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Abstract

We define a class of higher-order linear maps that transform quantum opera-
tions into quantum operations and satisfy suitable requirements of normality
and complete positivity. For this class of maps we prove two dilation theo-
rems that are the analogues of the Stinespring and Radon-Nikodym theorems
for quantum operations. A structure theorem for probability measures with
values in this class of higher-order maps is also derived.
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1. Introduction

Quantum operations [19] are the fundamental building block of the theory
of open quantum systems [13]. They provide a general input-output descrip-
tion of the possible state changes in quantum theory, encompassing both the
unitary evolution of a closed system and the stochastic evolutions associated
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with the possible events in a quantum measurement. Technically, quantum
operations are defined in the Schrödinger picture as trace non-increasing
completely positive maps sending trace-class operators on the input Hilbert
space K to trace-class operators on the output Hilbert space H. Denoting
by L(H) (resp. L(K)) the von Neumann algebra of bounded linear opera-
tors on H (resp. K), a quantum operation can be described in the dual (or
Heisenberg) picture as a normal completely positive map E : L(H) → L(K)
satisfying the bound E(IH) ≤ IK, where IH (resp. IK) is the identity operator
on H (resp. K). Unital maps, for which E(IH) = IK, represent deterministic
quantum evolutions, and are usually referred to as quantum channels [16].
Quantum operations can be characterized by means of Stinespring’s theorem
[26], when specialized to the case of normal maps: Precisely, E is a quan-
tum operation if and only if there exists a Hilbert space V and a contraction
V : K → H ⊗ V such that E(A) = V ∗(A⊗ IV)V ∀A ∈ L(H). In particular,
if E is a quantum channel, then V is an isometry, with V ∗V = IK.

Very recently, following the advent of quantum computation and quan-
tum information theory, there has been increasing interest in the study of
higher order maps that transform quantum operations into quantum opera-
tions, rather then quantum states into quantum states. These maps, called
quantum supermaps, are particularly relevant to the study of transformations
of quantum devices in quantum networks, and have been introduced in the
literature in a series of papers by D’Ariano, Perinotti and one of the authors
[4, 5, 6]. Quantum supermaps describe all transformations that a quantum
device can possibly undergo: For example, a device implementing the quan-
tum operation E can be connected with other devices, so that the resulting
circuit implements a new quantum operation E ′. The theory of quantum
supermaps, developed in Refs. [5, 6] for the finite dimensional quantum sys-
tems, has proven to be a powerful tool for the treatment of many advanced
topics in quantum information theory [7, 8, 9, 10, 11, 12, 27, 29]. However,
a rigorous definition and characterization of quantum supermaps in infinite
dimensions is still lacking. This problem will be the main focus of the present
paper.

Before presenting our results, we briefly review the definition and char-
acterization of supermaps in finite dimensions [5, 6]. Quantum supermaps
are defined axiomatically as linear completely positive maps transforming
quantum operations into quantum operations (see [5, 6] for the physical
motivation of linearity and complete positivity). The notion of complete
positivity used in this definition is the following: Suppose that A is a fi-
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nite dimensional unital C∗-algebra, L (A) is the set of all linear maps on
A, and L (L (A)) is the set of all linear maps on L (A). In particular, if
A = Mn(C) is the C∗-algebra of the n × n complex matrices, we denote
by In : L (Mn(C)) → L (Mn(C)) the identity map on L (Mn(C)). A linear
map S ∈ L (L (A)) is then called completely positive if for all n ∈ N the map
In⊗S ∈ L (L (Mn(C)))⊗L (L (A)) = L (L (Mn(C)⊗A)) preserves the subset
of completely positive maps on the tensor product C∗-algebra Mn(C) ⊗ A.
Following [5, 6], we call the map S quantum supermap if it leaves invariant
the set of quantum operations. A quantum supermap is deterministic if it
transforms quantum channels (unital completely positive maps in L(A)) into
quantum channels.

A dilation theorem for deterministic supermaps was proved in [5, 6] in
the case where A = L(H) is the C∗-algebra of all linear operators on a
finite dimensional Hilbert space H. Precisely, Refs. [5, 6] showed that if
S : L (L(H)) → L (L(H)) is a deterministic supermap, then there exists two
finite dimensional Hilbert spaces V1 and V2 and two isometries V1 : H →
H⊗ V1, V2 : H⊗ V1 → H⊗ V2 such that

[S(E)](A) = V ∗
1 [(E ⊗ I1)(V

∗
2 (A⊗ I2)V2)]V1 ∀A ∈ L(H), E ∈ L (L(H)) ,

(1)
where I1 and I2 are the identity maps on L (V1) and V2, respectively. This
result can be viewed as an analog of the classical Stinespring theorem for
completely positive maps on L(H): a deterministic supermap is the compo-
sition of two amplifications followed by two dilations. Besides the doubling,
the main difference with Stinespring’s theorem is that the amplification E⊗I1

here is not a C∗-algebra representation, since quantum operations only gen-
erate a Banach algebra.

The first result of our paper will be the proof of the dilation theorem for
deterministic supermaps in the infinite dimensional case. Like Refs. [5, 6],
we will restrict our analysis to the choice where A = L(H) is the von Neu-
mann algebra of all bounded linear operators on a separable Hilbert space
H. However, there will be two key differences with respect to the finite
dimensional case. The first difference concerns the domain of definition of
quantum supermaps. Clearly, the natural domain for a quantum supermap
is the linear space spanned by quantum operations. However, while in fi-
nite dimensions quantum operations span the whole set L (L(H)) of linear
operators on L(H), in infinite dimension they only span the proper sub-
set CB (H) of weak*-continuous completely bounded linear maps on L(H),
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which is strictly contained in the space L (L (H)) of bounded linear opera-
tors on L(H). The second key difference concerns the necessary and sufficient
conditions needed for the proof of the dilation theorem. Indeed, not every de-
terministic quantum supermap admits a dilation of the form of eq. (1) with
all finite dimensional Hilbert spaces replaced by separable Hilbert spaces.
We will prove that such a dilation exists if and only if the deterministic su-
permap S is normal, in a suitable sense that will be defined later. Under the
normality hypothesis, a natural algebraic construction leads to our dilation
theorem (Theorem 5) for deterministic supermaps, which is the main result
of the paper.

We then prove a Radon-Nikodym theorem for probabilistic supermaps,
namely supermaps that are dominated by deterministic supermaps. The class
of probabilistic supermaps is particularly interesting for physical applications,
as such maps naturally appear in the description of quantum circuits that
are designed to test properties of physical devices [4, 5, 6]. Higher-order
quantum measurements are indeed described by quantum superinstruments,
which are the generalization of the quantum instruments of Davies and Lewis
[14]. Given a measurable space Ω, a quantum superinstrument with outcome
space Ω is a countably additive measure with values in the set of quantum
supermaps, and with the normalization condition that the measure of the
whole space Ω is a deterministic supermap. We conclude our paper with the
proof of a dilation theorem for quantum superinstruments, in analogy with
Ozawa’s dilation theorem for ordinary instruments [21].

The paper is organized as follows. In Section 2 we fix the elementary
definitions and notations, and recall some basic facts needed in the rest of
the paper. In Section 3 we extend the notion of increasing nets from posi-
tive operators to normal completely positive maps. Section 4 contains some
elementary results about the tensor product of weak*-continuous maps. In
Section 5 we define normal completely positive supermaps and provide some
examples. In Section 6 we prove the dilation Theorem 5 for deterministic su-
permaps. Section 7 extends Theorem 5 to probabilistic supermaps, providing
a Radon-Nikodym theorem for supermaps. We define quantum superinstru-
ments in Section 8 and use the Radon-Nikodym theorem to prove a dilation
theorem for quantum superinstruments, in analogy with Ozawa’s result for
ordinary instruments (see in particular Proposition 4.2 in [21]). Finally, Ap-
pendix A contains the proofs for some standard results on weak*-continuous
completely bounded maps on L(H), which are collected here for the reader’s
convenience.
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2. Preliminaries and notations

2.1. Linear spaces

If X , Y are lnear spaces (always assumed complex in the paper), we
denote by L (X ,Y) the space of linear maps from X to Y . We abbreviate
L (X ) := L (X ,X ). IX (or simply I when no confusion can arise) is the
identity map on X . X⊗̂Y is the algebraic tensor product of X and Y .

A linearly ordered vector space X is positively generated if X is spanned
by the cone X+ of its positive elements. Cones X+ and Y+ in X and Y ,
respectively, induce a corresponding cone L (X ,Y)+ in L (X ,Y) in the fol-
lowing way:

A ∈ L (X ,Y)+ ⇐⇒ Ax ∈ Y+ ∀x ∈ X+.

The cone L (X ,Y)+ is the cone of positive maps from X to Y (again, we set
L (X )+ := L (X ,X )+). The same symbol used to denote the order relation
in X and Y will be used for this order relation in L (X ,Y).

If X , Y are Banach spaces, we let L (X ,Y) (L (X ) ≡ L (X ,X )) be the
Banach space of bounded linear operators from X to Y endowed with the
uniform norm ‖·‖∞. As usual, X ∗ := L (X ,C) will be the dual space of X .

If the contrary is not explicitely stated, by Hilbert space we will always
mean a complex separable Hilbert space, with norm ‖·‖ and scalar product
〈·, ·〉, linear in the first entry. When different Hilbert spaces are taken into
consideration, we add a subscript to the norm and scalar product indicating
the Hilbert space they refer to. If H, K are two Hilbert spaces, we let H⊗K
be their Hilbert space tensor product. If A ∈ L(H) and B ∈ L(K), the tensor
product A⊗ B is a bounded operator on H⊗ K, and we have the inclusion
L(H)⊗̂L(K) ⊂ L (H⊗K).

The Banach space L(H) is ordered in the usual way, its positive cone
L(H)+ consisting of those A ∈ L(H) such that 〈Av, v〉 ≥ 0 for all v ∈ H. If
A ∈ L(H), then A∗ ∈ L(H) is the Hilbert space adjoint of A.

We denote by T (H) the Banach space of trace class operators in L(H)
endowed with the trace class norm. We consider T (H) as a linealy ordered
vector space with respect to the ordering inerhited from L(H). The trace
functional in T (H) is denoted by tr. The Banach dual T (H)∗ coincides with
L(H), the pairing of A ∈ L(H) with T ∈ T (H) being given by tr (AT ). The
weak* topology of L(H) is thus the topology induced on L(H) by the family
of seminorms νT (A) = |tr (AT ) |, T ∈ T (H). If {Aλ}λ∈Λ is a net in L(H)
converging to A in the weak* topology, we write A = wk*-limλAλ.

5



2.2. Normal completely positive maps

If a linear map E : L(H) → L(K) is weak*-continuous, then it is automat-
ically bounded and has a bounded preadjoint E∗ ∈ L (T (K), T (H)) defined
by

tr [AE∗(T )] := tr [E(A)T ] ∀A ∈ L(H), T ∈ T (K).

If Λ is a directed set, we say that a net {Aλ}λ∈Λ in L(H)+ is

- increasing if Aλ1
≤ Aλ2

whenever λ1 ≤ λ2,

- bounded if there exists A ∈ L(H)+ such that Aλ ≤ A for all λ ∈ Λ.

We have the following well known fact (see for example Lemma 1.7.4 in [25]
or Lemma 5.1.4 in [17]).

Theorem 1. If a net {Aλ}λ∈Λ in L(H)+ is increasing and bounded, then
it converges in the weak* topology. Its limit A has the following property:
Aλ ≤ A for all λ ∈ Λ, and, if A′ ∈ L(H) is such that Aλ ≤ A′ for all λ ∈ Λ,
then A ≤ A′.

If {Aλ}λ∈Λ and A are as in the statement of the theorem, then we write
Aλ ↑ A.

Definition 1. A positive linear map E ∈ L (L(H),L(K))+ is normal if
E(An) ↑ E(A) for all sequences {An}n∈N such that An ↑ A.

It is a standard fact that the sets of normal maps and weak*-continuous maps
in L (L(H),L(K))+ coincide (see for example §2, Lemma 2.2 in [13]).

We now recall some elementary facts about complete boundedness and
complete positivity that will be used in the paper. For every Hilbert space
H and every finite number n ∈ N define the Hilbert space H(n) := Cn ⊗
H. Since n is finite, the space L(H(n)) is identified with Mn(C)⊗̂L(H).
Likewise, the space of linear maps L

(

L(H(n)),L(K(n))
)

is identified with
L (Mn(C)) ⊗̂L (L(H),L(K)).

Let In denote the identity map on Mn(C). We then have the following

Definition 2. A bounded linear operator E : L(H) → L(K) is completely
bounded (CB) if there exists C > 0 such that ‖In ⊗ E‖∞ ≤ C for all n ∈ N.
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Example 1. If E ∈ L (H,K), F ∈ L (K,H), we denote by E⊙F the element
in L (L(H),L(K)) given by

(E ⊙ F )(A) = EAF ∀A ∈ L(H).

It is immediate to verify that the map E ⊙ F is completely bounded, with
C = ‖E‖∞ ‖F‖∞.

We will denote by CB (H,K) (CB (H) := CB (H,H)) the linear space of
completely bounded and weak*-continuous maps in L (L(H),L(K)). Note
that the linear spaces CB (Cm,Cn) and L (Mn(C),Mm(C)) ≃ Mmn(C) co-
incide for all m,n ∈ N (see e.g. Proposition 3.8 and Exercise 3.11 in [23]).
More generally, the linear space CB

(

H(m),K(n)
)

can be identified with the
algebraic tensor product CB (Cm,Cn) ⊗̂CB (H,K) for all Hilbert spaces H,
K.

Definition 3. A linear map E ∈ L (L(H),L(K)) is completely positive (CP)
if the linear map In ⊗ E ∈ L

(

L
(

H(n)
)

,L
(

K(n)
))

is positive for all n ∈ N.

Example 2. If E ∈ L (K,H), then the map E = E∗ ⊙ E is completely
positive.

We will denote by CP (H,K) the set of normal completely positive maps
in L (L(H),L(K)) (CP (H) := CP (H,H)).

It is well known that CP maps are automatically CB, and that any CB
map can be written as a linear combination of four CP maps (see for example
Theorem 8.5 in [23]). The corresponding statement for weak*-continuous
maps, given in the next theorem, is proved in [15] (see also the Appendix of
the present paper).

Theorem 2. The inclusion CP (H,K) ⊂ CB (H,K) holds. Moreover, if
E ∈ CB (H,K), then there exists Ek ∈ CP (H,K), k = 0, 1, 2, 3, such that
E =

∑3
k=0 i

kEk.

In other words, Theorem 2 states that CP (H,K) is a cone in CB (H,K) and
that CB (H,K) is positively generated. We will denote by � the ordering in
CB (H,K) induced by the cone CP (H,K): given two maps E ,F ∈ CB (H,K)
we will write E � F whenever F − E is completely positive. We will always
consider CB (H,K) as an ordered linear space with respect to �.
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Definition 4. A normal completely positive map E ∈ CP (H,K) is a quan-
tum channel if it is unital, that is, if E(IH) = IK.

The set of quantum channels in CP (H,K) will be denoted by CP1 (H,K).

Definition 5. A normal completely positive map E ∈ CP (H,K) is a quan-
tum operation if there exists a quantum channel F ∈ CP (H,K) such that
E � F .

The set of quantum operations in CP (H,K) will be denoted by CP0 (H,K).
Clearly, quantum channels are a particular class of quantum operations,
i.e. we have the inclusion CP1 (H,K) ⊂ CP0 (H,K).

A simple characterization of quantum operations is given by the following

Proposition 1. A normal CP map E ∈ CP (H,K) is a quantum operation
if and only if E(IH) ≤ IK.

Proof. If E is a quantum operation, then by definition there exists a quan-
tum channel F such that E � F . Then, E(IH) ≤ F(IH) = IK. Con-
versely, if E(IH) ≤ IK we can define a normal CP map E ′ by the relation
E ′(A) := (IK − E(IH))tr (Aρ), where ρ ∈ T (H)+ is a positive trace-class op-
erator such that tr (ρ) = 1. The map F := E + E ′ is then a quantum channel
and E � F .

3. Increasing nets of normal CP maps

We say that the net {Eλ}λ∈Λ ⊂ L (L(H),L(K))+ is

- increasing if Eλ1
≤ Eλ2

whenever λ1 ≤ λ2,

- bounded if there exists E ∈ L (L(H),L(K))+ such that Eλ ≤ E for all
λ ∈ Λ.

With this definition we have the following

Proposition 2. If {Eλ}λ∈Λ is a net in L (L(H),L(K))+ which is increasing
and bounded, then there exists an unique E ∈ L (L(H),L(K))+ such that

Eλ(A) ↑ E(A) ∀A ∈ L(H)+. (2)

For such E , we have Eλ ≤ E for all λ ∈ Λ, and, if E ′ ∈ L (L(H),L(K))
satisfies Eλ ≤ E ′ for all λ ∈ Λ, then E ≤ E ′.
If B ∈ L(H), then {Eλ(B)}λ∈Λ converges to E(B) in the weak* topology.
If in addition Eλ is normal for all λ ∈ Λ, then E is normal.
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Proof. By boundedness, there is F ∈ L (L(H),L(K))+ such that Eλ ≤ F
for all λ. If A ∈ L(H)+, then the net {Eλ(A)}λ∈Λ is increasing and bounded
by F(A) ∈ L(K)+, hence by Theorem 1 the net has a limit, call it E(A). This
defines the map E on L(H)+. It is easy to check that E(αA) = αE(A) for all
real α ≥ 0 and E(A1+A2) = E(A1)+E(A2) for all A1, A2 ∈ L(H)+. Since the
linearly ordered space L(H) is positively generated, E then uniquely extends
to an element of L (L(H),L(K))+.
For each λ, since Eλ(A) ≤ E(A) for every A ∈ L(H)+, we have Eλ ≤ E . If
Eλ ≤ E ′, then Eλ(A) ≤ E ′(A) for all λ and for all A ∈ L(H)+, hence by
Theorem 1 we have E(A) ≤ E ′(A), i.e. E ≤ E ′.
If B ∈ L(H), it can be decomposed as B =

∑3
k=0 i

kBk, where each Bk

is positive. Then E(Bk) = wk*-limλ Eλ(Bk), and, by linearity E(B) =
wk*-limλ Eλ(B).
Finally, suppose Eλ is normal for all λ ∈ Λ. If An ↑ A in L(H)+, then we have
wk*-limλ Eλ(An) = E(An) for all n by eq. (2), and wk*-limn Eλ(An) = Eλ(A)
for all λ by normality. On the other hand, the sequence {E(An)}n∈N is in-
creasing and bounded by E(A), hence Theorem 1 implies E(An) ↑ B for some
B ∈ L(K)+. For all T ∈ T (K)+, we have

tr [TE(A)] = sup
λ

tr [TEλ(A)] = sup
λ

sup
n

tr [TEλ(An)] = sup
n

sup
λ

tr [TEλ(An)]

= sup
n

tr [TE(An)] = tr (TB) ,

hence B = E(A). This proves that E is normal.

If Eλ, E are as in the above proposition, we write Eλ ↑ E .
We say that a net {Eλ}λ∈Λ of elements in CP (H,K) is

• CP-increasing if Eλ1
� Eλ2

whenever λ1 ≤ λ2,

• CP-bounded if there exists a map E ∈ CP (H,K) such that Eλ � E for
all λ ∈ Λ.

The central result of this section is the following analogue of Theorem 1 for
normal CP maps.

Theorem 3. If {Eλ}λ∈Λ is a net in CP (H,K) which is CP-increasing and
CP-bounded, then there exists a unique E ∈ CP (H,K) such that Eλ ↑ E .
Moreover, one has

In ⊗ Eλ ↑ In ⊗ E ∀n ∈ N. (3)
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E has the following property: Eλ � E for all λ ∈ Λ, and, if E ′ ∈ CP (H,K) is
such that Eλ � E ′ for all λ ∈ Λ, then E � E ′.
If B ∈ L(H), then {Eλ(B)}λ∈Λ converges to E(B) in the weak* topology.

Proof. The existence and uniqueness of the normal positive map E such
that Eλ ↑ E was proved in Proposition 2. We now prove that E is CP
and that In ⊗ Eλ ↑ In ⊗ E . Let F ∈ CP (H,K) be such that Eλ � F
for all λ. For all n ∈ N, the net {In ⊗ Eλ}λ∈Λ is increasing and bounded
by In ⊗ F in L

(

L(H(n)),L(K(n))
)

+
, hence by Proposition 2 there exists a

unique E [n] ∈ L
(

L(H(n)),L(K(n))
)

+
such that (In ⊗ Eλ) ↑ E [n]. So one has

E [n](B̃) = wk*-limλ(In ⊗ Eλ)(B̃), ∀B̃ ∈ L(H(n)). On the other hand, we
clearly have (In ⊗E)(B̃) = wk*-limλ(In ⊗Eλ)(B̃). By comparison we obtain
In ⊗ E = E [n], that is, In ⊗ Eλ ↑ In ⊗ E . Moreover, since E [n] ≥ 0 for all n,
the equation In ⊗ E = E [n] also shows that E is completely positive.
Since In ⊗ Eλ ≤ In ⊗ E for all λ and n, we have Eλ � E for all λ. If Eλ � E ′,
then In ⊗ Eλ ≤ In ⊗ E ′ for all λ and n, hence In ⊗ E ≤ In ⊗ E ′ by eq. (3)
and Proposition 2. This means E � E ′.
The last claim of the theorem is a consequence of the analogue statement in
Proposition 2.

If {Eλ}λ∈Λ and E are as in the statement of the above theorem, then we
write Eλ ⇑ E .

The next theorem collects a number of facts proved by Kraus in [19],
stated in the language of Theorem 3. Recall that, if I is a generic index
set, then the collection ΛI of finite subsets of I is a directed set ordered
by the inclusion relation. If {Ai}i∈I is a set of elements in L(H)+ and the
net {

∑

i∈J Ai}J∈ΛI
converges in the sense of Theorem 1, then we denote its

limit by
∑

i∈I Ai. Likewise, if {Ei}i∈I are elements in CP (H,K) and the net
{
∑

i∈J Ei}J∈ΛI
converges in the sense of Theorem 3, then we denote its limit

by
∑

i∈I Ei.

Theorem 4 (Kraus form). We have the following facts.

1. If I is a finite or countable set and {Ei}i∈I are elements in L (K,H)
such that the sum {

∑

i∈J E
∗
i Ei}J∈ΛI

converges in L(K)+ (in the sense of
Theorem 1), then the sum {

∑

i∈J E
∗
i ⊙Ei}J∈ΛI

converges in CP (H,K)
(in the sense of Theorem 3).

2. If E ∈ CP (H,K), then there exists a countable set I and a sequence
{Ei}i∈I such that E can be written in the Kraus form E =

∑

i∈I E
∗
i ⊙Ei.
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In this case, E ∈ CP0 (H,K) [resp. E ∈ CP1 (H,K)] if and only if
∑

i∈I E
∗
i Ei ≤ IK [resp.

∑

i∈I E
∗
i Ei = IK].

4. Tensor product of weak*-continuous CB maps

This section contains some elementary facts about the tensor product of
weak*-continuous CB maps.

Lemma 1. If A,A′ ∈ CB (H1 ⊗H2,K1 ⊗K2) are equal on product oper-
ators, namely A(A ⊗ B) = A′(A ⊗ B) ∀A ∈ L (H1) , B ∈ L (H2), then
A = A′.

Proof. By linearity, A and A′ are equal on the algebraic tensor product
L (H1) ⊗̂L (H2), which is a weak*-dense subset of L (H1 ⊗H2) (see for ex-
ample eq. (10) p. 185 in [28] or the last equation of Example 11.2.2 in [18]).
By weak*-continuity, this implies A = A′.

Proposition 3. Given two maps E ∈ CB (H1,K1) and F ∈ CB (H2,K2)
there exists a unique map E ⊗ F ∈ CB (H1 ⊗H2,K1 ⊗K2) such that

(E ⊗ F)(A⊗ B) = E(A)⊗F(B) ∀A ∈ L (H1) , B ∈ L (H2) . (4)

If E and F are CP, then E ⊗ F ∈ CP (H1 ⊗H2,K1 ⊗K2).

Proof. Uniqueness is immediate from Lemma 1. To prove existence we
first consider the case where the maps E and F are completely positive.
Given the Kraus forms E =

∑

i∈I E
∗
i ⊙ Ei and F =

∑

j∈J F
∗
j ⊙ Fj it is

easy to verify that the map E ⊗ F :=
∑

(i,j)∈I×J(Ei ⊗ Fj)
∗ ⊙ (Ei ⊗ Fj) is

an element in CP (H1 ⊗H2,K1 ⊗K2) which satisfies eq. (4). When E ∈
CB (H1,K1) and F ∈ CB (H2,K2) are generic, the existence of the map
E ⊗F is proved using the decompositions E =

∑3
k=0 i

kEk and F =
∑3

l=0 i
lFl,

where Ek ∈ CP (H1,K1) and Fl ∈ CP (H2,K2) (Theorem 2), and defining
E ⊗ F :=

∑3
k,l=0 i

k+l(Ek ⊗ Fl).

When H1 and K1 are both finite dimensional, note that the definition of
E ⊗ F given in Proposition 3 coincides with the algebraic tensor product of
the two maps E and F , which was considered in the previous sections.

Proposition 4. For E1, E2 ∈ CB (H1,K1) and F1,F2 ∈ CB (H2,K2) one has
E1E2⊗F1F2 = (E1⊗F1)(E2⊗F2) and (E1+E2)⊗ (F1+F2) =

∑2
i,j=1 Ei⊗Fj.

Moreover, if E1 � E2 and F1 � F2, then E1 ⊗ F1 � E2 ⊗ F2.

11



Proof. It is immediate to check the two equalities on product operators
A⊗B, A ∈ L (H1) , B ∈ L (H2). The equality on the whole L (H1 ⊗H2) then
follows from Lemma 1. The second claim in the proposition is a consequence
of the elementary inequalities E1 ⊗ F1 � E1 ⊗ F2 � E2 ⊗F2.

If Λ and Σ are directed sets, then the cartesian product Λ × Σ can be
viewed as a directed set endowed with the product order (λ, σ) ≤ (λ′, σ′) if
and only if λ ≤ λ′ and σ ≤ σ′. We then have the following

Proposition 5. If {Eλ}λ∈Λ is a net in CP (H1,K1) such that Eλ ⇑ E and
{Fσ}σ∈Σ is a net in CP (H2,K2) such that Fσ ⇑ F , then Eλ ⊗Fσ ⇑ E ⊗ F .

Proof. By Proposition 4, the net {Eλ ⊗ Fσ}(λ,σ)∈Λ×Σ is CP-increasing and
CP-bounded by E ⊗F in CP (H⊗K). Hence, by Theorem 3 there is a map
A ∈ CP (H⊗K) such that Eλ ⊗Fσ ⇑ A. In particular, one has A(A⊗B) =
wk*-lim(λ,σ) Eλ(A) ⊗ Fσ(B) = E(A) ⊗ F(B) for all A ∈ L(H), B ∈ L(K),
which implies A = E ⊗ F by Lemma 1.

5. Quantum supermaps: definition and examples

In this section we introduce the definition of quantum supermaps in the
infinite dimensional case. The main difference with the finite-dimensional
case of Refs. [5, 6] is the role of normality, which will be crucial for our
dilation theorem (see Theorem 5 of the next section).

We recall that we call a linear map S : CB (H1,K1) → CB (H2,K2)
positive if S(E) � 0 for all E � 0, and in this case we write S � 0.

Definition 6. A positive map S : CB (H1,K1) → CB (H2,K2) is normal if
S(En) ⇑ S(E) for all sequences {En}n∈N in CP (H1,K1) such that En ⇑ E .

Remark 1. Note that not every positive map S is normal, even though, by
definition, S transforms normal maps into normal maps. An example of non-
normal positive map is the following: consider a singular state ρ : L(H) → C,
i.e. a positive functional such that ρ(K) = 0 for every compact operator
K ∈ L(H) and ρ(IH) = 1. Define the linear map S : CB (H) → CB (K)
given by S(E) = ρ(E(IH))F , where F ∈ CP (K). Clearly, S is positive.
However, S is not normal: consider for example a Hilbert basis {ei}i∈N for H
and define the sequence of maps En =

∑n
i=1Qi⊙Qi, where Qi is the projector

on ei. In this way, one has En ⇑ E =
∑

i∈NQi ⊙ Qi, whereas S(En) = 0 and
S(E) = F . Hence, S is not normal.

12



We now discuss the requirement of complete positivity for higher-order
maps. Except for the domain of definition of the maps, here there is no
significant difference with the finite-dimensional case discussed in Refs. [5, 6].

Since we identify CB
(

H(n),K(n)
)

with CB (Cn) ⊗̂CB (H,K), we also make

the identification of the linear space L
(

CB
(

H(n)
1 ,K(n)

1

)

,CB
(

H(n)
2 ,K(n)

2

))

with the tensor product L (CB (Cn)) ⊗̂L (CB (H1,K1) ,CB (H2,K2)). Let In
be the identity map on CB (Cn). Then we have the following

Definition 7. A linear map S : CB (H1,K1) → CB (H2,K2) is completely

positive if the map In⊗S : CB
(

H(n)
1 ,K(n)

1

)

→ CB
(

H(n)
2 ,K(n)

2

)

is positive for

every n ∈ N.

Remark 2. In order for the linear map S : CB (H1,K1) → CB (H2,K2) to
be completely positive, it is enough that, for every n ∈ N, the map In ⊗ S

sends completely positive normal maps to positive normal maps. Indeed,
in the latter case the complete positivity of the map (In ⊗ S)(Ẽ) for Ẽ ∈

CP
(

H(n)
1 ,K(n)

1

)

follows automatically from the equalities Im⊗ (In⊗S)(Ẽ) =

(Im⊗ In⊗S)(Im⊗Ẽ) = (Imn⊗S)(Im⊗Ẽ). Since (Imn⊗S)(Im⊗Ẽ) is positive

and normal by assumption, this implies that (In ⊗ S)(Ẽ) ∈ CP
(

H(n)
2 ,K(n)

2

)

,

hence S is completely positive.

We are now ready to define quantum supermaps in infinite dimensions:

Definition 8. A quantum supermap (or simply, supermap) is a normal com-
pletely positive linear map S : CB (H1,K1) → CB (H2,K2).

The set of quantum supermaps in L (CB (H1,K1) ,CB (H2,K2)) will be de-
noted by SCP (H1,K1;H2,K2) (SCP (H;K) if H1 = K1 = H, H2 = K2 = K).

The set of quantum supermaps SCP (H1,K1;H2,K2) is clearly a cone, and
hence defines a partial order in L (CB (H1,K1) ,CB (H2,K2)). Such a partial
order will be denoted by ≪: given maps S,T ∈ L (CB (H1,K1) ,CB (H2,K2))
we will write T ≪ S if S− T ∈ SCP (H1,K1;H2,K2).

Definition 9. A quantum supermap S ∈ SCP (H1,K1;H2,K2) is determin-
istic if it maps quantum channels to quantum channels, that is, if the inclu-
sion S[CP1 (H1,K1)] ⊆ CP1 (H2,K2) holds.
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The set of deterministic supermaps in SCP (H1,K1;H2,K2) will be denoted
by SCP1 (H1,K1;H2,K2) (SCP1 (H;K) if H1 = K1 = H and H2 = K2 = K).

Definition 10. A quantum supermap S ∈ SCP (H1,K1;H2,K2) is proba-
bilistic if there exists a deterministic supermap T ∈ SCP1 (H1,K1;H2,K2)
such that S ≪ T.

The set of probabilistic supermaps in SCP (H1,K1;H2,K2) will be denoted
by SCP0 (H1,K1;H2,K2) (SCP0 (H;K) if H1 = K1 = H and H2 = K2 =
K). Clearly, deterministic supermaps are a special case of probabilistic su-
permaps, i.e. the inclusion SCP1 (H1,K1;H2,K2) ⊂ SCP0 (H1,K1;H2,K2)
holds.

Obviously, the composition of two quantum supermaps is a supermap:
for every S1 ∈ SCP (H1,K1;H2,K2) and S2 ∈ SCP (H2,K2;H3,K3) one has
the composition S2S1 ∈ SCP (H1,K1;H3,K3). Similarly, the composition of
two probabilistic [resp. deterministic] supermaps is a probabilistic [resp. de-
terministic] supermap.

We conclude this section with three examples of deterministic supermaps
which will play an important role in the next section. The first example
is given by the composition with two quantum channels (normal unital CP
maps):

Proposition 6. If A ∈ CP1 (K1,K2) and B ∈ CP1 (H2,H1), then the map
S : CB (H1,K1) → CB (H2,K2) defined by S(E) = AEB is a deterministic
supermap in SCP1 (H1,K1;H2,K2).

Proof. The map S is normal: if En ⇑ E , then the sequence {AEnB}n∈N
is CP-increasing and CP-bounded by AEB. Using Theorem 3, we have
wk*-limnAEnB(A) = AEB(A), hence AEnB ⇑ AEB, i.e. S is normal. To

prove complete positivity, note that for every map Ẽ ∈ CB
(

H(n)
1 ,K(n)

1

)

one has (In ⊗ S)(Ẽ) = (In ⊗ A)Ẽ(In ⊗ B). Therefore, if Ẽ � 0, then also
(In ⊗ S)(Ẽ) � 0, hence In ⊗ S � 0 and S is completely positive. Finally, if E
is unital, S(E) = AEB is unital as well.

Our second example of deterministic supermap is as follows: Suppose V
is a Hilbert space and define the map π̂V : CB (H,K) → CB (H⊗ V,K ⊗ V)
by π̂V(E) = E ⊗ IV , where IV is the identity map in CB (V) (cf. Proposition
3 for the definition of the tensor product). We then have the following
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Proposition 7. The map π̂V is a deterministic supermap, that is, π̂V ∈
SCP1 (H,K;H⊗ V,K ⊗ V).

Proof. If En ⇑ E , then by Proposition 5 one has π̂V(En) = En⊗IV ⇑ E⊗IV =
π̂V(E). Hence, π̂V is normal. Clearly, if E is unital, so is π̂V(E) = E ⊗ IV . To
prove complete positivity, note that for every Ẽ ∈ CP

(

H(n),K(n)
)

we have

(In ⊗ π̂V)(Ẽ) = Ẽ ⊗ IV � 0, hence In ⊗ π̂V � 0 and π̂V is completely positive.

Combining the previous examples we obtain a third example of determin-
istic supermap. The example is important because, as we will show in the
next section, every deterministic supermap can be expressed in this form.

Proposition 8. Let V1, V2 be Hilbert spaces and V1 : K2 → K1 ⊗ V1, V2 :
H1⊗V1 → H2⊗V2 be two isometries. Then the linear map S : CB (H1,K1) →
CB (H2,K2) defined by

[S(E)](A) := V ∗
1 [(E ⊗ IV1

) (V ∗
2 (A⊗ IV2

)V2)]V1

for all E ∈ CB (H1,K1) and A ∈ L (H2) is a deterministic supermap in
SCP1 (H1,K1;H2,K2).

Proof. Let us define the map S1 : E 7→ E ⊗ IV1
, which is a deterministic

supermap by Proposition 7. Moreover, define the maps A = V ∗
1 ⊙ V1 ∈

CP1 (K1 ⊗ V1,K2), πV2
∈ CP (H2,H2 ⊗ V2) , πV2

(A) = A ⊗ IV2
, and B =

(V ∗
2 ⊙ V2)πV2

∈ CP1 (H2,H1 ⊗ V1). Finally, define the map S2 : F 7→ AFB,
which is a deterministic supermap by Proposition 6. With these definitions
we have S = S2S1. Hence, S is a deterministic supermap.

6. Dilation of deterministic supermaps

This section contains the central result of our paper, namely the dilation
theorem for deterministic supermaps.

Theorem 5 (Dilation of deterministic supermaps). A linear map S :
CB (H1,K1) → CB (H2,K2) is a deterministic supermap if and only if there
exist two Hilbert spaces V1, V2 and two isometries V1 : K2 → K1 ⊗ V1,
V2 : H1 ⊗ V1 → H2 ⊗ V2 such that for all E ∈ CB (H1,K1) and A ∈ L (H2),

[S(E)](A) = V ∗
1 [(E ⊗ IV1

)(V ∗
2 (A⊗ IV2

)V2)]V1, (5)
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and

H1 ⊗ V1 = span {(E ⊗ IV1
)V1v | E ∈ L (K1,H1) , v ∈ K2} (6)

H2 ⊗ V2 = span {(A⊗ IV2
)V2w | A ∈ L (H2) , w ∈ H1 ⊗ V1} . (7)

Definition 11. If V1, V2 are Hilbert spaces and V1 : K2 → K1 ⊗ V1, V2 :
H1 ⊗ V1 → H2 ⊗ V2 are isometries such that eq. (5) holds, then we say that
the quadruple (V1, V2, V1, V2) is a dilation of the supermap S. If also eqs. (6)
and (7) hold, then we say that the dilation is minimal.

The importance of the minimality property is highlighted by the following

Proposition 9. Let (V1, V2, V1, V2) and (V ′
1, V

′
2, V

′
1 , V

′
2) be two dilations of

the supermap S ∈ SCP1 (H1,K1;H2,K2). If (V1, V2, V1, V2) is minimal, then
there exist two isometries W1 : V1 → V ′

1, W2 : V2 → V ′
2 such that V ′

1 =
(IK1

⊗W1)V1 and V ′
2(IH1

⊗W1) = (IH2
⊗W2)V2.

The proofs of Theorem 5 and Proposition 9 will be given in the end of
this section.

Remark 3. In Proposition 9, if also the dilation (V ′
1, V

′
2, V

′
1 , V

′
2) is minimal,

then the isometriesW1 andW2 are actually unitaries as a simple consequence
of minimality. Thus, the minimal dilation is unique up to unitary isomor-
phism.

Remark 4. As anticipated in the introduction, eq. (5) is the desired gener-
alization of the finite dimensional result in Refs. [5, 6]. The physical interpre-
tation of the dilation of quantum superinstruments is clear in the Schrödinger
picture: indeed, turning eq. (5) into its predual, we then obtain

[S(E)]∗(T ) = trV2
{V2 [(E ⊗ IV1

)∗(V1TV
∗
1 )]V

∗
2 }

for all T ∈ T (K2) and E ∈ CB (H1,K1), where trV2
denotes the partial trace

on V2. If T is a quantum state (i.e. T ≥ 0 and tr (T ) = 1), the above
equation means that the quantum system with Hilbert space K2 first un-
dergoes the invertible evolution V1, then the quantum channel (E ⊗ IV1

)∗
and the invertible evolution V2, after which the ancillary system with Hilbert
space V2 is discarded. It is interesting to note that the same kind of se-
quential composition of invertible evolutions also appears in a very different
context: the reconstruction of quantum stochastic processes from correlation
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kernels [2, 20, 22]. That context is very different from the present context
of higher-order maps, and it is a remarkable feature of Theorem 5 that any
deterministic supermap on the space of quantum operations can be achieved
through a two-step sequence of invertible evolutions.

Theorem 5 contains as a special case the Stinespring dilation of quantum
channels (normal unital CP maps). This fact is illustrated in the following
two examples:

Example 3. Suppose that H1 = H2 = C. In this case we have the iden-
tification CB (C,Ki) ≃ L (Ki). Precisely, the element E ∈ CB (C,Ki) is
identified with the operator AE = E(1) ∈ L (Ki). Eq. (5) then reads

[S(E)](1) = V ∗
1 (AE ⊗ IV1

)V1,

which is just Stinespring’s dilation theorem for normal CP maps. A linear
map S : L (K1) → L (K2) is thus in SCP1 (C,K1;C,K2) if and only if it is a
unital normal CP map, i.e. a quantum channel.

Example 4. Suppose now that K1 = K2 = C. In this case we have the
identification CB (Hi,C) ≃ T (Hi) (see e.g. Proposition 3.8 in [23]). Pre-
cisely, the element E ∈ CB (Hi,C) is identified with the trace class opera-
tor TE given by E(A) = tr (ATE) ∀A ∈ L (Hi). In this case the isometry
V1 : C → C ⊗ V1 = V1 is identified with a vector v1 ∈ V1, ‖v1‖ = 1, and
Eq. (5) becomes

[S(E)](A) = 〈(E ⊗ IV1
)(V ∗

2 (A⊗ IV2
)V2)v1, v1〉

= tr [(TE ⊗ Pv1)V
∗
2 (A⊗ IV2

)V2]

= tr {A trV2
[V2(TE ⊗ Pv1)V

∗
2 ]} ,

where Pv1 ∈ L (V1) is the orthogonal projector on v1. Defining the isometry
W : H1 → H2 ⊗ V2, Wu = V2(u⊗ v1), we thus obtain

S(E) = trV2
(WTEW

∗),

which is a Stinespring dilation in the Schrödinger picture. We thus find that
a linear map S : T (H1) → T (H2) is in SCP1 (H1,C;H2,C) if and only if it
is completely positive and trace-preserving, that is a quantum channel in the
Schrödinger picture.
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The rest of this section is devoted to the proof of Theorem 5, which first
requires some auxiliary lemmas.

Lemma 2. Suppose that S ∈ L (CB (H) ,CB(K)) is such that S(CP1 (H)) ⊂
CP1 (K). If E ,F ∈ CP (H) and E(I) = F(I), then [S(E)](I) = [S(F)](I)

Proof. By linearity, it is enough to prove the claim for E(I) = F(I) ≤ I.
Let A := I − E(I), A := A1/2 ⊙ A1/2, E ′ := E +A, and F ′ := F +A. With
this definition, E ′,F ′ ∈ CP1 (H). Hence, one has

I = [S(E ′)](I) = [S(E)](I) + [S(A)](I)
I = [S(F ′)](I) = [S(F)](I) + [S(A)](I).

By comparison, this implies that [S(E)](I) = [S(F)](I).

Lemma 3. Suppose S ∈ L (CB (H) ,CB (K)) is such that S(CP1 (H)) ⊂
CP1 (K). If E ∈ CP (H), then

[S(EF)](I) = [S(E)](I) ∀F ∈ CP1 (H) .

Proof. Since EF(I) = E(I), this is an immediate consequence of Lemma
2.

Lemma 4. If S ∈ L (CB (H) ,CB (K)) is such that S(CP1 (H)) ⊂ CP1 (K),
then

[S(E(I ⊙ A))](I) = [S(E(A⊙ I))](I) ∀E ∈ CB (H) , ∀A ∈ L(H).

In particular,

[S(E ⊙ AF )](I) = [S(EA⊙ F )](I) ∀E, F,A ∈ L(H).

Proof. By linearity, it is enough to prove the claim for A∗ = A and for E ∈
CP (H). One has A⊙I−I⊙A = 1

2i
(E+−E−), where E± = (A±iI)∗⊙(A±iI).

Now, E+ and E− are CP and E+(I) = E−(I). Applying Lemma 2 to the
maps EE+ and EE− we then obtain [S(E(A ⊙ I))](I) − [S(E(I ⊙ A))](I) =
1
2i
{[S(EE+)](I)− [S(EE−)](I)} = 0.

Let S ∈ L (CB (H1,K1) ,CB(H2,K2)) be a linear supermap. Then, we
can define an associated sesquilinear form 〈·, ·〉

S
on the algebraic tensor prod-

uct L (K1,H1) ⊗̂L (H2) ⊗̂K2 as follows

〈E1 ⊗ A1 ⊗ v1, E2 ⊗ A2 ⊗ v2〉S = 〈[S (E∗
2 ⊙ E1)] (A

∗
2A1) v1, v2〉 .

We have the following
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Lemma 5. If a linear map S : CB (H1,K1) → CB (H2,K2) is completely
positive, then the associated sesquilinear form 〈·, ·〉

S
is positive semidefinite.

Proof. Let φ =
∑n

i=1Ei ⊗ Ai ⊗ vi be a generic element in the linear space
L (K1,H1) ⊗̂L (H2) ⊗̂K2. Let {ei}ni=1 be the standard basis for Cn, and
{eij}ni,j=1 be the standard basis of Mn(C), given by eij(ek) = δjkei. Define

ṽ :=

n
∑

i=1

ei ⊗ vi ∈ K(n)
2

Ã :=

n
∑

i=1

e1i ⊗ Ai ∈ L
(

H(n)
2

)

Ẽ :=
n

∑

i=1

eii ⊗ Ei ∈ L
(

K(n)
1 ,H(n)

1

)

With this definition we have Ẽ∗ ⊙ Ẽ =
∑n

i,j=1(eii ⊙ ejj) ⊗ (E∗
i ⊙ Ej) and

Ã∗Ã =
∑n

i,j=1 eij ⊗A∗
iAj . Hence, we obtain

(In ⊗ S)(Ẽ∗ ⊙ Ẽ) =
∑

i,j

(eii ⊙ ejj)⊗ S(E∗
i ⊙Ej)

and

[(In ⊗ S)(Ẽ∗ ⊙ Ẽ)](Ã∗Ã) =
∑

i,j

eij ⊗ [S(E∗
i ⊙Ej)](A

∗
iAj).

Finally, this implies

0 ≤
〈

[(In ⊗ S)(Ẽ∗ ⊙ Ẽ)](Ã∗Ã)ṽ, ṽ
〉

=
∑

i,j

〈[S(E∗
i ⊙ Ej)](A

∗
iAj)vj , vi〉

= 〈φ, φ〉
S
,

the inequality coming from the fact that (In ⊗ S)(Ẽ∗ ⊙ Ẽ) is positive.

We are now in position to prove the existence of the dilation of Theorem
5 in the special case H1 = K1 = H, H2 = K2 = K and dimH = dimK = ∞.
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Proposition 10. Let dimH = dimK = ∞. A linear map S : CB (H) →
CB (K) is a deterministic supermap if and only if there exist two Hilbert
spaces W1, W2 and two isometriesW1 : K → H⊗W1,W2 : H⊗W1 → K⊗W2

such that

[S(E)](A) =W ∗
1 [(E ⊗ IW1

)(W ∗
2 (A⊗ IW2

)W2)]W1 (8)

for all E ∈ CB (H) and A ∈ L (K).

Proof. The ‘if’ part of the statement is proved in Proposition 8.
Conversely, suppose S ∈ SCP1 (H;K). Let 〈·, ·〉1 be the positive sesquilinear
form in L(H)⊗̂K defined by

〈E1 ⊗ v1, E2 ⊗ v2〉1 := 〈E1 ⊗ IK ⊗ v1, E2 ⊗ IK ⊗ v2〉S .

Let N1 be its kernel and Ĥ1 be the Hilbert space completion of the quotient
space L(H)⊗̂K/N1 (not assumed separable). We denote by 〈·, ·〉1 and ‖·‖1
the scalar product and norm in Ĥ1.
Moreover, let N2 be the kernel of the positive sesquilinear form 〈·, ·〉

S
, and let

Ĥ2 be the Hilbert space completion (not assumed separable) of the quotient
space L(H)⊗̂L(K)⊗̂K/N2 with respect to such form. We denote by 〈·, ·〉2
and ‖·‖2 the resulting scalar product and norm in Ĥ2.
We define two linear maps

W1 : K → L(H)⊗̂K W1v = IH ⊗ v
W2 : L(H)⊗̂K → L(H)⊗̂L(K)⊗̂K W2(E ⊗ v) = E ⊗ IK ⊗ v.

It is easy to verify that W1 and W2 extend to isometries W1 : K → Ĥ1 and
W2 : Ĥ1 → Ĥ2, respectively. Indeed, for W1 we have the equality

〈W1v,W1v〉1 = 〈IH ⊗ IK ⊗ v, IH ⊗ IK ⊗ v〉
S

= 〈[S(IH ⊙ IH)](IK)v, v〉

= 〈v, v〉 ,

where we used the fact that S is deterministic, and, therefore, [S(IH)](IK) =
IK. For W2, taking φ =

∑n
i=1Ei ⊗ vi we have the equality

〈W2φ,W2φ〉2 =
∑

i,j

〈Ei ⊗ IK ⊗ vi, Ej ⊗ IK ⊗ vj〉S

=
∑

i,j

〈Ei ⊗ vi, Ej ⊗ vj〉1

= 〈φ, φ〉1 .

20



For B1 ∈ L(H), B2 ∈ L(K), we define the linear operators π1(B1) ∈
L
(

L(H)⊗̂K
)

and π2(B2) ∈ L
(

L(H)⊗̂L(K)⊗̂K
)

as

[π1(B1)](E ⊗ v) = B1E ⊗ v

[π2(B2)](E ⊗A⊗ v) = E ⊗ B2A⊗ v.

We claim that, for i = 1, 2, πi(Bi) extends to a bounded linear operator on

Ĥi, that π1 : L(H) → L
(

Ĥ1

)

and π2 : L(K) → L
(

Ĥ2

)

are normal unital

∗-representations, and that Ĥ1, Ĥ2 are separable.
Let us start from the case i = 1. For every φ =

∑n
r=1Er⊗vr, ψ =

∑n
s=1 Fs⊗

ws and B ∈ L(H), we have

〈π1(B)φ, ψ〉1 =
∑

r,s

〈[S(F ∗
s ⊙ BEr)] (IK)vr, ws〉

=
∑

r,s

〈[S(F ∗
sB ⊙Er)] (IK)vr, ws〉

= 〈φ, π1(B
∗)ψ〉1 ,

where we used Lemma 4. Note that π1(IK) = IĤ1
, and

π1(B)π1(B
′) = π1(BB

′) ∀B,B′ ∈ L(H).

It follows that, for all φ ∈ L(H)⊗̂K, the map ωφ : B 7→ 〈π1(B)φ, φ〉1 is a
positive linear functional on L(H), hence

‖π1(B)φ‖21 = ωφ(B
∗B) ≤ ‖B∗B‖∞ ωφ(IH) = ‖B‖2∞ ‖φ‖21 .

Therefore, π1(B) extends to a bounded operator on Ĥ1, and π1 is a unital
∗-representation of L(H) in Ĥ1. We now prove that π1 is normal. Let {ei}i∈N
be a Hilbert basis for H, Qi be the projector on ei, and Pn be the projector
on span {ei | i ≤ n}. By Proposition 11 of the Appendix, to prove that π1
is normal it is enough to prove that π1(Pn) ↑ IĤ1

. For every φ = E ⊗ v,
ψ = F ⊗ w we have

〈π1(Pn)φ, ψ〉1 =
n

∑

i=1

〈π1(Qi)φ, π1(Qi)ψ〉1

=
n

∑

i=1

〈[S(F ∗Qi ⊙QiE)](IK)v, w〉

= 〈[S((F ∗ ⊙ E)Fn)](IK)v, w〉 ,
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where Fn =
∑n

i=1Qi ⊙ Qi. Let F ∈ CP1 (H) be the unital map defined by
Fn ⇑ F . Using the polarization identity F ∗ ⊙ E = 1

4

∑3
k=0 i

k(ikF + E)∗ ⊙
(ikF + E), the normality of S and Lemma 3 we then obtain

lim
n

〈π1(Pn)φ, ψ〉1 = lim
n

〈[S((F ∗ ⊙E)Fn)](IK)v, w〉

=
1

4

3
∑

k=0

ik lim
n

〈

[S(((ikF + E)∗ ⊙ (ikF + E))Fn)](IK)v, w
〉

=
1

4

3
∑

k=0

ik
〈

[S(((ikF + E)∗ ⊙ (ikF + E))F)](IK)v, w
〉

=
1

4

3
∑

k=0

ik
〈

[S((ikF + E)∗ ⊙ (ikF + E))](IK)v, w
〉

= 〈[S(F ∗ ⊙E)](IK)v, w〉

= 〈φ, ψ〉1 .

This relation extends by linearity to all φ, ψ ∈ L(H)⊗̂K, and, since the se-
quence {π1(Pn)}n∈N is norm bounded, by density to all φ, ψ ∈ Ĥ1. Therefore,
we obtain wk*-limn π1(Pn) = IĤ1

, thus concluding the proof of normality of
π1. Note that by definition span {E ⊗ v = π1(E)W1v | E ∈ L(H), v ∈ K} is
a dense linear subspace of Ĥ1, hence, using Lemma 6 of the Appendix with
S = W1K, we obtain that Ĥ1 is separable.
We now prove that π2 is a normal unital ∗-representation and Ĥ2 is separa-
ble. For every φ =

∑n
r=1Er⊗Ar⊗vr, ψ =

∑n
s=1 Fs⊗Bs⊗ws and C ∈ L(K)

we have

〈π2(C)φ, ψ〉2 =
∑

r,s

〈[S(F ∗
s ⊙ Er)] (B

∗
sCAr)vr, ws〉

= 〈φ, π2(C
∗)ψ〉2 .

Clearly, π2(IK) = IĤ2
and π2(C)π2(C

′) = π2(CC
′). The same argument used

for π1 then shows that π2 extends to a unital ∗-representation of L(K) in Ĥ2.
To prove normality of π2, we proceed as in the case of π1 by choosing a Hilbert
basis {ei}i∈N for K and letting Pn be the projector on span {ei | i ≤ n}. It is
again enough to prove that π2(Pn) ↑ IĤ2

, and this follows as before from the
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relation

lim
n

〈π2(Pn)(E ⊗ A⊗ v), F ⊗ B ⊗ w〉2 = lim
n

〈[S(F ∗ ⊙E)](B∗PnA)v, w〉

= 〈[S(F ∗ ⊙E)](B∗A)v, w〉

= 〈E ⊗ A⊗ v, F ⊗ B ⊗ w〉2 ,

due to the weak*-continuity of S(F ∗ ⊙ E). Note that

Ĥ2 = span {E ⊗A⊗ v | E ∈ L(H), A ∈ L(K), v ∈ K}

= span {π2(A)W2π1(E)W1v | E ∈ L(H), A ∈ L(K), v ∈ K}

= span
{

π2(A)W2w | A ∈ L(K), w ∈ Ĥ1

}

.

Separability of Ĥ2 then follows from Lemma 6 of the Appendix, with S =
W2Ĥ1, using the fact that Ĥ1 is separable.
By Corollary 10.4.14 in [18], there exist Hilbert spaces W1, W2 such that
Ĥi = H⊗Wi and πi(Bi) = Bi ⊗ IWi

for i = 1, 2 (separability of Wi clearly
follows from the analogue property of Ĥi).
We conclude with the proof of eq. (8). If we take E = E∗⊙E with E ∈ L(H),
A = B∗B with B ∈ L(K) and v ∈ K, then we have

〈[S(E)] (A)v, v〉 = 〈E ⊗ B ⊗ v, E ⊗B ⊗ v〉
S

= ‖π2(B)W2π1(E)W1v‖
2
2

= ‖(B ⊗ IW2
)W2(E ⊗ IW1

)W1v‖
2
2

= 〈W ∗
1 {[(E

∗ ⊗ IW1
)⊙ (E ⊗ IW1

)](W ∗
2 (B

∗B ⊗ IW2
)W2)}W1v, v〉

= 〈W ∗
1 [(E ⊗ IW1

)(W ∗
2 (A⊗ IW2

)W2)]W1v, v〉

thus proving eq. (8) in the special case E = E∗ ⊙ E, A = B∗B. Since the
equality holds for every positive A, by linearity it holds for every operator
A ∈ L(K). The equality for generic E ∈ CP (H) then follows by Kraus
Theorem 4 using normality of S and of the supermap π̂W1

: E 7→ E ⊗ IW1
.

Finally, by linearity and using Theorem 2 it is immediate to show the equality
for arbitrary maps E ∈ CB (H). This concludes the proof of eq. (8).

We are now in position to prove Theorem 5:

Proof (Proof of Theorem 5). If V1, V2 and V1, V2 are as in the state-
ment of the theorem, then eq. (5) defines a deterministic supermap by Propo-
sition 8.

23



Conversely, suppose S ∈ SCP1 (H1,K1;H2,K2). Let ℓ2 denote the Hilbert
space of square-summable sequences and define the two isometries S1, S2 as
follows

S1 : K1 → K1 ⊗ ℓ2 S1v1 = v1 ⊗ e0

S2 : K2 → K2 ⊗ ℓ2 S2v2 = v2 ⊗ e0,

where e0 ∈ ℓ2 is such that ‖e0‖ = 1.
Then, define three supermaps

S1 : CB
(

H1 ⊗ ℓ2,K1 ⊗ ℓ2
)

→ CB (H1,K1)

S2 : CB
(

H2 ⊗ ℓ2,K2 ⊗ ℓ2
)

→ CB (H2,K2)

S̃ : CB
(

H1 ⊗ ℓ2,K1 ⊗ ℓ2
)

→ CB
(

H2 ⊗ ℓ2,K2 ⊗ ℓ2
)

given by

[S1(Ã)](A) = S∗
1Ã(A⊗ Iℓ2)S1

[S2(B̃)](B) = S∗
2B̃(B ⊗ Iℓ2)S2

S̃(Ã) = SS1(Ã)⊗ Iℓ2

Since the input and output spaces of the supermap S̃ are all isomorphic, we
can apply Proposition 10 and obtain that there exist two separable Hilbert
spaces W1, W2 and two isometries

W1 : K2 ⊗ ℓ2 → K1 ⊗ ℓ2 ⊗W1

W2 : H1 ⊗ ℓ2 ⊗W1 → H2 ⊗ ℓ2 ⊗W2.

such that
[S̃(Ã)](Ã) = W ∗

1 (Ã ⊗ IW1
)(W ∗

2 (Ã⊗ IW2
)W2)W1

for every Ã in CB (H1 ⊗ ℓ2,K1 ⊗ ℓ2) and Ã in L (H2 ⊗ ℓ2). On the other
hand we have the relations

S1(E ⊗ Iℓ2) = E ∀E ∈ CB (H1,K1)

S2S̃(Ã) = SS1(Ã) ∀Ã ∈ CB (H1 ⊗ ℓ2,K1 ⊗ ℓ2)

which together imply S2S̃(E ⊗ Iℓ2) = S(E). Therefore, we obtain

[S(E)](A) = [S2S̃(E ⊗ Iℓ2)](A)

= S∗
2 [S̃(E ⊗ Iℓ2)](A⊗ Iℓ2)S2

= S∗
2W

∗
1 [(E ⊗ Iℓ2 ⊗ IW1

)(W ∗
2 (A⊗ Iℓ2 ⊗ IW2

)W2)]W1S2. (9)
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For i = 1, 2 we define the subspaces

Ĥ1 = span {(E ⊗ Iℓ2⊗W1
)W1S2v | E ∈ L (K1,H1) , v ∈ K2} (10)

⊆ H1 ⊗ ℓ2 ⊗W1

and

Ĥ2 = span
{

(A⊗ Iℓ2⊗W2
)W2u | A ∈ L (H2) , u ∈ Ĥ1

}

(11)

⊆ H2 ⊗ ℓ2 ⊗W2.

Let P1 and P2 be the projectors onto Ĥ1 and Ĥ2, respectively. Note that
by definition of P1 and P2 we have W2P1 = P2W2P1. Moreover, using the
relation (L (Hi) ⊗ Iℓ2⊗Wi

)Ĥi ⊂ Ĥi, we obtain that the projector Pi must
have the form Pi = IHi

⊗ Qi for some projector Qi ∈ L (ℓ2 ⊗Wi). Define
Vi := Qi(ℓ

2 ⊗Wi), so that we have Ĥi = Hi ⊗Vi (note that since ℓ2 ⊗Wi is
separable, then also Vi must be separable). Then, define the operators

V1 : K2 → K1 ⊗ V1 V1 = (IK1
⊗Q1)W1S2

V2 : H1 ⊗ V1 → H2 ⊗ V2 V2 = (IH2
⊗Q2)W2(IH1

⊗Q1) = P2W2P1.

Now, if E = E∗ ⊙ E with E ∈ L (K1,H1) and A = B∗B with B ∈ L (H2),
from eq. (9) we have

[S(E)](A) = C∗C C := (B ⊗ Iℓ2⊗W2
)W2(E ⊗ Iℓ2⊗W1

)W1S2. (12)

On the other hand, for every v ∈ K2 we have

Cv = (B ⊗ Iℓ2⊗W2
)W2(E ⊗ Iℓ2⊗W1

)W1S2v

= (B ⊗ Iℓ2⊗W2
)W2P1(E ⊗ Iℓ2⊗W1

)W1S2v

= (B ⊗ Iℓ2⊗W2
)P2W2P1(E ⊗ Iℓ2⊗W1

)W1S2v

= (B ⊗ IV2
)V2(E ⊗Q1)W1S2v

= (B ⊗ IV2
)V2(E ⊗ IV1

)(IK1
⊗Q1)W1S2v

= (B ⊗ IV2
)V2(E ⊗ IV1

)V1v,

that is, C = (B⊗ IV2
)V2(E ⊗ IV1

)V1. Inserting the last expression in eq. (12)
we then obtain [S(E)](B∗B) = V ∗

1 (E ⊗ IV1
)(V ∗

2 (B
∗B ⊗ IV2

)V2)V1. Since B
is arbitrary, the relation holds for every positive A = B∗B, and hence, by
linearity, for every A ∈ L (H2). The relation extends to arbitrary maps
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E ∈ CB (H1,K1) by the usual continuity and linearity argument. This proves
eq. (5).
We now prove the density conditions of eqs. (6) and (7). We have

(E⊗IV1
)V1v = (E⊗Q1)W1S2v = P1(E⊗Iℓ2⊗W1

)W1S2v = (E⊗Iℓ2⊗W1
)W1S2v

for all E ∈ L (K1,H1), v ∈ K2, hence eq. (6) follows from eq. (10). On the
other hand, eq. (7) is a direct consequence of eq. (11) and the fact that

(A⊗ IV2
)V2w = (A⊗ IV2

)P2W2P1w = (A⊗ Iℓ2⊗V2
)W2w

for all A ∈ L (H2), w ∈ H1 ⊗ V1 = Ĥ1.
It is now easy to see that V1 and V2 are isometries. For V2, this follows from
the relation

V ∗
2 V2 = (P2W2P1)

∗(P2W2P1) = (W2P1)
∗(W2P1) = P1(W

∗
2W2)P1 = P1 = IH1⊗V1

.

For V1, choosing E ∈ CP1 (H1,K1), we have

V ∗
1 V1 = V ∗

1 [(E ⊗ IV1
)(V ∗

2 (IH2
⊗ IV2

)V2)]V1 = [S(E)](IH2
) = IK2

.

We conclude the section with the proof of Proposition 9:

Proof (Proof of Proposition 9). Define an isometry U1 : H1 ⊗ V1 →
H1 ⊗ V ′

1 by means of the following construction: first, U1 is defined on the
linear space span {(E ⊗ IV1

)V1v | E ∈ L (K1,H1) , v ∈ K2} through the rela-
tion

U1

n
∑

k=1

(Ek ⊗ IV1
)V1vk :=

n
∑

k=1

(Ek ⊗ IV ′

1
)V ′

1vk. (13)

The definition is well posed: indeed for every vector φ =
∑n

k=1(Ek⊗IV1
)V1vk
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we have

‖U1φ‖
2 =

∥

∥

∥

∥

∥

∑

k

(Ek ⊗ IV ′

1
)V ′

1vk

∥

∥

∥

∥

∥

2

=
∑

k,l

〈

V ′∗
1 [(E∗

l ⊙ Ek)⊗ IV ′

1
](IH1⊗V ′

1
)V ′

1vk, vl
〉

=
∑

k,l

〈[S(E∗
l ⊙ Ek)](IH2

)vk, vl〉

=
∑

k,l

〈V ∗
1 [(E

∗
l ⊙Ek)⊗ IV1

](IH1⊗V1
)V1vk, vl〉

=

∥

∥

∥

∥

∥

∑

k

(Ek ⊗ IV1
)V1vk

∥

∥

∥

∥

∥

2

= ‖φ‖2 ,

where the third equality comes from eq. (5). Since U1 is defined on a dense
subspace of H1 ⊗ V1 (see eq. (6)), this also means that U1 extends to an
isometry from H1 ⊗ V1 to H1 ⊗ V ′

1, as claimed.
Similarly, we define an isometry U2 : H2⊗V2 → H2⊗V ′

2 through the relation

U2

m
∑

h=1

(Ah ⊗ IV2
)V2wh :=

m
∑

h=1

(Ah ⊗ IV ′

2
)V ′

2U1wh (14)

for all m ∈ N, Ah ∈ L (H2), wh ∈ H1 ⊗ V1. Again, the definition is well
posed due to eq. (5): indeed, for every vector ψ =

∑m
h=1(Ah⊗ IV2

)V2wh with
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wh =
∑nh

k=1(Ehk ⊗ IV1
)V1vhk, Ehk ∈ L (K1,H1), vhk ∈ K2, we have

‖U2ψ‖
2 =

∥

∥

∥

∥

∥

∑

h

(Ah ⊗ IV ′

2
)V ′

2U1wh

∥

∥

∥

∥

∥

2

=
∑

h,k,l,m

〈V ′∗
1 {[(E∗

lm ⊙ Ehk)⊗ IV1
] (V ′∗

2 (A∗
lAh ⊗ IV2

)V ′
2)}V

′
1vhk, vlm〉

=
∑

h,k,l,m

〈[S(E∗
lm ⊙ Ehk)](A

∗
lAh)vhk, vlm〉

=
∑

h,k,l,m

〈V ∗
1 {[(E∗

lm ⊙ Ehk)⊗ IV1
] (V ∗

2 (A
∗
lAh ⊗ IV2

)V2)} V1vhk, vlm〉

=

∥

∥

∥

∥

∥

∑

h

(Ah ⊗ IV2
)V2wh

∥

∥

∥

∥

∥

2

= ‖ψ‖2 ,

Since the vectors of the form wh =
∑nh

k=1(Ehk⊗IV1
)V1vhk are dense inH1⊗V1,

the above equality holds for every ψ =
∑m

h=1(Ah ⊗ IV2
)V2wh with wh ∈

H1 ⊗ V1. Moreover, since U2 preserves the norm on a dense subspace of
H2 ⊗ V2 (see eq. (7)), it can be extended to an isometry from H2 ⊗ V2 into
H2 ⊗ V ′

2.
The isometries U1 and U2 have a simple tensor product structure. For i =
1, 2 it follows immediately from the definition that (Bi ⊗ IV ′

i
)Ui = Ui(Bi ⊗

IVi
) ∀Bi ∈ L (Hi), and therefore Ui = IHi

⊗Wi for some isometry Wi : Vi →
V ′
i.

Finally, we prove the relations V ′
1 = (IK1

⊗ W1)V1 and V ′
2(IH1

⊗ W1) =
(IH2

⊗W2)V2. From eq. (13) we have

(E ⊗ IV ′

1
)V ′

1 = U1(E ⊗ IV1
)V1

= (IH1
⊗W1)(E ⊗ IV1

)V1

= (E ⊗ IV ′

1
)(IK1

⊗W1)V1 ∀E ∈ L (K1,H1) ,

that is, V ′
1 = (IK1

⊗W1)V1. On the other hand, taking m = 1 and A1 = IH2

in eq. (14) we obtain U2V2 = V ′
2U1, i.e. (IH2

⊗W2)V2 = V ′
2(IH1

⊗W1).

7. Radon-Nikodym derivatives of supermaps

The dilation theorem for deterministic supermaps will be generalized here
to the case of probabilistic supermaps. In this case, the following theorem
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provides an analog of the Radon-Nikodym theorem for completely positive
maps [1, 3] (see also [24] for the particular case of quantum operations).

Theorem 6 (Radon-Nikodym theorem for supermaps). Suppose S ∈
SCP1 (H1,K1;H2,K2) and let (V1,V2, V1, V2) be its minimal dilation. If T ∈
SCP (H1,K1;H2,K2) is such that T ≪ S, then there exists a unique positive
contraction P ∈ L (V2) such that

[T(E)] (A) = V ∗
1 [(E ⊗ IV1

)(V ∗
2 (A⊗ P )V2)]V1 (15)

for all E ∈ CB (H1,K1) and A ∈ L (H2).

Proof. In the dense linear subspace of H2 ⊗ V2

Ĥ = span {(A⊗ IV2
)V2(E ⊗ IV1

)V1v | A ∈ L (H2) , E ∈ L (K1,H1) , v ∈ K2}

we define the sesquilinear form 〈·, ·〉0 as

〈

n
∑

i=1

(Ai ⊗ IV2
)V2(Ei ⊗ IV1

)V1vi,
n

∑

j=1

(Bj ⊗ IV2
)V2(Fj ⊗ IV1

)V1wj

〉

0

:=

=
∑

i,j

〈

[T(F ∗
j ⊙ Ei)](B

∗
jAi)vi, wj

〉

≡

〈

∑

i

Ei ⊗Ai ⊗ vi,
∑

j

Fj ⊗Bj ⊗ wj

〉

T

.

Note that, due to Lemma 5 and the condition T ≪ S, for every vector
φ =

∑n
i=1(Ai ⊗ IV2

)V2(Ei ⊗ IV1
)V1vi we have

0 ≤ 〈φ, φ〉0 =

〈

∑

i

Ei ⊗Ai ⊗ vi,
∑

j

Ej ⊗Aj ⊗ vj

〉

T

≤

〈

∑

i

Ei ⊗ Ai ⊗ vi,
∑

j

Ej ⊗ Aj ⊗ vj

〉

S
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and, by eq. (5),

〈

∑

i

Ei ⊗Ai ⊗ vi,
∑

j

Ej ⊗Aj ⊗ vj

〉

S

=
∑

i,j

〈

[S(E∗
j ⊙Ei)](A

∗
jAi)vi, vj

〉

=

〈

∑

i

(Ai ⊗ IV2
)V2(Ei ⊗ IV1

)V1vi,
∑

j

(Aj ⊗ IV2
)V2(Ej ⊗ IV1

)V1vj

〉

= ‖φ‖2 .

This shows that the sesquilinear form 〈·, ·〉0 is well defined on Ĥ and extends
to a bounded sesquilinear form on the wholeH2⊗V2, with 0 ≤ 〈φ, φ〉0 ≤ 〈φ, φ〉
for all φ ∈ H2 ⊗ V2. Let P0 ∈ L (H2 ⊗ V2) be the bounded operator such
that 〈φ, φ〉0 = 〈P0φ, φ〉. Clearly, P0 satisfies 0 ≤ P0 ≤ IH2⊗V2

. Note that
P0 is uniquely identified by 〈·, ·〉0, which in turn is uniquely identified by T.
Moreover, for every vector φ =

∑n
i=1(Ai ⊗ IV2

)V2(Ei ⊗ IV2
)V1vi we have

〈P0(B ⊗ IV2
)φ, φ〉 = 〈(B ⊗ IV2

)φ, φ〉0

=
∑

i,j

〈

[T(E∗
j ⊙ Ei)](A

∗
jBAi)vi, vj

〉

= 〈φ, (B∗ ⊗ IV2
)φ〉0

= 〈P0φ, (B
∗ ⊗ IV2

)φ〉

= 〈(B ⊗ IV2
)P0φ, φ〉 ,

which implies P0(B ⊗ IV2
) = (B ⊗ IV2

)P0 ∀B ∈ L (H2). Therefore, P0 =
IH2

⊗ P for some operator P ∈ L (V2) with 0 ≤ P ≤ IV2
. Finally, for

E = F ∗ ⊙E, E, F ∈ L (K1,H1), and A ∈ L (H2) we have

〈[T(F ∗ ⊙ E)](A)v, w〉 = 〈(A⊗ IV2
)V2(E ⊗ IV1

)V1v, V2(F ⊗ IV1
)V1w〉0

= 〈(A⊗ P )V2(E ⊗ IV1
)V1v, V2(F ⊗ IV1

)V1w〉

= 〈V ∗
1 [(E ⊗ IV1

)(V ∗
2 (A⊗ P )V2)]V1v, w〉 ,

from which eq. (15) for all E ∈ CB (H1,K1) follows by the usual density
argument.

Definition 12. With the notations of the last theorem, the operator P ∈
L (V2) defined by eq. (15) is the Radon-Nikodym derivative of the supermap
T with respect to S.
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Remark 5. Note that the validity of Theorem 6 can be trivially extended to
quantum supermaps that are bounded by positive multiples of deterministic
supermaps, i.e. to supermaps T such that T ≪ λS for some positive λ ∈ R

and some deterministic supermap S.

8. Superinstruments

Here we apply the Radon-Nikodym theorem proved in the previous sec-
tion to the study of quantum superinstruments. Quantum superinstruments
describe measurement processes where the measured object is not a quantum
system, as in ordinary instruments, but rather a quantum device. While or-
dinary quantum instruments are defined as measures with values in the set
of quantum operations [14] (see also [13] for a more complete exposition),
quantum superinstruments are defined as probability measures with values
in the set of quantum supermaps:

Definition 13. Let Ω be a measurable space with σ-algebra σ(Ω) and let S
be a map from σ(Ω) to SCP (H1,K1;H2,K2), sending the measurable subset
B ∈ σ(Ω) to the quantum supermap SB ∈ SCP (H1,K1;H2,K2). We say
that S is a quantum superinstrument if it satisfies the following properties:

(i) SΩ ∈ SCP1 (H1,K1;H2,K2)

(ii) if B =
⋃∞

i=1Bi with Bi ∩ Bj = ∅ for i 6= j, then SB =
∑∞

i=1 SBi
, where

the series converges in the following weak* sense: tr {T [SB(E)](A)} =
∑∞

i=1 tr {T [SBi
(E)](A)} for all E ∈ CB (H1,K1), all A ∈ L (H2), and all

T ∈ T (K2).

We recall the notion of (normalized) positive operator-valued measure, which
is central in the statistical description of quantum measurements:

Definition 14. A map P : σ(Ω) → L (H)+ is a positive operator-valued
measure (POVM) if it satisfies the following properties:

(i) PΩ = IH
(ii) if B =

⋃∞
i=1Bi with Bi ∩Bj = ∅ for i 6= j, then PB =

∑∞
i=1 PBi

, where
the series converges in the weak* sense.

We then have the following dilation theorem for quantum superinstru-
ments:

31



Theorem 7 (Dilation of quantum superinstruments). Suppose that S :
σ(Ω) → SCP (H1,K1;H2,K2) is a quantum superinstrument and let the
quadruple (V1,V2, V1, V2) be the minimal dilation of SΩ. Then there exists
a unique positive-operator valued measure P : σ(Ω) → L (V2) such that

[SB(E)](A) = V ∗
1 [(E ⊗ IV1

)(V ∗
2 (A⊗ PB)V2)]V1 (16)

for all B ∈ σ(Ω), E ∈ CB (H1,K1) and A ∈ L (H2).

Proof. Let B ∈ σ(Ω) be an arbitrary measurable set. By additivity of the
measure S, we have SΩ = SB + SΩ\B, that is, SB ≪ SΩ. By Theorem 6, this
implies eq. (16) with some uniquely defined positive contraction PB ∈ L (V2).
Clearly, for B = Ω one has PΩ = I. Now, suppose that B =

⋃∞
i=1Bi, with

Bi ∩ Bj = ∅ for i 6= j. The sequence of positive operators Sn =
∑n

i=1 PBi

is bounded and increasing, hence Sn ↑ S∞ for some S∞ ∈ L (V2)+. Using
σ-additivity of the superinstrument and uniqueness of the Radon-Nikodym
derivative it is immediate to see that S∞ = PB. Indeed, for every E ∈
CB (H1,K1), A ∈ L (H2), and T ∈ T (K2) we have

tr {TV ∗
1 [(E ⊗ IV1

)(V ∗
2 (A⊗ S∞)V2)]V1} =

=

∞
∑

i=1

tr {TV ∗
1 [(E ⊗ IV1

)(V ∗
2 (A⊗ PBi

)V2)]V1}

=
∞
∑

i=1

tr {T [SBi
(E)](A)}

= tr {T [SB(E)](A)} ,

which implies [SB(E)](A) = V ∗
1 [(E ⊗IV1

)(V ∗
2 (A⊗S∞)V2)]V1. By uniqueness,

we then conclude PB = S∞.

The physical interpretation of the dilation of quantum superinstruments
is clear in the Schrödinger picture. Indeed, taking the predual of eq. (16), we
have for all T ∈ T (K2), E ∈ CB (H1,K1)

[SB(E)]∗(T ) = trV2
{(IK ⊗ PB)V2 [(E ⊗ IV1

)∗(V1TV
∗
1 )]V

∗
2 },

where trV2
denotes the partial trace on V2. This means that the quantum

state T first undergoes the invertible evolution V1, then the quantum channel
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(E ⊗ IV1
)∗, the invertible evolution V2, and finally a quantum measurement

is performed on the ancillary system with Hilbert space V2.
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Appendix A. Weak*-continuous completely bounded maps and
normal ∗-representations of L(H)

In this section, we do not assume separability as a part in the definition
of Hilbert spaces.

Proposition 11. Let H be separable, {ei}i∈N be a Hilbert basis for H, and
Pn be the projector onto span {ei | i ≤ n}. A unital ∗-representation π :
L(H) → L (K) is normal if and only if π(Pn) ↑ IK.

Proof. Since Pn ↑ IH, if π is normal one must necessarily have π(Pn) ↑
π(IH) = IK. Conversely, assume that π(Pn) ↑ IK. Let us decompose π into
the direct sum of ∗-representations π = πnor ⊕ πsin, where πnor is normal
and πsin is singular, that is πsin(K) = 0 for every compact operator K ∈
L(H) (see e.g. Proposition 10.4.13, p. 757 of [18]). We then have π(Pn) =
πnor(Pn) ↑ πnor(IH) by normality, hence πnor(IH) = IK. On the other hand,
IK = πnor(IH)⊕ πsin(IH). This implies πsin(IH) = 0, and, therefore, πsin = 0.

The next lemma gives a criterion for estabilishing the separability of the
Hilbert space K in the case π is a normal ∗-representation of L(H) in K, and
is used in the proofs of Proposition 10 and Theorem 8 below.

Lemma 6. Let H be separable and π : L(H) → L(K) be a normal ∗-
representation. If there exists a separable subset S ⊂ K such that the linear
space

span {π(A)v | A ∈ L(H), v ∈ S} (A.1)

is dense in K, then K is separable.

Proof. Since the Hilbert space H is separable, the Banach subspace L0(H)
of the compact operators in L(H) is separable. Let Pn be defined as in the
previous proposition. By normality of π, we have limn ‖π(Pn)v − v‖ = 0
for all v ∈ K (Lemma 5.1.4 in [17]). Therefore, π(A)v = limn π(APn)v for
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all A ∈ L(H) and v ∈ K, where APn ∈ L0(H) because Pn has finite rank.
Therefore, the closure of the linear space defined in (A.1) coincides with the
closure of the linear space spanned by the set {π(A)v | A ∈ L0(H), v ∈ S},
which is separable by separability of L0(H) and S and by continuity of the
mapping L0(H)× S ∋ (A, v) 7→ π(A)v ∈ K. Separability of K then follows.

Theorem 8. Suppose H, K separable Hilbert spaces, and let E ∈ CB (H,K).
Then there exists a separable Hilbert space V and two operators V,W ∈
L (K,H⊗ V) such that

E(A) = V ∗(A⊗ IV)W ∀A ∈ L(H). (A.2)

Proof. By Theorem 8.4 in [23], there exist a (not necessarily separable)

Hilbert space Ĥ, a ∗-representation π : L(H) → L
(

Ĥ
)

and operators V,W ∈

L
(

K, Ĥ
)

such that E(A) = V ∗π(A)W ∀A ∈ L(H). Writing π = πnor⊕πsin
and continuing with the notations of the two previous proofs, we have

E(A) = wk*-lim
n

E(APn) = wk*-lim
n

V ∗πnor(APn)W

= V ∗πnor(A)W.

Therefore, π can be chosen to be normal. We now prove that Ĥ can be chosen
to be separable. Since the subspace S = span {Wv | v ∈ H} is separable, by
Lemma 6 the π-invariant subspace Ĥ′ = span {π(A)Wv | v ∈ H, A ∈ L(H)}
is separable. Denoting by Q the projector onto Ĥ′ and defining V ′ := QV ,
W ′ := QW , π′(A) = Qπ(A)Q we then have E(A) = V ′∗π′(A)W ′. Since π′

is a representation of L(H) on the separable Hilbert space Ĥ′, up to unitary
equivalence we have Ĥ′ = H ⊗ V and π′(A) = A ⊗ IV ∀A ∈ L(H) for some
separable Hilbert space V (see e.g. Corollary 10.4.14, p. 747 of [18]).

It is now easy to prove that the set of weak*-continuous completely
bounded maps is the linear span of the cone of normal completely posi-
tive maps. The proof is the obvious adaptation of the proof of the analogous
statement for completely bounded maps (see Theorem 8.5 in [23]). This
provides the proof of Theorem 2:

Proof (Proof of Theorem 2). The inclusion CP (H,K) ⊂ CB (H,K)
is an immediate consequence of the fact that every normal positive map
is weak*-continuous and that every completely positive map is completely
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bounded (see e.g. Proposition 3.6 in [23]). Moreover, if E ∈ CB (H,K), let
V, V and W be as in the previous theorem. Eq. (A.2) can be rewritten E =
(V ∗ ⊙W )π, where π(A) = A⊗ IV . By polarization, we have E =

∑3
k=0 i

kEk,
where Ek =

1
4
[(ikV +W )∗ ⊙ (ikV +W )]π ∈ CP (H,K).
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