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LLL-REDUCTION FOR INTEGER KNAPSACKS

ISKANDER ALIEV AND MARTIN HENK

Abstract. Given a matrix A ∈ Z
m×n satisfying certain regularity as-

sumptions, a well-known integer programming problem asks to find an
integer point in the associated knapsack polytope

P (A,b) = {x ∈ R
n
≥0 : Ax = b}

or determine that no such point exists. We obtain a LLL-based polyno-
mial time algorithm that solves the problem subject to a constraint on
the location of the vector b.

1. Introduction and Statement of Results

Let A ∈ Z
m×n, 1 ≤ m < n, be an integral m× n matrix satisfying

i) gcd (det(AIm) : AIm is an m×m minor of A) = 1,

ii) {x ∈ R
n
≥0 : Ax = 0} = {0},

(1.1)

where gcd(a1, . . . , al) denotes the greatest common divisor of integers ai,
1 ≤ i ≤ l. For such a matrix A and a vector b ∈ Z

m the knapsack polytope
P (A, b) is defined as

P (A, b) = {x ∈ R
n
≥0 : Ax = b} .

Observe that on account of (1.1) ii), P (A, b) is indeed a polytope (or empty).
The paper is concerned with the following integer programming problem:

Given input (A, b), find an integer point in P (A, b)
or determine that no such a point exists .

(1.2)

The problem (1.2) is well-known to be NP-hard (Karp [14]).
Let us define the set

F(A) = {b ∈ Z
m : P (A, b) ∩ Z

n 6= ∅}.

Thus, the set F(A) will consist of all possible vectors b such that the poly-
tope P (A, b) contains an integer point.

A set S ⊂ R
m will be called a feasible set if S ∩ Z

m ⊂ F(A). Results of
Aliev and Henk [2], Knight [15], Simpson and Tijdeman [25] and Pleasants,
Ray and Simpson [19] show that the set F(A) can be decomposed into
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the set of all integer points in a certain feasible (translated) cone and a
complementary set with complex combinatorial structure.

Note that the casem = 1 corresponds to the celebrated Frobenius problem
and has been extensively studied in the literature. We address this problem
below. When n = m+ 1 Pleasants, Ray and Simpson [19] obtain a unique
maximal cone whose interior is feasible. To the best of the authors knowledge
the existence of such a maximal cone in the general case is not known.

The location of a feasible cone is given by the diagonal Frobenius number
defined as follows. Let v1, . . . ,vn ∈ Z

m be the columns of the matrix A and
let

C = {λ1v1 + · · ·+ λnvn : λ1, . . . , λn ≥ 0}

be the cone generated by v1, . . . ,vn. Let also v := v1 + . . .+ vn. Following
Aliev and Henk [2], by the diagonal Frobenius number g = g(A) of A we
understand the minimal s ≥ 0, such that for all b ∈ {sv + C} ∩ Z

m the
polytope P (A, b) contains an integer point. Thus we have the inclusion

{g(A)v + C} ∩ Z
m ⊂ F(A) ,

or, in other words, the translated cone {g(A)v +C} is feasible.
The behavior of g(A) was investigated in Aliev and Henk [2]. The authors

obtained an optimal up to a constant multiplier upper bound

g(A) ≤
(n−m)

2
(n det(AAT ))1/2(1.3)

and estimated the expected value of the diagonal Frobenius number.
It is natural to expect that the problem (1.2) is solvable in polynomial

time when the right hand side vector b belongs to a feasible cone. For such
vectors b we a priori know that the knapsack polytope contains at least one
integer point. We conjecture that the integer knapsack problem is solvable
in polynomial time for all instances (A, b) with

b ∈ {g(A)v + C} ∩ Z
m .

This question generalizes the Problem A.1.2 in Ramı́rez Alfonśın [21].
The first result of the paper gives an estimate for the location of the

desired feasible cone and can be considered as a step towards proving our
conjecture.

Theorem 1.1. There exists a polynomial time algorithm which, given (A, b),
where A satisfies (1.1), b ∈ Z

m with

b ∈ {2(n−m)/2−1p(m,n)(det(AAT ))1/2v + C}(1.4)

and

p(m,n) = 2−1/2(n −m)1/2n1/2(n−m+ 1) ,

finds an integer point in the polytope P (A, b).
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The proof of Theorem 1.1 is constructive. We obtain an LLL-based poly-
nomial time algorithm with the desired properties. In fact, the algorithm
computes in polynomial time a reasonably good approximation for the inte-
ger knapsack problem. We show that the approximation provides a solution
of the problem when the input vector b belongs to a certain feasible cone.

In view of (1.3), the affirmative answer to our conjecture would imply that

the factor 2(n−m)/2−1p(m,n) in (1.4) can be replaced by (n−m)n1/2

2 , hence

the exponent 2(n−m)/2−1 in (1.4) might be redundant.
Our next result shows that the exponent can be removed for all matrices A

with sufficiently large det(AAT ). This phenomenon is related to the bounds
on the efficiency of the LLL-algorithm and is a consequence of Theorem 1.4
below. In order to state the result, let γk be the k-dimensional Hermite
constant for which we refer to [18, Definition 2.2.5]. Here we just note that
by a result of Blichfeldt (see, e.g., Gruber and Lekkerkerker [11])

γk ≤ 2

(

k + 2

σk

)2/k

,

where σk is the volume of the unit k-ball; thus γk = O(k).

Theorem 1.2. There exists a polynomial time algorithm which, given (A, b),
where A satisfies (1.1), b ∈ Z

m with

b ∈ {p(m,n)(det(AAT ))1/2v + C}

and

det(AAT ) >
25(n−m)−6(n−m− 1)3γn−m

n−m

n
,(1.5)

solves the problem (1.2).

Thus, if the dimension n is concerned, Theorem 1.1 gives an exponential
bound in n for the location of the desired feasible cone, the affirmative
answer to our conjecture would imply the bound of order n3/2 and for large
determinants det(AAT ) we obtained the bound of order n2 in Theorem
1.2. In view of the size of γk, the lower bound for det(AAT ) has order
n22n logn+5n.

We would also like to mention an interesting consequence of Theorems
1.1 and 1.2. The proof of Lemma 1.1 in Aliev and Henk [2] immediately
implies that for any integer vector w in the interior intC of the cone C we
have

(

det(AAT )

n−m+ 1

)1/2

w ∈ {v + C} .

It follows then from Theorem 1.1 that for every integer vector b ∈ intC one
can find in polynomial time an integer point in the polytope P (A, γb) for
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any integer vector γb with

γ >
2(n−m)/2−1p(m,n)

n−m+ 1
det(AAT ) .

Moreover, if we assume (1.5) to hold, then by Theorem 1.2 we can remove

the exponential multiplier 2(n−m)/2−1 from the latter inequality.
Let us now consider the special case m = 1. Then A = aT with a =

(a1, a2, . . . , an)
T ∈ Z

n and (1.1) i) says that gcd(a) := gcd(a1, a2, . . . , an) =
1. Due to the second assumption (1.1) ii) we may assume that all entries of
a are positive. The largest integral value b such that for A = aT and b = (b)
the polytope P (A, b) contains no integer point is called the Frobenius number
of a , denoted by F(a). Thus, when m = 1 the answer for the feasibility
problem

Given input (A, b), does the polytope P (A, b)
contain an integer point?

(1.6)

is affirmative for all instances (aT , b) with b > F(a). Therefore, it is natural
to expect that the problem (1.6) can be solved in polynomial time when
b > c, for some function c = c(a). Problem A.1.2 in Ramı́rez Alfonśın ([21],
page 185) asks whether or not it is true for c = F(a).

Frobenius numbers naturally appear in the analysis of integer program-
ming algorithms (see, e.g., Aardal and Lenstra [1], Hansen and Ryan [12],
and Lee, Onn and Weismantel [17]). The general problem of finding F(a)
has been traditionally referred to as the Frobenius problem. This problem
is NP-hard (Ramı́rez Alfonśın [20, 21]) and integer programming techniques
are known to be an effective tool for investigating behavior of the Frobenius
numbers, see e.g. Kannan [13], Eisenbrand and Shmonin [7] and Beihoffer
et al [5].

For m = 1, we obtain the following refinement of the previous result.

Theorem 1.3. For any δ > 0 the function p(1, n) in the statements of
Theorems 1.1 and 1.2 can be replaced by

q(n) =
(1 + δ)

n
p(1, n) = (1 + δ) 2−1/2 (n− 1)n1/2.(1.7)

Note that if Problem A.1.2 of Ramı́rez Alfonśın ([21], page 185) can be

solved in affirmative, then the factor 2(n−1)/2−1p(1, n) in (1.4) can be re-
placed by an absolute constant.

The proof of Theorem 1.1 is based on an algorithm of Schnorr [23], which
extends and improves the classical Babai’s nearest point algorithm [4]. The
algorithm is searching for a nearby lattice point and is built on the LLL
lattice basis reduction (see Section 3). In the course of the proof we need
to estimate the quality of the LLL-reduced lattice basis in terms of the
determinant of the lattice. The key ingredient of the proof is the following
result.
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For 1 ≤ k ≤ n let

ρk =

(

25k−7(k − 1)3γkk
n

)1/2

,

and let || · || denote the Euclidean norm.

Theorem 1.4. Let L ⊂ Z
n be a k-dimensional lattice with det(L) > ρk and

let b1, b2, . . . , bk be an LLL–reduced basis of L. Then for 1 ≤ i ≤ k

||bi|| ≤

((

1 +
ρ2k

(det(L))2

)

n

)1/2

det(L) .(1.8)

Note that the classical bounds for the lengths of the vectors in an LLL-
reduced basis imply for all 1 ≤ i ≤ k the estimates

||bi|| ≤ 2
k−1

2 n1/2 det(L) ,

see Lemma 4.1 below. In (1.8) we manage to remove the exponential mul-

tiplier 2(k−1)/2 for integer lattices with sufficiently large determinant.

2. Integer Knapsacks and Geometry of Numbers

Our approach to the problem is based on Geometry of Numbers for which
we refer to the books [6, 10, 11].

By a lattice we will understand a discrete submodule L of a finite-dimen-
sional Euclidean space. Here we are mainly interested in primitive lattices
L ⊂ Z

n, where such a lattice is called primitive if L = spanR(L) ∩ Z
n.

Recall that the Frobenius number F(a) is defined only for integer vec-
tors a = (a1, a2, . . . , an) with gcd(a) = 1. This is equivalent to the state-
ment that the 1-dimensional lattice L = Za, generated by a is primitive.
This generalizes easily to an m-dimensional lattice L ⊂ Z

n generated by
a1, . . . ,am ∈ Z

n. Here the criterion is that L is primitive if and only if the
greatest common divisor of all m×m-minors is 1. This is an immediate con-
sequence of Cassels [6, Lemma 2, Chapter1] or see Schrijver [24, Corollary
4.1c].

Hence, by our assumption (1.1) i), the rows of the matrix A generate a
primitive lattice LA. The determinant of an m-dimensional lattice is the m-
dimensional volume of the parallelepiped spanned by the vectors of a basis.
Thus in our setting we have

det(LA) =
√

det(AAT ).

Now let A ∈ Z
m×n be a matrix satisfying the assumptions (1.1). By VA

we will denote the m-dimensional subspace of Rn spanned by the rows of A.
The orthogonal complement of VA in R

n will be denoted as V ⊥
A , so that

V ⊥
A = {x ∈ R

n : Ax = 0} .
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Furthermore, we will use the notation

L⊥
A = V ⊥

A ∩ Z
n

for the integer sublattice contained in V ⊥
A . Observe that (cf. [18, Proposition

1.2.9])

(2.1) det(L⊥
A) = det(LA) =

√

det(AAT ).

For a k-dimensional lattice L and an 0-symmetric convex body K ⊂
spanRL the ith-successive minimum of K with respect to L is defined as

λi(K,L) = min{λ > 0 : dim(λK ∩ L) ≥ i}, 1 ≤ i ≤ k,

i.e., it is the smallest factor such that λK contains at least i linearly inde-
pendent lattice points of L.

The Minkowski’s celebrated theorem on successive minima states (cf. [10,
Theorem 23.1])

(2.2)
2k

k!
det(L) ≤ vol (K)

k
∏

i=1

λi(K,L) ≤ 2k det(L),

where vol (K) denotes the volume of K.

Let ∆k = γ
−k/2
k denote the critical determinant of the unit k–ball. Let

also B be the unit ball in spanRL. In the important special case K = B the
Minkowski’s theorem on successive minima can be improved (cf. [11, §18.4,
Theorem 3]) to

(2.3) det(L) ≤
k
∏

i=1

λi(B,L) ≤ ∆−1
k det(L) .

3. LLL-reduction and successive minima

For a basis b1, b2, . . . , bk of a lattice L in R
n we denote by b̂1, b̂2, . . . , b̂k

its Gram-Schmidt orthogonalization and by µi,j the corresponding Gram-
Schmidt coefficients, that is

b̂1 = b1 , b̂i = bi −
i−1
∑

j=1

µij b̂i , 2 ≤ i ≤ k ,

and

µij =
〈bi, b̂j〉

||b̂j||2
.

Put λi = λ(B,L), where B is the unit ball in spanRL. We first recall the
following technical observation.

Lemma 3.1. We have

λi ≥ min
j=i,i+1,...,k

||b̂j|| , i = 1, 2, . . . , k .
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Proof. The proof can be easily derived from the proof of Proposition 1.12 in
[16]. �

Recall that a lattice basis b1, b2, . . . , bk is LLL–reduced if

(a) |µij | ≤
1
2 , for 1 ≤ j < i ≤ k;

(b) 3
4 ||b̂i−1||

2 ≤ ||b̂i||
2 + µ2

i i−1||b̂i−1||
2, for 2 ≤ i ≤ k.

The next lemma shows that the ith successive minimum λi is essentially
equal to both the ith vector of the LLL-reduced basis and the ith vector of its
Gram–Schmidt orthogonalization. The involved constants are exponential
in k.

Lemma 3.2. Suppose that the basis b1, b2, . . . , bk is LLL–reduced. Then for
1 ≤ i ≤ k the inequalities

21−iλ2
i ≤ ||bi||

2 ≤ 2k−1λ2
i ,(3.1)

22−2iλ2
i ≤ ||b̂i||

2 ≤ 2k−iλ2
i(3.2)

hold.

Proof. The inequalities (3.1) are given in a remark in the original paper of
Lenstra, Lenstra and Lovasz [16, after Proposition 1.12]. Next, since the
basis is LLL–reduced, the inequalities

||bi||
2 ≤ 2i−1||b̂i||

2 , 1 ≤ i ≤ k ,(3.3)

and

||b̂j ||
2 ≥ 2i−j ||b̂i||

2 , 1 ≤ i ≤ j ≤ k ,(3.4)

hold (see the proof of Proposition 1.6 in [16] for more details). Clearly,
(3.1) and (3.3) imply the left hand side inequality in (3.2). Furthermore, by

Lemma 3.1, there is some j ≥ i such that λ2
i ≥ ||b̂j||

2 ≥ 2i−k||b̂i||
2. This

justifies the right-hand side inequality in (3.2). �

Consequently, the ratios of the lengths of the vectors bi can be controlled
by the ratios of successive minima. In particular, the following result holds.

Corollary 3.1. If

λk−1

λk
≤ 21−k ,

then

max
i=1,...,k

||bi|| = ||bk|| .

For technical reasons we will need an upper bound for the ratios

ηi = ||b̂i||/||b̂k|| , i = 1, . . . , k − 1 .

The following corollary gives a slightly more general result.
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Corollary 3.2. We have

||b̂i||
2

||b̂j ||2
≤ 2k+2j−i−2λ

2
i

λ2
j

,

and, in particular,

η2i ≤ 23 k−3λ
2
i

λ2
k

.

Thus if the last successive minimum λk is large enough with respect to
λ1, . . . , λk−1 then all the numbers ηi are bounded by a small constant. The
next result implies that in this case λk is a very good approximation of ||bk||.

Lemma 3.3. We have

||bk|| ≤

(

k − 1

4
max

i=1,...,k−1
η2i + 1

)1/2

λk .

Proof. By (3.2) we have

||b̂k|| ≤ λk .

Observe that

||bk|| = (µ2
k,1||b̂1||

2 + · · ·+ µ2
k,k−1||b̂k−1||

2 + ||b̂k||
2)1/2

= ||b̂k||(µ
2
k,1η

2
1 + · · ·+ µ2

k,k−1η
2
k−1 + 1)1/2 .

Thus

||bk|| ≤

(

k − 1

4
max

i=1,...,k−1
η2i + 1

)1/2

λk .

�

4. LLL-reduction and determinant of the lattice

In this section we give an upper bound for the lengths of the vectors in an
LLL-reduced basis in terms of the determinant of the lattice. The bound is
based on the classical estimates from Lenstra, Lenstra and Lovasz [16] and,

consequently, involves the exponential multiplier 2(k−1)/2.

Lemma 4.1. Let L ⊂ Z
n be given by an LLL–reduced basis b1, b2, . . . , bk.

Then

max
i=1,...,k

||bi|| ≤ 2
k−1

2 n1/2 det(L) .(4.1)
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Proof. By Proposition 1.12 of Lenstra, Lenstra and Lovasz [16] for any choice
of linearly independent vectors x1, . . . ,xk ∈ L the inequality

||bi|| ≤ 2
k−1

2 max{||x1||, . . . , ||xk||}(4.2)

holds.
Put Cn = [−1, 1]n, i.e., Cn is the n-dimensional cube of edge length

2 centered at the origin. By a well-known result of Vaaler [26], any k-
dimensional section of the cube Cn has k-volume at least 2k. In particular
we have

vol k(C
n ∩ spanR(L)) ≥ 2k .

Thus, by the Minkowski theorem on successive minima, applied to the sec-
tion Cn∩spanR(L) and L, there exist linearly independent vectors x1, . . . ,xk ∈
L such that

||x1||∞ · · · ||xk||∞ ≤ det(L) ,

where || · ||∞ denotes the maximum norm.
Since xi are nontrivial integral vectors we have

max{||x1||∞, . . . , ||xk||∞} ≤ det(L) .

Combining the latter inequality with (4.2) we obtain the inequality (4.1).
�

5. Proof of Theorem 1.4

For k = 1 we have ||b1|| = det(L), so that the result holds. In the rest of
the proof we assume k ≥ 2.

Suppose that

max
i=1,...,k

||bi|| = ||bl|| > ((1 + ρ2k/(det(L))
2)n)1/2 det(L) .(5.1)

Then, by (3.1), we obtain

λk > ((1 + ρ2k/(det(L))
2)n)1/2

det(L)

2
k−1

2

.(5.2)

Thus, if (5.1) holds, then λk ≫n det(L).
By the Minkowski theorem on successive minima for balls (2.3)

λ1 · · ·λk−1λk ≤ ∆−1
k det(L) .(5.3)

Since L ⊂ Z
k, we clearly have λi ≥ 1, i = 1, . . . , n− 1. The inequality (5.2)

then implies

λk−1 ≤ λ1 · · ·λk−1 ≤ 2
k−1

2 ∆−1
k ,(5.4)

In other words, if λk ≫n det(L) then λk−1 ≪k 1. Consequently, if (5.1)
holds then the ratio λk−1/λk can be sufficiently small for large determinants.
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Indeed, from (5.4) and (5.2) we get,

λk−1

λk
≤

2k−1∆−1
k

((1 + ρ2k/(det(L))
2)n)1/2 det(L)

≤ 21−k .

Therefore, by Corollary 3.1, we have

max
i=1,...,k

||bi|| = ||bk|| .(5.5)

This is an important observation as from now on we can restrict our
attention to the behavior of the last vector of the LLL-reduced basis only.

By Lemma 3.3, the inequality (5.1) then implies that

λk >
((1 + ρ2k/(det(L))

2)n)1/2 det(L)
(

k−1
4 maxi=1,...,k−1 η

2
i + 1

)1/2
.(5.6)

This estimate allows us to improve the bound (5.2). We will now use (5.6)
to obtain an upper bound for maxi=1,...,k−1 η

2
i .

By (5.3), we get

λk−1 ≤ λ1 · · ·λk−1 ≤ ∆−1
k

(

k − 1

4
max

i=1,...,k−1
η2i + 1

)1/2

,

so that, by Corollary 3.2 and (5.6), we have

max
i=1,...,k−1

η2i ≤ 23k−3∆−2
k

(

k−1
4 maxi=1,...,k−1 η

2
i + 1

)2

n(det(L))2
.

Since, by Corollary 3.2, maxi=1,...,k−1 η
2
i ≤ 2k−1, we obtain the inequality

max
i=1,...,k−1

η2i ≤ 23k−3∆−2
k

(

k−1
4 2k−1 + 1

)2

n(det(L))2
.(5.7)

Consequently, if (5.1) holds then all numbers ηi approach zero as det(L)
tends to infinity.

By the Minkowski theorem on successive minima, applied to the set Cn∩
spanR(L) and the lattice L, and by the already mentioned result of Vaaler
[26], we have

k
∏

i=1

λi(C
n ∩ spanR(L), L) ≤ det(L) .

Since L ⊂ Z
n, the interior of Cn ∩ spanR(L) does not contain any nonzero

point of L. This implies

λk(C
n ∩ V ⊥

A , L) ≤ det(L) ,

so that

λk ≤ n1/2 det(L) .
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Consequently, by Lemma 3.3, the inequality (5.7) and condition det(L) > ρk,
we have

||bk|| ≤

((

k − 1

4
max

i=1,...,k−1
η2i + 1

)

n

)1/2

det(L)

≤ ((1 + ρ2k/(det(L))
2)n)1/2 det(L) .

That is the condition det(L) > ρk guarantees that maxi=1,...,k−1 η
2
i is suffi-

ciently small and so ||bk|| is small. On account of (5.5) we obtain a contra-
diction with (5.1). The theorem is proved.

6. The Algorithm. Proofs of Theorems 1.1 and 1.2

6.1. Proof of Theorem 1.1. Let c ∈ R
n be any point that does not lie in

the subspace V ⊥
A . The projection of a point x ∈ {c+ V ⊥

A } along the vector

c onto the subspace V ⊥
A will be denoted as πc(x). That is for some t ∈ R

n

we can write πc(x) = x+ tc ∈ V ⊥
A .

Suppose that

b ∈ {µ(m,n)(det(AAT ))1/2v +C} ∩ Z
m(6.1)

with µ(m,n) = 2(n−m)/2−1p(m,n).
To prove Theorem 1.1 it is enough to construct a polynomial time algo-

rithm that finds an integer point in P (A, b). The algorithm is described
below:

Input : (A, b) with A and b satisfying (1.1) and (6.1) respectively;
Output : z ∈ P (A, b) ∩ Z

n;
Step 1 : Find a basis x1, . . . ,xn−m of L⊥

A and an integer solution u of the
equation Ax = b. This step can be performed in polynomial time
by Corollary 5.3c of Schrijver [24];

Step 2 : Find a point c such that P (A, b) contains an (n−m)-dimensional
ball centered at c and of radius

r ≥
µ(m,n)(det(AAT ))1/2

n−m+ 1
.(6.2)

As we show below the point c can be found in polynomial time.
Step 3 : Apply the algorithm for finding a nearby lattice point, described

in Section 4 of Schnorr [23] (putting in this algorithm the param-
eter β = 2), to the basis x1, . . . ,xn−m and the point πc(u). The
algorithm is polynomial in time and returns a lattice point v ∈ L⊥

A
satisfying

||πc(u)− v||2 ≤ (||b1||
2 + · · ·+ ||bn−m||2)/4 ,(6.3)

where b1, . . . , bn−m is a LLL–reduced basis of L⊥
A.

Step 4 : The output vector z = u− v.
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First, we justify Step 3. We show that the polytope P (A, b) contains an
(n−m)-dimensional ball B(c, r) of radius satisfying (6.2) and that the center
c of the ball can be found in polynomial time. We will need the following
observation.

Lemma 6.1. If b ∈ {tv + C} ∩ Z
m, t > 0, then

P (A, b) ∩ {t1+ R
n
≥0} 6= ∅,(6.4)

where 1 denotes the all 1-vector.

Proof. Consider the map τ : VA → R
m defined as τ(h) = Ah. Clearly,

P (A, b) = {τ−1(b) + V ⊥
A } ∩ R

n
≥0. Observe that τ−1(vi) ∈ {ei + L⊥

A}, where
ei is the ith standard basis vector of Rn. Thus for b ∈ {tv + C} we obtain
(6.4). �

Next, by Lemma 6.5.3 of Grötschel, Lovász and Schrijver [9] there ex-
ists a polynomial time algorithm that finds affinely independent vertices
y0,y1, . . . ,yn−m of P (A, b). On account of (6.4) and (1.1) ii), each non-
zero coordinate yi of a vertex of P (A, b) satisfies

(6.5) yi ≥ µ(m,n)(det(AAT ))1/2.

Taking the barycenter c = 1
n−m+1

∑n−m
i=0 yi, we get a relative interior point

of P (A, b), i.e., all coordinates of c are positive. Thus

ci ≥
µ(m,n)(det(AAT ))1/2

n−m+ 1
.

Clearly, the polytope P (A, b) contains a ball centered at c whose radius is
at least mini ci. This implies (6.2).

It remains to justify Step 4. The output vector z clearly satisfies the
condition Az = b. Thus, by the choice of the point c, it is enough to show
that

||z − c|| ≤
µ(m,n)(det(AAT ))1/2

n−m+ 1
.(6.6)

Since ||z − c|| = ||πc(u)− v||, by (6.3) we have

||z − c|| ≤
(n−m)1/2

2
max

i=1,...,n−m
||bi|| .

By Lemma 4.1 and the choice of µ we obtain the inequality (6.6).

6.2. Proof of Theorem 1.2. We will show that the above algorithm can
be easily modified to satisfy the statement of Theorem 1.2. Indeed, we only
need to replace µ(m,n) = 2(n−m)/2−1p(m,n) by µ(m,n) = p(m,n). The
proof of Step 3 remains the same and in the proof of Step 4 we need to
apply Theorem 1.4 with ρ2k/(det(L))

2 replaced by 1 instead of Lemma 4.1.
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7. Case m = 1. Proof of Theorem 1.3

Put ν(n) = 2(n−1)/2−1q(n) and suppose that

b ≥ ν(n)||a||
n
∑

i=1

ai .(7.1)

To prove Theorem 1.3 we will find in polynomial time an integer point in
P (aT , b).

Let a[i] = (a1, . . . , ai−1, ai+1, . . . , aN ). We propose the following modifi-
cation of the algorithm from Section 6 for solving this problem.

Steps 1 and 3 and 4 remain the same. Step 2 will be modified as follows

Step 2* : Find a point c such that P (aT , b) contains an (n−m)-dimensional
ball centered at c and of radius

r =
b||a||

(1 + δ)
∑n

i=1 ||a[i]||ai
.(7.2)

The polytope P (aT , b) is the simplex with vertices vi = (b/ai)ei, 1 ≤ i ≤
n, where ei are the standard basis vectors. Hence the inner unit normal
vectors of the facets of this simplex (in the hyperplane {x ∈ R

n : aTx = 0})
are given by

uj :=
||a||

||a[j]||

(

ej −
aj

||a||2
a

)

, 1 ≤ j ≤ n.

Here ej denotes j-th unit vector in R
n, and the facet corresponding to uj is

the convex hull of all vertices except (b/aj)ej.
Now let c∗ be the center of the maximal inscribed ball in the simplex

P (aT , b), and let r∗ be its radius. Since this maximal ball touches all facets
of the simplex, the radius is (n−1) times the ratio of volume to surface area.
Standard calculations (see, e.g., Fukshansky and Robins [8, (17), (18)]) gives

r∗ = b
||a||

∑n
i=1 ||a[i]||ai

.

Furthermore, we know that for 1 ≤ j ≤ n, the vector c∗ − r∗ uj has to lie in
the facet corresponding to uj . Hence the jth coordinate of c∗ − r∗ uj has
to be zero and so we find

c∗j = r∗
||a||

||a[j]||

(

1−
a2j

||a||2

)

= b
||a[j]||

∑n
i=1 ||a[i]||ai

.

Note that the numbers c∗j are in general not rational. However we can
find in polynomial time a rational approximation c of the vector c∗ which
satisfies the condition of Step 2*.

To justify Step 4, by the choice of the point c, it is enough to show that

||z − c|| ≤ r .(7.3)
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Since ||z − c|| = ||πc(u)− v||, by (6.3) we have

||z − c|| ≤
(n− 1)1/2

2
max

i=1,...,n−1
||bi|| .

By Theorem 1.4, for simplicity applied with ρ2k/(det(L))
2 replaced by 1,

Lemma 4.1 and (7.1) we obtain the inequality (7.3).
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