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SCHRÖDINGER OPERATORS AND THE DISTRIBUTION OF

RESONANCES IN SECTORS

T.J. CHRISTIANSEN

Abstract. The purpose of this paper is to give some refined results about the

distribution of resonances in potential scattering. We use techniques and results

from one and several complex variables, including properties of functions of com-

pletely regular growth. This enables us to find asymptotics for the distribution of

resonances in sectors for certain potentials and for certain families of potentials.

1. Introduction

The purpose of this paper is to prove some results about the distribution of reso-

nances in potential scattering. In particular, we study the distribution of resonances

in sectors and give asymptotics of the “expected value” of the number of resonances

in certain settings.

More precisely, we consider the operator −∆ + V , where V ∈ L∞
comp(R

d) and ∆

is the (non-positive) Laplacian. Then, with a finite number of exceptions, RV (λ) =

(−∆+ V − λ2)−1, Imλ > 0, is a bounded operator on L2(Rd) for λ in the upper half

plane. When d is odd and χ ∈ C∞
c satisfies χV = V , χRV (λ)χ has a meromorphic

continuation to the lower half plane. The poles of χRV (λ)χ are called resonances, and

are independent of choice of χ satisfying these hypotheses. Resonances are analogous

to eigenvalues not only in their appearance as poles of the resolvent, but also because

they appear in trace formulas much as eigenvalues do [1, 9, 12]. Physically, they may

be thought of as corresponding to decaying waves.

Let nV (r) denote the number of resonances of −∆+ V , counted with multiplicity,

with norm at most r. When d = 1, asymptotics of nV (r) are known:

lim
r→∞

n−∆+V (r)

r
=

2

π
diam(supp(V ))

[19]; see also [5, 15, 17]. Moreover, “most” of the resonances occur in sectors about

the real axis, in the sense that for any ǫ > 0,

lim
r→∞

#{λj pole of RV (λ) : | arg λj − π| < ǫ or | arg λj − 2π| < ǫ}
r

=
2

π
diam(supp(V ))

[5]. These results are valid for complex-valued V . The case d = 1 is exceptional,

though: in higher dimensions much less is known.
1
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Now we turn to d ≥ 3 odd, where the question is more subtle. If V ∈ L∞(Rd) has

support in B(0, a) = {x ∈ R
d : |x| ≤ a}, then

(1.1) d

∫ r

0

nV (t)− nV (0)

t
dt ≤ cda

drd + o(rd).

where cd is defined in (3.5) and depends only on the dimension. Zworski [21] showed

that such a bound holds, and Stefanov [18] identified the optimal constant. There are

examples for which equality holds in (1.1), [20, 18]. Lower bounds have proved more

elusive. The current best known general quantitative lower bound is for non-trivial

real-valued V ∈ C∞
c (R)

(1.2) lim sup
r→∞

nV (r)

r
> 0

[16]. On the other hand, there are nontrivial complex-valued potentials V for which

χRV (λ)χ has no poles, [3].

We wish to single out the set for which asymptotics actually hold in (1.1). This is

the set defined, for a > 0, as

(1.3)

Ma = {V ∈ L∞(Rd) : supp V ⊂ B(0, a) and nV (r) = cda
drd + o(rd) as r → ∞}.

This set contains infinitely many radial potentials. By results of [18, 20], this set

contains any potential of the form V (x) = v(|x|), where v ∈ C2([0, a]) is real-valued,

v(a) 6= 0, and V (x) = 0 for |x| > a. Additionally, it contains infinitely many complex-

valued potentials which are isoresonant with these real-valued radial potentials [4].

We now can state some results. For the first, we set, for ϕ < θ, nV (r, ϕ, θ) to be

the set of poles of RV (λ), counted with multiplicity, with norm at most r and with

argument between ϕ and θ.

Proposition 1.1. Let V ∈ Ma. Then, if 0 < ϕ < θ < π,

nV (r, π + ϕ, π + θ) =
1

2πd
s̃d(ϕ, θ)r

dad + o(rd)

where

s̃d(ϕ, θ) = h′d(θ)− h′d(ϕ) + d2
∫ θ

ϕ

hd(s)ds,

and hd(θ) is as defined in (3.4).

If V is real-valued, then λ0 is a resonance of −∆ + V if and only if −λ0 is a

resonance. In this case for V ∈ Ma and 0 < θ < π

nV (r, π, π + θ) =

[

h′d(θ) + d2
∫ θ

0

hd(s)ds

]

adrd + o(rd).

Corollary 1.4 shows this holds for any V ∈ Ma. These results show that any po-

tential in Ma must have resonances distributed regularly in sectors, as well as being
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distributed regularly in balls centered at the origin. A result like this lemma and

Corollary 1.4 is, for the special potentials of the form V (x) = v(|x|) mentioned ear-

lier, implicit in the papers of Zworski [20] and Stefanov [18]. Here we derive it as a

corollary of some complex-analytic results, and note that it holds for any potential

V ∈ Ma. We note that this proposition could, in fact, follow as a corollary to The-

orem 1.3. However, we prefer to give a separate proof that uses standard results for

functions of completely regular growth. In the following theorem we use the notation

NV (r) =
∫ r

0
1
t
(nV (t)− nV (0))dt.

Theorem 1.2. Let Ω ⊂ Cp be an open connected set. Suppose V (z) = V (z, x) is

holomorphic in z ∈ Ω and, for each z ∈ Ω, V (z, x) ∈ L∞(Rd), and V (z, x) = 0 if

|x| > a. Suppose in addition that for some z0 ∈ Ω, V (z0) ∈ Ma. Then there is a

pluripolar set E ⊂ Ω so that

lim sup
r→∞

NV (z)(r)

rd
= dcda

d for all z ∈ Ω \ E.

Moreover, for any θ > 0, θ < π, there is a pluripolar set Eθ so that

lim sup
r→∞

NV (z)(r, π, π + θ)

rd
≥ lim

ǫ↓0

ad

4πd2
h′d(ǫ)

for all z ∈ Ω \ Eθ.

For example, one may take, for z ∈ C, V (z) = zV1+(1− z)V0, where V0 ∈ Ma and

V1 ∈ L∞(Rd) has support in B(0, a). Since h′d(0+) = limǫ↓0 h
′
d(ǫ) > 0, see Lemma

3.3, the second statement of the theorem is meaningful. This result is of particular

interest since resonances near the real axis are considered the more physically relevant

ones.

We recall the definition of a pluripolar set in Section 2. Here we mention that a

pluripolar set is small. A pluripolar set E ⊂ Cp has R2p Lebesque measure 0, and

if E ⊂ C is pluripolar, E ∩ R has one-dimensional Lebesque measure 0 ( see, for

example, [10, 14]). Thus the statements of Theorem 1.2 hold for “most” values of

z ⊂ Ω.

If we take a weighted average over a family of potentials, a kind of expected value,

we are able to find asymptotics analogous to those which hold for a potential in Ma.

In the statement of the next theorem and later in the paper, we use the notation

dL(z) = dRe z1d Im z1 · · · dRe zpd Im zp.

Theorem 1.3. Suppose the hypotheses of Theorem 1.2 are satisfied. Then for any

ψ ∈ Cc(Ω),
∫

Ω

ψ(z)nV (z)(r)dL(z) = cda
drd
∫

Ω

ψ(z)dL(z) + o(rd).
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Additionally, we have, for 0 < ϕ < θ < π,
∫

Ω

ψ(z)nV (z)(r, ϕ+ π, θ + π)dxdy =
1

2πd
s̃d(ϕ, θ)r

dad
∫

Ω

ψ(z)dL(z) + o(rd)

where s̃d is as defined in Proposition 1.1. Moreover, for 0 < θ < π,

(1.4)
∫

Ω

ψ(z)nV (z)(r, π, θ + π)dxdy =

[

h′d(θ) + d2
∫ θ

0

hd(s)ds

]

adrd
∫

Ω

ψ(z)L(z) + o(rd).

Corollary 1.4. Let V ∈ Ma. For any 0 < θ < π,

(1.5) nV (r, π, θ + π) =

[

h′d(θ) + d2
∫ θ

0

hd(s)ds

]

adrd + o(rd)

and, for any 0 < ϕ < π,

(1.6) nV (r, ϕ+ π, 2π) =

[

−h′d(ϕ) + d2
∫ π

ϕ

hd(s)ds

]

adrd + o(rd).

This corollary follows from Theorem 1.3 by taking V (z) equal to the constant (in

z) potential V . We could instead give a more direct proof by, essentially, simplifying

the proof of Proposition 5.3 and then applying Lemma 5.4.

It is worth noting that the coefficients of rd in (1.5) and (1.6) are positive, so

that in any sector in the lower half plane which touches the real axis, the number of

resonances grows like rd.

The proofs of the results here are possible because of the optimal upper bounds

on lim supr→∞ r−d log | detSV (reiθ)|, 0 < θ < π, proved in [18], see Theorem 3.2 here.

These, combined with some one-dimensional complex analysis, are used to prove

Proposition 1.1, and could be used to give a direct proof of Corollary 1.4. The proofs

of the other theorems use, in addition to one-dimensional complex analysis, some

facts about plurisubharmonic functions. Most of the complex-analytic results which

we shall use are recalled in Section 2.

Acknowledgments. It is a pleasure to thank Plamen Stefanov and Maciej Zworski

for helpful conversations during the writing of this paper. The author gratefully

acknowledges the partial support of the NSF under grant DMS 1001156.

2. Some complex analysis

In this section we recall some definitions and results from complex analysis in one

and several variables. We will mostly follow the notation and conventions of [11] and

[10]. We also prove a result, Proposition 2.2, for which we are unaware of a proof in

the literature.

The upper relative measure of a set E ⊂ R+ is

lim sup
r→∞

meas(E ∩ (0, r))

r
.
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A set E ⊂ R+ is said to have zero relative measure if it has upper relative measure 0.

If f is a function holomorphic in the sector ϕ < arg z < θ, we shall say f is of

order ρ if lim supr→∞
log log(maxϕ<φ<θ |f(reiφ)|)

log r
= ρ. We shall further restrict ourselves to

functions of finite type, so that

lim sup
r→∞

log(maxϕ<φ<θ |f(reiφ)|)
rρ

<∞.

In this section only, we shall, following Levin [11], use the notation hf for the indicator

(or indicator function) of a function f of order ρ: hf(θ) = lim supr→∞
(

r−ρ ln |f(reiθ)|
)

.

Suppose f is a function analytic in the angle (θ1, θ2) and of order ρ and finite type

there. The function f is of completely regular growth on some set of rays RM (M is

the set of values of θ) if the function

hf,r(θ) =
ln |f(reiθ)|

rρ

converges uniformly to hf (θ) for θ ∈ M when r goes to infinity taking on all positive

values except possibly for a set EM of zero relative measure. The function f is of

completely regular growth in the angle (θ1, θ2) if it is of completely regular growth on

every closed interior angle.

Functions of completely regular growth have zeros that are rather regularly dis-

tributed. For a function f holomorphic in {z : θ1 < arg z < θ2} we define, for

θ1 < ϕ < θ < θ2, mf(r, ϕ, θ) to be the number of zeros of f(z) in the sector

ϕ ≤ arg z ≤ θ, |z| ≤ r. 1 We recall the following theorem from [11].

Theorem 2.1. [11, Chapter III, Theorem 3] If a holomorphic function f(z) of order

d and finite type has completely regular growth within an angle (θ1, θ2), then for all

values of ϕ and θ, (θ1 < ϕ < θ < θ2 ) except possibly for a denumerable set, the

following limit will exist:

lim
r→0

mf (r, ϕ, θ)

rd
=

1

2πd
s̃f(ϕ, θ)

where

s̃f(ϕ, θ) =

[

h′f(θ)− h′f (ϕ) + d2
∫ θ

ϕ

hf(s)ds

]

.

The exceptional denumerable set can only consist of points for which h′f (θ + 0) 6=
h′f (θ − 0).

In the following proposition we use the notation mf(r) to denote the number of

zeros of a function f , counted with multiplicity, with norm at most r. It is likely that

some of the hypotheses included here could be relaxed. However, when we apply this

1More standard notation would be n(r, ϕ, θ), but we have already defined nV (r, ϕ, θ) to be some-

thing else.
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proposition, f will be the determinant of the scattering matrix, perhaps multiplied

by a rational function, and many of these hypotheses are natural in such applications.

Proposition 2.2. Let f be a function meromorphic in the complex plane, with neither

zeros nor poles on the real line. Suppose all the zeros of f lie in the open upper half

plane, and all the poles in the open lower half plane. Furthermore, assume f is of

order d > 1 in the upper half plane, hf is finite for 0 ≤ θ ≤ π, and hf (θ0) 6= 0 for

some θ0, 0 < θ0 < π. Suppose in addition

(2.1)

∫ r

0

f ′(t)

f(t)
dt = o(rd) as r → ±∞,

and the number of poles of f with norm at most r is of order at most d. If

lim inf
r→∞

mf (r)

rd
=

d

2π

∫ π

0

hf (θ)dθ,

then f is of completely regular growth in the angle (0, π).

Before proving the proposition, we note that Govorov [7, 8] has studied the issue

of completely regular growth of functions holomorphic in an angle. This is discussed

in [11, Appendix VIII, section 2]. This is somewhat different than what we consider,

since we use the assumption that f is meromorphic on the plane. Thus Govorov uses

different restrictions on the distribution of the zeros of f .

Proof. The proof of this proposition follows in outline the proof of the analogous

theorem for entire functions in the plane, [11, Chapter IV, Theorem 3]. Rather than

using Jensen’s theorem, though, it uses the equality

(2.2)

∫ r

0

mf (t)

t
dt =

1

2π
Im

∫ r

0

1

t

∫ t

−t

f ′(s)

f(s)
dsdt+

1

2π

∫ π

0

log |f(reiθ)|dθ

if f(0) = 1, which follows using the proof of [6, Lemma 6.1].

By [11, Property (4), Chapter I, section 12],

(2.3) lim inf
r→∞

mf (r)

rd
≤ lim inf

r→∞
dr−d

∫ r

0

mf (t)

t
dt.

We note that for any ǫ > 0 there is an R > 0 so that

(2.4) r−d ln |f(reiθ)| ≤ hf(θ) + ǫ, for r > R, 0 ≤ θ ≤ π.

Using this, (2.2), and our assumptions on the behavior of f on the real axis, we see

that

lim sup
r→∞

r−d
∫ r

0

mf (t)

t
dt ≤ 1

2π

∫ π

0

hf (θ)dθ.

Combining this with (2.3) and using our assumptions on mf (r), we get

lim
r→∞

r−d
∫ r

0

mf (t)

t
dt =

1

2π

∫ π

0

hf(θ)dθ.
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Thus we have

lim
r→∞

∫ π

0

[hf(θ)− r−d ln |f(reiθ)|]dθ = 0,

and, using (2.4),

lim
r→∞

∫ π

0

∣

∣hf(θ)− r−d ln |f(reiθ)|
∣

∣ dθ = 0.

We note that our assumptions on f imply that it can be represented as the quotient

of two entire functions, each of order at most d. Then we may apply [11, Chapter 2,

Theorem 7] to find that for every η > 0 there is a set Eη of positive numbers of upper

relative measure less than η so that if r 6∈ Eη, the family of functions of θ,

hf,r(θ)
def
= r−d ln |f(reiθ)|,

is equicontinuous in the angle 0 < ǫ0 ≤ θ ≤ π − ǫ0.

Given η > 0 and ǫ > 0 we can, by the above result, find a δ > 0 with (θ1−δ, θ2+δ) ⊂
(0, π) and a set Eη of upper relative measure at most η so that for θ ∈ (θ1, θ2), r 6∈ Eη,

|ϕ−θ| < δ, |hf,r(θ)−hf,r(ϕ)| < ǫ/4, and |hf(θ)−hf (ϕ)| < ǫ/4. Then for 0 < |k| < δ,

r 6∈ Eη,

|hf,r(θ)− hf(θ)| < ǫ/2 +
1

k

∫ θ+k

θ

|hf,r(ϕ)− hf (ϕ)|dϕ

≤ ǫ/2 +
1

k

∫ π

0

|hf,r(ϕ)− hf (ϕ)|dϕ.

Since the integral goes to 0 as r → ∞, we have shown that for r > rǫ, r 6∈ Eη,

|hf,r(θ) − hf(θ)| < ǫ. Since η > 0 and ǫ > 0 are arbitrary, we have, by [11, Chapter

III, Lemma 1], f is of completely regular growth in (θ1, θ2). �

We shall also need some basics about plurisubharmonic functions and pluripolar

sets. We use notation as in [10] and refer the reader to this reference for more details.

Let Ω ⊂ Cp be an open connected set. A function ψ : Ω → [−∞,∞) is said to be

plurisubharmonic if ψ 6≡ −∞, ψ is upper semi-continuous, and

ψ(z) ≤ 1

2π

∫ 2π

0

ψ(z + wreiθ)dθ

for all w, r such that z + uw ⊂ Ω for u ∈ C, |u| ≤ r. The classic example of a

plurisubharmonic function is ln |f(z)|, where f(z) is holomorphic. A subset E ⊂ Ω ⊂
C
p is said to be pluripolar if there is a function ψ plurisubharmonic on Ω so that

E ⊂ {z : ψ(z) = −∞}.
For the convenience of the reader, we recall [10, Proposition 1.39], which is the

main additional fact from several complex variables which we shall need.

Proposition 2.3. ([10, Prop. 1.39]) Let {ψq} be a sequence of plurisubharmonic

functions uniformly bounded above on compact subsets in an open connected set
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Ω ⊂ Cp, with lim supq→∞ ψq ≤ 0 and suppose that there exist ξ ∈ Ω such that

lim supq→∞ ψq(ξ) = 0. Then A = {z ∈ Ω : lim supq→∞ ψq(z) < 0} is pluripolar

in Ω.

3. The functions sV (λ) = detSV (λ) and hd(θ)

For V ∈ L∞
comp(R

d), let SV (λ) be the associated scattering matrix and sV (λ) =

detSV (λ). We recall [2, Lemma 3.1]:

Lemma 3.1. Let V ∈ L∞
comp(R

d;C). For λ ∈ R, there is a CV so that
∣

∣

∣

∣

d

dλ
log sV (λ)

∣

∣

∣

∣

≤ CV |λ|d−2

whenever |λ| is sufficiently large.

In fact, there is a constant αd so that it suffices to take |λ| ≥ 2αd‖V ‖∞ for such a

bound to hold. We note that for λ ∈ R, |λ| ≥ 2αd‖V ‖∞ under these same assumptions

on V ,

(3.1) ‖SV (λ)− I‖ ≤ C|λ|−1.

This is relatively easy to see from an explicit representation of the scattering matrix;

see, for example, the proof of [2, Lemma 3.1]. The constants in the statement of [2,

Lemma 3.1] and in (3.1) can be chosen to depend only on the dimension, ‖V ‖∞ and

the support of V . We note that it follows from Lemma 3.1, (3.1), and (2.2) that as

r → ∞

(3.2)

∫ r

0

nV (t)

t
dt =

∫ π

0

log | detSV (reiθ)|dθ +O(rd−1).

Let

(3.3) ρ(z) = log
1 +

√
1− z2

z
−
√
1− z2, 0 < arg z < π.

This is a function which arises in studying the asymptotics of Bessel functions; see

[13]. To define the square root which appears here, take the branch cut on the negative

real axis and define ρ to be a continuous function in {0 < arg z < π} ∪ (0, 1) and use

the principal branches of the logarithm and the square root when z ∈ (0, 1).

We use some notation of [18]. Set, for 0 < θ < π,

(3.4) hd(θ) =
4

(d− 2)!

∫ ∞

0

[−Re ρ]+(te
iθ)

td+1
dt

and set hd(0) = 0, hd(π) = 0. Now set

(3.5) cd
def
=

d

2π

∫ π

0

hd(θ)dθ =
2d

π(d− 2)!

∫

Im z>0

[−Re ρ]+(z)

|z|d+2
dxdy.

This is the constant cd which appears in (1.1).
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We recall the following result of [18, Theorem 5], which we paraphrase to suit our

setting; [18, Theorem 5] actually covers a much larger class of operators.

Theorem 3.2. (from [18, Theorem 5]) Let V ∈ L∞(Rd) be supported in B(0, a).

(a) For any θ ∈ [0, π],

(3.6) log |sV (reiθ)| ≤ hd(θ)a
drd + o(rd) as r → ∞,

and the remainder term depends on V , and is uniform for 0 < δ ≤ θ ≤ π− δ for any

δ ∈ (0, π).

(b) For any δ > 0,

log |sV (reiθ)| ≤ (hd(θ)a
d + δ)rd + o(rd)

uniformly in θ ∈ [0, π].

It is important to note several things about the bounds in this theorem. One

is that although Stefanov’s theorem is stated only for self-adjoint operators (hence

V real) it is equally valid when we allow complex-valued potentials. In fact, the

proof of (a) in [18, Theorem 5] uses self-adjointness only to obtain a bound on the

resolvent for λ in the upper half plane. A similar bound is true for the operator

−∆ + V when V is complex-valued. The proof of (b) uses the fact that for real

V , if λ ∈ R, ln |sV (λ)| = 1. For complex-valued V , the proof in [18] of (b) can be

adapted by using (3.1) and Lemma 3.1 to show that for λ ∈ R, |λ| ≥ 2αd‖V ‖∞,

| ln sV (λ)| ≤ C(1 + |λ|)d−1. Here C can be chosen to depend only on d, ‖V ‖∞ and

the diameter of the support of V .

Likewise, the particulars of the operator enter only through the diameter of the

support of the perturbation (for us, the diameter of the support of V , which is 2a) and

the afore-mentioned bound on the resolvent in the good half plane. Thus, it is easy to

see that the estimates of Theorem 3.2 are uniform in V as long as supp V ⊂ B(0, a),

‖V ‖∞ ≤M , and r ≥ 2αdM .

We note that the upper bound (1.1) on the integrated resonance-counting function

holds with the constant cd defined in (3.5) even if V is complex-valued. This follows

from the proof in [18]. In fact, the proof uses the bounds recalled in Theorem 3.2 and

the identity (2.2). Together with the bounds in Lemma 3.1 and (3.1), these prove

(1.1), even when V is complex-valued.

We shall want to understand the function hd(θ) better. Note that for 0 < θ ≤ π/2,

hd(π/2 + θ) = hd(π/2− θ).

This can be seen directly using the definition of hd and ρ.

Lemma 3.3. The function hd(θ), defined in (3.4), is C1 on (0, π). Moreover,

hd(0+)
def
= lim

ǫ↓0
hd(ǫ) =

√
π

Γ
(

d−1
2

)

(d− 2)!Γ
(

1 + d
2

) .
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Proof. We note [13, Section 4] that Re ρ(z) < 0 if 0 < arg z < π and |z| > |z0(arg z)|,
where z0(θ) is the unique point in C with argument θ and which lies on the curve

given by

±(s coth s− s2)1/2 + i(s2 − s tanh s)1/2, 0 ≤ s ≤ s0.

Here s0 is the positive solution of coth s = s. Furthermore, Re ρ(z) > 0 if z is in the

upper half plane but |z| < |z0(arg z)|. Hence, recalling the definition of hd, we have

hd(θ) =
4

(d− 2)!

∫ ∞

|z0(θ)|

[−Re ρ](teiθ)

td+1
dt.

Using the definition of ρ (3.3) and the following comments, we see that ρ is in fact a

smooth function of z with 0 < arg z < π, |z| > 0. Since |ρ(z)|/|z| → 1 when |z| → ∞
in this region, the integral defining hd is absolutely convergent. Likewise, since

∂

∂θ
ρ(teiθ) = −i

√

1− (teiθ)2

the integral
∫ ∞

|z0(θ)|

−Re
[

∂
∂θ
ρ(teiθ)

]

td+1
dt

converges absolutely. A computation shows that |z0| is a C1 function of θ for θ in

(0, π), and limǫ↓0
∂
∂θ
|z0| is finite. Thus, using that Re ρ(z0(θ)) = 0 and the regularity

of the derivative of |z0|(θ), we get

d

dθ
hd(θ) =

4

(d− 2)!

∫ ∞

|z0(θ)|

Re i
√

1− (teiθ)2

td+1
dt.

Thus hd is C1 on (0, π), h′d(0+) = 4
(d−2)!

∫∞
1

√
t2−1
td+1 dt, and a computation now finishes

the proof of the lemma. �

If d = 3, we can compute that

h3(θ) =
4

9

(

sin(3θ) + Re
(1− z20(θ))

3/2

|z0(θ)|3
)

where z0(θ) is as in the proof of the lemma. We comment that the sin(3θ) term is

missing from the first remark following the statement of [18, Theorem 5].

4. Proof of Proposition 1.1

We can now give the proof of Proposition 1.1, which follows by combining Theorem

2.1, Proposition 2.2, and [18, Theorem 5].

Recall that SV (λ) is the scattering matrix associated with the operator −∆ + V ,

and sV (λ) = detSV (λ). Then sV has a pole at λ if and only if sV has a zero at −λ,
and the multiplicities coincide. Moreover, with at most a finite number of exceptions,

the poles of sV (λ) coincide, with multiplicity, with the zeros of RV (λ).



11

If sV (λ) has poles in the upper half plane, it has only finitely many, say λ1, ..., λm.

Set f(λ) =
∏m

j=1(λ− λj)sV (λ). Then from [18, Theorem 5], for 0 ≤ θ ≤ π and large

r,

r−d log |f(reiθ)| ≤ adhd(θ) + o(1).

Using the equation (2.2), the fact that V ∈ Ma, and Lemma 3.1, we see that we must

have

lim sup
r→∞

r−d log |f(reiθ)| = adhd(θ) for θ ∈ (0, π).

Applying Proposition 2.2 to f(λ), we see that f(λ) is a function of completely regular

growth in the upper half plane. Since hd(θ) is a C1 function of θ for θ ∈ (0, π), we

get the first part of the proposition from Theorem 2.1.

5. Proof of Theorem 1.3

We shall need an identity related to both (2.2) and to what Levin calls a generalized

formula of Jensen [11, Chapter 3, section 2]. We define, for a function f meromorphic

in a neighborhood of arg z = θ and with |f(0)| = 1,

(5.1) Jrf (θ) =

∫ r

0

ln |f(teiθ)|
t

dt.

Lemma 5.1. Let f be holomorphic in ϕ ≤ arg z ≤ θ, f(0) = 1, f have no zeros with

argument ϕ or θ and with norm less than r, and let m(r, ϕ, θ) be the number of zeros

of f in the sector ϕ < arg z < θ, |z| ≤ r. Then

∫ r

0

m(t, ϕ, θ)

t
dt

=
1

2π

∫ r

0

d

dθ
J tf (θ)

dt

t
+

1

2π

∫ r

0

1

t

∫ t

0

d

ds
arg f(seiϕ)ds dt+

1

2π

∫ θ

ϕ

ln |f(reiω)|dω.

Proof. Using the argument principle and the Cauchy-Riemann equations just as in

[11, Chapter 3, section 2] we see that

2πm(r, ϕ, θ) =

∫ r

0

∂

∂t
arg f(teiϕ)dt+

∫ r

0

1

t

∂

∂θ
ln |f(teiθ)|dt+ r

∫ θ

ϕ

∂

∂t
ln |f(teiω)|dω

when there are no zeros on the boundary of the sector. As in [11], by dividing by 2πr

and integrating from 0 to r we obtain the lemma. �

For 0 < ϕ < θ < 2π, recall the notation nV (r, ϕ, θ) for the number of poles of

RV (λ) in the sector {z : |z| ≤ rr, ϕ < arg z < θ}. Moreover, we set

NV (r, ϕ, θ) =

∫ r

0

1

t
(nV (t, ϕ, θ)− nV (0, ϕ, θ))dt.

We note that |sV (0)| = 1, since sV (λ)sV (−λ) = 1.
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Lemma 5.2. Suppose V ∈ L∞
comp(R

d). Then
∫ θ

0

NV (r, π, θ
′ + π)dθ′ =

1

2π

∫ r

0

J tsV (θ)
dt

t
+

1

2π

∫ θ

0

∫ θ′

0

ln |sV (reiω)|dωdθ′ +O(rd−1).

The error can be bounded by c〈rd−1〉 where the constant depends only on ‖V ‖, the

support of V , and d.

Proof. Using the relationship between the poles ofRV (λ) and the zeros of sV = detSV ,

we find from Lemma 5.1 that

(5.2) NV (t, π, θ
′ + π) =

1

2π

∫ r

0

∂

∂θ′
J tsV (θ

′)
dt

t
+

1

2π

∫ r

0

1

t

∫ t

0

d

dt′
arg sV (t

′)dt′dt

+
1

2π

∫ θ′

0

ln |sV (reiω)|dω +O(log r).

Integrating in θ′ from 0 to θ, and using the fact that both sides are continuous

functions of θ′, we get

∫ θ

0

NV (r, π, θ
′ + π)dθ′ =

1

2π

∫ r

0

J tsV (θ)
dt

t
− 1

2π

∫ r

0

J tsV (0)
dt

t

+
θ

2π

∫ r

0

1

t

∫ t

0

d

dt′
arg sV (t

′)dt′dt+
1

2π

∫ θ

0

∫ θ′

0

ln |sV (reiω)|dωdθ′ +O(log r)

The bounds of Lemma 3.1 and (3.1) mean that as r → ∞
1

2π

∫ r

0

J tsV (0)
dt

t
= O(rd−1)

and
θ

2π

∫ r

0

1

t

∫ t

0

d

dt′
arg sV (t

′)dt′dt = O(rd−1)

where the bounds can be made uniform in V within a fixed compact set. �

We shall need some notation for the results which follow. Let Ω ⊂ Cd′ be an open

set containing a point z0. For ρ > 0 small enough that B(z0, ρ) ⊂ Ω we define Ωρ to

be the connected component of {z ∈ Ω : dist(z,Ωc) ≥ ρ} which contains z0.

Proposition 5.3. Let V , z0, Ω satisfy the assumptions of Theorem 1.2, let ρ > 0 be

small enough that B(z0, ρ) ⊂ Ω, and let Ωρ be as defined above. Then for z ∈ Ωρ,

0 < θ < π,

ψ(z, r, ρ)
def
=

1

vol(B(z, ρ))

∫

z′∈B(z,ρ)

∫ θ

0

NV (z′)(r, π, θ
′ + π)dθ′dL(z′)

=
1

2π
adrd

(

1

d2
hd(θ) +

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′

)

+ o(rd).
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Proof. First note that since 0 ≤ NV (z)(z, π, θ + π) ≤ cdr
dad + o(rd), and the bound

is uniform on compact sets of z, we get that holding ρ fixed, r−dψ(•, r, ρ) is a family

uniformly continuous in z for z in compact sets of Ωρ.

We shall use Lemma 5.2. Note that by Stefanov’s results recalled in Theorem 3.2,

1

2π

∫ r

0

J tsV (z)
(θ)

dt

t
≤ 1

2π

1

d2
hd(θ)a

drd + o(rd)

where the term o(rd) can be bounded uniformly in z in compact sets of Ωρ. By the

same argument,

∫ θ

0

∫ θ′

0

ln |sV (z)(re
iω)|dωdθ′ ≤

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′adrd + o(rd).

Using Lemma 5.2, we find that

ψ(z, r, ρ) =
1

2πVol(B(z, ρ))

∫

z′∈B(z,ρ)

∫ r

0

J tsV (z′)(θ)
dt

t
dL(z′)

+
1

2πVol(B(z, ρ))

∫

z′∈B(z,ρ)

∫ θ

0

∫ θ′

0

ln |sV (z′)(re
iω)|dωdθ′dL(z′) +O(rd−1).

Let M = 2maxz∈Ωρ
‖V ‖∞ and set, for r > M ,

Ψ1(z, r, ρ) =
1

2πVol(B(z, ρ))

∫

z′∈B(z,ρ)

∫ r

M

J tsV (z′)
(θ)

dt

t
dL(z′)

+
1

2πVol(B(z, ρ))

∫

z′∈B(z,ρ)

∫ θ

0

∫ θ′

0

ln |sV (z′)(re
iω)|dωdθ′dL(z′)

and note that

ψ(z, r, ρ) = ψ1(z, r, ρ) +O(rd−1).

By the bounds above,

(5.3) ψ1(z, r, ρ) ≤
1

2π

(

1

d2
hd(θ) +

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′

)

adrd + o(rd).

Using [10, Proposition I.14] and the fact that ln |sV (z)(λ)| is a plurisubharmonic

function of z ∈ Ω when ‖λ‖ > 3
2
‖V (z)‖∞ and λ lies in the upper half plane, we see

that Ψ1(z, r, ρ) is a plurisubharmonic function of z ∈ Ωρ. Since by Proposition 2.2

sV (z0)(λ) is of completely regular growth in 0 < arg λ < π, using Lemma 5.2 and [11,

Chapter III, Sec. 2, Lemma 2],

lim
r→∞

r−d
∫ θ′

0

NV (z0)(r, π, θ
′ + π)dθ′ =

1

2π

(

1

d2
hd(θ) +

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′

)

ad.
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By the most basic property of plurisubharmonic functions,

ψ1(z0, r, ρ) ≥
1

2π

∫ r

M

J tsV (z0)
(θ)

dt

t
+

1

2π

∫ θ

0

∫ θ′

0

ln |sV (z0)(re
iω)|dωdθ′.

But the right hand side of this equation is
∫ θ

0
NV (z0)(r, 0, θ

′)dθ′ + O(rd−1), so we see

that

lim inf
r→∞

r−dψ1(z0, r, ρ) ≥
1

2π

(

1

d2
hd(θ) +

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′

)

ad.

Combining this with (5.3), we find

(5.4) lim
r→∞

r−dψ1(z0, r, ρ) =
1

2π

(

1

d2
hd(θ) +

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′

)

ad.

Using this and the upper bound (5.3) on ψ1, since ψ1 is plurisubharmonic in z it

follows from [10, Proposition 1.39] (recalled here in Proposition 2.3) that for any

sequence {rj}, rj → ∞ there is a pluripolar set E ⊂ Ωρ (which may depend on the

sequence) so that

lim sup
j→∞

r−dj ψ1(z, rj , ρ) =
1

2π

(

1

d2
hd(θ) +

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′

)

ad

for all z ∈ Ωρ \E. Since limj→∞ r−dj (ψ1(z, r, ρ)− ψ(z, r, ρ)) = 0, the same conclusion

holds for ψ in place of ψ1.

Suppose there is some z1 ∈ Ωρ and some sequence rj → ∞ so that

lim
j→∞

r−dj ψ(z1, rj, ρ) <
1

2π

(

1

d2
hd(θ) +

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′

)

ad.

Then, using the uniform continuity of r−dψ(z, r, ρ) in z, we find there must be an

ǫ > 0 so that

lim sup
j→∞

r−dj ψ(z, rj , ρ) <
1

2π

(

1

d2
hd(θ) +

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′

)

ad

for all z ∈ B(z1, ǫ). But since B(z1, ǫ) is not contained in a pluripolar set, we have a

contradiction. Thus

lim
r→∞

r−dψ(z1, r, ρ) =
1

2π

(

1

d2
hd(θ) +

∫ θ

0

∫ θ′

0

hd(ω)dωdθ
′

)

ad.

�

Lemma 5.4. Let M(r, θ) be a function so that for any fixed positive r0, M(r0, θ) is

a non-decreasing function of θ, and suppose

lim
r→∞

r−d
∫ θ

0

M(r, θ′)dθ′ = α(θ)
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for θ1 < θ < θ2. Then if α is differentiable at θ, then

lim
r→∞

r−dM(r, θ) = α′(θ).

Proof. Let ǫ > 0. Then, since M(r, θ) is non-decreasing in θ,

∫ θ+ǫ

0

M(r, θ′)dθ′ −
∫ θ

0

M(r, θ′)dθ′ ≥ ǫM(r, θ)

which, under rearrangement, yields

r−dM(r, θ) ≤ r−d
∫ θ+ǫ

0
M(r, θ′)dθ′ −

∫ θ

0
M(r, θ′)dθ′

ǫ
.

Thus

lim sup
r→∞

r−dM(r, θ) ≤ α(θ + ǫ)− α(θ)

ǫ
.

Likewise, we find

lim inf
r→∞

r−dM(r, θ) ≥ α(θ)− α(θ − ǫ)

ǫ
.

Since both these equalities must hold for all ǫ > 0, the lemma follows from the

assumption that α is differentiable at θ. �

The following proposition follows from Proposition 5.3, but is stronger as it does

not require averaging in the θ′ variable.

Proposition 5.5. Let V , z0, Ω satisfy the assumptions of Theorem 1.2, and ρ > 0,

Ωρ be as in Proposition 5.3. Then for z ∈ Ωρ, 0 < θ < π,

1

Vol(B(z, ρ))

∫

z′∈B(z,ρ)

NV (z′)(r, π, θ + π)dL(z′)

=
1

2π
adrd

(

1

d2
h′d(θ) +

∫ θ

0

hd(ω)dω

)

+ o(rd).

Proof. This follows from applying Lemmas 5.4 and 3.3 to the results of Proposition

5.3. �

Proposition 5.5 does not give results for the counting function for all the resonances

(note that we cannot have θ = π). The following fills this gap.

Proposition 5.6. Let V , z0, Ω satisfy the assumptions of Theorem 1.2, and ρ > 0,

Ωρ as in Proposition 5.3. Then for z ∈ Ωρ,

1

Vol(B(z, ρ))

∫

z′∈B(z,ρ)

NV (z′)(r)dL(z′) =
1

2π
adrd

∫ θ

0

hd(ω)dω + o(rd).
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Proof. The proof of this is very similar to that of Proposition 5.3. In fact, the main

difference is the use of (2.2), which together with Lemma 3.1 and (3.1) gives us

1

Vol(B(z, ρ))

∫

z′∈B(z,ρ)

NV (z′)(r)dL(z′) = ψ1(z, r, ρ) +O(rd−1)

where

ψ1(z, r, ρ) =
1

Vol(B(z, ρ))

1

2π

∫

z′∈B(z,ρ)

∫ π

0

log |f(reiθ)|dθdL(z′).

Using that ψ1 is plurisubharmonic in z, the proof now follows just as in Proposition

5.3. �

Proposition 5.7. Let V, Ω, z0 satisfy the conditions of Theorem 1.2, and let ρ, Ωρ
be as in Proposition 5.3. Then for 0 < θ < π,

1

Vol(B(z, ρ))

∫

z′∈B(z,ρ)

nV (z′)(r, π, θ+π)dL(z′) =
1

2π
adrd

(

1

d
h′d(θ) + d

∫ θ

0

hd(θ)dθ

)

+o(rd)

and
1

Vol(B(z, ρ))

∫

z′∈B(z,ρ)

nV (z′)(r)dL(z′) =
d

2π
adrd

∫ π

0

hd(θ)dθ + o(rd).

Proof. This proof follows from Propositions 5.5 and 5.6, using, in addition, a result

like that of [18, Lemma 1] or 5.4. �

Proof of Theorem 1.3. Let M = max(1 + |ψ(z)|), and for ρ > 0 small enough that

B(z0, ρ) ⊂ Ω, set Ωρ to be the connected component of {z ∈ Ω : dist(z,Ωc) > ρ}
which contains z0. Given ǫ > 0, choose ρ0 > 0 such that B(z0, ρ0) ⊂ Ω and so that

(5.5) vol(suppψ ∩ (Ω \ Ωρ)) <
ǫ

5Me(cdad + 1)
.

Since ψ is continuous with compact support, we can find a δ1 > 0 so that if |z−z′| < δ1,

then |ψ(z) − ψ(z′)| < ǫ
5e(ad+1)cd

. We may find a finite number J of disjoint balls

B(zj , ǫj) so that ǫj < δ1, B(zj , ǫj) ⊂ Ωρ, and

vol(suppψ \ (∪J1B(zj, ǫj)) + vol(∪J1B(zj , ǫj) \ suppψ) <
ǫ

4Me(adcd + 1)
.

Now
∫

ψ(z)nV (z)(r, ϕ, θ)dL(z)

=
J
∑

j=1

∫

B(zj ,ǫj)

ψ(z)nV (z)(r, ϕ, θ)dL(z) +
∫

suppψ\(∪B(zj ,ǫj))

ψ(z)nV (z)(r, ϕ, θ)dL(z).
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We will use that the bound (1.1) implies that nV (z) ≤ ecda
drd+ o(rd). By our choice

of B(zj , ǫj),
∣

∣

∣

∣

∣

∫

suppψ\(∪B(zj ,ǫj))

ψ(z)nV (z)(r, ϕ, θ)dL(z)
∣

∣

∣

∣

∣

≤ ǫ

4
(rd + o(rd)).

By our choice of δ1 and the assumption that ǫj < δ1, we have

∣

∣

∣

∣

∣

J
∑

j=1

∫

B(zj ,ǫj)

ψ(z)nV (z)(r, ϕ, θ)dL(z)−
J
∑

j=1

∫

B(zj ,ǫj)

ψ(zj)nV (z)(r, ϕ, θ)dL(z)
∣

∣

∣

∣

∣

≤ ǫ

5
(rd + o(rd)).

By Proposition 5.7, if θ′ < π,

J
∑

j=1

∫

B(zj ,ǫj)

ψ(zj)nV (z)(r, π, π + θ′)dL(z)

=

(

J
∑

j=1

ψ(zj)vol(B(zj , ǫj))

)

1

2π
adrd

(

1

d
h′d(θ

′) + d

∫ θ′

0

hd(ω)dω

)

+ o(rd),

and

J
∑

j=1

∫

B(zj ,ǫj)

ψ(zj)nV (z)(r)dL(z) =
(

J
∑

j=1

ψ(zj)vol(B(zj , ǫj))

)

d

2π
adrd

∫ π

0

hd(ω)dω+o(r
d).

Again using our choice of δ1 and ǫj , we have
∣

∣

∣

∣

∣

J
∑

j=1

ψ(zj)vol(B(zj , ǫj))−
∫

ψ(z)dL(z)
∣

∣

∣

∣

∣

<
2ǫ

5(cdad + 1)
.

Thus we have shown that given ǫ > 0, if 0 < θ′ < π,

(5.6)
∣

∣

∣

∣

∫

ψ(z)nV (z)(r, π, θ
′ + π)dL(z)−

∫

ψ(z)dL(z) 1

2π
adrd

(

1

d
h′d(θ

′) + d

∫ θ

0

hd(ω)dω

)
∣

∣

∣

∣

≤ ǫrd + o(rd)

and

(5.7)

∣

∣

∣

∣

∫

ψ(z)nV (z)(r)dL(z)− cda
drd
∫

ψ(z)dL(z)
∣

∣

∣

∣

≤ ǫrd + o(rd).

Thus we have proved the first and third statements of the theorem. The second

statement of the theorem follows from the other two.
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6. Proof of Theorem 1.2

This proof uses some ideas similar to those used in the proofs of Propositions 5.3

and 5.6. In fact, because the proofs are so similar we shall only give an outline.

Note that by (2.2), (3.1), and Lemma 3.1,

NV (z)(r) = ψ(z, r) + o(rd−1)

where

ψ(z, r) =
1

2π

∫ π

0

ln |sV (z)(re
iθ)|dθ

is, for fixed (large) r a plurisubharmonic function of z ∈ Ω̃ ⋐ Ω. Since

lim sup
r→∞

r−dψz(z, r) ≤
1

2π

∫ θ

0

hd(θ)dθ

and this maximum is achieved at z = z0 ∈ Ω, we get the first part of the Theorem by

applying [10, Proposition 1.39], recalled in Proposition 2.3.

To obtain the second part, note that as in the proof of Proposition 5.3, for 0 < θ <

π,
∫ θ

0

NV (z)(r, π, θ
′ + π)dθ′ = ψ2(z, r, θ) + o(rd)

where

ψ2(z, r, θ) =
1

2π

∫ r

M

J tsV (z)(θ)
dt

t
+

1

2π

∫ θ

0

∫ θ′

0

ln |sV (z)(re
iω)|dωdθ′.

Since this is a plurisubharmonic function of z ∈ Ω̃, Ω̃ ⋐ Ω, if M is chosen so that

M ≥ 2αdmax
z∈Ω̃ ‖V ‖∞, a similar argument as in the proof of Proposition 5.3 shows

that there exists a pluripolar set Eθ ⊂ Ω so that

2π lim sup
r→∞

r−dψ2(z, r, θ) =
1

d2
hd(θ) +

∫ θ

0

hd(θ
′)dθ′

for all z ∈ Ω \ Eθ. Note that if the second part of the theorem can be proved

for a small θ0, it is proved for all θ with θ ≥ θ0. Thus, it is most interesting for

small θ. Choose θ > 0 sufficiently small that hd(θ) ≥ θh′d(0+)/2, where we denote

limǫ↓0 hd(ǫ) = hd(0+). Now, if

lim sup
r→0

r−d
∫ θ

0

NV (r, π, π + θ′)dθ′ =
1

2π

(

1

d2
hd(θ) +

∫ θ

0

hd(θ
′)dθ′

)

≥ 1

4πd2
h′d(0+)θ,

then since NV (r, π, π) = O(1), we must have

lim sup
r→0

r−dNV (r, π, π + θ) ≥ 1

4πd2
h′d(0+).
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