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ON CO-ORDINATED QUASI-CONVEX FUNCTIONS

HM. EMIN ÖZDEMİR, ♠,♣AHMET OCAK AKDEMİR, AND ⋆ÇETIN YILDIZ

Abstract. In this paper, we give some definitions on quasi-convex functions
and we prove inequalities contain J-quasi-convex and W-quasi-convex func-
tions. We give also some inclusions.

1. INTRODUCTION

Let f : I ⊂ R → R be a convex function on the interval of I of real numbers and
a, b ∈ I with a < b. The following double inequality

(1.1) f

(

a+ b

2

)

≤
1

b− a

∫ b

a

f(x)dx ≤
f(a) + f(b)

2

is well-known in the literature as Hadamard’s inequality. We recall some definitions;
In [25], Pecaric et al. defined quasi-convex functions as following

Definition 1. A function f : [a, b] → R is said quasi-convex on [a, b] if

f (λx+ (1− λ)y) ≤ max {f(x), f(y)} , (QC)

holds for all x, y ∈ [a, b] and λ ∈ [0, 1].

Clearly, any convex function is quasi-convex function. Furthermore, there exist
quasi-convex functions which are not convex.

Definition 2. (See [6], [12]) We say that f : I → R is a Wright-convex function
or that f belongs to the class W (I), if for all x, y+ δ ∈ I with x < y and δ > 0, we
have

f(x+ δ) + f(y) ≤ f(y + δ) + f(x)

Definition 3. (See [6]) For I ⊆ R, the mapping f : I → R is wright-quasi-convex
function if, for all x, y ∈ I and t ∈ [0, 1] , one has the inequality

1

2
[f (tx+ (1− t) y) + f ((1− t)x+ ty)] ≤ max {f (x) , f (y)} , (WQC)

or equivalently

1

2
[f (y) + f (x+ δ)] ≤ max {f (x) , f (y + δ)}

for every x, y + δ ∈ I, x < y and δ > 0.
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Definition 4. (See [6]) The mapping f : I → R is Jensen- or J-quasi-convex if

f

(

x+ y

2

)

≤ max {f(x), f(y)} , (JQC)

for all x, y ∈ I.

Note that the class JQC(I) of J-quasi-convex functions on I contains the class
J(I) of J-convex functions on I, that is, functions satisfying the condition

f

(

x+ y

2

)

≤
f(x) + f(y)

2
, (J)

for all x, y ∈ I.

In [6], Dragomir and Pearce proved following theorems containing J-quasi-convex
and Wright-quasi-convex functions.

Theorem 1. Suppose a, b ∈ I ⊆ R and a < b. If f ∈ JQC (I) ∩ L1 [a, b] , then

(1.2) f

(

a+ b

2

)

≤
1

b− a

∫ b

a

f(x)dx+ I (a, b)

where

I (a, b) =
1

2

∫ 1

0

|f (ta+ (1− t) b)− f ((1− t) a+ tb)| dt.

Theorem 2. Let f : I → R be a Wright-quasi-convex map on I and suppose
a, b ∈ I ⊆ R with a < b and f ∈ L1 [a, b] , one has the inequality

(1.3)
1

b− a

∫ b

a

f(x)dx ≤ max {f(a), f(b)} .

In [6], Dragomir and Pearce also gave the following theorems involving some
inclusions.

Theorem 3. Let WQC (I) denote the class of Wright-quasi-convex functions on
I ⊆ R, then

(1.4) QC (I) ⊂ WQC (I) ⊂ JQC (I) .

Both inclusions are proper.

Theorem 4. We have the inlusions

(1.5) W (I) ⊂ WQC (I) , C(I) ⊂ QC(I), J(I) ⊂ JQC(I).

Each inclusion is proper.

For recent results related to quasi-convex functions see the papers [1]-[11] and
books [23], [24]. In [19], Dragomir defined co-ordinated convex functions and proved
following inequalities.

Let us consider the bidimensional interval ∆ = [a, b]× [c, d] in R
2 with a < b and

c < d. A function f : ∆ → R will be called convex on the co-ordinates if the partial
mappings

fy : [a, b] → R, fy (u) = f (u, y)

and

fx : [c, d] → R, fx (v) = f (x, v)

are convex where defined for all y ∈ [c, d] and x ∈ [a, b] .
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Recall that the mapping f : ∆ → R is convex on ∆, if the following inequality;

(1.6) f (λx+ (1− λ) z, λy + (1− λ)w) ≤ λf (x, y) + (1− λ) f (z, w)

holds for all (x, y) , (z, w) ∈ ∆ and λ ∈ [0, 1] .

Theorem 5. (see [19], Theorem 1) Suppose that f : ∆ = [a, b] × [c, d] → R is
convex on the co-ordinates on ∆. Then one has the inequalities;

f

(

a+ b

2
,
c+ d

2

)

≤
1

2

[

1

b− a

∫ b

a

f

(

x,
c+ d

2

)

dx+
1

d− c

∫ d

c

f

(

a+ b

2
, y

)

dy

]

≤
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx(1.7)

≤
1

4

[

1

b− a

∫ b

a

f (x, c) dx+
1

b− a

∫ b

a

f (x, d) dx

1

d− c

∫ d

c

f (a, y)dy +
1

d− c

∫ d

c

f (b, y) dy

]

≤
f (a, c) + f (b, c) + f (a, d) + f (b, d)

4

The above inequalities are sharp.

Similar results can be found in [13]-[22].
This paper is arranged as follows. Firstly, we will give some definitions on

quasi-convex functions and lemmas belong to this definitions. Secondly, we will
prove several inequalities contain co-ordinated quasi-convex functions. Also, we
will discuss the inclusions a connection with some different classes of co-ordinated
convex functions.

2. DEFINITIONS AND MAIN RESULTS

We will start the following definitions and lemmas;

Definition 5. A function f : ∆ = [a, b]× [c, d] → R is said quasi-convex function
on the co-ordinates on ∆ if the following inequality

f (λx+ (1− λ) z, λy + (1− λ)w) ≤ max {f (x, y) , f (z, w)}

holds for all (x, y) , (z, w) ∈ ∆ and λ ∈ [0, 1]

f : ∆ → R will be called co-ordinated quasi-convex on the co-ordinates if the
partial mappings

fy : [a, b] → R, fy (u) = f (u, y)

and

fx : [c, d] → R, fx (v) = f (x, v)

are convex where defined for all y ∈ [c, d] and x ∈ [a, b] . We denote by QC(∆) the
classes of quasi-convex functions on the co-ordinates on ∆. The following lemma
holds.

Lemma 1. Every quasi-convex mapping f : ∆ → R is quasi-convex on the co-
ordinates.
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Proof. Suppose that f : ∆ = [a, b] × [c, d] → R is quasi-convex on ∆. Then the
partial mappings

fy : [a, b] → R, fy (u) = f (u, y) , y ∈ [c, d]

and

fx : [c, d] → R, fx (v) = f (x, v) , x ∈ [a, b]

are convex on ∆. For λ ∈ [0, 1] and v1, v2 ∈ [c, d] , one has

fx (λv1 + (1− λ) v2) = f (x, λv1 + (1− λ) v2)

= f (λx+ (1− λ)x, λv1 + (1− λ) v2)

≤ max {f (x, v1) , f (x, v2)}

= max {fx (v1) , fx (v2)}

which completes the proof of quasi-convexity of fx on [c, d] . Therefore fy : [a, b] →
R, fy (u) = f (u, y) is also quasi-convex on [a, b] for all y ∈ [c, d] , goes likewise
and we shall omit the details. �

Definition 6. A function f : ∆ = [a, b]× [c, d] → R is said J-convex function on
the co-ordinates on ∆ if the following inequality

f

(

x+ z

2
,
y + w

2

)

≤
f (x, y) + f (z, w)

2

holds for all (x, y) , (z, w) ∈ ∆. We denote by J(∆) the classes of J-convex functions
on the co-ordinates on ∆

Lemma 2. Every J-convex mapping defined f : ∆ → R is J-convex on the co-
ordinates.

Proof. By the partial mappings, we can write for v1, v2 ∈ [c, d] ,

fx

(

v1 + v2

2

)

= f

(

x,
v1 + v2

2

)

= f

(

x+ x

2
,
v1 + v2

2

)

≤
f (x, v1) + f (x, v2)

2

=
fx (v1) + fx (v2)

2

which completes the proof of J-convexity of fx on [c, d] . Similarly, we can prove
J-convexity of fy on [a, b] . �

Definition 7. A function f : ∆ = [a, b]× [c, d] → R is said J-quasi-convex function
on the co-ordinates on ∆ if the following inequality

f

(

x+ z

2
,
y + w

2

)

≤ max {f (x, y) , f (z, w)}

holds for all (x, y) , (z, w) ∈ ∆. We denote by JQC(∆) the classes of J-quasi-convex
functions on the co-ordinates on ∆

Lemma 3. Every J-quasi-convex mapping defined f : ∆ → R is J-quasi-convex on
the co-ordinates.
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Proof. By a similar way to proof of Lemma 1, we can write for v1, v2 ∈ [c, d] ,

fx

(

v1 + v2

2

)

= f

(

x,
v1 + v2

2

)

= f

(

x+ x

2
,
v1 + v2

2

)

≤ max {f (x, v1) , f (x, v2)}

= max {fx (v1) , fx (v2)}

which completes the proof of J-quasi-convexity of fx on [c, d] . We can also prove
J-quasi-convexity of fy on [a, b] . �

Definition 8. A function f : ∆ = [a, b]× [c, d] → R is said Wright-convex function
on the co-ordinates on ∆ if the following inequality

f ((1− t) a+ tb, (1− s) c+ sd)+ f (ta+ (1− t) b, sc+ (1− s) d) ≤ f (a, c)+ f (b, d)

holds for all (a, c) , (b, d) ∈ ∆ and t, s ∈ [0, 1] . We denote by W (∆) the classes of
Wright-convex functions on the co-ordinates on ∆

Lemma 4. Every Wright-convex mapping defined f : ∆ → R is Wright-convex on
the co-ordinates.

Proof. Suppose that f : ∆ → R is Wright-convex on ∆. Then by partial mapping,
for v1, v2 ∈ [c, d] , x ∈ [a, b] ,

fx ((1− t) v1 + tv2) + fx (tv1 + (1− t) v2)

= f (x, (1− t) v1 + tv2) + f (x, tv1 + (1− t) v2)

= f ((1− t)x+ tx, (1− t) v1 + tv2) + f (tx+ (1− t)x, tv1 + (1− t) v2)

≤ f (x, v1) + f (x, v2)

= fx (v1) + fx (v2)

which shows that fx is Wright-convex on [c, d] . Similarly one can see that fy is
Wright-convex on [a, b] . �

Definition 9. A function f : ∆ = [a, b] × [c, d] → R is said Wright-quasi-convex
function on the co-ordinates on ∆ if the following inequality

1

2
[f (tx+ (1− t) z, ty + (1− t)w) + f ((1− t)x+ tz, (1− t) y + tw)] ≤ max {f (x, y) , f (z, w)}

holds for all (x, y) , (z, w) ∈ ∆ and t ∈ [0, 1] . We denote by WQC(∆) the classes
of Wright-quasi-convex functions on the co-ordinates on ∆

Lemma 5. Every Wright-quasi-convex mapping defined f : ∆ → R is Wright-
quasi-convex on the co-ordinates.
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Proof. Suppose that f : ∆ → R is Wright-quasi-convex on ∆. Then by partial
mapping, for v1, v2 ∈ [c, d] ,

1

2
[fx (tv1 + (1− t) v2) + fx ((1− t) v1 + tv2)]

=
1

2
[f (x, tv1 + (1− t) v2) + f (x, (1− t) v1 + tv2)]

=
1

2
[f (tx+ (1− t)x, tv1 + (1− t) v2) + f ((1− t)x+ tx, (1− t) v1 + tv2)]

≤ max {f (x, v1) , f (x, v2)}

= max {fx (v1) , fx (v2)}

which shows that fx is Wright-quasi-convex on [c, d] . Similarly one can see that fy
is Wright-quasi-convex on [a, b] . �

Theorem 6. Suppose that f : ∆ = [a, b] × [c, d] → R is J-quasi-convex on the
co-ordinates on ∆. If fx ∈ L1 [c, d] and fy ∈ L1 [a, b] , then we have the inequality;

1

2

[

1

b− a

∫ b

a

f

(

x,
c+ d

2

)

dx+
1

d− c

∫ d

c

f

(

a+ b

2
, y

)

dy

]

(2.1)

≤
1

(b− a) (d− c)

∫ d

c

∫ b

a

f(x, y)dxdy +H(x, y)

where

H (x, y) =
1

4 (d− c)

∫ d

c

∫ 1

0

|f (ta+ (1− t) b, y)− f ((1− t) a+ tb, y)| dtdy

+
1

4 (b− a)

∫ b

a

∫ 1

0

|f (x, tc+ (1− t) d)− f (x, (1− t) c+ td)| dtdx.

Proof. Since f : ∆ → R is J-quasi-convex on the co-ordinates on ∆. We can write
the partial mappings

fy : [a, b] → R, fy (u) = f (u, y) , y ∈ [c, d]

and

fx : [c, d] → R, fx (v) = f (x, v) , x ∈ [a, b]

are J-quasi-convex on ∆. Then by the inequality (1.2), we have

fy

(

a+ b

2

)

≤
1

b− a

∫ b

a

fy(x)dx +
1

2

∫ 1

0

|fy (ta+ (1− t) b)− fy ((1− t) a+ tb)| dt.

That is

f

(

a+ b

2
, y

)

≤
1

b− a

∫ b

a

f(x, y)dx+
1

2

∫ 1

0

|f (ta+ (1− t) b, y)− f ((1− t) a+ tb, y)| dt.
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Integrating the resulting inequality with respect to y over [c, d] and dividing both
sides of inequality with (d− c) , we get

1

d− c

∫ d

c

f

(

a+ b

2
, y

)

dy(2.2)

≤
1

(b− a) (d− c)

∫ d

c

∫ b

a

f(x, y)dxdy

+
1

2 (d− c)

∫ d

c

∫ 1

0

|f (ta+ (1− t) b, y)− f ((1− t) a+ tb, y)| dtdy.

By a similar argument, we have

1

b− a

∫ b

a

f

(

x,
c+ d

2

)

dx(2.3)

≤
1

(b− a) (d− c)

∫ b

a

∫ d

c

f(x, y)dydx

+
1

2 (b− a)

∫ b

a

∫ 1

0

|f (x, tc+ (1− t) d)− f (x, (1− t) c+ td)| dtdx.

Summing (2.2) and (2.3), we get the required result. �

Theorem 7. Suppose that f : ∆ = [a, b]× [c, d] → R is Wright-quasi-convex on the
co-ordinates on ∆. If fx ∈ L1 [c, d] and fy ∈ L1 [a, b] , then we have the inequality;

1

(b− a) (d− c)

∫ d

c

∫ b

a

f(x, y)dxdy(2.4)

≤
1

2

[

max

{

1

(b− a)

∫ b

a

f(x, c)dx,
1

(b− a)

∫ b

a

f(x, d)dx

}

+max

{

1

(d− c)

∫ d

c

f(a, y)dy,
1

(d− c)

∫ d

c

f(b, y)dy

}]

.

Proof. Since f : ∆ → R is Wright-quasi-convex on the co-ordinates on ∆. We can
write the partial mappings

fy : [a, b] → R, fy (u) = f (u, y) , y ∈ [c, d]

and
fx : [c, d] → R, fx (v) = f (x, v) , x ∈ [a, b]

are Wright-quasi-convex on ∆. Then by the inequality (1.3), we have

1

b− a

∫ b

a

fy(x)dx ≤ max {fy(a), fy(b)} .

That is
1

b− a

∫ b

a

f(x, y)dx ≤ max {f(a, y), f(b, y)} .

Dividing both sides of inequality with (d− c) and integrating with respect to y over
[c, d] , we get
(2.5)

1

(b− a) (d− c)

∫ d

c

∫ b

a

f(x, y)dxdy ≤ max

{

1

(d− c)

∫ d

c

f(a, y)dy,
1

(d− c)

∫ d

c

f(b, y)dy

}

.
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By a similar argument, we can write
(2.6)

1

(b− a) (d− c)

∫ d

c

∫ b

a

f(x, y)dxdy ≤ max

{

1

(b − a)

∫ b

a

f(x, c)dx,
1

(b− a)

∫ b

a

f(x, d)dx

}

.

By addition (2.5) and (2.6), we have

1

(b− a) (d− c)

∫ d

c

∫ b

a

f(x, y)dxdy

≤
1

2

[

max

{

1

(b− a)

∫ b

a

f(x, c)dx,
1

(b − a)

∫ b

a

f(x, d)dx

}

+max

{

1

(d− c)

∫ d

c

f(a, y)dy,
1

(d− c)

∫ d

c

f(b, y)dy

}]

which completes the proof. �

Theorem 8. Let C (∆) , J (∆) , W (∆) , QC (∆) , JQC (∆) , WQC (∆) denote
the classes of functions co-ordinated convex, co-ordinated J-convex, co-ordinated
W-convex, co-ordinated quasi-convex, co-ordinated J-quasi-convex and co-ordinated
W-quasi-convex functions on ∆ = [a, b] × [c, d], respectively, we have following
inclusions.

(2.7) QC (∆) ⊂ WQC (∆) ⊂ JQC (∆)

(2.8) W (∆) ⊂ WQC (∆) , C (∆) ⊂ J (∆) , J (∆) ⊂ JQC (∆) .

Proof. Let f ∈ QC (∆) . Then for all (x, y) , (z, w) ∈ ∆ and t ∈ [0, 1] , we have

f (λx+ (1− λ) z, λy + (1− λ)w) ≤ max {f (x, y) , f (z, w)}

f ((1− λ) x+ λz, (1− λ) y + λw) ≤ max {f (x, y) , f (z, w)} .

By addition, we obtain

1

2
[f (λx+ (1− λ) z, λy + (1− λ)w) + f ((1− λ)x+ λz, (1− λ) y + λw)](2.9)

≤ max {f (x, y) , f (z, w)}

that is, f ∈ WQC (∆) . In (2.9), if we choose λ = 1
2
, we obtain WQC (∆) ⊂

JQC (∆) . Which completes the proof of (2.7).
In order to prove (2.8), taking f ∈ W (∆) and using the definition, we get

1

2
[f ((1− t) a+ tb, (1− s) c+ sd) + f (ta+ (1− t) b, sc+ (1− s) d)] ≤

f (a, c) + f (b, d)

2

for all (a, c) , (b, d) ∈ ∆ and t ∈ [0, 1] . Using the fact that

f (a, c) + f (b, d) + |f (a, c)− f (b, d)|

2
= max {f(a, c), f(b, d)}

we can write
f (a, c) + f (b, d)

2
≤ max {f(a, c), f(b, d)}

for all (a, c) , (b, d) ∈ ∆, we obtain W (∆) ⊂ WQC (∆) .
Taking f ∈ C (∆) and, if we choose t = 1

2
in (1.6), we obtain

f

(

x+ z

2
,
y + w

2

)

≤
f (x, y) + f (z, w)

2
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for all (x, y) , (z, w) ∈ ∆. One can see that C (∆) ⊂ J (∆) .
Taking f ∈ J (∆) , we can write

f

(

x+ z

2
,
y + w

2

)

≤
f (x, y) + f (z, w)

2

for all (x, y) , (z, w) ∈ ∆. Using the fact that

f (x, y) + f (z, w) + |f (x, y)− f (z, w)|

2
= max {f(x, y), f(z, w)}

we can write
f (x, y) + f (z, w)

2
≤ max {f (x, y) , f (z, w)} .

Then obviously, we obtain

f

(

x+ z

2
,
y + w

2

)

≤ max {f (x, y) , f (z, w)}

which shows that f ∈ JQ (∆) . �
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