following.
(i) If there are no cyclical overlaps or cyclical inclusions, then ℜ is cyclically
confluent, from Theorem 5.9 and ℜ+ = ℜ.
(ii) Assume there is a cyclical overlap or a cyclical inclusion in the word w:
w # z1 and w # z2.
With no loss of generality, we can assume that z1 and z2 are cyclically
irreducible (since otherwise we can first cyclically reduce them), then decide
z1 #

+ z2 or z2 #
+ z1. If at a former step, no zi #

+ u or u #+ zi for i = 1, 2
was added, then we can decide arbitrarily wether z1 #

+ z2 or z2 #
+ z1. As

an example, if z1 #
+ u was added, then we choose z2 #

+ z1.
The algorithm fails if the addition of a new cyclical reduction creates

a contradiction: assume z1 and z2 are cyclically irreducible and we need
to add z1 #+ z2 or z2 #+ z1 but z1 #+ u and z2 #+ v are already
in ℜ+. In the Knuth-Bendix algorithm of completion, the addition of the
new rules may create some additional overlap or inclusion ambiguities. We
show in the following that this is not the case with the algorithm of cyclical
completion and this is due to the fact that the relation # is not compatible
with concatenation. From Proposition 3.1, if u #∗ v then u ≡M v. In the
following lemma, we show that this holds also with #+.

Lemma 6.2. Let ℜ be a complete and cyclically terminating rewriting sys-
tem. We assume that ℜ is finite. Let ℜ+ be the cyclical rewriting system
obtained from the application of the algorithm of cyclical completion on ℜ.
If u #+ v then u ≡M v modulo ℜ.

Proof. There are two cases to check: if u #+ v and if u #+ u2 #
+ u3.. #

+

v. If u #+ v, then from the algorithm of cyclical completion, there is
a word w such that w #∗ u and w #∗ v. From Proposition 3.1, this
implies w ≡M u and w ≡M v (modulo ℜ), so u ≡M v (modulo ℜ). If
u #+ u2 #

+ u3..uk #+ v, then ui ≡M ui+1 (modulo ℜ) from the first case,
so u ≡M v (modulo ℜ).

14

Given two complete and cyclically terminating rewriting systems ℜ and
ℜ′, we say that ℜ and ℜ′ are cyclically equivalent if the following condition
holds: u ≡M v modulo ℜ′ if and only if u ≡M v modulo ℜ. We show that the
cyclical rewriting system ℜ+ obtained from the application of the algorithm
of cyclical completion on ℜ is cyclically equivalent to ℜ.

Lemma 6.3. Let ℜ be a complete and cyclically terminating rewriting sys-
tem, we assume that ℜ is finite. Let ℜ+ be the cyclical rewriting system
obtained from the application of the algorithm of cyclical completion on ℜ.
Then ℜ+ and ℜ are cyclically equivalent, that is u ≡M v modulo ℜ+ if and
only if u ≡M v modulo ℜ.

Proof. It holds that u ≡M v modulo ℜ if and only if there are words x, y in
Σ∗ such that ux =M xv and yu =M vy. Since the (linear) rules in ℜ+ are
the same as those in ℜ, this holds if and only if u ≡M v modulo ℜ+ also.

We say that there is a cyclical ambiguity in w if w #∗ u and w #∗ v,
where u and v are not cyclic conjugates. If there exist cyclically conjugate
words z and z′ in Σ∗ such that u #∗ z and v #∗ z′, then we say that this
cyclical ambiguity resolves. Clearly, a rewriting system is cyclically conflu-
ent if and only if all the cyclical ambiguities resolve. Now, we show that
whenever the algorithm of cyclical completion does not fail, the rewriting
system obtained ℜ+ is cyclically complete.

Proposition 6.4. Let ℜ be a complete and cyclically terminating rewriting
system, we assume that ℜ is finite. Let ℜ+ be the cyclical rewriting system
obtained from the application of the algorithm of cyclical completion on ℜ.
Then ℜ+ is cyclically complete.

Proof. We need to show that ℜ+ is cyclically confluent. Clearly, by the
application of the algorithm of cyclical completion on ℜ the cyclical overlaps
and inclusions in ℜ are resolved. So, it remains to show that the addition
of the new cyclical rules in ℜ+ does not create a cyclical ambiguity. If a
cyclical ambiguity occurs, then there should be one of the following kind of
rules in ℜ+:
- u #+ v and l → x, where l ≏ u.
- u #+ v and l #+ x, where l ≏ u.
The first case cannot occur, since u is cyclically irreducible modulo ℜ and
the second case cannot occur, since in this case the algorithm of cyclical
completion fails.

15

7 Length-preserving rewriting systems

We say that a rewriting system ℜ is length-preserving if ℜ satisfies the
condition that the left-hand sides of rules have the same length as their
corresponding right-hand sides. We show that if ℜ is a length-preserving
rewriting system, then an infinite sequence of cyclical reductions occur only
if there is a repetition of some word in the sequence or if a word and its cyclic
conjugate occur there. Using this fact, we define an equivalence relation on
the words that permits us to obtain some partial results in the case that ℜ
is not cyclically terminating.

Lemma 7.1. Let ℜ be a complete rewriting system that is length-preserving.
If there is an infinite sequence of cyclical reductions, then it contains (at two
different positions) words that are cyclic conjugates .

Proof. From the assumption, applying ℜ on a word u does not change its
length ℓ(u), so all the words appearing in such an infinite sequence have the
same length. Since the number of words of length ℓ(u) is finite, an infinite
sequence of cyclical reductions occurs only if it contains words that are cyclic
conjugates at two different positions.

Note that using the same argument as in lemma 7.1, we have that if ℜ is
length-decreasing, that is all the left-hand sides of rules have length greater
than their corresponding right-hand sides, then there is no infinite sequence
of cyclical reductions, that is ℜ is cyclically terminating. In the following
lemma, we show that if there is an infinite sequence of cyclical reductions
that results from the occurrence of a word w and its cyclic conjugate w̃,
then there are some relations of commutativity involving w and w̃. This is
not clear if these relations of commutativity are a sufficient condition for the
occurrence of an infinite sequence, nor if such a sufficient condition can be
found.

Lemma 7.2. Assume there is an infinite sequence w #∗ w̃, where w ≏ w̃.
Then there are words x, y such that yxw̃ =M w̃yx and xyw =M wxy.

Proof. From Proposition 3.1, w ≡M w̃, that is there are words x, y in Σ∗

such that wx =M xw̃ and yw =M w̃y. So, wxy =M xw̃y =M xyw and
yxw̃ =M ywx =M w̃yx.

We now define the following equivalence relation ∼ on Σ∗. Let u, v be
different words in Σ∗. We define u ∼ v if and only if u #∗ v and v #∗ u,
this is an equivalence relation. Clearly, if ℜ is cyclically terminating, then

16

each equivalence class contains a single word, up to ≏. Now, we show that
there is a partial solution to the left and right conjugacy problem, using ∼
in the case that ℜ is not cyclically terminating. Note that given a word w

such that Allseq(w) does not terminate, it may occur one of the following;
either there is no cyclically irreducible form achieved in Allseq(w) (as in Ex.
2.2) or there is a unique cyclically irreducible form achieved in Allseq(w) (as
in Ex. 4.2).

Proposition 7.3. Let u and v be in Σ∗. If there exists a word z such that
u ∼ z and v ∼ z, then u ≡M v.

Proof. If there exists a word z such that u ∼ z and v ∼ z, then from the
definition of ∼ there are sequences u #∗ z and v #∗ z. From Proposition
3.1, this implies u ≡M z and v ≡M z, so u ≡M v.

Note that the converse is not true as the following example illustrates it.

Example 7.4. Let ℜ = {bab → aba, banba → aba2bn−1, n ≥ 2}. It holds that
a ≡M b, since a(aba) =M (aba)b and (aba)a =M b(aba). Yet, there is no
sequence of cyclical reductions such that a ∼ b.

We can consider a rewriting system that is not length increasing (that is
all the rules preserve or decrease the length) to be cyclically terminating up
to ∼ and apply on it the algorithm of cyclical completion and obtain that
it is cyclically complete up to ∼. This is due to the fact that also in this
case infinite cyclical sequences would result from the occurrence of a word
and its cyclic conjugate. If there exists a cyclically irreducible form then it
is unique, but the existence of a cyclically irreducible form is not ensured.
The complete and finite rewriting system ℜ from Ex. 2.5 illustrates this
situation. It is not length increasing and not cyclically terminating, since
there are infinite sequences of cyclical reductions (as an example ∆a →
b∆ 	1 ∆b → a∆). The application of the algorithm of cyclical completion
on ℜ gives ℜ+ = ℜ ∪ {ab #+ ba} that is cyclically complete up to ∼. But,
nevertheless there are words that have no cyclically irreducible form (∆a for
example).

References

[1] R.V. Book, Confluent and other types of Thue systems, J. Assoc. Com-
put. Mach. 29 (1982), 171182.

[2] R.V. Book and F. Otto, String-rewriting systems, Springer-Verlag,
1993.

17

[3] C. Choffrut, Conjugacy in free inverse semigroups, Int. J. Alg. Comp.
3 (1993), no. 2, 169–188.

[4] F. Chouraqui, Rewriting systems in alternating knot groups, Int. J. Alg.
Comp. 16 (2006), no. 4, 749–769.

[5] S. Hermiller and J. Meier, Artin groups, rewriting systems and three-
manifolds, J. Pure Appl. Algebra 136 (1999), 141–156.

[6] A. Lentin and M.P. Schutzenberger, A combinatorial problem in the
theory of free monoids, Proc. Univ. North Carolina (1968), 128–144.

[7] J.D. McKnight and A.J. Storey, Equidivisible semigroups, J. Algebra
12 (1969), 24–48.

[8] P. Narendran and F. Otto, Complexity results on the conjugacy problem
in monoids, Theoret. Comput. Sci 35 (1985), 227–243.

[9] , The problems of cyclic equality and conjugacy for finite com-
plete rewriting systems, Theoret. Comput. Sci 47 (1986), 27–38.

[10] Handbook of Theoretical Science, Formal models and semantics, vol. B,
MIT Press, 1990.

[11] F. Otto, Conjugacy in monoids with a special Church-Rosser presenta-
tion is decidable, Semigroup Forum 29 (1984), 223–240.

[12] J. Pedersen and M. Yoder, Term rewriting for the conjugacy problem
and the braid groups, J. Symbolic. Comput. 18 (1994), no. 6, 563–572.

[13] P. Silva, Conjugacy and transposition for inverse monoid presentations,
Int. J. Alg. Comp. 6 (1996), no. 5, 607–622.

[14] C.C. Sims, Computing with finitely presented groups, Wiley, 1996.

[15] L. Zhang, Conjugacy in special monoids, J. Algebra 143 (1991), no. 2,
487–497.

18

	1 Introduction
	2 Definition of the relation
	3 The relation and the conjugacy problems
	4 A local approach for : definition of Allseq(w)
	5 A sufficient condition for the confluence of
	6 The algorithm of cyclical completion
	7 Length-preserving rewriting systems

