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ON INTEGRABILITY OF NONAUTONOMOUS NONLINEAR SCHRÖDINGER

EQUATIONS

SERGEI K. SUSLOV

Abstract. We show, in general, how to transform nonautonomous nonlinear Schrödinger equation
with quadratic Hamiltonians into the standard autonomous form that is completely integrable by the
familiar inverse scattering method in nonlinear science. Derivation of the corresponding equivalent
nonisospectral Lax pair is outlined.

1. Introduction

Recently several nonautonomous (with time-dependent coefficients) and inhomogeneous (with
space-dependent coefficients) nonlinear Schrödinger equations have been discussed as (possible)
new integrable systems [6], [7], [13], [17], [35], [41], [45], [46], [51], [58], [59], [67], [71], [72], [73], [74],
[75], [77], [82], [85], [86], [87], [93] (see also [2], [3], [8], [15], [16], [18], [38], [48], [81] and references
therein for earlier works). They arise in the theory of Bose–Einstein condensation [30], [66], fiber
optics [5], [40], superconductivity and plasma physics [15], [16], [62], [63].

As pointed out in recent papers [42] and [48] (see also [2], [3], [18], [29], [38], [60]), all these sys-
tems can be reduced by a set of transformations to the standard autonomous nonlinear Schrödinger
equation, which explains their integrability properties because this equation is a well-known com-
plete integrable system with Lax pair [50], [90], [91], [92], conservation laws and N -soliton solutions,
solvable through the inverse scattering method [2], [3], [4], [47], [63], [69]. Integration techniques
of the nonlinear Schrödinger equation include also Painlevé analysis [11], [19], [20], [21], [22], [28],
[29], [42], [47], [61], [79], [83], Hirota method [43], [44], [47], Bäcklund transform [10], [14], [47] and
Hamiltonian approach [1], [4], [36], [37], [56], [57], [63] among others [31], [54], [64], [68].

We show here how to construct these transformations explicitly (in quadratures) for the most
general variable quadratic Hamiltonian. A simple relation with the Green function of a linear
problem, which seems has been missing in the available literature, is emphasized. The corresponding
equivalent Lax pair is also briefly discussed.

2. Transformation into Autonomous Form

The nonautonomous nonlinear Schrödinger equation:

i
∂ψ

∂t
= Hψ + h |ψ|2 ψ, (2.1)
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where the variable Hamiltonian H is an arbitrary quadratic form of operators p = −i∂/∂x and x,
namely,

iψt = −a (t)ψxx + b (t) x2ψ − ic (t)xψx − id (t)ψ − f (t) xψ + ig (t)ψx + h (t) |ψ|2 ψ, (2.2)

(a, b, c, d, f and g are suitable real-valued functions of time only) under the following integrability
condition1 [77]:

h = h0a (t) β
2 (t)µ (t) = h0β

2 (0)µ2 (0)
a (t) λ2 (t)

µ (t)
(2.3)

(h0 is a real constant) can be transformed with the help of the substitution:

ψ (x, t) =
1

√

µ (t)
ei(α(t)x

2+δ(t)x+κ(t))χ (β (t)x+ ε (t) , γ (t)) (2.4)

into the autonomous form with respect to the new variables ξ = β (t) x+ ε (t) and τ = γ (t) :

iχτ + h0 |χ|2 χ = χξξ, (2.5)

which is completely integrable by advanced methods of the soliton theory [4], [47], [63], [70], [90],
[91], [92] (see also [31] and references cited in the introduction). Equations (2.2)–(2.3) seem to
represent the maximum nonautonomous and inhomogeneous one-dimensional integrable system of
this kind. (Important special cases of the transformation (2.4) are discussed in Refs. [2], [15], [16],
[18], [38], [42], [48], [67] and [77].)

Here, the real-valued functions α, β, γ, δ, ε and κ of time t only are given in terms of solutions
of the following system of ordinary differential equations [23]:

dα

dt
+ b+ 2cα + 4aα2 = 0, (2.6)

dβ

dt
+ (c+ 4aα)β = 0, (2.7)

dγ

dt
+ aβ2 = 0 (2.8)

and
dδ

dt
+ (c+ 4aα) δ = f + 2αg, (2.9)

dε

dt
= (g − 2aδ) β, (2.10)

dκ

dt
= gδ − aδ2. (2.11)

The substitution [23]:

α =
1

4a (t)

µ′ (t)

µ (t)
− d (t)

2a (t)
(2.12)

reduces the Riccati equation (2.6) to the second order linear equation

µ′′ − τ (t)µ′ + 4σ (t)µ = 0 (2.13)

with

τ (t) =
a′

a
− 2c+ 4d, σ (t) = ab− cd+ d2 +

d

2

(

a′

a
− d′

d

)

. (2.14)

1If the nonlinear term has the form h |ψ|p ψ, popular in the mathematical literature, the integrability condition

becomes h = h0aβ
2µp/2.
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(Relations with the corresponding Ehrenfest theorem for the linear Hamiltonian are discussed in
Ref. [25].)

The initial value problem for the system (2.6)–(2.11), which corresponds to the linear Schrödinger
equation with a variable quadratic Hamiltonian (generalized harmonic oscillators [9], [33], [39], [84],
[89]), can be explicitly solved in terms of solutions of characteristic equation (2.13) as follows [23],
[25], [76], [78]:

µ (t) = 2µ (0)µ0 (t) (α (0) + γ0 (t)) , (2.15)

α (t) = α0 (t)−
β2
0 (t)

4 (α (0) + γ0 (t))
, (2.16)

β (t) = − β (0) β0 (t)

2 (α (0) + γ0 (t))
=
β (0)µ (0)

µ (t)
λ (t) , (2.17)

γ (t) = γ (0)− β2 (0)

4 (α (0) + γ0 (t))
(2.18)

and

δ (t) = δ0 (t)−
β0 (t) (δ (0) + ε0 (t))

2 (α (0) + γ0 (t))
, (2.19)

ε (t) = ε (0)− β (0) (δ (0) + ε0 (t))

2 (α (0) + γ0 (t))
, (2.20)

κ (t) = κ (0) + κ0 (t)−
(δ (0) + ε0 (t))

2

4 (α (0) + γ0 (t))
, (2.21)

where

α0 (t) =
1

4a (t)

µ′

0 (t)

µ0 (t)
− d (t)

2a (t)
, (2.22)

β0 (t) = − λ (t)

µ0 (t)
, λ (t) = exp

(

−
∫ t

0

(c (s)− 2d (s)) ds

)

, (2.23)

γ0 (t) =
1

2µ1 (0)

µ1 (t)

µ0 (t)
+

d (0)

2a (0)
(2.24)

and

δ0 (t) =
λ (t)

µ0 (t)

∫ t

0

[(

f (s)− d (s)

a (s)
g (s)

)

µ0 (s) +
g (s)

2a (s)
µ′

0 (s)

]

ds

λ (s)
, (2.25)

ε0 (t) = −2a (t)λ (t)

µ′

0 (t)
δ0 (t) + 8

∫ t

0

a (s) σ (s) λ (s)

(µ′

0 (s))
2 (µ0 (s) δ0 (s)) ds (2.26)

+2

∫ t

0

a (s)λ (s)

µ′
0 (s)

(

f (s)− d (s)

a (s)
g (s)

)

ds,

κ0 (t) =
a (t)µ0 (t)

µ′
0 (t)

δ20 (t)− 4

∫ t

0

a (s)σ (s)

(µ′

0 (s))
2 (µ0 (s) δ0 (s))

2 ds (2.27)

−2

∫ t

0

a (s)

µ′

0 (s)
(µ0 (s) δ0 (s))

(

f (s)− d (s)

a (s)
g (s)

)

ds
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(δ0 (0) = −ε0 (0) = g (0) / (2a (0)) and κ0 (0) = 0) provided that µ0 and µ1 are the standard solutions
of equation (2.13) corresponding to the following initial conditions µ0 (0) = 0, µ′

0 (0) = 2a (0) 6= 0
and µ1 (0) 6= 0, µ′

1 (0) = 0 (proofs are outlined in Refs. [23], [27] and [76]). (Formulas (2.22)–(2.27)
correspond to Green’s function of generalized harmonic oscillators; see, for example, [23], [25], [34],
[52], [76], [78] and references therein for more details.)

Proof. Differentiate ψ = µ−1/2 (t) eiS(x,t)χ (ξ, τ) with S = α (t) x2 + δ (t) x+ κ (t) and ξ = β (t)x +
ε (t) , τ = γ (t) :

ie−iSψt =
1√
µ

[

−
(

α′x2 + δ′x+ κ′
)

χ+ i

(

(β ′x+ ε′)χξ + γ′χτ −
µ′

2µ
χ

)]

, (2.28)

e−iSψx =
1√
µ

[

i (2αx+ δ)χ + βχξ

]

(2.29)

and

e−iSψxx =
1√
µ

[(

2iα− (2αx+ δ)2
)

χ+ 2i (2αx+ δ) βχξ + β2χξξ

]

. (2.30)

Substitution into (2.2), with the help of the integrability condition (2.3) and the system (2.15)–
(2.21), results in (2.5). �

This observation gives a new interpretation of the system (2.15)–(2.21), which has been originally
derived in Ref. [23] during integration of the corresponding linear equation.

3. Integration of the Nonautonomous Linear System

The transformation (2.4) reduces the linear Schrödinger equation of generalized harmonic oscil-
lators, namely, equation (2.1) with h = 0, to the Schrödinger equation for a free particle iχτ = χξξ

with a familiar Green function given by

G (ξ, η, τ − τ 0) =
1

√

−4πi (τ − τ 0)
exp

[

−i (ξ − η)2

4 (τ − τ 0)

]

, (3.1)

where ξ = β (t) x+ ε (t) , η = β (0)x+ ε (0) and τ = γ (t) , τ 0 = γ (0) . One can verify directly that
Green’s functions of generalized harmonic oscillators [23],

G (x, y, t) =
1

√

2πiµ0 (t)
exp

[

i
(

α0 (t) x
2 + β0 (t) xy + γ0 (t) y

2 + δ0 (t) x+ ε0 (t) y + κ0 (t)
)]

, (3.2)

are derived from the simplest free particle propagator (3.1) with the help of our transformations
(2.15)–(2.21). In is worth noting, though, that the transformation (2.4) requires a knowledge of the
functions µ, α, β, γ, δ, ε and κ, which allows to determine the Green’s function for the generalized
harmonic oscillators directly from (2.2).

Then the superposition principle allows to solve the corresponding Cauchy initial value problem:

ψ (x, t) =

∫

∞

−∞

G (x, y, t)ψ (y, 0) dy (3.3)

for suitable initial data ψ (x, 0) = ϕ (x) (see Refs. [23], [78] and [76] for details).
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As shown in [76], the following asymptotics hold

α0 (t) =
1

4a (0) t
− c (0)

4a (0)
− a′ (0)

8a2 (0)
+O (t) , (3.4)

β0 (t) = − 1

2a (0) t
+

a′ (0)

4a2 (0)
+O (t) ,

γ0 (t) =
1

4a (0) t
+

c (0)

4a (0)
− a′ (0)

8a2 (0)
+O (t) ,

δ0 (t) = −ε0 (t) =
g (0)

2a (0)
+O (t) , κ0 (t) = O (t)

as t→ 0 for sufficiently smooth coefficients. Then

G (x, y, t) ∼ 1
√

2πia (0) t
exp

[

i
(x− y)2

4a (0) t

]

(3.5)

× exp

[

−i
(

a′ (0)

8a2 (0)
(x− y)2 +

c (0)

4a (0)

(

x2 − y2
)

− g (0)

2a (0)
(x− y)

)]

as t→ 0, which corrects a typo in Ref. [23].

Another form of solution is provided by an eigenfunction expansion [78].

4. One Soliton Solution

As well-known, equation (2.5) has a travelling wave solution of the form

χ (ξ, τ ) = ei(ξy+τ(y2−g0)+φ)F (ξ + 2τy) (4.1)

provided
(

dF

dz

)2

= C0 + g0F
2 +

1

2
h0F

4 (C0 is a constant of integration) . (4.2)

Examples include bright and dark solitons, and Jacobi elliptic transcendental solutions for solitary
wave profiles [2], [47], [63], [70], [77]. Setting C0 = y = 0, gives the stationary breather, which is
located about ξ = 0 and oscillates at a frequency equal to g0 [69], [70].

By (2.4), the nonautonomous Schrödinger equation (2.2) under the integrability condition (2.3)
has the following solution:

ψ (x, t) =
eiφ√
µ
exp

(

i
(

αx2 + βxy + γ
(

y2 − g0
)

+ δx+ εy + κ
))

(4.3)

×F (βx+ 2γy + ε) ,

where the elliptic function F satisfies equation (4.2) and φ, y, g0 and h0 are real parameters (see
also Ref. [77] for a direct derivation of this solution).
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5. Integrability of Nonautonomous Nonlinear Schrödinger Equation

The substitution Ψ (X, T ) =
√
h0χ

(√
2X,−2T

)

transforms equation (2.5) into standard forms

iΨT +ΨXX ± 2 |Ψ|2Ψ = 0, (5.1)

which, as well-known, can be obtained as the flatness condition:

UT − VX + UV − V U = 0 (5.2)

for the Lax–(Zakharov–Shabat) pair:

U = −iλσ3 +Ψσ+ ∓Ψ∗σ− (5.3)

=

(

−iλ Ψ
∓Ψ∗ iλ

)

and

V = i
(

−2λ2 ± |Ψ|2
)

σ3 + (2λΨ+ iΨX) σ+ ± (−2λΨ∗ + iΨ∗

X) σ− (5.4)

=

(

i
(

−2λ2 ± |Ψ|2
)

2λΨ+ iΨX

∓2λΨ∗ ± iΨ∗

X i
(

2λ2 ∓ |Ψ|2
)

)

.

Here, σ± = (σ1 ± iσ2) /2 and σ1, σ2, σ3 are the Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (5.5)

Since the Lax pair guarantees complete integrability and can alone derive all its associated proper-
ties, this consideration trivially explains the integrability features of the nonautonomous nonlinear
Schrödinger equation (2.1), including N -soliton solutions, infinite conservative properties, etc., (see
Refs. [48], [63] and [70] for more details).

Solution of the Cauchy initial value problem through the inverse scattering method is discussed
in [3], [4], [47], [63], [70], [90], [91] and [92]. In the focusing case,

iΨT +ΨXX + 2 |Ψ|2Ψ = 0, (5.6)

the Zakharov–Shabat system contains four equations for an auxiliary two-component wave function
Φ = (ϕ, υ)T :

ΦX = UΦ, ΦT = VΦ, (5.7)

namely,

ϕX = −iλϕ+Ψυ, (5.8)

υX = −Ψ∗ϕ+ iλυ

and

ϕT = i
(

−2λ2 + |Ψ|2
)

ϕ+ (2λΨ+ iΨX) υ, (5.9)

υT = (−2λΨ∗ + iΨ∗

X)ϕ+ i
(

2λ2 − |Ψ|2
)

υ.

Assuming that Ψ (X, T ) → 0 as X → ±∞ implies

ϕT → −2iλ2ϕ, υT → 2iλ2υ (X → ±∞) (5.10)
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so the scattering data for the problem

L

(

ϕ
υ

)

= λ

(

ϕ
υ

)

, (5.11)

L = iσ3
∂

∂X
− iΨσ+ − iΨ∗σ− = i

(

∂X −Ψ
−Ψ∗ −∂X

)

(5.12)

evolve with time as

b (λ, T ) = b (λ, T0) e
4iλ2(T−T0), rn (T ) = rn (T0) e

4iλ(T−T0). (5.13)

Then Cauchy initial value problem for the nonlinear Schrödinger equation (5.1) can be solved as
follows [47], [70]:

Ψ (X, T ) = −2K (X,X, T ) , (5.14)

where K (X, Y, T ) satisfies the linear integral equation

K (X, Y, T ) = B∗ (X + Y, T ) (5.15)

−
∫

∞

X

∫

∞

X

K (X,Z, T )B (Z +W,T )B∗ (Y +W,T ) dZdW

and B (X, T ) can be obtained in terms of the scattering data:

B (X, T ) = −i
N
∑

n=1

rn (T0) e
i(λnX+4λ2

n
(T−T0)) +

1

2π

∫

∞

−∞

b (λ, T0) e
i(λX+4λ2(T−T0)) dλ (5.16)

(see Refs. [3], [2], [4], [63], [47], [69], [70], [80], [90], [91], [92] for more details).

As a result, the transformation

ψ (x, t) =
1

√

h0µ (t)
ei(α(t)x

2+δ(t)x+κ(t)) Ψ

(

1√
2
(β (t) x+ ε (t)) ,−1

2
γ (t)

)

(5.17)

allows to solve Cauchy initial value problem for the nonautonomous nonlinear Schrödinger equation
(2.2) with the help of the standard inverse scattering technique.

Two well-known solutions of (5.6) are given by [69], [70]:

Ψ1 (X, T ) =
eiT

coshX
(5.18)

and

Ψ2 (X, T ) = 4eiT
cosh 3X + 3e8iT coshX

cosh 4X + 4 cosh 2X + 3 cos 8T
. (5.19)

Use of the transformation (5.17), results in one and two soliton solutions for the nonautonomous
nonlinear Schrödinger equation (2.2), respectively. (See [69], [70] for more details.)
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6. Transformation of the Lax Pair and Zakharov–Shabat System

If needed, an equivalent (nonisospectral) Lax pair for the nonautonomous Schrödinger equation
(2.2), which is discussed in [8], [15], [16], [18], [74], [75] for important special cases, can be derived,
in general, from (5.3)–(5.4) by inverting our transformation (5.17) (see [3], [48] for more details).
The required integrability condition (2.3) has been already incorporated into this transformation.
Computational details are left to the reader.
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