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CONJECTURES OF ALPERIN AND BROUE FOR 2-BLOCKS WITH
ELEMENTARY ABELIAN DEFECT GROUPS OF ORDER 8

RADHA KESSAR, SHIGEO KOSHITANI, AND MARKUS LINCKELMANN

ABSTRACT. Using the classification of finite simple groups, we prove Alperin’s weight conjecture
and the character theoretic version of Broué’s abelian defect conjecture for 2-blocks of finite
groups with an elementary abelian defect group of order 8.

1. INTRODUCTION

Throughout this paper p is a prime and O a complete discrete valuation ring having an alge-
braically closed residue field k of characteristic p and a quotient field K of characteristic 0, which is
always assumed to be large enough for the finite groups under consideration. For G a finite group,
a block of OG or kG is a primitive idempotent b in Z(OG) or Z(kG), respectively. The canonical
map OG — kG induces a defect group preserving bijection between the sets of blocks of OG and
kG. By Brauer’s First Main Theorem there is a canonical bijection between the set of blocks of kG
with a fixed defect group P and the set of blocks of kNg(P) with P as a defect group. Alperin’s
weight conjecture predicts that the number ¢(b) of isomorphism classes of simple kGb-modules is
an invariant of the local structure of b. For b a block of kG with an abelian defect group P, de-
noting by ¢ the block of kNg(P) corresponding to b, Alperin’s weight conjecture holds if and only
if the block algebras of b and ¢ have the same number of isomorphism classes of simple modules,
or equivalently, the same number of ordinary irreducible characters. Thus, for blocks with abelian
defect groups, Alperin’s weight conjecture would be implied by any of the versions of Broué’s
Abelian Defect Conjecture, predicting that there should be a perfect isometry, or isotypy, or even
a (splendid) derived equivalence between the block algebras, over O, of b and ¢. Alperin announced
the weight conjecture in [I]. At that time, the conjecture was known to hold for all blocks of finite
groups with cyclic defect groups (by work of Brauer and Dade), dihedral, generalised quaternion,
semidihedral defect groups (by work of Brauer and Olsson), and all defect groups admitting only
the trivial fusion system (by the work of Broué and Puig on nilpotent blocks). Since then many
authors have contributed to proving Alperin’s weight conjecture for various classes of finite groups
- such as finite p-solvable groups (Okuyama), finite groups of Lie type in defining characteristic
(Cabanes), symmetric and general linear groups (Alperin, Fong, An) and some sporadic simple
groups (An).

Theorem 1.1. Suppose p = 2. Let G be a finite group and let b be a block of kG with an elementary
abelian defect group P of order 8. Denote by c the block of kNg(P) corresponding to b. Then b and
¢ have eight ordinary irreducible characters and there is an isotypy between b and c; in particular,
Alperin’s weight conjecture holds for all blocks of finite groups with an elementary abelian defect
group P of order 8.
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For principal blocks, Theorem [[1] follows from work of Landrock [48] and Fong and Harris [34].
Theorem [[T]implies Alperin’s weight conjecture for all blocks with a defect group of order at most
8. Indeed, the groups Cs, Cy, Cs and Cy x Cy admit no automorphisms of odd order, hence arise as
defect groups only of nilpotent blocks, and by work of Brauer [10], [T1] and Olsson [62], Alperin’s
weight conjecture is known in the case of Cy x Cy, Dg and Qg. Using a stable equivalence due
to Rouquier we show in Theorem [B.] that for blocks with an elementary abelian defect group of
order 8 Alperin’s weight conjecture implies Broué’s isotypy conjecture.

The proof of Theorem [T uses the classification of finite simple groups. By the work of Landrock
already mentioned, Alperin’s weight conjecture holds for blocks with an elementary abelian defect
group of order 8 if and only if all irreducible characters in the block have height zero (this is the ‘if’
part of Brauer’s height zero conjecture, which predicts that all characters in a block have height
zero if and only if the defect groups are abelian). This part of Brauer’s height zero conjecture has
been reduced to quasi-simple finite groups by Berger and Knorr [5]; we verify in Theorem [£.1] that
this reduction works within the realm of blocks with an elementary abelian defect group of order at
most 8 and certain fusion patterns. We finally prove Alperin’s weight conjecture for blocks with an
elementary abelian defect group of order 8 for quasi-simple groups in the remaining sections. For
certain classes, such as central extensions of alternating groups, sporadic groups or finite groups of
Lie type defined over a field of characteristic 2, this is a simple inspection (based on calculations
and well-known results by many authors) and yields results for higher rank defect groups as well:

Theorem 1.2. Suppose p = 2. Let G be a quasi-simple finite group such that Z(G) has odd order.

(i) If G/Z(Q) is isomorphic to an alternating group Ay, n > 5, then kG has no block with an
elementary abelian defect group of order 2", where r > 3.

(i) If G/Z(G) is a sporadic simple group or a finite group of Lie type defined over a field of
characteristic 2 and if kG has a block b with an elementary abelian defect group of order 2", where
r > 3, then either b is the principal block of PSLa(2") or r = 3 and b is the principal block of Ju,
or b is a non-principal block of Cos, and Alperin’s weight conjecture holds in these cases.

This follows from combining 6.3] 811 and below. Before embarking on the verification
for finite groups of Lie type defined over a field of odd characteristic, we need further background
material on these groups and their local structure, collected in the sections §I0, §IT1 Assembling
these parts yields the proof of [.1l in §201 It is noticeable how few blocks of quasi-simple groups
have an elementary abelian defect group - and when they do, many of them are nilpotent:

Theorem 1.3. Suppose p = 2. Let q be an odd prime power and G a finite quasi-simple group.
Suppose that Z(G) has odd order.

(i) If G/Z(Q) is a simple group of Lie type An(q) or 2A(q) and if b is a block of kG with an
elementary abelian defect group of order 2" for some r > 3 then r is even and b satisfies Alperin’s
weight conjecture.

(i) If G/Z(G) is a simple group of Lie type By(q), Cn(q), Dn(q) then every block of kG with an
elementary abelian defect group of order 2" for some integer r > 3 is nilpotent.

(iii) If G/ Z(G) is simple of type G2(q) or 3D4(q) then kG has no block with an elementary abelian
defect group of order 2", where r > 3.

(iv) If G/Z(Q) is simple of type 2Ga(q) and if b is a block of kG with an elementary abelian defect
group of order 2", where v > 3, then r = 3 and b is the principal block of 2G2(q), and Alperin’s
weight conjecture holds in this case.



This follows from combining Corollary [I0.2] the Theorems [I2.], T3.1] I4.1] and the Propositions
5.1 05.2] 053 below. Note the absence of the exceptional types F and F in the above result - we
do not know whether these groups actually have blocks with elementary abelian defect groups of
order 8. What we show is that if they do then these blocks satisfy Alperin’s weight conjecture. At
present there seems to be no general reduction for blocks with elementary abelian defect groups of
order 2" for r > 4, but the above results for quasi-simple groups would allow us to settle Alperin’s
weight conjecture in infinitely many cases if we did have a satisfactory reduction. More precisely,
using the above results and the fact (see [22], Corollary]) that the 2-rank of exceptional finite simple
groups of Lie type in odd characteristic is at most 9 we obtain the following.

Corollary 1.4. Suppose p =2. Let be G a finite quasi-simple group such that Z(G) has odd order.
Every block of kG with an elementary abelian defect group of order 2" for some integer v > 10
satisfies Alperin’s weight conjecture.

2. REDUCTION TECHNIQUES

For general background on block theory we refer to [73]. Given a finite group G and a block
b of OG or of kG, we denote by Irrx(G,b) the set of ordinary irreducible K-valued characters
of G associated with b and by Irry (G, b) the set of irreducible Brauer characters of G associated
with b. We set £(b) = |Irri (G, b)|. We denote by ZIrrk (G, b) the group of class functions on G
generated by Irri (G, b), and by ZIrr (G, b) the corresponding group of class functions on the set
of p-regular elements in G. By a classical result of Brauer, the decomposition map ZIrri (G,b) —
ZIrri (G, b) induced by restriction of class functions to p-regular elements is surjective. The kernel
of the decomposition map, denoted by L°(G,b), consists of all class functions associated with
b which vanish on the set of p-regular elements of GG, or equivalently, all generalised characters
in ZIrrk (G, b) which are perpendicular to the characters of the projective indecomposable OG-
modules associated with b. We write L°(G) instead of L°(G, 1) if OG is indecomposable as an
O-algebra. We denote by C,, a cyclic group of order n. For G a finite group and o € H?(G;k>)
we denote by k.G the twisted group algebra which is equal to kG as a k-vector space, endowed
with the bilinear multiplication = -y = a(z,y)(zy), for z, y € G, where a denotes abusively a
2-cocycle representing the class a (and one verifies that this construction is, up to isomorphism,
independent of the choice of this 2-cocycle). If b is a block of kG with a defect group P and if ¢
is the corresponding block of kNg(P) then c¢ is a sum of Ng(P)-conjugate block idempotents of
kCq(P); for any choice e of such a block idempotent of kCq (P) the group E = Ng(P,e)/PCq(P)
is called the inertial quotient of b. This is a p’-subgroup of the outer automorphism group of
P, unique up to conjugacy by an element in Ng(P), hence lifts uniquely, up to conjugacy, to a
p’-subgroup of Aut(P), still abusively denoted F and called inertial quotient. By there is o €
H?(E; k*) such that kNg(P)c is Morita equivalent to the twisted group algebra ko (P x E), where
« is extended trivially from F to P x E. We review some of the standard reduction techniques
due to Dade, Fong, Kiilshammer, Puig, Reynolds. The reduction techniques work irrespective of
the characteristic, so for now, p is an arbitrary prime.

Proposition 2.1 (Fong-Reynolds reduction [33], [67]). Let G be a finite group, N a normal
subgroup of G, ¢ a G-stable block of kN and b a block of kG such that bc = b. Let P be a defect
group of b. If PN N =1 then kNc is a block of defect zero and we have a canonical isomorphism

kGe = kNec @ ka(G/N)
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for some a € H*(G/N;k*) such that kGb is Morita equivalent to a block b of a finite central
p’-extension of G/N wvia a bimodule with diagonal vertex AP and endo-permutation source.

See for instance [40], 4.4] for an explicit description of this isomorphism. The previous result has
been generalised by Kiilshammer as follows:

Proposition 2.2 (Kiilshammer [46, Proposition 5, Theorem 7]). Let G be a finite group, N a
normal subgroup of G, ¢ a G-stable block of kN and b a block of kG such that bc = b. Suppose that
for any x € G conjugation by x induces an inner automorphism of kNc. Then there is a canonical
isomorphism

kGec=kNc ®@zxney Z(kENc)oa(G/N)
for some o € H*(G/N;(Z(kNc))*). Moreover, if N contains a defect group P of b then the blocks
kGb and kNc are source algebra equivalent.

As before, this isomorphism can be described explicitly; see e.g. [24] 2.1].

Proposition 2.3 (Dade [25 3.5, 7.7]). Let G be a finite group, N a normal subgroup of G, ¢ a
G-stable block of kN and b a block of kG such that bc = b. Suppose that no element v € G — N

acts as inner automorphism on kNc. Then b= c and G/N has order prime to p.

Proposition 2.4 (Puig [66] 4.3]). Let G be a finite group, N a normal subgroup of G, ¢ a G-stable
block of kN and b a block of kG such that bc = b. Suppose that b is nilpotent. Then the block
algebra of c is Morita equivalent to its Brauer correspondent via a Morita equivalence induced by
a bimodule with endo-permutation source; in particular, ¢ satisfies Alperin’s weight conjecture.

3. BACKGROUND MATERIAL ON BLOCKS WITH DEFECT GROUP (g5 X Cy x Cy

We assume from now on that p = 2. Let P = C5 x Cy x Cs be an elementary abelian group of
order 8. The order of GL3(2) is 8 - 21, from which one easily deduces that a non-trivial subgroup
E of Aut(P) of odd order has either order 3 or 7, or is a Frobenius group of order 21. In all cases,
FE has a trivial Schur multiplier, and hence any block with a normal defect group P has as source
algebra k(P x E). What is unusual in this case is that the number of characters at the local level
does not depend on fusion (this is well-known; we include a sketch of a proof for the convenience
of the reader):

Proposition 3.1. Let P be an elementary abelian group of order 8 and E a subgroup of Aut(P)
of odd order. The group P x E has 8 ordinary irreducible characters.

Proof. This is trivial if E = 1. Suppose that |E| = 3. Then E fixes an involution in P, hence
P x E = (Cy x (V4 xCs), from which the statement follows. If |E| = 7 then P x E is a Frobenius
group with E acting transitively on the involutions in P, which implies the result. The only
remaining case is where F is a Frobenius group C7 x C3. In that case, E has 5 characters, three of
degree 1 with C7 in the kernel, and two more of degree 3 corresponding to the non-trivial Cs-orbits
in the character group of C7. Using the fact that the degrees of irreducible characters of P x E
divide |E| and that the square of their degrees sums up to |P x E| = 168 one finds that there are
three further irreducible characters of degree 7. O

Landrock showed the inequality £(b) < 8 of Alperin’s weight conjecture for 2-blocks b with an
elementary abelian defect group P of order 8 without the classification of finite simple groups.
Landrock’s results are more precise in that they also include information about defects and heights
of characters; we briefly recall these notions. Given a block b of OG or of kG with a defect group
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P of order p?, the defect of a character y in the set Irrg (G, b) of irreducible K-valued characters
associated with b is the integer d(x) such that p?) is the largest power of p dividing the rational
integer % It is well-known that d(x) < d; the integer h(x) = d — d(x) is called the height
of x. There is always at least one character in Irri (G, b) having height zero, and it has been
conjectured by Brauer that P is abelian if and only if all characters in Irrx (G, b) have height zero.
The following summary of some of Landrock’s results in [48] implies in particular that Alperin’s
weight conjecture holds for blocks with an elementary abelian defect group of order 8 if and only
if all characters in those blocks have height zero.

Proposition 3.2 (Landrock, [48, 2.1, 2.2, 2.3]). Let G be a finite group and b a block of kG
with an elementary abelian defect group P of order 8 and inertial quotient E < Aut(P). Then
5 < |Irrg (G,b)] < 8. If [Irrg (G, b)| = 8 then all characters in Irrx (G, b) have height zero. If
|Irric (G, b)| < 8 then exactly four characters in Irrg (G, b) have height zero, the remaining charac-
ters have height one, and £(b) = 4. Moreover, the following hold.

(i) If E has order 1 then |Irri (G,b)| = 8 and £(b) = 1.
(i1) If E has order 3 then |Irri (G,b)| = 8 and £(b) = 3.
(i11) If E has order 7 then either |Irrk (G, b)| =5, £(b) =4 or |Irrx (G, b)| =8, £(b) = T.
(iv) If E has order 21 then either |Irrg (G,b)| =7, £(b) = 4 or |Irrx (G, b)| =8, £(b) = 5.

Besides Landrock’s original proof it is also possible to prove this as a consequence of stronger
results obtained later: the case |E| = 1 is a particular case of nilpotent blocks [I7], the case |[E| =3
follows from Watanabe [76, Theorem 1]. In the case |E| = 7, the group E acts regularly on P—{1},
and by a result of Puig in [64] there is a stable equivalence of Morita type (cf. [15], §5]) between OGb
and O(P x E). Any such stable equivalence induces an isometry L°(G,b) = LO(P x E) between
the generalised character groups which vanish on p-regular elements; in this case, these groups
have rank one and are generated by an element of norm 8, whence the inequality |Irrx (G, b)| < 8.
If |E| = 21 then there is again a stable equivalence of Morita type, by a result of Rouquier in [71].
Again by calculating a basis of L°(P x E) - which in this case has rank 3 with a basis consisting
of three elements of norm four, one also gets this inequality. See for instance [45] for an exposition
of the well-known technique exploiting partial isometries induced by stable equivalences of Morita
type; this will be used in the proof of Theorem Bl The following observation is a slight refinement
of Proposition B2[(iii) in the case where the inertial quotient has order 7 and |Irrx (G, b)| < 8.

Proposition 3.3. Let G be a finite group, b a block of kG with an elementary abelian defect group
P of order 8 and inertial quotient E of order 7. Suppose that b does not satisfy Alperin’s weight
conjecture. Then there is a labelling Irr (G,0) = {x; | 1 <1 < 5} with the following properties:

(i) x1 has height one and x; has height zero, for 2 <i <5.

ii) The group L°(G,b) has rank 1 and a basis element of the form 2x, — 5 d;x; for some signs
1=2
0; € {£1}, 2 < i < 5; moreover, at least one of the §; is positive.

(1ii) If i,5 € {2,3,4,5} such that x;(1) = x;(1) then &; = ;.

Proof. Statement (i) is just a reformulation of B2 (iii). Using Puig’s stable equivalence of Morita

type [64, 6.8] we get that LO(G,b) = L°(P x E), which is a free abelian group of rank one with

a basis element of norm 8. The only way to write a norm 8 element in L°(G,b) with less than

8 characters is with five characters, exactly one of which shows up with multiplicity 2, and then

this character must have height one, as follows from comparing character degrees in conjunction
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with the fact that every generalised character in L°(G,b) vanishes at 1. The signs §; cannot all be
negative because the group LY(G, b) does not contain any actual non-zero character (again because
its elements vanish at 1). This proves (ii). If ¢, € {2,3,4,5} then d;x; — J,x; is orthogonal to
L°(G,b), hence a generalised projective character. In particular, at 1, its value is divisible by the
order of a Sylow 2-subgroup of G. But if x;(1) = x;(1) and 0; # 0;, this value is £2x;(1), which
cannot be divisible by the order of a Sylow 2-subgroup of G as x; has height zero. The result
follows. O

It is not known in general whether a Morita equivalence between two block algebras preserves
their local structures, but some easy standard block theoretic arguments show that this is true,
even for stable equivalences of Morita type, if one of the two blocks has an elementary abelian
defect group of order 8.

Proposition 3.4. Let G, H be finite groups, b a block of kG with an elementary abelian defect
group P of order 8 and c a block of kH with a defect group Q. If there is a stable equivalence of
Morita type between kGb and kHc then Q = P and the blocks b and ¢ have isomorphic inertial
quotients (or equivalently, isomorphic fusion systems).

Proof. A stable equivalence of Morita type preserves the largest elementary divisors of the Cartan
matrices of the blocks, and these are equal to the orders of the defect groups, whence |Q| = |P]|.
A stable equivalence of Morita type preserves also the complexity (cf. [4 5.3.4]) of modules; since
the largest complexity of a module in a block is the rank of a defect group, we get that @ has
rank 3, and thus Q = P. Alternatively, a stable equivalence of Morita type preserves the Krull
dimension of the Hochschild cohomology rings, which are also known to be equal to the ranks of the
defect groups. (This part of the argument is well-known to remain valid for blocks with arbitrary
elementary abelian defect groups, but we do not need this here.) Finally, a stable equivalence of
Morita type preserves the rank of L°(G,b), which is equal to |Irrx (G, b)| — £(b), or also equal to
Z(u,eu) ¢(ey,), where (u, e,) runs over a set of representatives of the conjugacy classes of non-trivial
(G, b)-Brauer elements. It happens so that this number determines the structure of the inertial
quotient E of b. Indeed, by Proposition [3.2] this number is equal to 7 if and only if |E| = 1, equal
to 5 if and only if |E| = 3, equal to 1 if and only if |E| = 7, and equal to 3 if and only if |E| = 21,
whence the result. (]

When dealing with the exceptional groups of type Er(q) we will need a refinement of the
preceding result because the finite group of Lie type E7(q) is a central extension of the simple
group of type E7(q) by an involution, and so Bonnafé-Rouquier’s Jordan decomposition [8] §11,
Théoreme B’] will have to be applied to blocks with a defect group of order 2%.

Proposition 3.5. Let G, H be finite groups, b a block of G with a defect group P and c¢ a block of
H with a defect group Q. Suppose that there are central involutions s € Z(G) and t € Z(H) such
that P/(s) is elementary abelian of order 8. Denote by b and ¢ the images of b and c in kG/(s)
and kH/(t), respectively. Suppose that the block algebras kGb and kHc are Morita equivalent. If
b does not satisfy Alperin’s weight conjecture then neither does ¢ and the defect groups of ¢ are
elementary abelian of order 8.

Proof. Suppose that b does not satisfy Alperin’s weight conjecture. Since the defect group P/(s)

of b is elementary abelian of order 8 we have £(b) = 4 by Proposition B2l Using that the number

of isomorphism classes of simple modules is invariant under central 2-extensions and Morita equiv-

alences we get that ¢(¢) = 4. Note that P and @ have the same order since b and ¢ are Morita
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equivalent, and hence ¢ has a defect group R = @Q/(t) of order 8. If R is cyclic or abelian of rank 2
or isomorphic to one of the non-abelian groups of order 8 then then ¢(¢) € {1,3}, a contradiction.
So, R is elementary abelian. Now it is immediate from Proposition B.2] that ¢ does not satisfy the
weight conjecture. (Il

Remark 3.6. Experts seem to agree that the Morita equivalences from Bonnafé-Rouquier’s Jordan
decomposition [8 §10, §11] should preserve the local structure of the blocks, but at present there
is no written reference for this fact. The two propositions [3.4] and circumvent this issue by
adhoc methods.

4. REDUCTION TO QUASI-SIMPLE GROUPS

The part of Brauer’s height zero conjecture predicting that all characters in a block with an
abelian defect group have height zero has been reduced to blocks of quasi-simple finite groups in
work of Berger and Knorr [5]. We need to make sure that in the reduction we can indeed restrict
the problem to checking only defect groups of order at most 8; this is not entirely obvious since
in Step 6 of the proof of [5, Theorem]| the order of the defect group may possibly go up, an issue
which arises also in the alternative proof given by Murai in [58, §6].

Theorem 4.1. Let G be a finite group and b a block of kG with an elementary abelian defect group
P of order 8. Suppose that |G/Z(Q)| is minimal such that |Irrg (G,b)| < 8. Then Z(G) has odd
order and G/Z(G) 1is simple. If moreover we also choose |Z(G)| minimal then G is quasi-simple.
In addition, the inertial quotient of b is either cyclic of order 7 or a Frobenius group of order 21.

Proof. If |Z(@G)| is even then P N Z(@) is non-trivial, hence contains a subgroup Z of order 2.
The image b of b in kG/Z is then a block of kG/Z with a Klein four defect group P/Z. Thus,
since b satisfies Alperin’s weight conjecture, so does b, a contradiction to the assumption. Thus
Z(G) has odd order. Let (P, e) be a maximal (G, b)-Brauer pair and set £ = Ng(P,e)/Ca(P). By
PropositionB.2] the order of E is either 7 or 21. In both cases, E acts transitively on P—{1}. Thus,
if N is a normal subgroup of G then either N N P = {1} or P < N. Moreover, the minimality of
|G/Z(G)| implies that if N is a normal subgroup of G containing Z(G) then there is a unique block
c of kN covered by b; that is, bc = b. Let now N be a maximal normal subgroup of G containing
Z(G) and let ¢ be the block of kN satisfying bc = b. Consider first the case PN N = {1}. In that

case, by Proposition 2.1l we have an isomorphism
kGe =2 kNc®y ko(G/N)

for some a@ € H%(G/N;k*) such that kGb is Morita equivalent to a block b of a finite central
2’-extension H of the simple group G/N. Consider next the case P < N. Let G]c] be the subgroup
of G consisting of all x € G such that conjugation by = induces an inner automorphism of kNc.
Since N is maximal normal in G we have either N = G|[c] or G[c] = G. Suppose first that G[c] = G.
Then, by Proposition [2.2] we have an isomorphism

kGe = kNe @zuney Z(kNe)o(G/N)

for some o € H*(G/N;(Z(kNc))*), and the blocks kGb and kNc are source algebra equivalent -

but this contradicts the minimality of |G| since source algebra equivalent blocks have in particular

the same number of ordinary irreducible characters. Thus we have N = G[¢]. Then, by Proposition

23 we have b = c and G/N has odd order. Since also G/N is simple, this implies that G/N is cyclic

of odd prime order ¢, by Feit-Thompson’s Odd Order theorem. By standard results in Clifford
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theory, any n € Irrx (N, ¢) is either G/N-stable, in which case it extends to exactly ¢ different
characters in Trrx (G, b), or Ind$(n) € Irrx (G, b). Tt follows that

It (G, b)) =€ -m+71 <8

where m is the number of characters in Irrg (N, ¢) fixed by G/N and where r is the number of
non-trivial G/N-orbits in Irrg (N, ¢). Since £ > 3 we have m < 2. Using induction, we have

8 = |Iirg(N,c)|=L-r+m

In all possible choices of £, m, r satisfying this equality we get the contradiction £-m+r > 8. Thus
the assumption P < N is not possible, and therefore the above implies that G/Z(G) is simple.
Finally, since G/Z(QG) is simple we have G = Z(G)[G, G}, so G/|G, G] acts trivially on all characters
of [G,G], and so |Irrk (G, b)| = |Irrk (|G, G], d)|, where d is a block of [G, G] satisfying bd = b. After
repeating this, if necessary, we also may assume that G is perfect, hence quasi-simple. (I

5. PERFECT ISOMETRIES

Using Rouquier’s stable equivalence for blocks with an elementary abelian defect group of order
8, described in the Appendix below, we show that Alperin’s weight conjecture implies the character
theoretic version of Broué’s abelian defect conjecture for these blocks:

Theorem 5.1. Let G be a finite group and let b be a block of OG with an elementary abelian
defect group P of order 8. Set H = Ng(P) and denote by ¢ the block of OH with defect group
P corresponding to b via the Brauer correspondence. Suppose that K is large enough for b and c.
If Irrg (G, b)| = |TIrrg (H, ¢)| then the blocks b and ¢ are isotypic; in particular, there is a perfect
isometry ZIrri (G, b) =2 Zlrri (H, ¢). In particular we have Z(OGb) = Z(OHc).

See [13] 6.1, 6.2], [I4], [I5] for more precise versions of Broué’s abelian defect conjecture, as well
as background material on perfect isometries and isotypies.

Proof of Theorem [5.1l We refer to [45, §52, 3] for notation and an expository account of the stan-
dard techniques on extending partial isometries induced by stable equivalences of Morita type.
By a result of Rouquier in [71], there is a stable equivalence of Morita type between the block
algebras of b and of ¢ over O (a proof of this result is given in Theorem 2I.T] below) given by a
bounded complex of bimodules whose indecomposable summands all have diagonal vertices and
trivial source. Denote by E the inertial quotient of b. Since the block algebra OHc is Morita
equivalent to O(P x E) via a bimodule with diagonal vertex and trivial source this implies that
there is a stable equivalence of Morita type between OGb and O(P x E), induced by a bounded
complex of bimodules with diagonal vertices and trivial source. It is well-known (see e.g. [45]
3.1]) that any such stable equivalence induces an isometry L°(P x E) = L°(G,b). It suffices to
show that this partial isometry extends to an isometry Zlrrg (P x E) = Zlrrk (G, b) because any
such extension is then a p-permutation equivalence by [45] 3.3], hence induces an isotypy by [50,
Theorem 1.4]. We do this by running through all possible inertial quotients F.

If E = {1} the block b is nilpotent, hence Morita equivalent to OP, and so the result holds
trivially in this case. Assume that |E| = 3. Then P x E = C5 x A4, and hence we can list the eight
ordinary irreducible characters of P x E in such a way that the three characters of the projective
indecomposable O(P x E)-modules are of the form x; + xi+3 + x7 + xs where 1 < ¢ < 3. Thus a
basis of L°(P x E) is of the form

{x1 = X4, X2 — X5, X3 — X6 X7 — X8, X1 + X2 + X3 — X7}
8



The four elements of norm 2 in this basis must be sent to norm 2 elements under the isometry
L°(P x E) = L°(G,b) no two of which involve a common irreducible character in Irrg (G, b), and
hence are mapped to elements of the form d1(n1 — n4), d2(n2 — n5), d3(ns — 1), d7(n7 — ng), for
some labelling Trr g (G, 0) = {n; |1 <i < 8} and some signs ¢;. We may then choose notation (after
possibly exchanging 7; and 74 etc.) in such a way that the image in L°(G,b) of the norm four
element x1 + x2 + X3 — X7 is equal to 0171 + danz + d3ns — d7n7. Setting §;43 = J; for 1 <4 < 3, and
ds = d7 it follows that the map sending x; to §;7; induces an isometry Zlrrg (P x E) = ZIrrk (G, b)
extending the isometry L°(P x E) = L°(G,b) as required.

Assume next that |E| = 7. Then P x E is a Frobenius group, whose seven characters of the
projective indecomposable modules are of the form y; + xs with 1 < ¢ < 7, for some labelling
Irg(P x E) = {x; | 1 < i < 8}; the characters x;, 1 < i < 7 have P in their kernel, and
Xs is induced from a nontrivial character of P to P x E. The group L°(P x E) has rank 1,
with a basis element 21.7:1 Xi — Xs. This element has norm 8, hence its image in L°(G,b) has
norm 8 as well. Moreover, all irreducible characters in Irrg (G,b) have to be involved in this
element. Since we assume that Alperin’s weight conjecture holds for b, we have |Irri (G, b)| = 8,
and so the image of this element in L°(G,b) is of the form 21‘7:1 0;m; — dgng for some labelling
Irri (G,b) = {n; | 1 < i < 8} and some signs d;. Again, the map sending y; to d;n; induces the
required isometry Zlrrg (P X E) = ZIrrg (G, b).

Finally, assume that |FE| = 21. Then F is itself a Frobenius group, isomorphic to C7 x C3 with
the obvious nontrivial action of Cs3 on C'7. The group E has 5 ordinary irreducible characters, hence
O(P x E) has five isomorphism classes of projective indecomposable modules, and thus L°(G, b)
has rank 3. We can label Irrg (P x E) = {x; | 1 <14 < 8} in such a way that x1, x2, x3 have
degree 1, the characters x4, x5 have degree 3 and xg, X7, xs have degree 7. An easy calculation
shows that LO(P x E) has a basis of the form

{X6 — X4 = X5 — X1, X7 — X4 — X5 — X2, X8 — X4 — X5 — X3}
consisting of three elements of norm 4, such that any two different of these basis elements involve
two common irreducible characters. Thus the same is true for L°(G,b). Using again the hypothesis
IIrr i (G, b)| = 8 one deduces that L°(G,b) has a basis of the form
{d6m6 — 6ama — d5m5 — 0111, O7m7 — Oama — 0575 — d2na, O8N — dama — d515 — d3m3}

for some labelling Irri (G,b) = {n; | 1 < i < 8} and some signs d;. As before, the map sending
Xi to &;m; induces the required isometry ZIrrg (P x E) = ZIrrg (G, b). Since a perfect isometry
induces an isomorphism between centers, the result follows. ([

6. SPORADIC FINITE SIMPLE GROUPS

Let G be a finite group and b a block of OG. The kernel Kerg(b) of b is defined by
Kerg(b) = m Ker(x),

xEIrrk (G,b)
see [10, §3]. By [10, Proposition (3B)] we have Kerg(b) = O, (G) NKer(x) for any x € Irrg (G, b).
Hence, Kerg(b) is a normal p’-subgroup of G, See [59] Chap.5, Theorem 8.1] for an exposition of
this material. We say that b is faithful if Kerg(b) = 1.

Proposition 6.1. Let G be a quasi-simple finite group such that p divides |G|.
(1) We have Oy (Z(G)) = Op (G) and Kerg(b) = Op (Z(G)) NKer(x) for any x € Irrk (G, D).
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(ii) Set G = G /Kerg(b) and denote by b the image of b in OG. Then b is a faithful block of oG
and the canonical map G — G induces an O-algebra isomorphism OGb = OGb.

Proof. Statement (i) follows from Brauer’s result mentioned above, and (ii) is an easy consequence
of [59, Chap.5, Theorem 8.8]. O

The following table is due to Noeske [60]. By Proposition B.I[ii) it is enough to consider faithful
blocks.

Proposition 6.2 ([60]). The following is a list of all faithful non-principal 2-blocks with non-cyclic
abelian defect groups of sporadic simple groups and their covers. Each number in the 2nd column
corresponds to the number attached to each block in the Modular Atlas [50].

group | blocks b | defect groups k(D) | £(b)
M12 2 CQ X CQ 4 3
12.M22 4, 5 CQ X CQ, Cg X Cg 4, 4 1, 1
J2 2 CQ X CQ 4 3
HS 2 Ca x Cy 4 3
Ru 2 02 X 02 4 3
003 2 CQ X CQ X CQ 8 5
2.Fi22 3 CQ X CQ 4 1
Fi24/ 2 CQ X CQ 4 3

Proposition 6.3. Let G be a quasi-simple finite group such that G/Z(G) is a sporadic simple
group, and let b be a block of kG with an elementary abelian defect group of order 2" for some
integer r > 3. Then r = 3 and either b is the principal block of kJy1 or a non-principal block of
kCos. In both cases we have |Irr (G, b)| = 8; in particular, Alperin’s weight conjecture holds for
b.

Proof. If b is a principal block then r = 3 and G = Ji, hence the result follows from [48, Theorem
3.8]. Suppose that b is a non-principal block; by Proposition [6.1] we may assume that b is faithful.
Proposition [6.2] implies that » = 3, G = Cos and |Irrx (G, b)| = 8. O

7. FINITE SIMPLE GROUPS OF LIE TYPE WITH EXCEPTIONAL SCHUR MULTIPLIERS

The Schur multipliers of finite groups of Lie type tend to be ‘generic’ (that is, dependent only
on the series to which the group belongs) except in a few cases of low rank where they are larger;
see [39, Definition 6.1.3]. We consider in this section the groups of Lie type from [39, Table 6.1.3]
defined over a field of odd characteristic.

Proposition 7.1 ([39, Table 6.1.3, p.313], [56]). The finite simple group G of Lie type defined
over a field of odd characteristic with exceptional Schur multipliers are as follows:
G | Ai1(9) = Ag | 2A3(3) = PSU4(3) | Bs(3) = PQ(3) | G2(3)
Me 3 3, 3 3 3
M(G) ‘ 6 12 6 3
where Me denotes the elementary divisors of the exceptional parts of the Schur multipliers M (QG)
of G.

Proposition 7.2. If G is a quasi-simple finite group such that Z(G) has odd order and G/Z(G) is
of Lie type either A1(9), 2A3(3), B3(3) or G2(3), then G has no 2-blocks b with elementary abelian
defect group of order 27, where r > 3.
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Proof. For the isomorphisms A (9) & Ag and 2 A3(3) = PSU,(3) and B3(3) = PQ7(3) (also denoted
0O7(3) in the Atlas [23] p. 106]), used already in the previous Proposition, see [38, p.8, Table IJ.
If G/Z(G) = Ag then G is isomorphic to Ag or 3.4g; in both cases G has no 2-blocks with an
elementary abelian defect group of order 2", r > 3 by [56], or by B2 below. If G/Z(G) is isomorphic
to one of PSU4(3), PQ7(3), G2(3) then again G has no 2-blocks with elementary abelian defect
group of order 2", r > 3, by [50]. O

8. ALTERNATING GROUPS
We denote in this section by A,, the alternating group of degree n, where n is a positive integer.

Proposition 8.1. If G = A,, for some n > 5 then G has no 2-blocks with an elementary abelian
defect group of order 2", where r > 3.

Proof. By [44, 1.2, 1.3, 1.4, 1.7], a 2-block of an alternating group A, with defect group P is
source algebra equivalent to a block of an alternating group A,, for some m < n having P as
Sylow 2-subgroup. But there is no alternating group with an elementary abelian Sylow 2-subgroup
of order 2", r > 3. O

Proposition 8.2. If G is 3.A¢ or 3.A7, then G has no 2-block with an elementary abelian defect
group of order 2", where r > 3.

Proof. This is clear since Sylow 2-subgroups of G are dihedral of order 8, see [23| p.4, p.10]. O

9. FINITE GROUPS OF LIE TYPE IN CHARACTERISTIC 2

Proposition 9.1. Let G be a quasi-simple group such that G/Z(G) is a finite group of Lie type
in characteristic 2. Suppose that Z(G) has odd order. Let b be a block of G having an elementary
abelian defect group of order 2" for some integer r > 3. Then G = PSLy(2"), the block b is the
principal block of G, and Alperin’s weight conjecture holds for b.

Proof. Consider first the case where G/Z(G) is not isomorphic to the Tits simple group 2Fy(2)’,
PSp,(2)" = Ag, or G2(2) = PSU3(3). Then, by [24, Proposition 8.7], the defect groups of any
2-block of G are either trivial or the Sylow 2-subgroups of G. It is well-known that the only finite
groups of Lie type in characteristic 2 having abelian Sylow 2-subgroups are the groups PSLy(2"),
and hence G = PSLy(2"), where we use that the Schur multiplier of PSLy(2") is trivial. By [13|
A 1.3], the principal block is isotypic to its Brauer correspondent; in particular, Alperin’s weight
conjecture holds. The group 2F;(2)" has trivial Schur multiplier and by the pages on decomposition
numbers in the Modular Atlas [56], 2F4(2)’ has three 2-blocks: the principal block (of defect 11)
and two defect zero blocks; 2F4(2)" has no block with an elementary abelian defect group of order
2", r > 3. The case PSp,(2) & Ag is already checked in §fland in Proposition[82] Finally, PSU3(3)
has trivial Schur multiplier and again by the pages on decomposition numbers in the Modular Atlas
[56], PSU3(3) has besides the principal block (of defect 5) two blocks of defect zero; in particular,
PSU3(3) has no blocks with an elementary abelian defect group of order 2, r > 3. O

Remark 9.2. For the purpose of the proof of [Tl one could have excluded the Tits simple group
2F4(2)" and Ag also by observing that its order is not divisible by 7, and hence the inertial quotient
of a hypothetical block with elementary abelian defect group of order 8 can only be trivial or cyclic
of order 3, in which case Alperin’s weight conjecture holds by Proposition above.
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10. FURTHER BACKGROUND RESULTS ON FINITE REDUCTIVE GROUPS

The book [206], especially Chapters 13 and 14 is a useful reference for the first part of this
section. The following notation will be in effect for this section. Let r and ¢ be disctinct primes
and let ¢ be a power of . Let G a connected reductive group over IF“Q and F': G — G a Frobenius
morphism with respect to an Fy-structure on G. Let (G*, F*) be a pair in duality with (G, F') with
respect to some choice of an F-stable (respectively F*-stable) maximal torus of G (respectively
G*) and with respect to a fixed isomorphism F) = (Q/Z),» and a fixed embedding F* — Q.
For an F*-stable semi-simple element s of G*, we denote by £(G”,(s)) C Irrg,(G) the subset
of characters corresponding to the geometric conjugacy class (s) and by £(GF,[s]) the subset of
characters corresponding to the rational conjugacy class [s]; the geometric (and rational) class
of the trivial element will be just denoted £(Gf',1). The elements of £(G¥, 1) are called the
unipotent characters of G¥. We set C(s) = Cg~(s), C°(s) = Cg+(s)°, the connected component
of C(s), C°(s) = C°(s)/Z(C°(s)), the quotient of the connected centraliser by its centre, and

C°(s)" = [C°(s),C°(s)] the derived subgroup of the connected centraliser. Set as = %,
Z°(s) = Z(C°(s)) and z(s) = |Z°(s)¥"|. For any positive integer m we denote by m, the highest
power of 2 dividing m.

10.1. Jordan decomposition of characters. By the work of Lusztig ([5I, Theorem 4.23],
[52, Proposition 5.1], see also [26, 13.24]), there is a bijection between £(G¥',[s]) and the set
E(C(s)F",1) of unipotent characters of C(s)F" such that if y € £(G¥,[s]) corresponds to T €
E(C(s)F",1), then

) (1) = o)

Here we note that if C(s) is not connected, then £(C(s)"", 1) is defined to be the set of irre-
ducible characters of C(s)F" covering the set £(C°(s)"",1) of unipotent characters of C°(s)F".
By standard Clifford theory, if 7 is an irreducible character of C(s)’ " covering an irreducible char-
acter A of C°(s)F", then 7(1) = a\(1), for an integer a dividing a(s). Thus, to each element of
E(GT, (s)) is associated a C(s) -orbit of £(C°(s)F", 1) such that if y € £(G, (s)) corresponds to
the orbit of A € £(C°(s)F", 1), then

|GF|T’
(2) )= o
for some integer a,, dividing as.

Restriction induces a degree preserving bijection A — X between the sets £(C°(s)",1) and
E(Co(s)’F*, 1) and there is also a degree preserving bijection A — X between £(C°(s)"",1) and
E(C°(s)"",1) (cf. [19, Proposition 3.1]). Further, the group C°(s)"" =[], C_‘Of*, where w runs
through the F-orbits of the Dynkin diagram A of C°(s), and for each w, CZ(s) is the direct
product of subgroups of C°(s) corresponding to the elements of w. The elements of £(C°(s)"", 1)

are products [ ¢, where ¢,, is a unipotent character of C°(s)f " for each w. Tracing through the
above bijections, and noting that

A1)

C°(9)™ | = 2(s)C°(s)
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it follows that if y € £(G, (s)) corresponds to the orbit of A € £(C°(s)F", 1), and A corresponds to

to the unipotent character A’ of Co(s)’F* and to the unipotent character A := [[, ¢, of C°(s)"",
then
|GF|T/ /
x(1) = s AN (1)

z(s)ay|Co(s)F" |

|GF|T’ P (1)
(3) = H o [* .

z(s)ay o |G (s)]r

The above correspondences have the following consequence, which we record for use in later
sections. If r is odd, then

(4) 2-defect of x = ay + (s + 2-defect of X
(5) = ay+ (ot Y (2-defect of ¢,)

where 2% = 2(s)4 and 2% = |a,|;. We note that we get an analogous formula for ¢-defects, for
any prime ¢ different from r.

10.2. Jordan decomposition of blocks. As is the case of many sources cited below, we divert
in this section from our previous notation and use the prime ¢, instead of p, for the characteristic of
k, which is assumed to be different from the defining characteristic r. We identify without further
comment the sets Irrg, (G*) and Irrx (G*'). Let ¢ be a semi-simple element of G*¥ " of order prime
to £ and let &(GF, [t]) = U,E(GT, [tu]), where u runs over the f-elements of C&. (t) . By [16]
Théoreme 2.2], E(GT,[t]) = U,E(GF, [tu]), is a union of ¢-blocks of G; a block b of G¥ is in
this union if and only if £(G, [t]) NIrrx (G, b) # 0 (cf. [41, Theorem 3.1]). In this case, we say
that b is in the series [¢] or that [¢] is the semi-simple label of b. Blocks with semi-simple label
[1] are called unipotent. Let L*(t) be the (necessarily F*-stable) minimal standard Levi subgroup
of G*-containing C(t) (if C(t) is not contained in any proper Levi subgroup of G*, we take for
L*(t) the group G itself) and let L be an F-stable Levi subgroup of G dual to L*(¢). Let eSF
and e%‘F be the sum of block idempotents of OG and OL in the series [t]. Then by Theorem B’
of [8], the algebras OG¥ etGF and OLY e}‘F are Morita equivalent. Further, if C(¢) is itself a Levi
subgroup of G*, ie. if C(t) = L*(t), then by Theorem 11.8 of [§], OGFeSF is Morita equivalent
to the sum of unipotent blocks OL* e}‘F of OL¥. We record a consequence of these results for
classical groups for ¢ = 2.

Theorem 10.1. Suppose that { = 2 and either G = GL,,(F,) or that G is simple of classical type
B, C or D. Lett be an odd order semi-simple element of G*F" . Then, C(t) is a Levi subgroup of
G*. Let L be an F-stable Levi subgroup of G in duality with C(t) as above. Then eSF is a block
of OGF, and e{‘F is the principal block of OLF. The block algebras (’)GFetGF and (’)LFe{‘F are
Morita equivalent and a Sylow 2-subgroup of LT is a defect group of (’)GFetGF.

Proof. The element t has odd order, whereas Z(G)/Z°(G) is a 2-group, hence C(t) is connected.

The prime 2 is the only bad prime for G (if G is a general linear group, then all primes are
good for G). Thus, the order of ¢ is not divisble by any bad prime, which means that C°(t)

is a Levi subgroup of G*. Thus by the Bonnafé-Rouquier theorem, OG* e?p and OLY e%F are
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Morita equivalent. Now the components of L are all of classical types A, B, C or D. Hence by
[18, Theorem 13], the principal block of OL’" is the unique unipotent 2-block of OL¥ and the
Morita equivalence implies that eEF is a block of OG¥". The assertion on defect groups is in [31]
Proposition 1.5(ii), (iii)]. O

Corollary 10.2. Suppose that ¢ = 2 and either G = GLn(IF‘q) or that G is simple of classical type
B, C or D. Let b be a block of OGT. If b has abelian defect groups, then OGTb is nilpotent.

Proof. Let t be the semi-simple label of b and suppose that b has abelian defect groups. By the
theorem, b = & " and the Sylow 2-subgroups of L are abelian. Suppose that [L, L] # 1. If L has a
component of type different from A;, then [L, L] contains a subquotient isomorphic to SLg(g’) for
some power ¢’ of g (see Theorem 3.2.8 of [39]). If all components of L are of type Ay, then [L, L]"
is a commuting product of finite special linear and projective general linear groups of degree 2.
But the Sylow 2-subgroups of SLa(¢’) are quaternion and those of PGLy(¢’) are dihedral of order
at least 8 for any odd prime power ¢’ (see [[1.1] below), a contradiction. Hence, L and therefore
L% is an abelian group. In particular, any block of OL¥ is nilpotent. Since nilpotent blocks with
abelian defect groups are precisely the blocks with a symmetric centre (cf. [61, Theorems 3 and
5] and [57]), any block Morita equivalent to a block of OL¥" is nilpotent with an abelian defect
group, whence the result. Alternatively, Morita equivalences of blocks preserve nilpotence by [65]
Theorem 8.2]. O

11. ON THE 2-LOCAL STRUCTURE OF FINITE CLASSICAL GROUPS

Let n be a natural number, ¢ an odd prime power and let L denote one of the groups GL,(q),
GU,(q); O2,41(q), Spay,(q), OF..(q), or Os,(q). Let Z be a central subgroup of L contained in
[L, L] and set G = [L, L]/Z. We gather together a few well-known facts on the Sylow 2-structure
of the groups L and G.

Lemma 11.1. With the notation above,

(i) If n > 3, then the Sylow 2-subgroups of G (and hence of [L, L] and L) are non-abelian.

(ii) If n = 2, the Sylow 2-subgroups of [L, L] are non-abelian. Further, if n = 2 and L is not one
of GLa(q), ¢ = %3 (mod 8), GUz(q), ¢ = +3 (mod 8), or Of (¢), ¢ = +3 (mod 8), then the Sylow
2-subgroups of G are non-abelian.

(111) If L is one of GLa(q), GUa(q) or Spy(q) then the Sylow 2-subgroups of [L, L] are generalised
quaternion groups. They have order at least 16 if ¢ = +1 (mod 8) and in this case the Sylow
2-subgroups of G are non-abelian. If ¢ = £3 (mod 8), then the Sylow 2-subgroups of [L, L] have
order 8 and the Sylow 2-subgroups of G are Klein 4-groups. The Sylow 2-subgroups of PGLa(q)
are dihedral of order at least 8.

(iv) If L is one of OF (q), respectively O3 (q), then L is a dihedral group of order 2(q—1), respectively
2(q+1).

(v) If L = O3(q) and if g =1 (mod 4) then the Sylow 2-subgroups of L are isomorphic to the direct
product of a cyclic group of order 2 with a Sylow 2-subgroup of Og (q) and the Sylow 2-subgroups of
SO3(q) are isomorphic to the Sylow 2-subgroups of Oy (q). If L = O3(q) and ¢ = 3 (mod 4) then
the Sylow 2-subgroups of L are isomorphic to the direct product of a cyclic group of order 2 with
a Sylow 2-subgroup of Oy (q) and the Sylow 2-subgroups of SO3(q) are isomorphic to the Sylow
2-subgroups of O3 (q).
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Proof. Statements (iii), (iv), (v) can be found in [2I]. The only simple groups with abelian Sylow
2-subgroups are PSLz2(¢), ¢ = £3 (mod 8), PSLa(2%), 2Ga2(q'), ¢ = 3%*TL, u > 1, 2G2(3) =
PSLy(8) or Jy (cf. [74], [3]). Also, if n > 2, then unless L is one of OF (¢), GL2(2), GLa(3)
or GUy(2), the groups G are all quasi-simple. Statement (i) and the second assertion of (ii) are
immediate from this. If L = GL3(q), or L = GUz(q), the second assertion of (ii) is immediate from
(iii). Now consider L = O (¢). Then L contains a subgroup isomorphic to GLz(g) or to GUa(q)
(as a centraliser of a semi-simple element), hence [L, L] = Q (q) contains a subgroup isomorphic
to SLa(g) or to SUz(q) and SLa(g) and SUz(g) have non-abelian Sylow 2-subgroups. O

In the next sections, we will analyse closely the structure of centralisers of semi-simple elements
in classical groups. The following elementary lemma will be useful in this context. In what follows,
O(jf (g) are to be interpreted as the trivial group, and O1(q) as a cyclic group of order 2. Also note
that the center of L is a 2-group.

Lemma 11.2. Lett > 0, let d;, m;, 1 <1 < 't, be positive integers and let mg be a non-negative

integer. Let
H= ][] H
0<i<t
be a subgroup of L such that Hy is one of the groups Spy,, (q), O2me+1(q) or Ozimo (q) and H; is
isomorphic to GLy,, (q%) or GUp, (q%) for 1 <i <t. Let Z be a central subgroup of L contained
in H such that if the above decomposition of H has more than one non-trivial factor, then ZNH; =
1 for alli, 0 <i <t. Let T be a Sylow 2-subgroup of H and set P = (T N[L,L]Z)/Z. Suppose
that P is abelian. Then,
(i)m; <2,0<i<t.
(i3) If mo = 2, then H = Hy = O (q).
(i11) If m; = 2 for some i > 1, thent =1 and m = 0, that is H = Hy. Further, d; is odd and
q = %3 (mod 8).
() If Hy = Sps,(q) and if mg # 0, then t =0, that is H = Hy.
Proof. For 0 < i <t, [H;,H;] < HN|[L, L], and hence
[Hi,Hi]/[Hi,Hi] NZ= [HZ,HZ]Z/Z < (H n [L,L]Z)/Z

Suppose first that two of the factors of H are non-trivial, say H; and Hj, ¢ # j. Then, by
assumption [H;, H;]NZ = 1. Tt follows from the above that [H;, H;] is a subgroup of (HN[L, L])/Z.
In particular, the Sylow 2-subgroups of [H;, H;] are abelian. But by Lemma [[T1] [H;, H;] has non-
abelian Sylow 2-subgroups if m; > 2. This proves the first assertions of (ii) and (iii).

Now supppose that some m; > 2. By what has just been proved, either t = 0 or t = 1 and
mo = 0. If t =0, then H = Hy is an orthogonal or symplectic group of dimension mgy. By Lemma
M1 it follows that Hy = OF (¢), proving (ii). If t = 1 and mg = 0, then [H, H]/Z([H, H]) is a
projective special linear or unitary group, and by Lemma [T (i), m1 = 2, H = GLg(¢%), and
q® = £3 (mod 8). The last can only hold if d; is odd and ¢ = 43 (mod 8). This proves (iii). The
proof of (iv) is similar, using the fact that symplectic groups Sp,,,(q) are perfect for n > 2. O

12. TYPE A IN ODD CHARACTERISTIC

By results of Blau and Ellers in [6], Brauer’s height zero conjecture holds for all blocks in
non-defining characteristic of quasi-simple groups of type A and 2A, and hence so does Alperin’s
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weight conjecture for all blocks of these groups in odd characteristic with an elementary abelian
defect group of order 8, by Landrock’s results quoted in Proposition 3.2l This proves in particular
Theorem [IT] for these groups. For future reference, and using methods similar to those in [6],
we prove in this and the following section that elementary abelian 2-defect groups of odd rank
at least three do not occur in type A and type 24, and that blocks with an elementary abelian
2-defect group of even rank at least four of these groups satisfy Alperin’s weight conjecture. For
the remainder of the paper, we assume p = 2.

Theorem 12.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such that
G/Z(G) = PSL,(q) for some positive integer n and some odd prime power q. Let b be a block of
kG with an elementary abelian defect group of order 2" for some integer r > 3. Then r is even
and b satisfies Alperin’s weight conjecture.

Lemma 12.2. Let n, m, d be positive integers such that n = md. Consider GL,(q%) as subgroup
of GLy(q) through some IFq-decomposition (F,)" = (F,a)™. Denote by det the determinant function
on GL,(q). Then there is an element x € GL,y,(q%) such that det(z) has order q — 1.

Proof. Let A be a generator of IFqu and f € F,[X] the minimal polynomial of A over F,. Then f

has degree d, and the roots of f are A, A9, A\%2,..., 2T Let y € GL4(g) with minimal polyomial f.
Define x € GL,,(¢) via d x d-block diagonal matrices where the first block is y and the remaining
m blocks are the identity matrices Idg. Then, in GL, (IF;), the element z is conjugate to a diagonal

matrix whose diagonal entries are A, A9, )\‘12,...,/\‘1%1, 1, 1, ...,1. Thus the determinant of z is
q%—
det(z) = A-A9--- A1 = A" . Since A has order g% —1 it follows that det(z) has order ¢—1. O

Lemma 12.3. Let n, m, d be positive integers such that n = md. Consider GL,(q%) as subgroup
of GLx(q) through some F-decomposition (Fg)™ = (F,a)™. If m > 2 and ¢* = 1 (mod 4) then
there is an element y € GLy,(q?) of order 4 such that the image of y in PGL,(q) has order 4. If
moreover m > 3 we can choose such an element y in SLy(q).

Proof. Since m > 2, the group GL,,(¢%) contains a subgroup isomorphic to qud X qud; choose

y = (y1,1) in this subgroup, where y; € IFqu has order 4. Then y has an eigenvalue 1, hence if
some power y" is a scalar multiple of Id,, then y" = Id,,, which shows that the order of y remains
unchanged upon taking its image in PGL,(q). If m > 3 then GL,,(q?) contains a subgroup
isomorphic to (qud)g; choose y = (y1,1,y3) with y3 such that det(y3) = det(y;)~!, which is
possible thanks to Lemma [12.2] and as before, y has the required properties. O

Since the case PSL2(9) & Ag is dealt with in §7lin order to prove Theorem [[21] we may assume
that G = SL,(q)/Z, where Z, is the Sylow 2-subgroup of Z(SL,(q)). Note that |Z| is equal to
the 2-part (n,q — 1)4 of (n,q —1).

Let b be a block of kG and denote by P a defect group of b. Since PSL,,(q) 2 G/Z_, where Z_
is the complement of Z in Z(SL,(q)) identified to its image in G, the image of P in PSL,(q) is
isomorphic to P. Since Z is a central 2-subgroup, b is the image of a unique block bof k SL,(q),
and the inverse image P of P in SL,(q) is a defect group of b. Let d be a block of k GL,(q)
covering b with a defect group T such that T'N SL,,(¢q) = P. By [24], Proposition 6.3] the block b
is stable under the 2-part of GLy(¢)/ SLy(gq), and hence T'/P is cyclic of order the 2-part (¢ — 1)
of ¢ — 1. By [IZ, Théoreme 3.3], there exists a semi-simple element s of odd order in GL,,(¢q) such
that 7' is a Sylow 2-subgroup of Cgr,, (4)(s) (this can also be seen as a consequence of the Jordan
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decomposition of Theorem [I0.T]). Further there exist positive integers m;,d;, 1 <14 <t such that

n = Z midi,

1<i<t

and setting H; = GL,,, (¢%), there is a decomposition

CGLn(q)(S)E H Hi

1<i<t

corresponding to a subspace decomposition of the underlying IF,-vector vector space as isotypic
F,[s]-modules. In particular, H; = GLy,(¢%) is a subgroup of GL,,4,(q) through some F,-
decomposition (Fg)™i% = (F ;)™

Lemma 12.4. With the notation above, suppose that P is elementary abelian and that t > 3.
Then the following holds.

(i) ¢ = 3 (mod 4).

(i) m; =1 for 1 <i<t.

(111) d; is odd for 1 < i <t.

(iv) If t is even then |P| = 2172, and if t is odd then |P| = 2'=1; in particular, the 2-rank of P is
even.

(v) The block d of GL,,(q) is nilpotent with an elementary abelian defect group T of order 2.

(vi) The block b of kG satisfies Alperin’s weight conjecture.

Proof. Clearly, P = (T'NSL,(q))/Z+ and Zy N H; = 1 for any ¢ such that H; # CL(s). Thus
Lemma (ii) and (iii) apply with L = GL,(q), H = Cr(s) and Z = Z,, and assertion (ii)
is immediate. If ¢ = 1 (mod 4) or if d; is even, then the group H; = GL;(¢%) contains an
element y; of order 4. By Lemma [I2Z.2 the group Hs = GL;(¢%) contains a 2-element g, such that
det(y2) = det(y1)~!. Thus x = y1y2 € SL,(q) = [L, L]. Since t > 3, we have Hy x Ho N Z; = 1,
and it follows that the image 27, of z in P has order 4, a contradiction. Thus (i) and (iii) hold.

Hence T is a Sylow 2-subgroup of szl qudi. Since the d; are odd and ¢ = 3 (mod 4) this implies
that T is elementary abelian of rank ¢, and hence P is elementary abelian of rank ¢t — 1. If n is odd
then P2 P and since n = Y.'_, d; and the d; are odd it follows that ¢ is odd, hence |P| = 2¢~1.
If n is even then |P| = ‘—5' and since n = 22:1 d; and the d; are odd it follows that ¢ is even and
|P| = 2!=2, which proves (iv). Since T is clearly abelian, (v) is immediate from Corollary

Statement (vi) follows from (v) and Proposition 24 O

Lemma 12.5. Suppose that P is elementary abelian and that t = 2. Then m; =mg =1, |P| <4
and P contains an element of order maz((q™ — 1)1, (¢%2 — 1)4).

Proof. The fact that m; = my = 1 is a consequence of LemmalT2 So H; = GL;(¢%). By Lemma
M22 it follows that P = T N SL,(q) contains elements of order max((¢®* — 1)y, (¢%2 —1)3). O

Lemma 12.6. Suppose that P is elementary abelian and that t =1. Then mp < 2.
If mqy =2, then dy is odd, n = 2dy, |P| = 4 and P is a quaternion group of order 8.
Ifmy =1, then T, P and P are cyclic, |P| = 2 if and only if n is even, and either ¢ = 3 (mod 4)
andny < (q—1)4 orq=1 (mod 4) and ny =2(q—1)4.
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Proof. By Lemmal[lT.2] m; < 2. Suppose that m; = 1, so T is a Sylow 2-subgroup of GL;(¢") and
in particular, T is a cyclic group of order (¢ —1) 4. It follows from Lemma[[22that P = PNSL,,(q)

(35:11))++ , and hence P is cyclic of order %.

If n is odd then (¢" — 1)y = (¢ — 1)+ and if n is even then (¢" — 1)1 = ('12_1%. The statement
of the lemma for the case m; = 1 follows by an easy calculation. Now suppose m; = 2. Then
by Lemma I1.2, (ii) we have Cgr,, (o)(s) = GL2(¢%), ¢ = +3 (mod 8), d; is odd and n = 2d.
With this arithmetic, one sees easily that |P| = 4 and |P| = 8. Finally, P is quaternion since it
contains a subgroup isomorphic to the Sylow 2-subgroups of SLa(g%), which by Lemma [IT.1] are
quaternion. ([l

is cyclic of order Now, |Z¢| = min(ny, (g—1)4).

Proof of Theorem[I21. If t > 3, Lemma [[2.4] shows that the 2-rank of P is at least 4 and even
and that b satisfies Alperin’s weight conjecture. If ¢ < 2, Lemma [[2.5] and Lemma [[2.6] show that
the rank of P is at most 2. O

We also note the following.

Lemma 12.7. Suppose that n = 2m, m > 1, and P is elementary abelian of order 2 or 4. Then
the inverse image of P in a non-split central extension 2.G has an element of order 4 unless t = 4,
q = 3(mod 4), and d; is odd for 1 <i < 4. In particular, if P has order 2, then the inverse image
has order 4.

Proof. The central extension 2.G may be assumed to be a central quotient of SL,(¢) and the
inverse image, Py of P in 2.G is a quotient of P by a cyclic (central) group of order $1Z4]. We will
show that unless we are in the exceptional case above, that either P is cyclic or that Py contains an
element of order 2|Z|,. If t = 1 and m; = 1, then Cf(s), and hence P is cyclic. So certainly Py is
cyclic. If t =1 and my = 2, then [Ha, Ha] < CL(s)N[L, L] is a special linear group of dimension 2
and hence PN [Hy, Hy] is a quaternion group of order ¢®¢ — 1. In particular, P contains an element
of order 3(¢** — 1). Since |Z|; < (¢ — 1)4, if d is even, then P contains an element of order at
least 2|Z|,. So we may assume that d is odd. Then |Z|; = 2, and 3(¢** — 1) > 4 = 2|Z|,. Now
suppose t = 2. So, m; = mg = 1 and n = dy + dy. Thus, T = T} x T3, with H; a cyclic group of
order (¢% — 1)y, i = 1,2. We assume without loss of generality that |T1| > |T|. By Lemma [2.2]
it is easy to see that P = T'N SL,(q) is a direct product 1 X Q2 such that @ is cyclic of order

|Ty| and Q2 is cyclic of order (ql_T§L. If dy is even, then |Ty| > 2(q — 1)y > 2|Z|4. If d; is odd,

then ds is also odd (as n is even), hence T5 = 1, that is T is cyclic. Finally, suppose that ¢ > 3.
By Lemma [I2.4], P is not of order 2, and P is of order 4 if and only if t = 4, ¢ = 3(mod 4), and d;
is odd for 1 <17 < 4. Note that in this case, P is elementary abelian of order 8. (|

13. TYPE 2A IN ODD CHARACTERISTIC

We show that type 2A yields no blocks with elementary abelian defect groups of order 8; in
fact, more generally, we have the following result:

Theorem 13.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such that
G/Z(G) =2 PSU,(q) for some positive integer n and some odd prime power q. Let b be a block of
kG with an elementary abelian defect group of order 2" for some integer r > 3. Then r is even
and b satisfies Alperin’s weight conjecture.
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The proof of this follows the same lines as the untwisted case. We give details for the convenience
of the reader. We single out two elementary observations which we will use in the proof below:

Lemma 13.2. Let n, m, d be positive integers and denote by det the determinant function on
GL,,(F,).

(i) Suppose thatn > 2d. Consider the inclusions GL1(¢*?) < GL4(q%) < GUaa(q) < GU,(q), where
GL1(¢%?) is a subgroup of GL4(q?) through some 2 -vector space isomorphism (qu)d = Fyed,
GLa4(q?) is a subgroup of GUaq(q) through some F 2 -vector space embedding (F2)? — (F2)? &
(F2)¢ of the form X — A+ A~ and GUaq(q) is a subgroup of GU,(q) through some decomposition
(Fp)" = (Fp2)?? @ (Fy2)" =24, There is an element x € GL1(¢*?) such that det(z) has order q + 1.
(i3) Suppose that d is odd and that n > d. Consider the inclusions GU;(¢%) < GUy(q) < GU,(q),
where GUy(q%) is a subgroup of GU4(q) through an irreducible unitary representation of GUy(¢?) on

a d-dimensional F 2 -space, and where GUqg(q) is a subgroup of GUy(q) through some decomposition
(F2)" = (Fp2)?? @ (F2)" 2. There is an element x € GL1(¢*?) such that det(z) has order g+ 1.

Proof. (i) Let A be a generator of qugd and f € F2[X] the minimal polynomial of X\ over F..
Then f has degree d, and the roots of f are A, )\qz, )\q4,..., ATV etz o€ GLg4(¢?) with
minimal polyomial f. Then, in GL,(F,), the element z is conjugate to a diagonal matrix whose
Y e (A=, (A9 (A TD)=9, 1.1, Thus the

2d
2(d—1) a1 .
= A1 . Since X has order ¢%¢ —1

diagonal entries are A, )\qz, )\q4,...,)\

determinant of z is det(z) = aa~7, where a = A- A4 .- X4
it follows that det(x) has order ¢ + 1.
(ii) Let A be an element of order ¢?*! in quw and f € F2[X] the minimal polynomial of A over

F,2. Since d is odd, f has degree d. Let x € GUg4(¢g) with minimal polyomial f. In GL,(IF), the

element x is conjugate to a diagonal matrix whose diagonal entries are A, )\qz, Xa ,...,)\q2(d71) . Thus
the determinant of z is
2d _
det(z) = A- AT . AT \E
Since X has order ¢? + 1 and since d being odd, the integers, % and ¢% 4 1 are relatively prime,
it follows that det(z) has order ¢ + 1. (]

We turn now towards the proof of Theorem [[31] Since the case PSU4(3) is dealt with in §7]
in order to prove Theorem [[2.1] we may assume that G = SU,(q)/Z+, where Z, is the Sylow
2-subgroup of Z(SU,(q)). Note that |Z;]| is equal to the 2-part (n,q + 1)+ of (n,q+1). Let b
be a block of kG and denote by P a defect group of b. Since PSU, (¢q) & G/Z_, where Z_ is
the complement of Cy in Z(SL,(q)) identified to its image in G, the image of P in PSU,(q) is
isomorphic to P. Since Z is a central 2-subgroup, b is the image of a unique block bof k SU,.(q),
and the inverse image P of P in SU,(q) is a defect group of b. Let d be a block of kGU,(q)
covering b with a defect group T such that T'NSU,(q) = P. By [24, Proposition 6.3] the block bis
stable under the 2-part of GU,,(¢)/ SU,(q), and hence T/P is cyclic of order the 2-part (g + 1)
of ¢ + 1. By Fong-Srinivasan [35], T' is isomorphic to a Sylow 2-subgroup of

s t
H =] GLu (@) x [ GUa, (¢*)
i=1 J=1
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for some non-negative integers s, ¢, and some positive integers m;, n; d;, e; such that all e; are
odd and satisfy

s t
HZZ 2m1d1—|—z n;e;.
i=1 j=1

We keep this notation for the remainder of this section.

Lemma 13.3. (i) Suppose that Zlgigs m; +Zl§j§t n; > 3. If for some i, j, either GL1(¢*%) or
GU1(¢%) contains an element of order 2%, then so does P.
(i1) Suppose that Elgigs m; + E1§j§t”j >4 and either m; > 2 for some i, 1 <i<s orn; >2
for some j, 1 < j <t. Then P contains an element of order 8.
1i1) Suppose that n; > 2 for some j, 1 < j <t and _.m;+ _.n; > 3. Then P contains
pp J Ve J 1<i<s 1<j<t "y )
an element of order 8.

Proof. (i) This follows easily from Proposition using arguments similar to Lemma 12,3

(ii) Similar argument to (i) using the fact that GLz2(¢’) and GUz(¢’) contain elements of order
8 for any odd prime power ¢'.

(iii ) Again, we use the fact that GU3(¢% ) has an element of order 8. O

Lemma 13.4. Suppose that P is elementary abelian and that s+t > 3. Then the following hold.
(i) s =0.

(i) ny =1 for all i, 1 <i <t.

(i) g = 1 (mod 4).

(iv) If t is even then |P| = 2172, and if t is odd then |P| = 2'=1; in particular, the 2-rank of P is
even.

(v) The block d of GU,(q) is nilpotent with an elementary abelian defect group T of order 2°.
(vi) The block b of kG satisfies Alperin’s weight conjecture.

Proof. Since GL1(q?%) contains an element of order 8, conclusion (i) is immediate from Lemma
[33(i). Assume from now on that s = 0. If ny > 2, then the fact that s +¢ > 3 implies that
> 1<j<s My = 4. So, by Lemma[I3.3(ii), P has an element of order 8, a contradiction. So, (ii) holds.
If ¢ = 3 (mod 4), then GU1(¢%) contains an element of order 4, and again by Lemma [I33(i), P
has an element of order 4. This proves (iii). Hence T is a Sylow 2-subgroup of H;Zl quej . Since

the e; are odd and ¢ = 1 (mod 4) this implies that T is elementary abelian of rank ¢, and hence P
is elementary abelian of rank ¢ — 1. If n is odd then P = P and since n = 22:1 e; and the e; are
odd it follows that ¢ is odd, hence |P| = 2!~1. If n is even then |P| = ‘% and since n = Z;Zl €;
and the e; are odd it follows that ¢ is even and |P| = 2!=2, which proves (iv). Finally, the block
d of GU,(q) is nilpotent in that case because (ii) implies that the centraliser of the semi-simple

element labelling d is a torus, whence (v). Statement (vi) follows from (v) and PropositionZ4l O
Lemma 13.5. Suppose that P is elementary abelian and that s+t <2 . Then |P| < 4.

Proof. Suppose s+t = 1; that is, T'is a Sylow 2-subgroup of GL,,(¢??), where m = m; and d = dj,

and we have n = 2md or T is a Sylow 2-subgroup of GU,,(¢%), where m = ny and e = e, and

we have n = me. In the former case, if m = 1 then T is cyclic, hence |P| < 2, so we may assume

m > 2. If m > 3, then since GL;(¢??) contains an element of order 8, by Lemma [[3.3] (i), P has
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an element of order 8, a contradiction. This contradiction shows m = 2. Thus n = 4d, and so T
is a Sylow 2-subgroup of GL2(g??), and one easily checks that any elementary abelian subquotient
of T has rank at most 2. In the latter case, again if m = 1, then T is cyclic. If m > 4, then by
Lemma [[33 (ii), P contains an element of order 8, a contradiction. If m = 3, then by Lemma [[3:3]
(iii), P has an element of order 8. But n = 3¢ is odd, and hence P = P. This contradiction shows
that m = 2, and T is a Sylow 2-subgroup of GUz(¢?). But any elementary abelian subquotient
of T' has rank at most 2. Now suppose that s +¢ =2 and >, m; +3_;n; > 3. By Lemma [3.3]
(i), s = 0, whence t = 2. By Lemma [I33] (ii), at least one of ny or ny equals 1, say no = 1. If
ny > 3, then by Lemma [I33 (ii), P contains an element of order 8. I If ng = 2, then by Lemma
@33 (iii), P contains an element of order 8. But in this case, n = 2e; + es is odd, which means
that P = P, and hence P has an element of order 8. If ny = 1, then T is abelian of rank 2, hence
P has order at most 4. Finally suppose that s +¢ =2 and >, m; + Ej n; =2 If s=0,t=2,
then ny =no =1;if s=1,t =1, then m; =n; =1 and if s =2,t =0, then m; = mo = 1. In all
cases T is abelian of rank 2 whence P has order at most 4. (]

Proof of Theorem 131l This is immediate from the preceding lemmas. d

14. ORTHOGONAL AND SYMPLECTIC GROUPS IN ODD CHARACTERISTIC

We show that blocks of orthogonal and symplectic groups with elementary abelian defect groups
of order at least 8 are all nilpotent.

Theorem 14.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such that
G/Z(G) is isomorphic to one of PSpy,,(q), n > 2, PQaui1(q) , n >3 or PQL (q), n > 4 for some
odd prime power q. Let b be a block of kG with elementary abelian defect groups of order 2" for
some integer r > 3. Then b is nilpotent.

Notation. The group G will denote one of the groups in the above theorem. Further, we define
L, Ly and G as follows.

If G/Z(G) = PSpy,(g), then L = Lo = Spy,(¢) and G = Spy,, (q).

If G/Z(G) PQQn+1( ), then L = O2n+1(q)7 LO = SOQn+1(q) and G = QQn+1(q).

If G/Z(G) = PO, (q), then L = 03,,(q), Lo = SO3,,(q) and G = 3, (q).

If G/Z(G) = PQy,(q), then L = O5,(q), Lo = SO3,(q) and G = Q5,(q)-

So, G <1 Ly <1 L with the indices of the inclusions being 1 or 2 and G' = G/Z where Z is a central
subgroup of G of order 1 or 2. Let b be a block of kG and denote by P a defect group of b. Since
Z is a central 2-subgroup, b is the image of a unique block b of kG, and the inverse image P of P
in kG is a defect group of b. Let dy be a block of kLo covering b with a defect group T such that
To NG = P. We note that the block b is Lo-stable (see [24, Corollary 6.4]) whence, dy = b and
To/ P is cyclic of order [Lg : G]. Let d be a block of kL covering dy = b and T a defect group of
b containing Ty. As a byproduct of the Jordan decomposition of blocks (see Theorem [[0.T]), there
exists a semi-simple element s € Ly of odd order such that Tj is a Sylow 2-subgroup of Cp,(s) and
T is a Sylow 2-subgroup of C(s) (see [2, (5A)]).

Lemma 14.2. If the defect groups of kLodo are abelian, then kLodo, kLd, kGb and kGb are all
nilpotent blocks.

Proof. Ly = L&', where Ly is a simple algebraic group of type B, C or D over Fq and F : Ly —
Ly is a Frobenius endomorphism with respect to an F4-structure on Ly. Thus, by Corollary [10.2]
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kLody is nilpotent. Since G is a normal subgroup of Ly of index a power of 2 and dy covers b kGb
is nilpotent. Since G is a quotient of G by a central 2- subgroup, and b lifts b, kGb is nilpotent.
Finally L¢ is of index 1 or 2 in L, and d covers dy, hence kLd is nilpotent. O

For the rest of this section s will denote a semi-simple element of odd order in L such that T
is a Sylow 2-subgroup of Cr,(s) and T is a Sylow 2-subgroup of C(s).

Lemma 14.3. Suppose that G = PSp,,,(¢), n > 2. If P is abelian, then b is nilpotent.

Proof. Note that G = [L,L] = Lo = L, G = L/Z, |Z] = 2, and d = dy = b. Further, by [36]
§1], and noting that s has odd order, the group H = CL(s) is a direct product of groups H; as in
Lemma [IT.2 with Ho = Sp,,, (¢) and

1<i<t

The above decomposition of Cf,(s) corresponds to the orthogonal decomposition of the underlying
symplectic space as a direct sum of isotypic F,[s]-modules (for instance, Hy corresponds to the
1-eigen space of s). In particular, if the decomposition has more than one non-trivial factor, then
ZNH; =1foralli,0<i<t WehaveT =Ty = P and P = TN|[L,L]/Z = T/Z. Suppose
that P is abelian. If mg # 0, then by Lemma [IT.2(ii) and (iv), mo = 1, H = Hy = Spy(q). In
particular, n = mo = 1, a contradiction. Thus mg = 0. Suppose that m; = 2 for some i > 1.
Then by LemmaIT.2) t = 1 and H = GLy(q%) or H; = GUy(q%). But as observed above, P is
the quotient of a Sylow 2-subgroup of H by Z(H), and PGL3(¢") and PGUsz(q’) have non-abelian
Sylow 2-subgroups for any odd prime power ¢, a contradiction. Thus mg = 0 and m; < 1 for all
1, 1 <14 <t. In particular, H and therefore Ty is abelian. The result follows by Lemma 142 O

Before we proceed, we recall the structure of Cr,(s) when L is an orthogonal group as described
in [36] §1]. Let V be an underlying F,-vector space for L, and let 7 : V — F, be a non-degenerate
quadratic form underlying L. So L = I(V'), the subgroup of GL(V') consisting of isometries with
respect to 7, Lo = Iy(V), the subgroup of I(V) consistsing of matrices of determinant 1 and
G =Q(V) = [I(V),I(V)]. Let Vy denote the 1-eigen space of s. The space V decomposes as an
orthogonal direct sum

V=Wao (@1§i§t‘/i)
where for ¢ > 1, V;, is an isotypic Fg[s]-module, such that V; and V; have no common irreducible
F,[s]-summands for 0 < ¢ # j < ¢ and such that

HCL N GL(V;).

Here [], GL(V;) is considered as a subgroup of GL(V) in the standard way. Further, setting
H; = Cr(s) N GL(V;), we have that
I — LNGL(V;) if i=0
! GLy, (e,q%) if i > 1.
Here for each i > 1, 2d;m; is the F,-dimension of V; and Hy = I(Vh). Also, ¢ € {£1} and
GLy, (€iq%) denotes GU,, (¢%) if ¢, = —1. If i > 1, then H; < Lg. Thus,

CLO( ) HO n LQ H H;.
1<i<s
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For each i, 0 < ¢ < ¢, the restriction of 7 to V; is non-degenerate. This form has maximal Witt
index if €** = 1 and is of non-maximal Witt index if €/" = —1. For 1 <1 <, let ¢; be the unique
involution in the centre of H;. As an element of GL(V), t; acts as —1 on V; and as 1 on all V},
j #i. Now G = [I[(V),I(V)] is the kernel of the spinorial norm from I(V) to FX/Fx? (see [39,
§2.7]). From this it follows that ¢; € Q(V) if and only if ¢%™ = €™ (mod 4). We will use this fact
in the sequel.

Lemma 14.4. Suppose that G = PQap1+1(q), n > 3 and that P is elementary abelian with |P| >
8. Then b is nilpotent.

Proof. Note that since the dimension of the underlying vector space is odd, G = G = (L, L], G is
of index 2 in Ly and Lg is of index 2 in L. In particular, P =P By Lemma [IT.2] either m; = 2
and m; = 0 for all 7 different from 1, or all m; < 1. In the former case, again by Lemma I1.2) T
is isomorphic to a Sylow 2-subgroup of a 2-dimensional general linear group. In particular, 7" has
an element of order 8. Since T' < L in this case, P is of index 2 in of T', hence P has an element of
order 4, a contradiction. We assume from now on that all m; < 1. If mg = 0, then T" and therefore
To is abelian and we are done by Corollary [4£2l So, mg = 1, i.e. Hy = O3(q). Since n > 2,4 > 1,
i.e., miy # 0. Let T? be the i-th component of T. We claim that 7% £ P for any ¢ > 1. Indeed,
suppose the contrary. Then T% = (t;) has order 2. In particular, this means that ¢% # ¢; (mod 4).
But since m; = 1, this means that ¢; ¢ Q(V) and hence ¢; ¢ P. This proves the claim. By Lemma
MT2 T° N Hy is a dihedral group of order at least eight. Also, clearly T° N Hy < Ty. Since P is of
index 2 in Tp, and since as just shown T £ P, it follows that P contains a subgroup isomorphic
to T° N Hy, an impossibility as P is abelian and 7° N SO3(q) is not. O

Lemma 14.5. Suppose that G = PQJ (q), or P, (q), n > 4 and that P is elementary abelian
with |P| > 8. Then b is nilpotent.

Proof. We first consider G = PQJ (¢). If m; = 2, then by Lemma IT2(i) and (iii), m; = 0
for j # i, Cr(s) = H; = GL(e1¢™), where ¢ = £3 (mod 8) and d; is odd. But ¢ht™ =1 =
€' (mod 4), hence the central involution ¢; of Hy is in [L, L] and P is a subgroup of T'/(¢;). Since
T/(t;) is a dihedral group (see [21]), P has rank at most 2, a contradiction. Now suppose mg = 2.
Then, m; = 0 for all ¢ > 1, and n = 2, a contradiction, as n is assumed to be at least 3. Thus,
m; < 1 for all 7. If mg = 0, then T} is abelian and we are done by Theorem So, suppose that
my = 1. Then Hy = OF(q) is a dihedral group and Hy N Ly = SO (¢) is a cyclic group (see [39,
82.7]). Since H; is also cyclic for all i > 1, Ty is abelian and we are done by Theorem [[4.2] The
proof for G = P, (¢) is similar. O

Proof of Theorem [1Z.1] This is immediate from the preceding lemmas. d

15. TYPE Go, 2G2 AND 2>D4 IN ODD CHARACTERISTIC

Let ¢ an odd prime power. The 2-rank of Ga(q), 2G2(q) and 3D4(q) is 3; see e.g. [37, §1], [39,
Theorem 4.10.5].

Proposition 15.1. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(QG) is simple of type Ga(q). Then kG has no block with an elementary abelian defect
group of order 8.

Proof. This follows from [42], where the 2-blocks of G are determined. Alternatively, one can
use the arguments in [24] 12.2]: there is a unique conjugacy class of involutions w in G' and by
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39, 4.5.1], Ca(u) =2 Z(G)x (2.(PSLz(q) x PSL2(g)).2). The acting 2-automorphism in the second
factor is inner-diagonal, hence stabilises any block of 2.(PSLa(¢) x PSL2(g)). Thus a block of C(u)
with elementary abelian defect group of order 8 would cover a block of 2.(PSLa(q) x PSLa(g)) with
a Klein four defect group, whose image modulo the central involution would yield a block of
PSLa(gq) x PSLa(g) with a defect group of order 2. Any block of this direct product is of the form
co ® ¢1, where ¢, ¢1 are blocks of PSLa(q), so exactly one of ¢g, ¢; would have defect zero and the
other defect one. But since any inverse image of an involution in PSLy(g) in SL2(g) has order 4
this is impossible. (Il

Proposition 15.2. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is simple of type 2Ga(q). The principal block by is the unique block of kG having an
elementary abelian defect P group of order 8, and we have |Irrx (G, bo)| = 8.

Proof. The Sylow 2-subgroups of 2G2(q) are elementary abelian of order 8. The simple group of
type 2Ga(q) has trivial Schur multiplier, hence Z(G) = 1. In that case we have Ng(P) = P x E,
with E a Frobenius group of order 21 acting faithfully on P, and hence, by Brauer’s First Main
Theorem, the principal block by of kG is the unique block having P as defect group. By Ward’s
explicit calculations in [75] or Landrock’s general results in [48], §3] we have |Irrx (G, bo)| =8. O

Finally for the triality D4-groups we have the following proposition due to Deriziotis and Michler
[29, Proposition 5.3]

Proposition 15.3. Let G be a quasi-simple finite group such that Z(G) has odd order and such
that G/Z(G) is simple of type 3D4(q). Let P be a defect group of some block of kG. Then either
P is non-abelian or P has rank at most 2. In particular, no block of kG has defect groups which
are elementary abelian of order 8.

16. UNIPOTENT CHARACTERS WITH SMALL 2-DEFECTS

Recall that the 2-defect of an irreducible character x of a finite group G is the largest integer
d(x) such that 24X) divides the rational integer % The notation of the finite groups of Lie type
and the labelling of their unipotent characters due to Lusztig in the following two propositions are
from the tables page 75/76 and pages 465-488 in Carter’s book [20]. In particular, if X is some
simple type we denote by X (q) the finite group of Lie type (that is, the group of fixed points in the
algebraic group under some Frobenius endomorphism). We will deviate from the notation of [20]
in one respect, i.e., we will denote by 24,(q), 2D;(q), and 3D4(q) the twisted groups denoted by
2A1(¢?), 2Di(¢?), and 2D4(g?) respectively in [20]. For classical groups, we will also draw upon
Olsson’s treatment of the combinatorics of symbols [63]. Given a positive integer n, let ny denote
as before the 2-part of n and n_ the 2’-part of n. So, n = nyn_, no odd prime divides n, and 2

does not divide n_.

Proposition 16.1. Let q be a power of an odd prime r. Let (g — 1)y = 2% and (g + 1), = 2°.

(i) Fvery unipotent character of A;(q) has 2-defect greater than or equal to dl. If I+ 1 is not a
triangular number, then the 2-defect of any unipotent character of Ai(q) is at least dl + e > 2+ 1.
If I > 3, then all unipotent charecters have 2-defect greater than or equal to 5. As(q) has one
unipotent character, x'2) of 2-defect 2d, all other unipotent characters have 2-defect 2d + e > 4.
The 2-defect of any unipotent character of A1(q) is d+ e > 3.

(ii) Every unipotent character of 2A;(q) has 2-defect greater than or equal to el. If I+ 1 is not a
triangular number, then the 2-defect of any unipotent character of 2A;(q) is at least el +d > 2+1.
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If | > 3, then all unipotent characters have 2-defect greater than or equal to 6. 2As(q) has one
unipotent character, X2 of 2-defect 2e, all other uniptent characters have 2-defect 2e 4+ d > 4.
The 2-defect of any unipotent character of 2A1(q) is d+ e > 3. (iii) Every unipotent character of

Bi(q) or Ci(q), 1 > 2 has 2-defect at least 21 > 4.
(iv) Every unipotent character of Di(q) or 2Di(q), | > 4 has 2-defect at least 21 — 1 > 7.

Proof. We note that d + e > 3.
(i) The unipotent characters of A;(¢q) are parametrized by the partitions of { + 1. If « is a
partition of [ and x® is the corresponding unipotent character, then

(D), = 9= DAL

[I(¢" = 1)

where h runs over the set of hook lengths of « (see for instance [54, pp.152-153]). Thus the 2-defect
of x* is f where 2/ = %. Since a has [ + 1 hooks, the first assertion follows. If [ 41 is not

a triangular number, then at least one hook of « is of even length. So, (¢? —1) divides ¢" — 1 for at
least one hook length h of a, whence f > (d+e)+d(l—1). Since 5 is not a triangular number, it is
immediate from the first two assertions that any unipotent character of A;(q), I > 4 has 2-defect at
least 6. Any partition of 4 has two hooks of even length, hence f > 2(d+e¢) > 6. If a = (1,1,1) or
a = (3), then the hook lengths of « are 1, 2 and 3 and it follows that f =2d+e > 4. If a = (2,1),
then the hook lengths of o are 1,1 and 3 and the 2-defect is 2d. Finally, if o = (1,1) or (2), then
the hook lengths are 1 and 2 and the 2-defect is d + e.

(ii) The unipotent characters of 2A;(q) are also parametrised by partitions of [ + 1. If x® is the
character labelled by «, then

2
ey = L2
[I,((=9" = 1)

where h runs over the set of hook