
ar
X

iv
:1

01
2.

37
45

v1
  [

m
at

h.
SG

] 
 1

6 
D

ec
 2

01
0

ON KNOTS IN OVERTWISTED CONTACT STRUCTURES

JOHN B. ETNYRE

ABSTRACT. We prove that each overtwisted contact structure has knot types that are represented by
infinitely many distinct transverse knots all with the same self-linking number. In some cases, we can
even classify all such knots. We also show similar results for Legendrian knots and prove a “folk” result
concerning loose transverse and Legendrian knots (that is knots with overtwisted complements) which
says that such knots are determined by their classical invariants (up to contactomorphism). Finally we
discuss how these results partially fill in our understanding of the “geography” and “botany” problems
for Legendrian knots in overtwisted contact structures, as well as many open questions regarding these

problems.

1. INTRODUCTION

Since Eliashberg’s formative paper [9] classifying overtwisted contact structures on 3–manifolds,
the study of and interest in such structures has been minimal. However, in recent years they have
been taking a more central role due to their many interesting applications — such as, the construc-
tion of achiral Lefschetz fibrations [14] and near symplectic structures [18] on certain 4–manifolds
and the understanding of the existence of Engel structures on 4–manifolds [27] — as well as the in-
teresting knot theory they support. This paper is aimed at studying the Legendrian and transverse
knot theory of overtwisted contact structures. We begin with a brief history of the subject.

A Legendrian or transverse knot in an overtwisted contact structure ξ on a 3–manifold M is
called loose if the contact structure restricted to its complement is also overtwisted, otherwise the
knot is called non-loose. Though apparently known to a few experts, the first explicit example of
a non-loose knot was given by Dymara in [8], where a single non-loose Legendrian unknot was
constructed in a certain overtwisted structure on S3. More recently, Eliashberg and Fraser [10] gave
a course classification of Legendrian unknots in overtwisted contact structures on S3, see Theo-
rem 2.2 below. (We say knots are coarsely classified if they are classified up to co-orientation pre-
serving contactomorphism, smoothly isotopic to the identity. We reserve the word classified to refer
to the classification up to Legendrian isotopy, and similarly for transverse knots.) An immediate
corollary of this work is that there are no non-loose transverse unknots in any overtwisted contact
structure.

In [13] it was shown that there are knot types and overtwisted contact structures for which
there were arbitrarily many distinct non-loose Legendrian knots realizing that knot type with fixed
Thurston-Bennequin invariant and rotation number. While it is easy to construct non-loose trans-
verse knots in any overtwisted contact structure (one just observes, cf. [11], that the complement
of the binding of a supporting open book decomposition is tight) two non-loose transverse knots
with the same self-linking numbers were first produced by Lisca, Ozsváth, Stipsicz and Szabó, in
[25], using Heegaard-Floer invariants of Legendrian and transverse knots.

There have been very few results concerning the classification of Legendrian or transverse knots
in overtwisted contact structure (as opposed to the course classification), but there has been some
work giving necessary conditions for the existence of a Legendrian isotopy, see for example [5, 7,
10].

Leaving the history of the subject for now we begin by recalling a version of the Bennequin

bound for non-loose knots. This result first appeared in [7] where it was attributed to Świa̧tkowski.

Proposition 1.1 (Świa̧tkowski, see [7]). Let (M, ξ) be an overtwisted contact 3–manifold and L a non-
loose Legendrian knot in ξ. Then

−| tb(L)|+ | r(L)| ≤ −χ(Σ)

for any Seifert surface Σ for L.
1
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We sketch a simple prove of this result below. We now observe a relation between non-loose
transverse knots and their Legendrian approximations as well as non-loose Legendrian knots and
their transverse push-offs.

Proposition 1.2. If T is a non-loose transverse knot then any Legendrian approximation of T is non-loose.
If L is a non-loose Legendrian knot then the transverse push-off of L may or may not be non-loose.

The previous two results imply the version of the Bennequin bound for transverse knots in a
tight contact structure also holds for non-loose transverse knots. This is in stark contrast to what
happens for Legendrian knots as Proposition 1.1 indicates and Eliashberg and Fraser’s course clas-
sification of unknots, given in Theorem 2.2 below, confirms.

Proposition 1.3. Let (M, ξ) be a contact 3–manifold and K a transverse knot in ξ with Seifert surface Σ. If

sl(K) > −χ(Σ)

then K is loose (and, of course, ξ is overtwisted). In particular any non-loose knot K in an overtwisted
contact structure satisfies the Bennequin inequality

sl(K) ≤ −χ(Σ).

1.1. The course classification of loose Legendrian and transverse knots. The following two the-
orems make precise the well-known “folk” theorems that loose Legendrian or transverse knots are
coarsely classified by their classical invariants.

Theorem 1.4. Let (M, ξ) be an overtwisted contact manifold. For each null-homologous knot type K and
each pair of integers (t, r) satisfying t+r is odd, there is a unique, up to contactomorphism, loose Legendrian
knot L in the knot type K with tb(L) = t and r(L) = r.

Recall that for any Legendrian knots L we must have tb(L) + r(L) odd, so the above theorem
says any possible pair of integers is realized by a unique loose Legendrian knot in any overtwisted
contact structures. For transverse knots we have the following result.

Theorem 1.5. Let (M, ξ) be an overtwisted contact manifold. For each null-homologous knot type K and
each odd integer s there is a unique, up to contactomorphism, loose transverse knot T in the knot type K with
sl(T ) = s.

Again recall that the self-linking number of any transverse knot must be odd and thus the theorem
says that any possible integer is realized by a unique loose transverse knot in an overtwisted contact
structure.

These two theorems follow directly from Eliashberg’s classification of overtwisted contact struc-
tures and a careful analysis of homotopy classes of plane fields on manifolds with boundary, which
we give in Section 4. Theorem 1.4 also appears in [10] though the details of the homotopy theory
were not discussed, and while these details are fairly straight forward they do not seem obvious to
the author. In particular, when studying the homotopy classes of plane fields there is both a 2 and
3-dimensional obstruction to being able to homotope one plane field to another. The fact that the
3-dimensional obstruct is determined by the Thurston-Bennequin invariant and rotation number
seems, at first, a little surprising until one carefully compares the Pontryagin–Thom construction
with a relative version of the Pontryagin–Thom construction. Geiges and independently, Klukas,
in private communication, informed the author of another way to deal the the homotopy issues
and prove the above theorems. Similar theorems, with extra hypothesis, concerning Legendrian
isotopy were proven in [5, 7].

It would be interesting to extend the theorems above to non-null-homologous knot types, by
defining a relative Thurston-Bennequin invariant and rotation number. See [5, 7] for partial results
along these lines.

1.2. Non-loose transverse knots and the course classification of transverse fibered knots realiz-
ing the Bennequin bound. In [4], Colin, Giroux and Honda proved that if one fixes a knot type in
an atoriodal 3–manifold and a tight contact structure on the manifold then there are only finitely
many Legendrian knots with given Thurston-Bennequin invariant and rotation number. This im-
plies the same finiteness result for transverse knots knots. Surprisingly this finiteness result is far
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from true in an overtwisted contact structure. We begin with some notation and terminology. We
call the open book for S3 with binding the unknot the trivial open book decomposition and say an open
book decomposition is non-trivial if it is not diffeomorphic to the trivial open book decomposition.

If (M, ξ) is a contact 3–manifold and K is a topological knot type we denote by T (K) the set
of all transverse knots in the knot type K up to contactomorphism (co-orientation preserving and
smoothly isotopic to the identity). (We note that in some context one might want this to denote
the transverse knots up to transverse isotopy, but in this paper we will only consider the course
classification of knots.) If n is an integer then

Tn(K) = {T ∈ T (K) : sl(T ) = n}

is the set of transverse knots in the knot type K with self-linking number n.

Theorem 1.6. Let (B, π) be a non-trivial open book decomposition with connected binding of a closed 3–
manifold M and let ξB be the contact structure it supports. Denote by ξ the contact structure obtained from
ξB by a full Lutz twist along B. Then T−χ(B)(B) contains infinitely many distinct non-loose transverse
knots up to contactomorphism (and hence isotopy too).

This theorem gives the first known example of a knot type and contact structure which supports
an infinite number of transverse knots with the same self-linking number. We have a similar result
using half-Lutz twists.

Theorem 1.7. Let (B, π) be a non-trivial open book decomposition with connected binding of a closed 3–
manifold M and let ξB be the contact structure it supports. Denote by ξ the contact structure obtained from
ξB by a half Lutz twist along B. Then Tχ(B)(B) contains infinitely many distinct non-loose transverse knots
up to contactomorphism (and hence isotopy too).

Finally we have the following less specific but more general theorem along these lines.

Theorem 1.8. Let K be a null-homologous knot type in a closed irreducible 3-manifoldM with Seifert genus
g > 0. There is an overtwisted contact structures for which T2g−1(K) is infinite and distinct overtwisted
contact structures for which T−2g+1(K) is infinite.

Remark 1.9. We note that as mentioned above, and proven in Corollary 2.3 below, any transverse
unknot in an overtwisted contact manifold is loose. Hence the previous theorem implies that
the unknot it the unique null-homologous knot in any (irreducible) manifold that does not have
non-loose transverse representatives in some overtwisted contact manifold (in fact all other null-
homologous knots have non-loose transverse representatives in at least two overtwisted contact
manifolds). The reason for this is simply that the unknot is the unique knot whose complement has
compressible boundary.

Since, as noted above, Legendrian approximations of non-loose transverse knots are also non-
loose, we see that all null-homologous knots have non-loose Legendrian representatives in some
overtwisted contact structure. �

Using results from [17] we can refine Theorem 1.6 for hyperbolic knots to give the course clas-
sification of transverse knots in a fibered hyperbolic knot type that realize the upper bound in
Proposition 1.3.

Theorem 1.10. Let (B, π) be an open book decomposition with connected binding of a closed 3–manifold M
and let ξB be the contact structure it supports. Denote by ξ the contact structure obtained from ξB by a full
Lutz twist along B. If B is a hyperbolic knot then

T−χ(B)(B) = {K∗} ∪ {Ki}i∈A,

where A = N if ξB is tight and A = N ∪ {0} if not; and if ξ′ 6= ξ is overtwisted then

T−χ(B)(B) = {K∗}.

Moreover

• K∗ is loose and the knot Ki is non-loose and has Giroux torsion i along a torus parallel to the
boundary of a neighborhood of Ki.
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• The Heegaard-Floer invariants of all knots in T−χ(B)(B) vanish except for K0, which only exists if
ξB is overtwisted.

• All knots in T−χ(B)(B), except possibly K0, if it exists, become loose after a single stabilization.

Remark 1.11. We note that while Theorem 1.7 does allow us to conclude that for the binding of
an open book there is at least one overtwisted contact structures such that Tχ(B)(B) is infinite, the
technology in [17] does not appear strong enough to prove a results similar to Theorem 1.10 in this
case. �

1.3. Non-loose Legendrian knots and the course classification of Legendrian knots. We can use
the course classification of transverse knots to understand some Legendrian knots in the same knot
types. If (M, ξ) is a contact 3–manifold and K is a topological knot type, then we denote by L(K) the
set of all Legendrian knots in the knot type K up to contactomorphism (co-orientation preserving
and smoothly isotopic to the identity). If m and n are two integers then

Lm,n(K) = {L ∈ L(K) : r(L) = m and tb(L) = n}

is the set of Legendrian knots in the knot type K with rotation number m and Thurston-Bennequin
invariant equal to n.

Theorem 1.12. Let (B, π) be an open book decomposition with connected binding of a closed 3–manifold M
and let ξB be the contact structure it supports. Denote by ξ the contact structure obtained from ξB by a full
Lutz twist along B. If B is a hyperbolic knot then there is an m ∈ Z ∪ {∞} depending only on B such that
for each fixed integer n we have

Lχ(B)+n,n(B) = {L∗} ∪ {Ln,i}i∈An
,

where An = N if ξB is tight or n > m and An = N ∪ {0} if not; and if ξ′ 6= ξ is overtwisted then

Lχ(B)+n,n(B) = {L∗}.

See Figure 1. Moreover

• L∗ is loose and the knot Ln,i is non-loose and has Giroux torsion i along a torus parallel to the
boundary of a neighborhood of Ln,i.

• The Heegaard-Floer invariants of all knots in Lχ(B)+n,n(B) vanish except for Ln,0, which is non-
zero. (Recall Ln,0 only exists if ξB is overtwisted and n ≤ m.)

• All knots in Lχ(B)+n,n(B), except possibly Ln,0, if it exists, become loose after a single positive
stabilization.

• The negative stabilization of Ln,i is Ln−1,i.

As we noted in the transverse case, this theorem provides the first examples of a knot type
and contact structure that support an infinite number of Legendrian knots with the same classical
invariants. We also remark that if the hypothesis on B being a hyperbolic knot is dropped then, as
in Theorem 1.6 for transverse knots, one can still conclude that there are infinitely many Legendrian
knots with fixed invariants as in the theorem, but we cannot necessarily give a classification of these
Legendrian knots.

We notice now that if −B and B are smoothly isotopic then we can extend the above classifica-
tion.

Theorem 1.13. Given the hypothesis and notation of Theorem 1.12, suppose that −B is smoothly isotopic
to B, where −B denotes B with its orientation reversed. Then for each fixed integer n we have

L−χ(B)−n,n(B) = {L∗} ∪ {Ln,i}i∈An
,

where An = N if ξB is tight or n > m and An = N ∪ {0} if not; and if ξ′ 6= ξ is overtwisted then

L−χ(B)−n,n(B) = {L∗}.

Reflecting Figure 1 about the r = 0 line depicts the knots described in here. Moreover

• L∗ is loose and the knot Ln,i is non-loose and has Giroux torsion i along a torus parallel to the
boundary of a neighborhood of Ln,i.

• The Heegaard-Floer invariants of all knots in L−χ(B)−n,n(B) vanish except for Ln,0, which is non-
zero. (Recall Ln,0 only exists if ξB is overtwisted and n ≤ m.)
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FIGURE 1. The knots discussed in Theorem 1.12. A dot at (m,n) indicates there
is a non-loose knot with rotation number m and Thurston-Bennequin invariant
n. The subscript on the dot indicates the set that indexes the family of non-loose
Legendrian knots with invariants given by the coordinates. The line is given by
−m+ n = −χ(B).

• All knots in L−χ(B)−n,n(B), except possibly Ln,0 if it exists, become loose after a single negative
stabilization.

• The positive stabilization of Ln,i is Ln−1,i.

Remark 1.14. Under the hypothesis of Theorem 1.13 consider the set L̃−χ,0(B), where the tilde
indicates that we are considering Legendrian knots up to isotopy not just contactomorphism (co-
orientation and isotopic to the identity). Given a non-loose Legendrian L0,i ∈ L−χ(B),0(B) from
Theorem 1.12 then L0,i and −L0,i are contactomorphic (and hence the same in L−χ(B),0(B)) but

they are not Legendrian isotopic and thus do represent different elements in L̃−χ,0(B). To see this
we simply notice that a contactomorphism taking L0,i to −L0,i can (and, in this case, does) reverse
the sense of a stabilization (that is change the sign of the bypass used to define the stabilization), but
a Legendrian isotopy would preserve the sense of the stabilization. Since we know that negative
stabilizations of L0,i preserve the non-looseness of L0,i while positive stabilizations do not and we
have the opposite behavior for −L0,i, these knots cannot be Legendrian isotopic.

There is a natural surjective map L̃−χ,0(B) → L−χ,0(B). The above example seem to be the first
examples where one can prove that this map is not a bijection; that is, where one knows there is
a difference between the classification Legendrian knots up to isotopy and the classification up
to contactomorphism (isotopic to the identity). We also note that this fact proves that the space
of contact structures on M has a non-trivial loop based at the contact structure considered in the
theorem. �

Recall that two Legendrian knots with the same classical invariants will eventually become iso-
topic after sufficiently many positive and negative stabilizations. Trying to understand exactly how
many is an interesting question. We have the following partial results.

Proposition 1.15. Given the hypothesis of Theorem 1.12 where ξB is tight and −B is not isotopic to B.
(Here −B denotes B with the reversed orientation.) If a knot L ∈ L(B) satisfies

tb(L)− r(L) > −χ(B)

then it becomes loose after 1
2 (−χ(B)− tb(L)) or fewer positive stabilizations.
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There is a similar statement for the case when B is isotopic to −B. In the next subsection we
discuss the “geography problem” for Legendrian knots and in particular at the end of the section
we discuss the significance of this proposition.

1.4. The geography for non-loose knots. Let K be a knot type on a contact manifold (M, ξ). We
have the map

Φ : L(K) → Z× Z : L 7→ (r(L), tb(L)).

Determining which pairs of integers are in the image of Φ is called the Legendrian geography problem.
The image if Φ is frequently called the Legendrian mountain range of K because in the case that ξ
is the tight contact structure on S3 the image resembles the silhouette of a mountain range. This
structure comes from the facts that when ξ is the tight contact structure on S3 we know that (1) the
image is symmetric, (2) the Thurston-Bennequin invariant is bounded above, and (3) positive and
negative stabilizations show that the pairs (m− k, n+ l), where k ≥ 0, |l| ≤ k, and l+ k is even, are
in the image if (m,n) is. (Recall that for any Legendrian knot L we must have that tb(L) + r(L) is
odd, so (3) says all possible pairs of points in the cone with with sides of slope ±1 and top vertex
(m,n) are realized by Legendrian knots that are stabilizations of the given knot.) For a general
contact structure we only have (3) and if the structure is tight (2).

Once one understand the Legendrian geography problem for a knot type K then the classifi-
cation of Legendrian knots will be complete when one understands the preimage of each pair of
integers. Determining Φ−1(m,n) is know as the botany problem for K. The weak botany problem asked
to determine if Φ−1(m,n) is empty, finite or infinite for each pair (m,n). As mentioned above if K
is a hyperbolic knot and ξ is tight then the preimage of any (m,n) is either empty or finite.

If ξ is overtwisted then every pair of integers (m,n) for which m + n is odd is in the image of
Φ. Thus the general geography problem is not interesting for overtwisted contact structures and so
we need to restrict our attention to non-loose knots. Let Lnl(K) be the set of non-loose Legendrian
knots in the knot type K. Determining Φ(Lnl(K)) will be called the Legendrian geography problem
when ξ is overtwisted, which is what we consider from this point on. Similarly when we discuss the
weak botany problem for overtwisted contact manifolds we will only be considering the preimage
of (m,n) that lie in Φ(Lnl(K)) (since by Theorem 1.4 we know the preimage contains exactly 1 loose
Legendrian knot if n+m is odd and none if it is even).

We now summarize what we know about the geography problem for non-loose knots. First,
Proposition 1.1 implies that (assuming the knot under consideration is not the unknot!) the image
of Φ (when restricted to non-loose knots) is contained in the region shown in Figure 2. The four
black lines l1, . . . , l4, are the lines

± tb(L)± r(L) = −χ(Σ)

(where all combinations of ± are considered). The region is broken into 7 subregions, R1, . . . , R7

as indicated in the figure, by the four lines. The regions Ri are open regions, when discussing the

corresponding closed regions we will of course us the notations Ri.

Question 1. Can there be a non-loose knot with image in R1 or R2?

While we believe the answer to this question is likely “yes”, it seems fairly likely that the answer
to the next, related, questions is “no”.

Question 2. Can there be a (m,n) ∈ R1 ∪R2 with Φ−1((m,n)) infinite?

We know from Colin, Giroux and Honda [4] that if you fix a tight contact structure on a manifold,
a knot type and two integers, there are finitely many Legendrian knots in the given knot type
realizing the integers as their Thurston-Bennequin invariant and rotation number. This seems close
to proving the answer to the following question is “yes”.

Question 3. Given a knot type K in a manifold M are there only finitely many overtwisted contact struc-
tures on M such that K can have non-loose representatives?

In fact the answer to this question would be “yes” if the following general question about Leg-
endrian knots could be answered in the affirmative.
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FIGURE 2. A non-loose knot must will map to the grey region under the map Φ.
The black lines, labeled l1, . . . , l4, break the grey region into 7 subregions as indi-
cated in the figure. The regions Ri are open regions (that is not including the points
on the black lines).

Question 4. Given a knot type K in M is there a number n such that if L is any Legendrian representative
in any contact structure on M with tb(L) < n then L destabilizes?

Of course this question is also very interesting if one first fixes the contact structure and then
asks for the integer n. If this more restricted question had a positive answer then the Colin-Giroux-
Honda result would imply that for any fixed tight contact structure ξ on a manifold M the Legen-
drian knots in a given knot type K would be “finitely generated”, by which we mean there would
be a finite number of non-destabilizable Legendrian knots in L(K) such that all other elements in
L(K) would be stabilizations of these. This would also be true in overtwisted contact structures up
to Lutz twisting along the knot.

We think it is very likely the answer to the following weaker version of Question 3 is “yes”.

Question 5. Given a knot type K in a manifold M are there only finitely many overtwisted contact struc-
tures on M such that Φ can have infinite preimage at some point? (Maybe even at most two such structures.)

With the notation established for Figure 2 we discuss Proposition 1.15. The proposition says

that if L is a Legendrian representative with invariants in the region R1 ∪R4, then once it is posi-
tively stabilized it into region R5 or R3 it will be loose. This is surprising given that according to
the bounds given in Proposition 1.1 a knot with invariants in R4 could theoretically be stabilized
positively an arbitrary number of times and stay non-loose.
Acknowledgments: The author thanks Amey Kolati, Lenny Ng, and Bulent Tosun for useful dis-
cussions and e-mail exchanges during the preparation of this work. He also thanks Thomas Vogel
for agreeing to allow the inclusion of Theorem 2.2 that he and the author worked out some years
ago. The author also thanks Hansjörg Geiges and Mirko Klukas for interesting discussions con-
cerning the classification of loose Legendrian knots. This work was partially supported by NSF
grant DMS-0804820.
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2. BACKGROUND CONCEPTS

We assume the reader is familiar with convex surface theory and Legendrian knots, see for ex-
ample [12, 15]. For convenience we recall some of the key features of Legendrian and transverse
knots used in this paper in Subsection 2.1. In the following subsection we recall Eliashberg and
Fraser’s classification of non-loose Legendrian unknots. We sketch a simple proof of this results
T. Vogel and the author had worked out and observe the immediate corollary concerning non-
loose transverse unknots. In Subsetction 2.3 we recall the definition of Giroux torsion and make
several observations necessary for the proofs of our main results. In the last subsection we recall
the notion of quasi-convexity introduced in [17].

2.1. Neighborhoods of Legendrian and transverse knots. Recall that a convex torus T in a contact
manifold (M, ξ) will have an even number of dividing curves of some slope. We call the slope of
the dividing curves the dividing slope. If there are just two dividing curves then using the Legen-
drian realization principle of Giorux we can arrange that the characteristic foliation has two lines
of singularities parallel to the dividing curves, these are called Legendrian divides, and the rest of the
foliation is by curves of some slope not equal to the dividing slope. These curves are called ruling
curves and their slope is called the ruling slope. Any convex torus with such a characteristic foliation
will be said to be in standard form. Note that given a torus in standard form we can perturb the
foliation to have two closed leaves parallel to the dividing curves and the other leaves spiraling
from one closed leaf to the other.

The regular neighborhood theorem for Legendrian submanifolds says that given a Legendrian
knot L in a contact manifold (M, ξ) there is some neighborhood N of L that is contactomorphic to
a neighborhood N ′ of the image of the x-axis in R

3/(x 7→ x + 1) ∼= S1 × R
2 with contact structure

ξstd = ker(dz − y dx). By shrinking N and N ′ if necessary we can assume that N ′ is a disk in the
yz-plane times the image of the x-axis. It is easy to see, using the model N ′, that ∂N is a convex
torus with two dividing curves of slope 1

n where n = tb(L). Thus we can assume that ∂N is in
standard form. Moreover, notice that L± = {(x,±ǫ, 0)} ⊂ N ′ is a (±)-transverse curve. The image
of L+ in N is called the transverse push-off of L and L− is called the negative transverse push-off. One
may easily check that L± is well-defined and compute that

sl(L±) = tb(L)∓ r(L).

We now recall how to understand stabilizations and destabilizations of a Legendrian knot K in
terms of the standard neighborhood. Inside the standard neighborhood N of L we can positively
or negatively stabilize L. Denote the result S+(L), respectively S−(L). Let Ns be a neighborhood of
the stabilization of L inside N. As above we can assume that Ns has convex boundary in standard
form. It will have dividing slope 1

n−1 . Thus the region N \Ns is diffeomorphic to T 2× [0, 1] and the
contact structure on it is easily seen to be a “basic slice”, see [22]. There are exactly two basic slices
with given dividing curves on their boundary and as there are two types of stabilization of L we see
that the basic slice N \Ns is determined by the type of stabilization done, and vice versa. Moreover
if N is a standard neighborhood of L then L destabilizes if the solid torus N can be thickened to a
solid torus Nd with convex boundary in standard form with dividing slope 1

n+1 . Moreover the sign

of the destabilization will be determined by the basic slice Nd \N.
Denote by Sa the solid torus {(φ, (r, θ))|r ≤ a} ⊂ S1 × R

2, where (r, θ) are polar coordinates on
R

2 and φ is the angular coordinate on S1, with the contact structure ξcyl = ker(dφ + r2 dθ). Given
a transverse knot K in a contact manifold (M, ξ) one may use a standard Moser type argument to
show that there is a neighborhood N of K in M and some positive number a such that (N, ξ|ξ) is
contactomorphic to Sa. Notice that the tori ∂Sb inside of Sa have linear characteristic foliations of
slope −b2. Thus for all integers with 1√

n
< a we have tori Tn = ∂S1/

√
n with linear characteristic

foliation of slope − 1
n . Let Ln be a leaf of the characteristic foliation of Tn. Clearly Ln is a Legendrian

curve in the same knot type as T and tb(Ln) = −n. Any Legendrian L Legendrian isotopic to one
of the Ln so constructed will be called a Legendrian approximation of K.
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Lemma 2.1 (Etnyre-Honda 2001, [15]). If Ln is a Legendrian approximation of the transverse knot K
then (Ln)+ is transversely isotopic to K. Moreover, Ln+1 is Legendrian isotopic to the negative stabilization
of Ln. �

2.2. Non-loose knots in S3. In this section we recall the following coarse classification of unknots
in overtwisted contact structures on S3. To state the theorem we recall that the homotopy class
of a plane field ξ on M can be determined by computing two invariants [21]: the 2-dimensional
invariant, which is determined by the spinc structure sξ associated to the plane field (if H2(M ;Z)
has no 2-torsion then sξ is determined by the Euler class e(ξ) of ξ) and the 3-dimensional invariant
d3(ξ). In particular, on the 3–sphere the 2-dimensional invariant of a plane field vanishes and so it
is determined by its 3-dimensional invariant d3(ξ) ∈ Z.

Theorem 2.2 (Eliashberg-Fraser 2009, [10]). There is a unique overtwisted contact structure ξ on S3 that
contains non-loose Legendrian unknots. This contact structure has d3(ξ) = 1 and is shown in Figure 3.
Ever Legendrian unknot with tight complement has tb > 0 and up to contactomorphism there are exactly
two such knots with tb = n > 1, they are distinguished by their rotation numbers which are ±(n− 1), and
a unique such knot with tb = 1.

(+1)

(+1)

FIGURE 3. The two contact surgeries on the left give the contact structure ξ in
Theorem 2.2. The dotted Legendrian becomes a Legendrian unknot L with tb = 1
in the surgered manifold. The disk L bounds is indicated on the right.

We include a brief proof of this result that the author worked out with Thomas Vogel but never
published. This is essentially the same as the proof in [10], though it is couched in somewhat
different language and we identify a surgery picture for the minimal tb example in Figure 3. Before
giving the proof we notice two simple corollaries concerning transverse unknots and non-loose
unknots in other contact manifolds.

Corollary 2.3. Any transverse unknot in any overtwisted contact manifold is loose and hence coarsely
determined by its self-linking number.

Proof. Since any non-loose Legendrian unknot can be negatively stabilized until it is loose, Lemma 2.1
implies that any transverse unknot is the transverse push-off of a loose Legendrian. Since the trans-
verse push-off can be done in any C∞-neighborhood of the Legendrian knot it is clear that the
overtwisted disk in the complement of the Legendrian is also in the complement of the transverse
knot. Thus any transverse unknot in an overtwisted contact structure is loose. The rest follows
from Theorem 1.5 �

Corollary 2.4. On a fixed 3-manifold M with fixed spinc structure s there is an overtwisted contact struc-
ture having non-loose unknots and associated spinc structure s if and only if there is a tight contact structure
on M with associated spinc structure s. Moreover, the number of such overtwisted contact structure associ-
ated to s is equal to the number of tight contact structures associated to s.

Proof. Let U be an unknot in M and U ′ be an unknot in S3. The unique prime decomposition of
tight contact manifolds [1] implies that any tight contact structure on M\U comes from tight contact
structures on M and S3 \ U ′. The result follows. �

We now turn to the classification of non-loose unknots in S3.
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Proof of Theorem 2.2. Let ξ be any overtwisted contact structure on S3 and L a Legendrian unknot
in (S3, ξ). We can decompose S3 as

S3 = V1 ∪φ V2

where Vi = S1 ×D2 and φ : ∂V1 → ∂V2 is the map given by

φ =

(
0 1
1 0

)

in meridian-longitude coordinates on each ∂Vi. Moreover we can assume that V1 is a standard
neighborhood of L with convex boundary having dividing slope 1/nwhere n = tb(L). If we assume
the complement of L is tight then the contact structure on V2 is tight (of course, the contact structure
on V1 is always tight). The boundary of V2 is convex and has dividing slope n. Clearly L, up to
contactomorphism, is determined by the contact structure on V2. If n < 0 then there are precisely
|n| distinct tight contact structures on V2 with the given dividing curves on the boundary. All of
there contact structures are realized as the complement of a tb = n, Legendrian unknot in the
standard tight contact structure on S3. Thus they never show up as the complement of an unknot
in an overtwisted contact structure. If n = 0 then V2 has dividing slope 0 and hence the contact
structure must be overtwisted. Thus n 6= 0 if the complement of L is tight. Finally, if n > 1 then
there are two tight contact structures on V2 and only one tight contact structure on V2 when n = 1.
Thus we have shown there is a unique Legendrian knot in an overtwisted contact structure on S3

that has tb = 1 and there are at most two when tb > 1. We are left to show that these all occur in
the same contact structure, that contact structure has d3 = 1 and all these knots are distinct. To this
end consider the case n = 1. The unique tight contact structure on V2 has relative Euler class e = 0.
Thus from [15] we see that r(L) = 0. Now V2 can be written V2 = S ∪N where S is as solid torus
and N ∼= T 2 × [0, 1] where T 2 × {1} = ∂V2 and T 2 × {0} is glued to ∂S. We can arrange that ∂S
is convex with two dividing curves of slope 2. The contact structure on N is a basic slice. There
are two basic slices and they are distinguished by the sign of the bypass on a meridional annulus.
Thinking of N as glued to V1 now, instead of V2 we see that V1 ∪ N is a solid torus with convex
boundary having two dividing curves of slope 1

2 . This is a standard neighborhood of a Legendrian
unknot L′ with tb = n+ 1. Moreover L is a stabilization of L′ and which stabilization it is depends
on the sign of the basic slice N, see Section 2.1 above. Thus if L is in the contact structure ξ then
there are two Legendrian unknots L+ and L− in ξ such that S∓(L±) = L. So tb(L±) = 2 and
r(L+) = 1 = −r(L−) and we see that L+ and L− are distinct Legendrian knots and they exist in
the same contact structure as L.

Now suppose we have shown that the Legendrian unknots with tb ≤ n and tight complements
all exist in the same overtwisted contact structure and satisfy r(L) = ±(tb(L) − 1). Consider a
Legendrian unknot L with tb = n. We can decompose V2 as above, but with ∂S having dividing
slope n + 1. Now N is again a basic slice, but only one basic slice can be a subset of V2. Using
the relative Euler class discussed in [15] one may easily see the sign of the bypass determining the
contact structure on N agrees with the sign of r(L). For the rest of the argument we assume the
sign is positive. As above, V1 ∪N is a neighborhood of a Legendrian unknot L′ with tb(L′) = n+1
and S−(L′) = L. (Note the sign of the bypass switches since we turned N upside down.) Thus
r(L) = r(L′)− 1 and r(L′) = r(L) + 1 = (n− 1) + 1 = n.

We are left to identify the contact structure containing the unknot with tb = 1. This is shown in
Figure 3. One may easily compute

d3(ξ) =
1

4
(c2(X)− 3σ(X)− 2χ(X)) + 2 = 1,

where X is the bordism from S3 to S3 given in the figure, σ its the sigunature, χ its Euler charac-
teristic and c2 is the square of the “Chern class” of the (singular) almost complex structure on X.
(For a discussion of this formula see [6].) If L is the knot indicated in the figure, then Legendrian
surgery on L cancels one of the +1-contact surgeries in the figure. Thus the resulting manifold is
the contact manifold obtained by +1-contact surgery on the tb = −1 unknot in the standard tight
contact structure on S3. This is well known to be the tight contact structure on S1 × S2 (see [6]).
Thus the complement of L (which is a subset of the tight contact structure on S1 × S2) is clearly
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tight. Moreover, in Figure 3 we see a disk L bounds in the surgered manifold, indicating that L is
an unknot. This disk gives L a framing that is 2 less than the framing given by a disk in S3 before
the surgeries. Thus we see that the contact framing with respect to this disk is 1 = −1 + 2. �

2.3. Giroux torsion. Given a contact manifold (M, ξ) and an isotopy class of tori [T ] in M we
define the Giroux torsion of (M, ξ) in the isotopy class [T ], denoted tor((M, ξ), [T ]), to be the maximum
natural number n such that there exists a contact embedding φ : (T 2 × [0, 1], ζn) → (M, ξ), where
φ(T 2 × {0}) ∈ [T ] and the contact structure ζn on T 2 × [0, 1] (thought of as R

2/Z × [0, 1]) is given
by ζn = ker(sin(2nπt) dx + cos(2nπt) dy). We sometimes refer to “half–Giroux” torsion when T 2 ×
[0, 1/2], with the above contact structure, can be contact embedded in (M, ξ).

The Giroux torsion of (M, ξ) is the maximal Giroux torsion taken over all isotopy classes of tori in
M. Recall that the Giroux torsion of M is infinite in all isotopy class of tori if ξ is overtwisted. It is
unknown if the Giroux torsion is finite when ξ is tight, though this is frequently the case [3]. We
make a simple observation about Giroux torsion that we will need below.

Lemma 2.5. Let (M, ξ) be a contact manifold with boundary a torus T and [T ] the isotopy class of T.
Assume the characteristic foliation on ∂M is linear. Then

tor((M, ξ), [T ]) = tor((intM, ξ|intM ), [T ]),

where intM denotes the interior of M.

Proof. The inequality tor((M, ξ), [T ]) ≥ tor((intM, ξ|intM ), [T ]) is obvious. For the other inequality
assume we have the contact embedding φ : (T 2 × [0, 1], ζn) → (M, ξ). One of the boundary compo-
nents of T 2 × [0, 1] is mapped into the interior of M (recall M only has one boundary component
and it is in the isotopy class [T ]). Assume that it is T 2 × {1} that maps into the interior (the other
case being similar). We can extend φ to an embedding of T 2× [0, 1+ ǫ] for some ǫ, where the contact
structure on T 2 × [0, 1 + ǫ] is given by ker(cos(2nπt)dx + sin(2nπt)dy). From this we easily find a
contact embedding of (T 2 × [0, 1], ζn) into the interior of M. �

2.4. Quasi-compatibility. In [17] the notion of quasi-compatibility was introduced. Let ξ be an
oriented contact structure on a closed, oriented manifold M and (L,Σ) an open book for M . We
say ξ and (L,Σ) are quasi-compatible if there exists a contact vector field for ξ which is everywhere
positively transverse to the fibers of the fibration (M \ L) → S1 and positively tangent to L.

Once can construct contact structure quasi-compatible with an open book using a slight modi-
fication of the standard construction of compatible contact structures. Specifically, given the open
book (L,Σ) we notice that M − L is the mapping torus of some diffeomorphism φ : Σ → Σ, where
φ is the identity map near ∂Σ. Now given any collection of closed curves Γ on Σ that divide Σ (in
the sense of dividing curves for a convex surface) and are disjoint from ∂Σ, we can construct an
R-invariant contact structure ξ on Σ×R that induce the curves Γ as the dividing curves on Σ×{t}
for any t ∈ R. If φ(Γ) is isotopic to Γ then we can find (after possibly isotoping φ) a negative func-
tion h : Σ → R such that the top and bottom of the region between Σ × {0} and the graph of h
can be glued via φ so that ξ restricted to this region induces a contact structure on M − L. After
slightly altering this contact structure near L we can then extend this contact structure over L in the
standard manner. This gives a contact structure ξ that is quasi-compatible with (L,Σ) (and induces
given φ invariant dividing curves on all the pages).

One of the main technical results of [17] was the following.

Theorem 2.6 (Etnyre and Van Horn-Morris 2010, [17]). Let (B,Σ) be a fibered transverse link in a
contact 3-manifold (M, ξ) and assume that ξ is tight when restricted to M \B. If slξ(B,Σ) = −χ(Σ), then
ξ is quasi-compatible with (B,Σ) and either

(1) ξ is supported by (B,Σ) or
(2) ξ is obtained from ξ(B,Σ) by adding Giroux torsion along tori which are incompressible in the com-

plement of B. �

3. OBSERVATIONS ABOUT NON-LOOSE KNOTS

Though proven in [7] we give a quick proof of Proposition 1.1 for the convenience of the reader.
Though essentially the same as the proof given in [7] it uses quite different language.
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Proof of Proposition 1.1. Notice that the inequaitly to be proved is equivalent to

tb(L)± r(L) ≤ −χ(L) if tb(L) ≤ 0,

− tb(L)± r(L) ≤ −χ(L) if tb(L) > 0.

To establish this let N be a standard convex neighborhood of L with ruling slope 0 (that is, given by
the Seifert framing) and L′ a ruling curve on ∂N. Clearly L′ is null-homologous in the complement
of L. The dividing curves on ∂N have slope 1

tb(L) thus twisting of L′ with respect to ∂N is −| tb(L)|;

however, since the framing on L′ induced by the Seifert surface for L′ and by ∂N are the same we
also see that tb(L′) = −| tb(L)|. Checking that r(L) = r(L′) one obtains the desired inequalities
from the Bennequin inequality applied to L′ in (M −N). To see that r(L) = r(L′) we can trivialize
the contact planes in the neighborhood N by extending the unit tangent vector to L to a non-zero
section of ξ. Then any Legendrian longitude on ∂N that is oriented in the same direction as L
clearly was winding zero with respect to this trivialization and thus the rotation numbers of this
longitude and L will agree. �

We are now ready do establish Proposition 1.2 that explains the relation between a non-loose
transverse or Legendrian knot and it Legendrian approximations or, respectively, transverse push-
offs.

Proof of Proposition 1.2. For the first statement let L be a Legendrian knot such that its positive trans-
verse push-off L+ is transversely isotopic to T. If there is an overtwisted disk D in the complement
of L then D is in the complement of some small neighborhood of L. Since L+ can taken to be in any
neighborhood of L we see that D is in the complement of L+. Thus extending the transverse isotopy
of L+ to T to a global contact isotopy we can move D to an overtwisted disk in the complement of
T.

To prove the second statement in the theorem we note, Corollary 2.3, that all transverse unknots
in an overtwisted contact structure are loose, but by Theorem 2.2 we know there are non-loose Leg-
endrian unknots in a particular contact structure on S3. Thus the transverse push-off of a non-loose
Legendrian knot does not need to be non-loose. On the other hand, the proof of Theorem 1.12
shows that all the non-loose Legendrian knots considered in that theorem, have non-loose trans-
verse push-offs. �

The proof of Proposition 1.3 is a fairly easy consequence of the previous two proofs.

Proof of Proposition 1.3. Let K be a transverse knot with sl(K) > −χ(Σ) and let L be a Legendrian
approximation of K, so tb(L) − r(L) > −χ(Σ). Notice that if tb(L) ≤ 0 then it does not satisfy the
bound given in Proposition 1.1 and thus L is loose and by the proof of Proposition 1.2 we see that K
is loose as well. By Lemma 2.1 all negative stabilizations of L will be Legendrian approximations of
K. Since after stabilizing enough times we can assume that L has non-positive Thurston-Bennequin
invariant we see that K must be loose. �

4. LOOSE KNOTS

In this section we explore the homotopy theory of plane fields in the complement of Legendrian
knots. More generally, we study homotopy classes of plane fields on manifolds with boundary. We
assume the reader is familiar with the Pontryagin–Thom on a closed manifold and its implications
for classifying homotopy classes of plane fields on a 3–manifold, see for example [6, 21]. We end this
section by proving Theorems 1.4 and 1.5 concerning the course classification of loose Legendrian
and transverse knots.

4.1. Homotopy classes of plane fields on manifolds with boundary. We begin by recalling the
Pontryagin–Thom construction in the context of 3–manifolds with boundary. Let M be an oriented
3–manifold with boundary. The space of oriented plane fields on M is denoted P(M) and if one is
given a plane field η along ∂M then the set of oriented plane fields that extend η to all of M will be
denoted P(M, η). Similarly we denote the space of unit vector fields on M by V(M) and the set of
unit vector fields extending a given unit vector field v on the boundary is denoted by V(M, v). All
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of these spaces can be topologized as a space of sections of an appropriate bundle. Also notice that
P(M, η) and V(M, v) might be empty depending on η and v.

Choosing a metric on M we can identify oriented plane fields in M with unit vector fields on M
by sending a plane field ξ to the unit vector field v such that v followed by an oriented basis for ξ
orients TM. Thus a choice of metrics identifies the following spaces

P(M) ∼= V(M), and P(M, η) ∼= V(M, v),

where v is the unit vector field along the boundary of M associated to η by the metric and orienta-
tion.

It is well known that the tangent bundle of M is trivial. Fixing some trivialization, we identify
TM = M × R

3 and the unit tangent bundle of M with M × S2. Using these identifications we
can identify the space of unit vector fields V(M) and the space of smooth functions from M to
S2, which we denote by Maps(M,S2). Similarly if the vector field v along ∂M corresponds to the
function fv then V(M, v) can be identified with the space of smooth functions from M to S2 that
agree with fv on ∂M, which we denote by Maps(M,S2; fv).

We now assume that fv : ∂M → S2 misses the north pole of S2 (and hence is homotopic
to a constant map, which we know must happen if V(M, v) 6= ∅). Now given an element f ∈
Maps(M,S2; fv) we can homotope f so that it is transverse to the north pole p. Then Lf = f−1(p)
is a link contained in the interior of M. Moreover we can use f to give a framing f f to Lf . As
f homotopes through maps in Maps(M,S2; fv), the framed link (Lf , ff ) changes by a framed
cobordism. Thus to any homotopy class of vector field extending v we can assign a well-defined
framed cobordism class of framed links contained in the interior of M. The standard proof of the
Pontryagin–Thom construction in the closed case easily extends to show this is actually a one-
to-one correspondence. This establishes the following relative version of the Pontryagin–Thom
construction.

Lemma 4.1. Assume that η is a plane field defined along the boundary of M that in some trivialization of
TM corresponds to a function that misses the north pole of S2 (as discussed above). There is a one-to-one
correspondence between homotopy classes of plane fields on M that extend η on ∂M and the set of framed
links in the interior of M up to framed cobordism. �

Let F(M) denote the group of framed links in the interior of M up to framed cobordism. If
(L, f) is a framed link in the interior of M then L represents a homology class [L], so we can define
a homomorphism

Φ : F(M) → H1(M ;Z) : (L, f) 7→ [L].

The homomorphism Φ is clearly surjective. In order to determine the preimage of a homology class
we first recall that there is a natural “intersection pairing” between H1(M ;Z) and H2(M,∂M ;Z).
Let i∗ : H2(M ;Z) → H2(M,∂M ;Z) be the map induced from the inclusion (M, ∅) → (M,∂M). For
h ∈ H1(M ;Z) set

Dh = {h · [Σ] : [Σ] ∈ i∗(H2(M ;Z))},

where h · [Σ] denotes the intersection pairing between the two homology classes. The set Dh is
clearly a subgroup of Z. Let d(h) be the smallest non-negative element in Dh.

Lemma 4.2. With the notation as above

Φ−1(h) = Z/d(2h)Z,

for any h ∈ H1(M ;Z).

Proof. This is an easy adaptation of the argument in the closed case that can be found in [21].
Since we know that two links in M are cobordant if and only if they represent the same homology

class, we know that if L is a connected knot in the homology class h then Φ−1(h) is the set of framed
links in the interior of M that are cobordant to L. Fix a framing f on L we now have a map

φ : Z → Φ−1(h) : n 7→ f + n

where f + n refers to the framing on L obtained from f by adding n right handed twists. Clearly φ
is onto. We are left to show that the kernel of φ is generated by d(2h).
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Suppose that φ(n) = φ(m), then we know that there is a framed surface (W,F) contained in
M × [0, 1] such that ∂(W,F) = (L× {0}, f + n) ∪ (L× {1}, f +m). Set S equal to the image of W in
M × S1 = M × [0, 1]/ ∼, where (x, 0) ∼ (x, 1), and set C = L × S1. We notice that the homology
class S − C can be represented by a surface disjoint from M × {0}, so

[S − C] · [M × {0}] = 0 ∈ H1(M × S1;Z).

This implies that [S − C] ∈ (H2(M ;Z) ⊗ H0(S
1;Z)), since if it had a component in H1(M ;Z) ⊗

H1(S
1;Z) then its intersection with [M × {0}] could not be zero. We can now compute

m− n = [S] · [S] = ([S − C] + [C]) · ([S − C] + [C]) = 2[C] · [S − C] = 2[L] · [S − C]

where the last term is computed in M. Thus we see that m and n differ by something in d(2h)Z.
We now show that if f and f

′ differ by d(2h) then (L, f) and (L, f ′) are framed cobordant. To this
end let Σ be a closed surface in the interior of M such that [Σ] · h = d(h). In M × S1 let C = L× S1

with framing induced by f and let Σ′ = Σ× {1/2}. Setting [C′] = [C] + [Σ′] we can compute

[C′] · [C′] = 2[C] · [Σ′] = 2[L] · [Σ′],

where again, the last term is computed in M. Let C′′ be the surface C′ in M × [0, 1] (we have cut S1

open to get the interval). If we frame L × {0} = C′′ ∩ (M × {0}) by f then the framing on L× {1}
will be f + d(2h) = f

′. �

Remark 4.3. It is well known in the closed case that if (Lξ, fξ) is a framed link representing a plane
field ξ then 2[Lξ] is the Poincaré dual of the Euler class of ξ. The same reasoning shows in the
relative case that 2[Lξ] is the Euler class of ξ relative to v.

4.2. Homotopy classes of plane fields on link complements. We are now ready to prove Theo-
rem 1.4 and 1.5. We begin by observing the following consequence of our discussion above. This
result is a “folk” theorem that has appeared in the literature, see for example [10], though details of
the argument have not appeared. Geiges and, independently, Klukas have also given unpublished
proofs of this result using different techniques.

Lemma 4.4. Let L and L′ be two null-homologous Legendrian knots in a contact manifold (M, ξ). Let
N and N ′ denote standard neighborhoods of L and L′ respectively. If L and L′ are topologically isotopic,
tb(L) = tb(L′) and r(L) = r(L′) then ξ|M\N is homotopic as a plane field to ξ|M\N ′ relative to the
boundary.

Recall if the Euler class of ξ is non-zero then to define the rotation number one needs to specify
a homology class for the Seifert surface of L. In this case we assume the Seifert surfaces for L and
L′ are related by the same ambient isotopy that relates L and L′.

Proof. By assumption there is an ambient isotope of M taking L′ to L. Pushing ξ forward by this
isotopy we have two plane fields ξ and ξ′ that agree on a standard neighborhood N of L = L′. To
prove the theorem it suffices to show ξ|M\N is homotopic, rel boundary, to ξ′|M\N . By Lemma 4.1
the homotopy class of these plane fields is determined by the framed links (Lξ, fξ) and (Lξ′ , fξ′)
associated to them by the Pontryagin–Thom construction. According to Lemma 4.2 we need to
check that Lξ and Lξ′ represent the same element in H1(M \N ;Z) and that the framings differ by
a multiple of 2d([Lξ]).

When applying Lemma 4.1 and 4.2 we can use any fixed framing of the tangent bundle that sat-
isfies the hypothesis of Lemma 4.1. To make the computations below easier we choose a convenient
trivialization. We begin by taking the Reeb vector field v to the contact structure ξ. After fixing a
metric we denote the plane field orthogonal to the vector v by ξv (we begin with a metric for which
ξ is orthogonal to v).

Along L = L′ choose the unit tangent vector field u to L if r(L) = r(L′) is even, otherwise
choose u to be the unit tangent vector along L with one negative (clockwise) twist added to it.
The vector field u can be extended to the neighborhood N of L (recall ξ and ξ′ agree on N ). We
would like to extend u to all of M. This is, in general, not possible so we begin by modifying
v and u. To this end notice that a simple computation reveals that with X = M \ N we have
H2(X, ∂X ;Z) ∼= H1(X ;Z) ∼= H1(M ;Z) ⊕ Z, with the Z factor generated by the meridian µ to L.
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Thus the Euler class of ξv relative to u on ∂X is determined by its evaluation on absolute chains
in X ⊂ M (that is determined by the Euler class of ξv on M ) and by the evaluation on the Seifert
surface of L in X. Since ξv is a contact structure we may perform Lutz twists on transverse curves
in X. Each such twist changes the Euler class of M by twice the Poincaré dual of the transverse
curve. Since ξ is oriented the component of the relative Euler class in H1(M ;Z) is even and by the
choice of u above the component of the relative Euler class in Z is also even. Thus by Lutz twists
we can arrange that the Euler class of ξv, relative to u on ∂X, is zero, so u may be extended, as a
section of ξv, over X. Now choosing an almost complex structure J on ξv we can let w = Ju. We
can use −v, u, w to trivialize TM and TX. (That is the vector field v maps to the south pole of S2.)

Using this trivialization we have the framed links (Lξ, fξ) and (Lξ′ , fξ′) associated to to ξ and
ξ′ by the Pontryagin–Thom construction. Moreover, each of these links is also associated to the
contact structure ξ on M (since we arranged that v describes ξ in N and it maps to the south pole of
S2). Thus the components of Lξ and Lξ′ in H1(M ;Z) agree. Moreover, if the rotation number of L
is even then it is clear that Lξ ∩Σ = r(L), where Σ is the Seifert surface. Similarly for Lξ′ and r(L′).
If the rotation numbers are odd then Lξ ∩ Σ = r(L) + 1 = r(L′) + 1 = Lξ′ ∩ Σ. Thus we see that Lξ

is homologous to Lξ′ .
Since ξ and ξ′ are homotopic as plane fields on M we know that fξ and fξ′ differ by the divisibility

of the image of the Euler class of ξ on H2(M ;Z). But this is exactly 2d([Lξ]) as defined above. Thus
ξ and ξ′ on on M \N are homotopic relative to the boundary. �

Proof of Theorem 1.4. Eliashberg’s classification of overtwisted contact structures in [9] says that two
contact structures are isotopic as contact structures if and only if they are homotopic as plane fields.
Thus if L and L′ are two loose Legendrian knots with the same Thurston-Bennequin invariant and
rotation number, then Lemma 4.4 implies the complements of L and L′ are contactomorphic (rel
boundary). The contactomorphism can clearly be extended over the solid torus neighborhood of L
and L′. Thus L and L′ are coarsely equivalent.

Now given a knot type K and an overtwisted contact structure ξ there is an overtwisted disk D
and a knot K in the knot type K that is disjoint from D. We can C0-approximate K by a Legendrian
knot L. Thus we may assume that L is disjoint from D. Let U and U ′ be the Legendrian boundary
of D with opposite orientations. Notice that tb(U) = tb(U ′) = 0 and r(U) = − r(U ′) = 1. It is
well known, see [16], how the Thurston-Bennequin invariant and rotation numbers behave under
connected sums, so we can conclude that

tb(L#U) = tb(L) + tb(U) + 1 = tb(L) + 1 and r(L#U) = r(L) + r(U) = r(L) + 1.

Since connect summing L with U or U ′ does not change the knot type of L we see that we can find
a Legendrian knot in the knot type of K with Thurston-Bennequin invariant one larger than that of
L and with rotation number one larger or one smaller (by connect summing with U ′).

We can assume that D is convex and hence there is an embedding of D2 × [−1, 1] such that
D2 × {t} is an overtwisted disk for all t ∈ [−1, 1]. Thus we have arbitrarily many copies of U and
U ′. By repeated connect summing of L with U and U ′ or stabilizing L we can change the Thurston-
Bennequin invariant to any desired integer. Moreover, it is easy to combine connect summing with
U and U ′ and stabilization to realize any integer, of the appropriate parity, as the rotation number of
a Legendrian in the knot type K without changing the Thurston-Bennequin invariant. This finishes
the proof of the theorem. �

Proof of Theorem 1.5. Given two loose transverse knots T and T ′ in an overtwisted contact manifold
(M, ξ) with the same self-linking number, we can choose Legendrian approximations L and L′ of
T and, respectively, T ′ such that they have the same Thurston-Bennequin invariant and rotation
number (just take any Legendrian approximations of each knot and negatively stabilize one of
them if necessary). We can choose L to be in any pre-chosen neighborhood of T. Thus we can
choose L so that it is loose. Similarly we can assume that L′ is loose. From Theorem 1.4 there is
a contactomorphism of (M, ξ) taking L to L′. As the transverse push-off of a Legendrian knot is
well-defined, we can isotope this contactomorphism through contactomorphisms so that it takes T
to T ′.
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Lastly, we can clearly use the Legendrian knots realized in Theorem 1.4 to realize all the claimed
self-linking numbers. �

5. NON-LOOSE TRANSVERSE KNOTS

In this section we prove our main theorems concerning transverse knots, that is Theorems 1.6
through 1.10. We begin with the construction of infinite families of transverse knots with the same
classical invariants.

Proof of Theorem 1.6. As in the statement of the theorem let (B, π) be a non-trivial open book for the
manifold M, and ξB its corresponding contact structure. Let ξn be the contact structure obtained
from ξB by adding n full Lutz twists along B. Let Bn be the core of the Lutz twist tube in ξn.
Clearly each of the ξn, n > 0, is overtwisted and homotopic, as a plane field, to ξB for all n. Thus
Eliashberg’s classification of overtwisted contact structures in [9] implies all the ξn, n > 0, are
isotopic contact structures and we denote a representative of this isotopy class by ξ. Isotoping all
the ξn to ξ we can think of Bn as a transverse knot in ξ.

We claim that all the Bn are non-loose. Indeed denote the complement of Bn in (M, ξ) by
(Cn, ξ

′
n). To show (Cn, ξ

′
n) is tight we give a different construction of these contact manifolds. Con-

sider a standard neighborhood N(B) of B in (M, ξB). In particular there is some a such that N(B)
is contactomorphic to {(φ, (r, θ)) ∈ S1 × R

2|r ≤ a} with the contact structure ker(φ+ r2 dθ), where
φ is the coordinate on S1 and (r, θ) are polar coordinates on R

2. Thus the characteristic foliation
on ∂N(B) is a linear (in particular pre-Lagrangain) foliation by lines of some slope s. Notice that
we can choose numbers sn ∈ [2nπ, 2nπ + π/2] such that the manifold T 2 × [0, sn] with the contact
structure ker(sin t dx+cos t dy), where t is the coordinate on [0, sn] and (x, y) are coordinates on T 2,
which we denote by (Tn, ζn), has the following properties:

(1) the characteristic foliation on T 2 × {sn} is a linear foliation by lines of slope s,
(2) the characteristic foliation on T 2 × {0} is a linear foliation by lines of slope 0,
(3) the Giroux torsion of (Tn, ζn) is n, and
(4) (Tn, ζn) is universally tight.

Items (1) and (2) are obvious, Item (3) is proved in [19, 24] as is Item (4), though it is also easily
checked.

Let (Cn, ξn)be the manifold obtained by gluing (M −N(B), ξM−N(B)) and (Tn, ζn) along their

boundaries. It is clear that the complement Cn of Bn in (M, ξ) is the interior of (Cn, ξn). Since it
is well known that the complement of the binding of an open book is universally tight, see [11],

it is clear (M −N(B), ξM−N(B)) is universally tight. We now recall that Colin’s gluing theorem,

[2], says that gluing two universally tight contact structure along a pre-Lagrangian incompressible

torus results in a universally tight contact structure. Thus (Cn, ξn), and hence (Cn, ξ
′
n), is univer-

sally tight.
To show infinitely many of the Bn are distinct we need the following observation.

Lemma 5.1. Let [T ] be the isotopy class of tori in Cn ⊂ Cn parallel to the boundary. The Giroux torsion of

(Cn, ξn) in the isotopy class [T ] is finite:

tor((Cn, ξn), [T ]) < ∞.

Hence tor((Cn, ξ|Cn
), [T ]) is also finite.

Since it is clear the Giroux torsion of (Cn, ξ|Cn
) in the isotopy class of [T ] is greater than or equal

to n and all the Cn’s have finite torsion, we can conclude that infinitely many of the Cn are distinct
and hence infinitely many of the Bn are distinct.

Finally we notice that sl(Bn) = −χ(B) for all n. Indeed notice that a Seifert surface for Bn can
be built by taking a Seifert surface for B (that is a page of the open book) and extending it by the
annulus {p} × S1 × (0, sn] in Tn. This annulus can be perturbed to have no singularities. As the
self-linking number of Bn can be computed from the singularities of a Seifert surface for Bn we see
the all the self-linking numbers must agree with sl(B) which is well known to be −χ(B). �
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Proof of Theorem 1.7. The argument here is almost identical to the one given above for Theorem 1.6.
The only difference being that one begins by performing a half Lutz twist on B and notices that this
changes the self-linking number of B from −χ(B) to χ(B). �

We now turn to the proof of the above lemma. Using the notation established in the previous

proof, we will actually compute the Giroux torsion of (Cn, ξn) in the isotopy class of [T ], which by
Lemma 2.5 is the same as tor((Cn, ξ|Cn

), [T ]).

For each n, the manifold Cn is (canonically up to isotopy) diffeomorphic to M −N(B) since

Cn \M −N(B) is T 2 × [0, 1]. We denote this common diffeomorphism type as C and think of the

contact structures ξn constructed above as contact structures on C.

Lemma 5.2. With notation as above

tor((C, ξn), [T ]) = n.

Notice that Lemma 5.1 immediately follows from this result. The proof of this lemma is inspired
by Proposition 4.6 in [23]. Slightly modifying our proof above, we could cite this result in place
of Lemma 5.2 to prove the above theorem, but to prove our results below we need to identify the
actual Giroux torsion which takes more work.

We begin by defining an invariant and establishing a few properties. Let Σ be a page of the

open book (B, π) in M. This gives a properly embedded surface, also denoted Σ, in C. Let γ be a

properly embedded non-separating arc in Σ. Considering the contact structure ξn we know that

the characteristic foliation of ∂C consists of meridional curves. We can assume that ∂Σ is (posi-

tively) transverse to this foliation. Let L(γ) be the set of all Legendrian arcs γ′ embedded in (C, ξn)
satisfying

(1) the arc γ′ lies on some convex surface Σ′ with (positively) transverse boundary in ∂C, and

(2) there is a proper isotopy of Σ′ to Σ through surfaces with transverse boundary on ∂C that
takes γ′ to γ.

Set

mt(γ) = max
γ′∈L(γ)

{tw(γ′,Σ)}

where tw(γ′,Σ) is the twisting of the contact planes along γ′ with respect to the framing given to
γ′ by Σ (notice that since the contact planes are positively transverse to ∂Σ′ at ∂γ′ there is a well
defined, integer valued, twisting of γ′ along Σ). We can show that this invariant is bounded by the
Giroux torsion of ηn.

Lemma 5.3. With the notation as above we have the inequality

mt(γ) ≤ −2 tor((C, ξn), [T ]).

We can also compute the invariant.

Lemma 5.4. In the contact manifold (C, ξn) we have mt(γ) = −2n. �

Before proving Lemmas 5.3 and 5.4 we note that the previous two lemmas immediately yields
our main lemma above.

Proof of Lemma 5.2. Lemmas 5.3 and 5.4 allow us to conclude that tor((C, ηn), [T ]) ≤ n. But from
construction we know tor((C, ηn), [T ]) ≥ n. �

We also observe that the proof of Lemma 5.4 is just as easy.

Proof of Lemma 5.4. As we know there is an embedding of (T 2 × [0, 1], ζn) into (C, ξn) we see that
mt(γ) ≤ −2n. But we can explicitly construct a curve γ′ on a surface Σ′ with tw(γ′,Σ′) = −2n. �

We now turn to the proof of Lemma 5.3.

Proof of Lemma 5.3. Suppose we have a contact embedding of φ : (T 2 × [0, 1], ζk) → (C, ξn) in the
isotopy class of [T ]. We need to show that mt(γ) ≤ −2k. To this end take any γ′ ∈ L(γ) and let Σ′

be the convex surface containing γ′.
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Notice that there are 2k tori in the image of φ whose characteristic foliations consist of leaves
isotopic to meridians. On these tori a curve isotopic to ∂Σ can be made transverse the the foliation.
Half the time it will be positively transverse the other half it will be negatively transverse. It is clear
that we can choose one of the tori T where the curve is positively transverse and cobounds with

∂C a manifold A such that (A, (ξn)|A) is contactomorphic to (T 2× [0, 1], ζk). We now set D = C \A.
We glue two copies of C together by the diffeomorphism φ of ∂C that preserves the meridian

(and its orientation) and reverses the orientation on the longitude. Denote the resulting manifold

P = C ∪φ C. Since φ preserves the characteristic foliation we clearly have a contact structure ηn
induced on P from ξn on C, we note however that with our choice of gluing map we have ξn on

one of the copies of C and −ξn on the other. Let P̃ be the infinite cyclic cover of P that unwinds the

meridian of C ⊂ P. If we denote the double of Σ by S, then it is clear that P̃ is S × R.

Claim 5.5. The pullback η̃n of ηn is an R-invariant tight contact structure and S can be assume to be convex
with dividing set ΓS containing at least 4k − 1 curves parallel to ∂Σ ⊂ S.

Given this we can finish the proof of the lemma as follows. Let c be the double of γ′ sitting on S.
We clearly have that the twisting of the contact structure ηn along c measured with respect to S,
which we denote by t(c), is twice the twisting along of γ′. So if we can show t(c) ≤ −4k+1 then the
lemma will be established (notice that since t(c) = 2mt(γ) we know t(c) is even so this inequlaity

actually implies t(c) ≤ −4k). We can lift c to P̃ and notice that its twisting is unchanged (since the
covering map regularly covers a small neighborhood of c).

We recall that Giroux’s “semi-local Bennequin inequality” says the following.

Theorem 5.6 (Giroux 2001, [20]). Let ξ be an R invariant tight contact structure on S × R where S is a
closed orientable surface of genus greater than zero. Let Γ be the dividing set on S × {0} (which is clearly
convex) and C an essential simple closed curve in S × {0}. Then for any Legendrian curve L smoothly
isotopic to C

tw(L,F) ≤ −
1

2
(Γ · C),

where tw(L,F) denotes the twisting of the contact planes along L measured with respect to the framing F
given by S × {0} and Γ · C denotes the minimal geometric intersection between curves isotopic to Γ and C.

Thus any curve c′ isotopic to c satisfies t(c′) ≤ − 1
2 (ΓS · c′), where ΓS · c′ denotes the minimal

geometric intersection of a curve isotopic to c′ with ΓS . Since c′ · ∂Σ = 2 and ΓS contains 4k − 1
curves parallel to ∂Σ it is clear that ΓS · c′ ≥ 8k − 2 from which the lemma follows.

We now establish the claim. Let Dc be the manifold D with the leaves in the characteristic folia-
tion on ∂D collapsed to points (topologically we are just Dehn filling along the meridional slope).

The contact structure (ξn)|D descends to give a contact structure η on Dc and the image of ∂D in
Dc is a positive transverse curve B′. Once easily sees that B′ is the binding of an open book for Dc

and the page of this open book is diffeomorphic to Σ. We notice that B′ is the image of a positive

transverse curve B̃′ in D ⊂ C. This curve cobounds an annulus in A with a positive transverse

curve B̃ in ∂C that decends to the binding B of the open book for M when the characteristic folia-

tion on C is collapsed to form M. We know from construction that sl(B) = −χ(Σ). Thus one may

easily conclude the same for B̃, B̃′ and B′. From Theorem 2.6 we now see that η is quasi-compatible
with B′. Thus there is a contact vector field v on Dc −B′ that is transverse to the pages of the open
book. One may easily check (by considering a local model for B′) that v may be assumed to be
meridional (that is, its flow lines are meridians) inside a neighborhood of B′ but outside a smaller
neighborhood of B′. Thus we may alter v on Dc − B′ = D − ∂D so that in a neighborhood of B′

minus B′ the orbits of v are meridians, and hence we can then easily be extended over all of D.
Moreover, we can find a contact vector field on A that also has meridional flow lines and then use
it to extend v to a contact vector field on all of C that is transverse to Σ (and all the pages of the
open book). It is clear that the dividing set on Σ induced by v contains at least 2k closed curves
parallel to ∂Σ, one of them being ∂Σ. The manifold P is obtained by gluing together two copies

of C. Observing that the gluing map preserves v we can get a contact vector field on (P, ηn) that is

transverse to S (and all the fibers in the fibration of P over S1). Thus on the Z-cover P̃ = S × R
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of P we can lift v to a vector field ṽ that preserves η̃n and is transverse to S × {t} for all t ∈ R. We

can use the flow of ṽ to identify P̃ with S ×R so that the contact structure is R-invariant. From our
observation about the dividing set on Σ we see that S has at least 4k− 1 dividing curves parallel to
∂Σ. (The minus one comes from the fact that one of the dividing curves on Σ was ∂Σ so when the
two copies of Σ are glued together, two of the dividing curves are identified.) �

Proof of Theorem 1.8. Let K be a null-homologous knot type in the irreducible manifold M, with

a Seifert surface Σ of genus g > 0, where g is the genus of K. Set C = M −N where N is a
solid torus neighborhood of K. Let Γ be the union of two embedded meridional curves on ∂C. It
is easy to check that (C,Γ) is a taut sutured manifold and thus according to Theorem 1.1 in [23]
there is a universally tight contact structure ξ on C for which ∂C is convex with dividing curves
Γ. Moreover, one may assume that ∂Σ is Legendrian and Σ is convex with a single dividing curve
that is boundary parallel.

Now let T = T 2 × [0,∞) with the contact structure ξT = ker(cos z dx + sin z dy). Using the
convex version of Colin’s gluing criterion, Theorem 5.7 in [23] we see that we can glue (C, ξ) and
either (T, ξT ) or (T,−ξT ) together to get a universally tight contact structure ξ on a manifold C′

diffeomorphic to C.
There is a sequence of disjoint tori Tn, n ∈ N, in T ⊂ C′ that have linear characteristic foliation

each leaf of which is a meridional curve in C′. Moreover we can arrange that Tn and Tn+1 cobound
a T 2 × [0, 1] with Giroux torsion 1. Let Cn be the compact component of C′ \ Tn. Notice that if each
leaf of the characteristic foliation of ∂Cn = Tn is collapsed to a point (that is, topologically we Dehn
fill Cn) we get a manifold diffeomorphic to M (and this diffeomorphism is canonical up to isotopy).
Moreover there is a neighborhood U of Tn in Cn and a neighborhood V of K = S1 × {(0, 0)} in
S1 ×D2, with contact structure dφ + r2 dθ, such that U − Tn and V −K are contactomorphic. The
collapsing process going from Cn to M can be thought of as removing U and replacing it with V.
Thus we see that Cn induces a contact structure ξn on M and in that contact structure there is a knot
Kn such that M−Kn is contactomorphic to Cn−Tn. Notice that all of the ξn are overtwisted and ξn
is obtained from ξn−1 by a full Lutz twist on Kn. Thus by Eliashberg’s classification of overtwisted
contact structures we know all the ξn are isotopic to a fixed overtwisted contact structure which
we denote η. As above each Kn gives a transverse knot, still denoted Kn, in η. Each Kn is clearly
non-loose. Moreover the surface Σ above can be extended by an annulus in T so that in M it gives a
Seifert surface for Kn. It is clear from construction that Σ is convex with dividing curves parallel to
the boundary. One can choose the Tn so that Σ will always have an even number of dividing curves
or an odd number of dividing curves. If we choose the former then it is clear that all the Kn have
self-linking number −χ(Σ) = −χ(K). If we choose the latter then all the Kn have sl(Kn) = χ(K).
Also, not that going between the former and the latter amounts to doing a half-Luts twist on the
knots Kn. Thus we see that the contact structure where the Kn have self-linking number −χ(K)
and the contact structure where they have self-linking number χ(K) differ by a half-Lutz twist and
hence are not contactomorphic.

Thus we will be done with the theorem once we see that all the Kn are non contactomorphic.
If we perturb the boundary of Cn so that it is convex with two dividing curve then the resulting
contact structures are the same as the ones constructed in Proposition 4.2 of [23]. In that paper,
Proposition 4.6, it is also shown that all these contact structures are not contactomorphic. Now if
there was a contactomorphism of (M, η) taking Kn to Km then Cn − Tn would be contactomorphic
to Cm−Tm Denote the contactomorphism by φ. Let B be a torus in Cn−Tn with linear characteristic
foliation of slope 0 (that is the leaves are null-homologous in Cn). Let (Cn − Tn) \B = P ∪Q with
Q the non-compact component. We can assume B was chosen so that Q is minimally twisting
(that is there are no convex tori with negative slope in Q). The torus φ(B) breaks Cm − Tm into
two similar such pieces P ′ and Q′ and φ gives a contactomorphism from P to P ′. By adding the
appropriate basic slice to both P and P ′ we can extend φ to a contactomorphism of the contact
structures constructed in Proposition 4.2 of [23]. This would contradict Proposition 4.6 of that
paper unless m = n. �

We now turn to the classification of transverse knots with maximal self-linking in the hyperbolic
knot type of the binding of an open book supporting the given contact structure.
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Proof of Theorem 1.10. We are given an open book decomposition (B, π) with connected binding.
Since B is a hyperbolic knot the monodromy φ of the open book is pseudo-Anosov. Let ξ be the
contact structure obtained from ξB by performing a full lutz twist on B. Clearly ξ is overtwisted
and in the same homotopy class of plane field as ξB, so if ξB is overtwisted then ξ and ξB are
isotopic contact structures.

We are trying to determine the set T−χ(B)(B). Since any knot type has a loose knot with any odd
self-linking number there is clearly a loose knot K∗ in T−χ(B)(B). Moreover, Theorem 1.5 says that
this is the unique loose knot with given knot type and self-linking number so K∗ is the only loose
knot in T−χ(B)(B). Since loose and non-loose knots are not contactomorphic we are left to classify
the non-loose knots in T−χ(B)(B).

If K is a non-loose knot in T−χ(B)(B) then Theorem 2.6 implies that ξ is obtained from ξB by
adding Giroux torsion along tori which are incompressible in the compliment of B. Since the mon-
odromy φ is pseudo-Anosov the only such tori are isotopic to the boundary of a neighborhood of B.
Adding Giroux torsion along this torus is equivalent to performing some number of full Lutz twists
along B in ξB . Thus K is clearly one of the Bn constructed in the proof of Theorem 1.6. Notice that
B0, the knot obtained from B by doing no Lutz twists, is a transverse knot in ξ if and only if ξB is
overtwisted to begin with. Thus we see that any non-loose knot in T−χ(B)(B) is contactomorphic
to one of the knots {Bn}n∈A where A is the indexing set in the statement of the theorem. Finally
Lemma 5.2 guarantees that Bn and Bm are not contactomorphic if n 6= m since they have different
contact structures on their complement.

Renaming Bn to Kn, we have now classified the transverse knots in T−χ(B)(B) and established
the first bullet point in the theorem. The second bullet point follows from [26] since all the knots
except K0 have either an overtwisted disk or Giroux torsion in their complement.

To establish the last bullet point in the theorem we notice that each Kn for n > 0 has a neighbor-
hood contactomorphic to S1 ×D2 = {(φ, r, θ) : r ≤ 2π + ǫ} for some ǫ, with the contact structure
ker(cos r dφ + r sin r dθ). Thus we can choose a convex torus T outside of the solid torus {r ≤ 2π}
with two dividing curves inducing the framing −m for some m (where we use the page of the open
books to define the 0 framing). Thus we can find a neighborhood N of Kn that breaks into two
pieces A = T 2 × [0, 1] and N ′ = S1 × D2, with the following properties. The contact structure
on A is not invariant in the [0, 1] direction and the boundary of A is convex with each boundary
component having two dividing curves inducing the framing −m. The contact structure on the
solid torus N ′ is minimally twisting and the boundary of N ′ is convex with two dividing curves in-
ducing the framing −m. From [15, 22], we know N ′ is the standard neighborhood of a Legendrian
curve L whose positive (if L is oriented in the same way that Kn is oriented) transverse push-off
is Kn. If we stabilize L positively then its positive transverse push-off is a transversely isotopic to
the stabilization of Kn, see [15]. Let N ′′ be a neighborhood of the stabilized Legendrian inside of
N ′. From [15] we know that we can write N ′ as the union of A′ = T 2 × [0, 1] and N ′′ where A′ is a
basic slice. The sign of this basic slice depends on the stabilization of L that we perform. One may
easily check that all the basic slices in any decomposition of A into basic slices all have the same
sign and that sign is opposite the one associated to A′ if we positively stabilize L. Thus the contact
structure on A ∪ A′ is a non-minimally twisting contact structure made from basic slices with dif-
ferent signs. Such a contact structure must be overtwisted, [22]. Since the transverse push-off of the
stabilized L is contained in N ′′ we see that the complement of this transverse knots is overtwisted
since it contains A ∪ A′. Thus the complement of a stabilization of Kn is overtwisted and we see
that a stabilization of Kn, for n > 0, is loose. Theorem 1.5 then guarantees all the stabilizations
of the Kn, n > 0 are contactomorphic to the stabilization of K∗. We note that it is not clear if the
stabilizations of K0, if it exists, are loose or not.

Finally, If ξ′ is some overtwisted contact structure and T is a transverse knot in T−χ(B)(B) that
is non-loose then Theorem 2.6 implies that ξ′ is obtained from ξB by adding some number of full
Lutz twists along B (notice that the only incompressible tori in the complement of B are boundary
parallel tori). Thus if ξ′ is not so obtained then Tχ(B)(B) = {K∗}. �
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6. NON-LOOSE LEGENDRIAN KNOTS

Using well know facts concerning the relation between Legendrian and transverse knots, mostly
reviewed in Subsection 2.1 above, we can upgrade the coarse classification of transverse knots from
Theorem 1.10 to Legendrian knots.

Proof of Theorem 1.12. By Theorem 1.10 we know that T−χ(B)(B) = {K∗} ∪ {Ki}i∈A, where A = N

if ξB is tight and A = N∪{0} if not. For any i ∈ N the transverse knot Ki was the core of a full Lutz
twist. Thus it has a neighborhood Ni that is contactomorphic to S1×D2

2π, with the contact structure
ker(cos r dφ+ r sin r dθ), where D2

a is the disk of radius a. There is an infinite sequence of radii rj , j
an integer, such that S1 × D2

rj has a linear characteristic foliation of slope 1
j . Let Lj,i be a leaf in

this foliation. Lemma 2.1 says that Ki is the transverse push-off of Lj,i and that tb(Lj,i) = j and
r(Lj,i) = χ(B) + j. If ξB is overtwisted then we can similarly construct Legendrian approximations
Li,0 of K0 for all i less than some m, where m is either an integer of ∞. It is clear from Proposition 1.2
that all the Li,j constructed here are non-loose. Moreover, they are all distinct as they either have
different transverse push-offs or they have different Thurston-Bennequin invariants.

All the bullets points in the theorem, except the last, follows from the corresponding statements
for the transverse knots Ki. The last bullet point follows from Lemma 2.1.

Since there is a unique loose Legendrian knot with given invariants we are left to show that, up to
contactomorphism, any non-loose Legendrian knot in Lχ(B)+n,n(B) is one of the ones constructed
above.

Let L be a non-loose Legendrian knot in Lχ(B)+n,n(B). We begin by assuming that tb(L) = −k ≤
0 and hence r(L) = χ(B) − k. Let N be a standard neighborhood of L with convex boundary. We
assume the characteristic foliation on ∂N has two closed leaves and all leaves are transverse to a
ruling of ∂N by longitudes. Let Σ be a fiber in the fibration of M \ N. From our set up ∂Σ is a
transverse curve T ⊂ ∂N. Moreover it is easy to see that T is the transverse push-off of L and
sl(T ) = −χ(B) = −χ(Σ).

By Lemma 3.3 in [17] we can isotope Σ so that it has a Morse-Smale characteristic foliation and
no negative singular points. Thus Σ is convex and dividing curves are disjoint from ∂Σ. From the
proof of Lemma 3.4 in [17] we see that Σ may be isotoped so that the dividing curves ΓΣ on Σ are
invariant under the monodromy of the open book. As the monodromy is pseudo-Anosov the only
dividing curves Σ can have are ones parallel to ∂Σ. Assume that Σ has been isotoped (keeping ∂Σ
transverse and contained in ∂N ) to minimize the number of dividing curves.

We show that the contact structure in a neighborhood of N∪Σ is determined by the characteristic
foliation on Σ. Taking a slightly smaller neighborhood N ′ of N ∪ Σ and rounding corners we see
that ∂N ′ is obtained by gluing together two copies of Σ, denoted Σ1 and Σ2, and an annulus A.
We can assume that ∂N ′ is convex and that its dividing curves consist of a copy of ΓΣ on each Σi

and one curve in the center of A, see [17]. Since Σ is a page of an open book for M we see that
M \N ′ is a handle body. Moreover, applying Lemma 3.5 in [17] we see that the minimality of the
number of components of ΓΣ implies that the dividing curves on compressing disks are uniquely
determined by ΓΣ. Thus the contact structure on M \N ′ is determined by the number of curves on
ΓΣ. One may easily check that L−k,n has the same convex surface in the complement of a standard
neighborhood, where 2n is the number of components in ΓΣ. Thus L is contactomorphic to L−k,n.

If tb(L) = k > 0, and hence r(L) = χ(B) + k, then we can proceed as above except now the
ruling longitudinal curves on ∂N, oriented in the same direction as L, are negatively transverse
curves. Thus ∂Σ is a negatively transverse curve T on ∂N. We can identify N as a neighborhood
of a transverse curve T ′ that is a positive transverse push-off of L, and hence has sl(T ′) = −χ(B).
The curves T and T ′ cobound an annulus N whose characteristic foliation as a single closed leaf
L′. The Legendrian L′ is clearly topologically isotopic to L and has Thurston-Bennequin number 0.
Moreover, T ′ is its positive transverse push-off and T its negative push-off. From the first fact we
see r(L′) = χ(B) and from the second fact we see sl(T ) = χ(B).

Notice that if we orient T in the same direction as B and Σ so that it has oriented boundary T,
then the characteristic foliation on Σ points in along T (because T will be a negatively transverse
to the contact structure). By the proof of Lemma 3.3 in [17] we can isotope Σ so that it has a
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Morse-Smale characteristic foliation and no positive singular points. We can now argue as above
to conclude that L is contactomorphic to Lk,n for some n. �

Proof of Theorem 1.13. The hypothesis of the theorem says that L and −L are in the same knot type,
up to diffeomorphism. Thus if L is in L−χ(B)+n,n(B) then −L is in Lχ(B)+n,n(B), so the result
follows from Theorem 1.12. Moreover, all the knots claimed to be in L−χ(B)+n,n(B) can be obtained
knots in Lχ(B)+n,n(B) by reversing the orientation on the knot. �

Finally we establishes our result about stabilizing Legendrian knots with large Thurston-Bennequin
invariant.

Proof of Proposition 1.15. We are assume that −B is not isotopic to B. This condition implies there is
no diffeomorphism taking B to −B that is isotopic to the identity. Thus a contactomorphism that
is smoothly isotopic to the identity and takes a Legendrian knot L in L(B) to itself must preserve
the orientation on L and hence on any surface with boundary on L. So we can conclude if the
contactomorphism is also co-orientation preserving then it preserves the sense of a stabilization.
By this we mean that if L = S+(L

′) and φ is such a contactomorphism of ξ then φ(L) = S+(φ(L
′)).

Now suppose that L ∈ L(B) and tb(L)− r(L) > −χ(B). Set n = 1
2 (−χ(B)− tb(L)). Notice that

tb(Sn
+(L)) − r(Sn

+(L)) = −χ(B). Thus by Theorem 1.12 we know there is a contactomorphism φ
sending Sn

+(L) to one of the Legendrian knots described in the theorem (one may also check that
φ preserves the co-orientation of the contact structure), and from the observation above Sn

+φ(L) is
isotopic to one of the knots described in the theorem. If it is isotopic to any knot other than L∗,
that is the loose knot, then any number of negative stabilization will stay non-loose. It is clear,
however, that there is some m such that Sm

− (φ(L)) cannot be non-loose since it does not satisfy
−| tb |+ | r | ≤ −χ(B). Thus Sm

− (Sn
+(φ(L))) cannot be non-loose resulting in a contradiction unless

Sn
+(φ(L)) is already loose, which of course implies Sn

+(L) is loose. �
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