ON CO-ORDINATED QUASI-CONVEX FUNCTIONS

Abstract

In this paper, we give some definitions on quasi-convex functions and we prove inequalities contain J-quasi-convex and W-quasi-convex functions. We give also some inclusions.

1. INTRODUCTION

Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on the interval of I of real numbers and $a, b \in I$ with $a<b$. The following double inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is well-known in the literature as Hadamard's inequality. We recall some definitions; In [25], Pecaric et al. defined quasi-convex functions as following

Definition 1. A function $f:[a, b] \rightarrow \mathbb{R}$ is said quasi-convex on $[a, b]$ if

$$
f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}, \quad(Q C)
$$

holds for all $x, y \in[a, b]$ and $\lambda \in[0,1]$.
Clearly, any convex function is quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex.

Definition 2. (See [6, [12]) We say that $f: I \rightarrow \mathbb{R}$ is a Wright-convex function or that f belongs to the class $W(I)$, if for all $x, y+\delta \in I$ with $x<y$ and $\delta>0$, we have

$$
f(x+\delta)+f(y) \leq f(y+\delta)+f(x)
$$

Definition 3. (See [6]) For $I \subseteq \mathbb{R}$, the mapping $f: I \rightarrow \mathbb{R}$ is wright-quasi-convex function if, for all $x, y \in I$ and $t \in[0,1]$, one has the inequality

$$
\frac{1}{2}[f(t x+(1-t) y)+f((1-t) x+t y)] \leq \max \{f(x), f(y)\}, \quad(W Q C)
$$

or equivalently

$$
\frac{1}{2}[f(y)+f(x+\delta)] \leq \max \{f(x), f(y+\delta)\}
$$

for every $x, y+\delta \in I, x<y$ and $\delta>0$.

[^0]Definition 4. (See [6]) The mapping $f: I \rightarrow \mathbb{R}$ is Jensen- or J-quasi-convex if

$$
f\left(\frac{x+y}{2}\right) \leq \max \{f(x), f(y)\}, \quad(J Q C)
$$

for all $x, y \in I$.
Note that the class $J Q C(I)$ of J-quasi-convex functions on I contains the class $J(I)$ of J -convex functions on I, that is, functions satisfying the condition

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \tag{J}
\end{equation*}
$$

for all $x, y \in I$.
In [6], Dragomir and Pearce proved following theorems containing J-quasi-convex and Wright-quasi-convex functions.

Theorem 1. Suppose $a, b \in I \subseteq \mathbb{R}$ and $a<b$. If $f \in J Q C(I) \cap L_{1}[a, b]$, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x+I(a, b) \tag{1.2}
\end{equation*}
$$

where

$$
I(a, b)=\frac{1}{2} \int_{0}^{1}|f(t a+(1-t) b)-f((1-t) a+t b)| d t .
$$

Theorem 2. Let $f: I \rightarrow \mathbb{R}$ be a Wright-quasi-convex map on I and suppose $a, b \in I \subseteq \mathbb{R}$ with $a<b$ and $f \in L_{1}[a, b]$, one has the inequality

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \max \{f(a), f(b)\} . \tag{1.3}
\end{equation*}
$$

In [6], Dragomir and Pearce also gave the following theorems involving some inclusions.

Theorem 3. Let $W Q C(I)$ denote the class of Wright-quasi-convex functions on $I \subseteq \mathbb{R}$, then

$$
\begin{equation*}
Q C(I) \subset W Q C(I) \subset J Q C(I) \tag{1.4}
\end{equation*}
$$

Both inclusions are proper.
Theorem 4. We have the inlusions

$$
\begin{equation*}
W(I) \subset W Q C(I), \quad C(I) \subset Q C(I), \quad J(I) \subset J Q C(I) \tag{1.5}
\end{equation*}
$$

Each inclusion is proper.
For recent results related to quasi-convex functions see the papers [1]-11] and books [23], 24]. In [19], Dragomir defined co-ordinated convex functions and proved following inequalities.

Let us consider the bidimensional interval $\Delta=[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. A function $f: \Delta \rightarrow \mathbb{R}$ will be called convex on the co-ordinates if the partial mappings

$$
f_{y}:[a, b] \rightarrow \mathbb{R}, \quad f_{y}(u)=f(u, y)
$$

and

$$
f_{x}:[c, d] \rightarrow \mathbb{R}, \quad f_{x}(v)=f(x, v)
$$

are convex where defined for all $y \in[c, d]$ and $x \in[a, b]$.

Recall that the mapping $f: \Delta \rightarrow \mathbb{R}$ is convex on Δ, if the following inequality;

$$
\begin{equation*}
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda f(x, y)+(1-\lambda) f(z, w) \tag{1.6}
\end{equation*}
$$

holds for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.
Theorem 5. (see [19], Theorem 1) Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ. Then one has the inequalities;
$f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right]$

$$
\begin{equation*}
\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{1.7}
\end{equation*}
$$

$$
\leq \frac{1}{4}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) d x\right.
$$

$$
\left.\frac{1}{d-c} \int_{c}^{d} f(a, y) d y+\frac{1}{d-c} \int_{c}^{d} f(b, y) d y\right]
$$

$$
\leq \frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{4}
$$

The above inequalities are sharp.
Similar results can be found in [13]-22].
This paper is arranged as follows. Firstly, we will give some definitions on quasi-convex functions and lemmas belong to this definitions. Secondly, we will prove several inequalities contain co-ordinated quasi-convex functions. Also, we will discuss the inclusions a connection with some different classes of co-ordinated convex functions.

2. DEFINITIONS AND MAIN RESULTS

We will start the following definitions and lemmas;
Definition 5. A function $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is said quasi-convex function on the co-ordinates on Δ if the following inequality

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \max \{f(x, y), f(z, w)\}
$$

holds for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$
$f: \Delta \rightarrow \mathbb{R}$ will be called co-ordinated quasi-convex on the co-ordinates if the partial mappings

$$
f_{y}:[a, b] \rightarrow \mathbb{R}, \quad f_{y}(u)=f(u, y)
$$

and

$$
f_{x}:[c, d] \rightarrow \mathbb{R}, \quad f_{x}(v)=f(x, v)
$$

are convex where defined for all $y \in[c, d]$ and $x \in[a, b]$. We denote by $Q C(\Delta)$ the classes of quasi-convex functions on the co-ordinates on Δ. The following lemma holds.

Lemma 1. Every quasi-convex mapping $f: \Delta \rightarrow \mathbb{R}$ is quasi-convex on the coordinates.

Proof. Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is quasi-convex on Δ. Then the partial mappings

$$
f_{y}:[a, b] \rightarrow \mathbb{R}, \quad f_{y}(u)=f(u, y), \quad y \in[c, d]
$$

and

$$
f_{x}:[c, d] \rightarrow \mathbb{R}, \quad f_{x}(v)=f(x, v), \quad x \in[a, b]
$$

are convex on Δ. For $\lambda \in[0,1]$ and $v_{1}, v_{2} \in[c, d]$, one has

$$
\begin{aligned}
f_{x}\left(\lambda v_{1}+(1-\lambda) v_{2}\right) & =f\left(x, \lambda v_{1}+(1-\lambda) v_{2}\right) \\
& =f\left(\lambda x+(1-\lambda) x, \lambda v_{1}+(1-\lambda) v_{2}\right) \\
& \leq \max \left\{f\left(x, v_{1}\right), f\left(x, v_{2}\right)\right\} \\
& =\max \left\{f_{x}\left(v_{1}\right), f_{x}\left(v_{2}\right)\right\}
\end{aligned}
$$

which completes the proof of quasi-convexity of f_{x} on $[c, d]$. Therefore $f_{y}:[a, b] \rightarrow$ $\mathbb{R}, \quad f_{y}(u)=f(u, y)$ is also quasi-convex on $[a, b]$ for all $y \in[c, d]$, goes likewise and we shall omit the details.

Definition 6. A function $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is said J-convex function on the co-ordinates on Δ if the following inequality

$$
f\left(\frac{x+z}{2}, \frac{y+w}{2}\right) \leq \frac{f(x, y)+f(z, w)}{2}
$$

holds for all $(x, y),(z, w) \in \Delta$. We denote by $J(\Delta)$ the classes of J-convex functions on the co-ordinates on Δ

Lemma 2. Every J-convex mapping defined $f: \Delta \rightarrow \mathbb{R}$ is J-convex on the coordinates.

Proof. By the partial mappings, we can write for $v_{1}, v_{2} \in[c, d]$,

$$
\begin{aligned}
f_{x}\left(\frac{v_{1}+v_{2}}{2}\right) & =f\left(x, \frac{v_{1}+v_{2}}{2}\right) \\
& =f\left(\frac{x+x}{2}, \frac{v_{1}+v_{2}}{2}\right) \\
& \leq \frac{f\left(x, v_{1}\right)+f\left(x, v_{2}\right)}{2} \\
& =\frac{f_{x}\left(v_{1}\right)+f_{x}\left(v_{2}\right)}{2}
\end{aligned}
$$

which completes the proof of J-convexity of f_{x} on $[c, d]$. Similarly, we can prove J-convexity of f_{y} on $[a, b]$.

Definition 7. A function $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is said J-quasi-convex function on the co-ordinates on Δ if the following inequality

$$
f\left(\frac{x+z}{2}, \frac{y+w}{2}\right) \leq \max \{f(x, y), f(z, w)\}
$$

holds for all $(x, y),(z, w) \in \Delta$. We denote by $J Q C(\Delta)$ the classes of J-quasi-convex functions on the co-ordinates on Δ

Lemma 3. Every J-quasi-convex mapping defined $f: \Delta \rightarrow \mathbb{R}$ is J-quasi-convex on the co-ordinates.

Proof. By a similar way to proof of Lemma 1, we can write for $v_{1}, v_{2} \in[c, d]$,

$$
\begin{aligned}
f_{x}\left(\frac{v_{1}+v_{2}}{2}\right) & =f\left(x, \frac{v_{1}+v_{2}}{2}\right) \\
& =f\left(\frac{x+x}{2}, \frac{v_{1}+v_{2}}{2}\right) \\
& \leq \max \left\{f\left(x, v_{1}\right), f\left(x, v_{2}\right)\right\} \\
& =\max \left\{f_{x}\left(v_{1}\right), f_{x}\left(v_{2}\right)\right\}
\end{aligned}
$$

which completes the proof of J-quasi-convexity of f_{x} on $[c, d]$. We can also prove J-quasi-convexity of f_{y} on $[a, b]$.

Definition 8. A function $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is said Wright-convex function on the co-ordinates on Δ if the following inequality
$f((1-t) a+t b,(1-s) c+s d)+f(t a+(1-t) b, s c+(1-s) d) \leq f(a, c)+f(b, d)$
holds for all $(a, c),(b, d) \in \Delta$ and $t, s \in[0,1]$. We denote by $W(\Delta)$ the classes of Wright-convex functions on the co-ordinates on Δ

Lemma 4. Every Wright-convex mapping defined $f: \Delta \rightarrow \mathbb{R}$ is Wright-convex on the co-ordinates.

Proof. Suppose that $f: \Delta \rightarrow \mathbb{R}$ is Wright-convex on Δ. Then by partial mapping, for $v_{1}, v_{2} \in[c, d], x \in[a, b]$,

$$
\begin{aligned}
& f_{x}\left((1-t) v_{1}+t v_{2}\right)+f_{x}\left(t v_{1}+(1-t) v_{2}\right) \\
= & f\left(x,(1-t) v_{1}+t v_{2}\right)+f\left(x, t v_{1}+(1-t) v_{2}\right) \\
= & f\left((1-t) x+t x,(1-t) v_{1}+t v_{2}\right)+f\left(t x+(1-t) x, t v_{1}+(1-t) v_{2}\right) \\
\leq & f\left(x, v_{1}\right)+f\left(x, v_{2}\right) \\
= & f_{x}\left(v_{1}\right)+f_{x}\left(v_{2}\right)
\end{aligned}
$$

which shows that f_{x} is Wright-convex on $[c, d]$. Similarly one can see that f_{y} is Wright-convex on $[a, b]$.

Definition 9. A function $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is said Wright-quasi-convex function on the co-ordinates on Δ if the following inequality
$\frac{1}{2}[f(t x+(1-t) z, t y+(1-t) w)+f((1-t) x+t z,(1-t) y+t w)] \leq \max \{f(x, y), f(z, w)\}$
holds for all $(x, y),(z, w) \in \Delta$ and $t \in[0,1]$. We denote by $W Q C(\Delta)$ the classes of Wright-quasi-convex functions on the co-ordinates on Δ

Lemma 5. Every Wright-quasi-convex mapping defined $f: \Delta \rightarrow \mathbb{R}$ is Wright-quasi-convex on the co-ordinates.

Proof. Suppose that $f: \Delta \rightarrow \mathbb{R}$ is Wright-quasi-convex on Δ. Then by partial mapping, for $v_{1}, v_{2} \in[c, d]$,

$$
\begin{aligned}
& \frac{1}{2}\left[f_{x}\left(t v_{1}+(1-t) v_{2}\right)+f_{x}\left((1-t) v_{1}+t v_{2}\right)\right] \\
= & \frac{1}{2}\left[f\left(x, t v_{1}+(1-t) v_{2}\right)+f\left(x,(1-t) v_{1}+t v_{2}\right)\right] \\
= & \frac{1}{2}\left[f\left(t x+(1-t) x, t v_{1}+(1-t) v_{2}\right)+f\left((1-t) x+t x,(1-t) v_{1}+t v_{2}\right)\right] \\
\leq & \max \left\{f\left(x, v_{1}\right), f\left(x, v_{2}\right)\right\} \\
= & \max \left\{f_{x}\left(v_{1}\right), f_{x}\left(v_{2}\right)\right\}
\end{aligned}
$$

which shows that f_{x} is Wright-quasi-convex on $[c, d]$. Similarly one can see that f_{y} is Wright-quasi-convex on $[a, b]$.

Theorem 6. Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is J-quasi-convex on the co-ordinates on Δ. If $f_{x} \in L_{1}[c, d]$ and $f_{y} \in L_{1}[a, b]$, then we have the inequality;

$$
\begin{align*}
& \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \tag{2.1}\\
\leq & \frac{1}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y+H(x, y)
\end{align*}
$$

where

$$
\begin{aligned}
H(x, y)= & \frac{1}{4(d-c)} \int_{c}^{d} \int_{0}^{1}|f(t a+(1-t) b, y)-f((1-t) a+t b, y)| d t d y \\
& +\frac{1}{4(b-a)} \int_{a}^{b} \int_{0}^{1}|f(x, t c+(1-t) d)-f(x,(1-t) c+t d)| d t d x
\end{aligned}
$$

Proof. Since $f: \Delta \rightarrow \mathbb{R}$ is J-quasi-convex on the co-ordinates on Δ. We can write the partial mappings

$$
f_{y}:[a, b] \rightarrow \mathbb{R}, \quad f_{y}(u)=f(u, y), \quad y \in[c, d]
$$

and

$$
f_{x}:[c, d] \rightarrow \mathbb{R}, \quad f_{x}(v)=f(x, v), \quad x \in[a, b]
$$

are J-quasi-convex on Δ. Then by the inequality (1.2), we have
$f_{y}\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f_{y}(x) d x+\frac{1}{2} \int_{0}^{1}\left|f_{y}(t a+(1-t) b)-f_{y}((1-t) a+t b)\right| d t$.
That is
$f\left(\frac{a+b}{2}, y\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x, y) d x+\frac{1}{2} \int_{0}^{1}|f(t a+(1-t) b, y)-f((1-t) a+t b, y)| d t$.

Integrating the resulting inequality with respect to y over $[c, d]$ and dividing both sides of inequality with $(d-c)$, we get

$$
\begin{align*}
& \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y \tag{2.2}\\
\leq & \frac{1}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \\
& +\frac{1}{2(d-c)} \int_{c}^{d} \int_{0}^{1}|f(t a+(1-t) b, y)-f((1-t) a+t b, y)| d t d y
\end{align*}
$$

By a similar argument, we have

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x \tag{2.3}\\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& +\frac{1}{2(b-a)} \int_{a}^{b} \int_{0}^{1}|f(x, t c+(1-t) d)-f(x,(1-t) c+t d)| d t d x
\end{align*}
$$

Summing (2.2) and (2.3), we get the required result.
Theorem 7. Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is Wright-quasi-convex on the co-ordinates on Δ. If $f_{x} \in L_{1}[c, d]$ and $f_{y} \in L_{1}[a, b]$, then we have the inequality;

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \tag{2.4}\\
\leq & \frac{1}{2}\left[\max \left\{\frac{1}{(b-a)} \int_{a}^{b} f(x, c) d x, \frac{1}{(b-a)} \int_{a}^{b} f(x, d) d x\right\}\right. \\
& \left.+\max \left\{\frac{1}{(d-c)} \int_{c}^{d} f(a, y) d y, \frac{1}{(d-c)} \int_{c}^{d} f(b, y) d y\right\}\right] .
\end{align*}
$$

Proof. Since $f: \Delta \rightarrow \mathbb{R}$ is Wright-quasi-convex on the co-ordinates on Δ. We can write the partial mappings

$$
f_{y}:[a, b] \rightarrow \mathbb{R}, \quad f_{y}(u)=f(u, y), \quad y \in[c, d]
$$

and

$$
f_{x}:[c, d] \rightarrow \mathbb{R}, \quad f_{x}(v)=f(x, v), \quad x \in[a, b]
$$

are Wright-quasi-convex on Δ. Then by the inequality (1.3), we have

$$
\frac{1}{b-a} \int_{a}^{b} f_{y}(x) d x \leq \max \left\{f_{y}(a), f_{y}(b)\right\}
$$

That is

$$
\frac{1}{b-a} \int_{a}^{b} f(x, y) d x \leq \max \{f(a, y), f(b, y)\}
$$

Dividing both sides of inequality with $(d-c)$ and integrating with respect to y over $[c, d]$, we get

$$
\begin{equation*}
\frac{1}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \leq \max \left\{\frac{1}{(d-c)} \int_{c}^{d} f(a, y) d y, \frac{1}{(d-c)} \int_{c}^{d} f(b, y) d y\right\} \tag{2.5}
\end{equation*}
$$

By a similar argument, we can write

$$
\begin{equation*}
\frac{1}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \leq \max \left\{\frac{1}{(b-a)} \int_{a}^{b} f(x, c) d x, \frac{1}{(b-a)} \int_{a}^{b} f(x, d) d x\right\} \tag{2.6}
\end{equation*}
$$

By addition (2.5) and (2.6), we have

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \\
\leq & \frac{1}{2}\left[\max \left\{\frac{1}{(b-a)} \int_{a}^{b} f(x, c) d x, \frac{1}{(b-a)} \int_{a}^{b} f(x, d) d x\right\}\right. \\
& \left.+\max \left\{\frac{1}{(d-c)} \int_{c}^{d} f(a, y) d y, \frac{1}{(d-c)} \int_{c}^{d} f(b, y) d y\right\}\right]
\end{aligned}
$$

which completes the proof.
Theorem 8. Let $C(\Delta), J(\Delta), W(\Delta), Q C(\Delta), J Q C(\Delta), W Q C(\Delta)$ denote the classes of functions co-ordinated convex, co-ordinated J-convex, co-ordinated W-convex, co-ordinated quasi-convex, co-ordinated J-quasi-convex and co-ordinated W-quasi-convex functions on $\Delta=[a, b] \times[c, d]$, respectively, we have following inclusions.

$$
\begin{gather*}
Q C(\Delta) \subset W Q C(\Delta) \subset J Q C(\Delta) \tag{2.7}\\
W(\Delta) \subset W Q C(\Delta), \quad C(\Delta) \subset J(\Delta), \quad J(\Delta) \subset J Q C(\Delta) \tag{2.8}
\end{gather*}
$$

Proof. Let $f \in Q C(\Delta)$. Then for all $(x, y),(z, w) \in \Delta$ and $t \in[0,1]$, we have

$$
\begin{aligned}
& f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \max \{f(x, y), f(z, w)\} \\
& f((1-\lambda) x+\lambda z,(1-\lambda) y+\lambda w) \leq \max \{f(x, y), f(z, w)\}
\end{aligned}
$$

By addition, we obtain

$$
\begin{align*}
& \frac{1}{2}[f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w)+f((1-\lambda) x+\lambda z,(1-\lambda) y+\lambda w)] \tag{2.9}\\
\leq & \max \{f(x, y), f(z, w)\}
\end{align*}
$$

that is, $f \in W Q C(\Delta)$. In (2.9), if we choose $\lambda=\frac{1}{2}$, we obtain $W Q C(\Delta) \subset$ $J Q C(\Delta)$. Which completes the proof of (2.7).

In order to prove (2.8), taking $f \in W(\Delta)$ and using the definition, we get
$\frac{1}{2}[f((1-t) a+t b,(1-s) c+s d)+f(t a+(1-t) b, s c+(1-s) d)] \leq \frac{f(a, c)+f(b, d)}{2}$
for all $(a, c),(b, d) \in \Delta$ and $t \in[0,1]$. Using the fact that

$$
\frac{f(a, c)+f(b, d)+|f(a, c)-f(b, d)|}{2}=\max \{f(a, c), f(b, d)\}
$$

we can write

$$
\frac{f(a, c)+f(b, d)}{2} \leq \max \{f(a, c), f(b, d)\}
$$

for all $(a, c),(b, d) \in \Delta$, we obtain $W(\Delta) \subset W Q C(\Delta)$.
Taking $f \in C(\Delta)$ and, if we choose $t=\frac{1}{2}$ in (1.6), we obtain

$$
f\left(\frac{x+z}{2}, \frac{y+w}{2}\right) \leq \frac{f(x, y)+f(z, w)}{2}
$$

for all $(x, y),(z, w) \in \Delta$. One can see that $C(\Delta) \subset J(\Delta)$.
Taking $f \in J(\Delta)$, we can write

$$
f\left(\frac{x+z}{2}, \frac{y+w}{2}\right) \leq \frac{f(x, y)+f(z, w)}{2}
$$

for all $(x, y),(z, w) \in \Delta$. Using the fact that

$$
\frac{f(x, y)+f(z, w)+|f(x, y)-f(z, w)|}{2}=\max \{f(x, y), f(z, w)\}
$$

we can write

$$
\frac{f(x, y)+f(z, w)}{2} \leq \max \{f(x, y), f(z, w)\}
$$

Then obviously, we obtain

$$
f\left(\frac{x+z}{2}, \frac{y+w}{2}\right) \leq \max \{f(x, y), f(z, w)\}
$$

which shows that $f \in J Q(\Delta)$.

References

[1] Alomari, M. and Darus, M., Dragomir, S.S., Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), Supplement, Article 14.
[2] Alomari, M. and Darus, M. and Dragomir, S.S., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), Supplement, Article 17.
[3] Alomari, M., Darus, M. and Kirmacı, U.S., Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Computers and Mathematics with Applications, 59 (2010), 225-232.
[4] Alomari, M. and Darus, M., On some inequalities Simpson-type via quasi-convex functions with applications, RGMIA Res. Rep. Coll., 13 (2010), 1, Article 8.
[5] Alomari, M. and Darus, M., Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll., 13 (2010), 2, Article 3.
[6] Dragomir, S.S. and Pearce, C. E. M., Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc., 57 (1998), 377-385.
[7] Ion, D.A., Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87.
[8] Set, E., Özdemir, M.E. and Sarıkaya, M.Z., On new inequalities of Simpson's type for quasiconvex functions with applications, RGMIA Res. Rep. Coll., 13 (2010), 1, Article 6.
[9] Sarıkaya, M.Z., Sağlam, A. and Yıldırım, H., New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, arXiv:1005.0451v1 (2010).
[10] Tseng, K.L., Yang, G.S. and Dragomir, S.S., On quasi convex functions and Hadamard's inequality, RGMIA Res. Rep. Coll., 6 (2003), 3, Article 1.
[11] Yıldız, Ç., Akdemir, A.O. and Avcı, M., Some Inequalities of Hermite-Hadamard Type for Functions Whose Derivatives Absolute Values are Quasi Convex, Submitted.
[12] Wright, E.M., An inequality for convex functions, Amer. Math. Monthly, 61 (1954), 620-622.
[13] Latif, M. A. and Alomari, M., On Hadamard-type inequalities for h-convex functions on the co-ordinates, International Journal of Math. Analysis, 3 (2009), no. 33, 1645-1656.
[14] Latif, M. A. and Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, International Mathematical Forum, 4 (2009), no. 47, 2327-2338.
[15] Alomari, M. and Darus, M., Hadamard-type inequalities for s-convex functions, International Mathematical Forum, 3 (2008), no. 40, 1965-1975.
[16] Alomari, M. and Darus, M., Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. Journal Contemp. Math. Sciences, 3 (2008), no. 32, 15571567.
[17] Alomari, M. and Darus, M., The Hadamard's inequality for s-convex function of 2 -variables on the co-ordinates, International Journal of Math. Analysis, 2 (2008), no. 13, 629-638.
[18] Özdemir, M.E., Set, E. and Sarıkaya, M. Z., Some new Hadamard's type inequalities for co-ordinated m-convex and (α, m)-convex functions, Accepted.
[19] Dragomir, S.S., On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 5 (2001), no. 4, 775-788.
[20] Hwang, D. Y., Tseng, K. L. and Yang, G. S., Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwanese Journal of Mathematics, 11 (2007), 63-73.
[21] Sarıkaya, M. Z., Set, E., Özdemir, M.E. and Dragomir, S. S., New some Hadamard's type inequalities for co-ordinated convex functions, Accepted.
[22] Bakula, M.K. and Pecaric, J., On the Jensen's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2006, 1271-1292.
[23] Dragomir, S.S. and Pearce, C.E.M., Selected Topics on Hermite-Hadamard Type Inequalities and Applications, RGMIA (2000), Monographs. [ONLINE : http://ajmaa.org/RGMIA/monographs/hermite_hadamard.html.
[24] Greenberg, H.J. and Pierskalla, W.P., A review of quasi convex functions Reprinted from Operations Research, 19 (1971), 7.
[25] Pečarić, J., Proschan, F. and Tong, Y.L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press (1992), Inc.

- Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Kampus, Erzurum, Turkey

E-mail address: emos@atauni.edu.tr
Current address: *Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, 04100, Ağrı, Turkey

E-mail address: ahmetakdemir@agri.edu.tr
^ Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Kampus, Erzurum, Turkey

E-mail address: yildizcetiin@yahoo.com

[^0]: Date: December 10, 2010.
 2000 Mathematics Subject Classification. Primary 26A51, 26 D15.
 Key words and phrases. co-ordinates, quasi-convex, Wright-quasi-convex, Jensen-quasiconvex.

