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ON THE PLURICANONICAL MAPS OF VARIETIES OF

INTERMEDIATE KODAIRA DIMENSION

XIAODONG JIANG

Abstract. In this paper we will prove a uniformity result for the Iitaka fi-
bration f : X → Y , provided that the generic fiber has a good minimal model
and the variation of f is zero.

1. Introduction

One of the main problems in complex projective algebraic geometry is to un-
derstand the structure of pluricanonical maps. Recently, Hacon and McKernan
[HM06], Takayama [Tak06] and Tsuji [Tsu06] have proved a beautiful result stat-
ing that there is a universal constant rn such that if X is a smooth projective
variety of general type and dimension n, then the pluricanonical map

φrKX
: X 99K P(H0(X,OX(rKX)))

is birational for all r ≥ rn. In [HM06], Hacon and McKernan also proposed a
related conjecture for the Iitaka fibration in the case dimX > κ(X) ≥ 0.

Conjecture 1.1 ([HM06, Conjecture 1.7]). Fix n ∈ Z>0. There is positive integer

rn with the following property: Let X be a smooth n-dimensional projective variety

of non-negative Kodaira dimension. Then the rational map φrKX
is birationally

equivalent to the Iitaka fibration for all sufficiently divisible integers r ≥ rn.

The purpose of this paper is to prove Conjecture 1.1 under some extra hypothe-
ses.

Theorem 1.2. For any positive integers n, b, k, there exists an integer m(n, b, k) >
0 such that if f : X → Y is the Iitaka fibration with X and Y smooth projective

varieties, dimX = n, with generic fiber F of f of Kodaira dimension zero, such

that

(1) the variation of f is zero;

(2) F has a good minimal model;

(3) b is the smallest integer such that h0(F, bKF ) 6= 0, and Bettidim(E′)(E
′) ≤ k,

where E′ is a smooth model of the cover E → F of the generic fiber F
associated to the unique element of |bKF |;

then the pluricanonical map

φmKX
: X 99K PH0(X,OX(mKX))

is birationally equivalent to f , for anym ∈ Z>0 such thatm is divisible bym(n, b, k).
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Conjecture 1.1 has been extensively studied. In [FM00], Fujino and Mori prove
that if κ(X) = 1, then (1.1) holds under the hypothesis (3) of Theorem 1.2. Veihweg
and Zhang [VZ07] also obtain this uniformity result for κ(X) = 2 under the same
hypothesis. A related result of [VZ07] for 3-folds has been obtained independently
by Ringler [Rin07]. For arbitrary Kodaira dimension, Pacienza [Pac07b] recently
has given an affirmative answer to (1.1) assuming that Y is not uniruled, the Iitaka
fibration f has maximal variation and the hypotheses (2) and (3) of Theorem 1.2.

We now sketch the proof of Theorem 1.2. The main idea is to follow the approach
of [HM06], [Tak06] and [Tsu06]. By the Canonical Bundle Formula (cf. Section 3),
there are two Q-divisors MY (the moduli part) and BY (the boundary part) on Y ,
such that for all i > 0, H0(X,OX(ibNKX)) ∼= H0(Y,OY (⌊ibN(KY +MY +BY )⌋)),
where N is a positive integer depending on the hypothesis (3) of Theorem 1.2
and MY is Q-linearly trivial by the hypotheses (1) and (2) (Theorem 3.6). In
order to prove Theorem 1.2, it remains to bound a multiple m of bN for which
φm(KY +MY +BY ) is birational. We first show that there exists such m of the form

α(vol(Y,KY +MY +BY ))
−1/n′

+ β that φm(KY +MY +BY ) is birational, where n
′ =

dimY and α, β are constants depending only on n, b and k. Then using techniques
developed in [HMX10], we show that if MY is Q-linearly trivial, vol(Y,KY +MY +
BY ) can be bounded from below. Hence m admits a uniform bound.

The main difficulty is that for a very general point y ∈ Y , we need to construct
an effective Q-divisorDy which is Q-linearly equivalent to λ(KY +MY +BY ), where
λ depends on vol(Y,KY +MY + BY ), such that y is an isolated non-klt center of
(Y,Dy). There is a well established way for producing divisors with non-klt centers
at y. The problem is that the smallest non-klt center V containing y may be of
positive dimension. In order to produce an isolated non-klt center, we have to cut
down the dimension of the non-klt centers. By [BCHM10], we can assume Y is
the log canonical model, so KY + MY + BY is ample. Then by Subadjunction
(see Section 5) we prove that vol(V, (KY +MY +BY )|V ) is bounded by a number
related to vol(Y,KY + MY + BY ). Using techniques developed in [McK02] (see
Section 4), we can produce a new divisor with a smaller dimensional non-klt center
at y. Repeating this procedure at most n′− 1 times, we get the desired divisor Dy,
see Section 6.

Acknowledgements. The author would like to thank his advisor Professor Christo-
pher Hacon for suggesting this problem and many useful discussions. He would also
like to thank Professor Chenyang Xu for useful suggestions.

2. Preliminaries

2.1. Notation and conventions. We work over the complex number field C.
Let X be a normal variety. We say that two Q-divisor D1, D2 on X are Q-
linearly equivalent (D1 ∼Q D2) if there exists an integer m > 0 such that mDi are
linearly equivalent. If D =

∑

diDi is a Q-divisor, then the round down of D is
⌊D⌋ =

∑

⌊di⌋Di, where ⌊d⌋ denotes the largest integer which is at most d, and the
round up of D is ⌈D⌉ = −⌊−D⌋.

A log pair (X,∆) is a normal variety X and an effective Q-Weil divisor ∆ on X
such that KX +∆ is Q-Cartier. We say that (X,∆) is log smooth if X is smooth
and ∆ is a Q-divisor with simple normal crossings support. A projective morphism
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µ : Y −→ X is a log resolution of the pair (X,∆) if Y is smooth and µ−1(∆) ∪
{exceptional set of µ} is a divisor with simple normal crossings support. We write
KY = µ∗(KX +∆) + Γ and Γ =

∑

aiΓi where Γi are distinct reduced irreducible
divisors. We call ai the discrepancy of the pair (X,∆) at Γi. The pair (X,∆)
is kawamata log terminal, klt for short (resp. log canonical, lc for short), if
there is a log resolution µ : Y −→ X as above such that the discrepancies of Γ are
strictly greater than −1, i.e. ai > −1 for all i (resp. ai ≥ −1). A subvariety V of
X is called a non-klt center of (X,∆) if it is the image of a divisor of discrepancy
at most −1. The non-klt locus Non-klt(X,∆) of the pair (X,∆) is the union of
the non-klt centers. A non-klt center V is called a pure log canonical center if
(X,∆) is log canonical at the generic point of V .

If D is a Weil divisor on a normal projective variety X , then φD denotes the
rational map X 99K PH0(X,OX(D)) induced by global sections of OX(D).

2.2. Volumes and bounded pairs.

Definition 2.1. Lex X be an irreducible projective variety of dimension n and D
be a Q-divisor. The volume of D is

vol(X,D) = lim sup
m→∞

n!h0(X,OX(mD))

mn
.

We say that D is big if vol(X,D) > 0.

We refer the reader to [Laz1] for further details.

Lemma 2.2 ([HM06, Lemma 2.2]). Let X be a projective variety, D a divisor such

that φD is birational with image Z. Then the volume of D is at least the degree of

Z and hence at least 1.

Lemma 2.3 ([HMX10, Lemma 2.3.4]). Let X be a normal projective variety of

dimension n and let D be a big Q-Cartier divisor on X. If φD is birational, then

φKX+(2n+1)(D+M) is birational for any numerically trivial Cartier divisor M .

Definition 2.4 ([HMX10, Definiton 2.4.2]). A setD of log pairs is log birationally

bounded if there is a log pair (Z,B) and a projective morphism Z −→ T , where
T is of finite type, such that for every (X,∆) ∈ D, there is a closed point t ∈ T and
a birational map f : Zt 99K X such that the support of Bt contains the support of
the strict transform of ∆ and any f -exceptional divisor.

Theorem 2.5 ([HMX10, Theorem 3.1]). Fix a positive integer n and two constants

A and δ > 0. Then the set of log pairs (X,∆) satisfying

(1) X is projective of dimension n,
(2) (X,∆) is log canonical,

(3) the coefficients of ∆ are at least δ,
(4) there is a positive integer m such that vol(X,m(KX +∆)) ≤ A,
(5) φKX+m(KX+∆) is birational,

is log birationally bounded.

Theorem 2.6 ([HMX10, Theorem 1.7]). Fix a set I ⊂ [0, 1] which satisfies the

DCC. Let D be a set of log smooth pairs (X,∆), which is log birationally bounded,

such that if (X,∆) ∈ D, then the coefficients of ∆ belong to I. Then the set

{vol(X,KX +∆)|(X,∆) ∈ D},

satisfies the DCC.
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2.3. Multiplier ideals and singularities of pairs. Let X be a smooth variety.
If D is an effective Q-divisor on X , then the multiplier ideal sheaf associated to
D is defined to be

J (X,D) = µ∗OX′(KX′/X − ⌊µ
∗D⌋)

where µ : X ′ → X is a log resolution of (X,D). It is known that a pair (X,D) is
klt (resp. non-klt) at a point x, if and only if

J (X,D)x = OX,x (resp. J (X,D)x 6= OX,x)

and a pair is klt if it is klt at each point x ∈ X . A pair (X,D) is lc at a point x, if
and only if

J (X, (1− ε)D)x = OX,x

for all rational numbers 0 < ε < 1 and a pair is lc if it is lc at each point x ∈ X .
Note that we have the following relation for non-klt locus

Non-klt(X,D) = Supp(OX/J (X,D))red.

The following is a useful way to produce non-klt pairs.

Lemma 2.7 ([Laz2, Proposition 9.3.2]). Assume that X is smooth of dimension

n, and let D be an effective Q-divisor on X. If multxD ≥ n at some point x ∈ X,

then J (X,D) is non-trivial at x, i.e. J (X,D) ⊆ mx, where mx is the maximal

ideal of x.

We now recall Nadel’s vanishing theorem.

Theorem 2.8 ([Laz2, Theorem 9.4.8]). Let X be a smooth projective variety. Let

D be an effective Q-divisor on X, and L a divisor on X such that L−D is nef and

big. Then, for all i > 0, we have

Hi(X,OX(KX + L)⊗ J (X,D)) = 0.

2.4. Iitaka fibration. Here we recall some results regarding Iitaka fibrations.
Let L be a line bundle on an irreducible projective variety X . The semigroup

N(L) of L is

N(L) = {m ∈ Z>0|H
0(X,mL) 6= 0}.

Assuming N(L) 6= (0), all sufficiently large elements of N(L) are multiples of a
largest single natural number e = e(L) ≥ 1, which we call the exponent of L. If
κ(X,L) = κ ≥ 0, then dim(φmL(X)) = κ for all sufficiently large m ∈ N(L).

Theorem 2.9 (Iitaka fibrations, see [Laz1, Theorem 2.1.33]). Let X be a normal

projective variety, and L a line bundle on X such that κ(X,L) > 0. Then for all

sufficiently large k ∈ N(L), there exists a commutative diagram of rational maps

and morphisms

X

φk

��
�

�

�
X∞

u∞oo

φ∞

��

Yk Y∞νk
oo_ _ _

where the horizontal maps are birational and u∞ is a morphism. One has dimY∞ =
κ(X,L). Moreover, if we set L∞ = u∗∞L, and F is a very general fiber of φ∞, we

have κ(F,L∞|F ) = 0.
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In this paper, we only deal with the case L = OX(KX) and simply write κ(X) =
κ(X,OX(KX)). The following results are important for our induction in the proof
of the main theorem.

Lemma 2.10. Let X and Y be smooth projective varieties and T an algebraic

variety. Assume that f : X → Y is the Iitaka fibration of (X,KX) and ϕ : Y → T
is a surjective morphism. For a very general closed point t ∈ T , let V = ϕ−1(t)
and W = f−1(ϕ−1(t)), then the restriction morphism fW : W → V is the Iitaka

fibration of (W,KW ).

Proof. By assumption, we have the following diagram

W
�
�

//

fW

��

X

f

��

V
�
�

//

��

Y

ϕ

��

t ∈ T

Since t is very general, we may assume V and W are smooth and the very general
fiber of fW is just the very general fiber of f . Hence, in order to prove that fW is
the Iitaka fibration, we only need to show dimV ≤ κ(W ).

Fix an ample divisor H on Y , then there exists a positive integer m such that
mKX ≥ f∗(H). Since V is a smooth fiber, we have KX |W = KW . It follows that
mKW ≥ f

∗
W (H |V ), which implies

h0(W,OW (imKW )) ≥ h0(V,OV (iH |V )) ∀ i ∈ Z>0.

Since H |V is ample on V , then κ(W ) ≥ dimV . Therefore, fW is the Iitaka fibration.
�

Theorem 2.11 ([Lai09, Theorem 4.4]). Let X be a Q-factorial normal projective

variety with non-negative Kodaira dimension and at most terminal singularities.

Suppose that the general fiber F of the Iitaka fibration has a good minimal model,

then X has a good minimal model.

3. Canonical bundle formula

In this section, we collect some of the results regarding the direct image of the
relative dualizing sheaf.

Let X and Y be smooth projective varieties and f : X → Y an algebraic fiber
space with generic fiber F of Kodaira dimension zero. Let b be the smallest integer
such that the b-th plurigenus h0(F, bKF ) of F is non-zero. Then there exists a
Q-divisor LX/Y on Y such that

OY (⌊iLX/Y ⌋) ∼= (f∗OX(ibKX/Y ))
∗∗

and
H0(Y,OY (⌊ibKY + iLX/Y ⌋)) ∼= H0(X,OX(ibKX))

for all i > 0. We may write the divisor LX/Y as

LX/Y = LssX/Y +∆,

where LssX/Y is a Q-Cariter divisor, called the semistable part or the moduli

part, and ∆ is an effective Q-divisor, called the boundary part. Moreover, if f
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satisfies the conditions as in [FM00, 4.4], then LssX/Y is nef and ∆ has simple normal

crossings support. Therefore, replacing Y by a smooth birational model, we may
always assume that LssX/Y is nef and ∆ is a simple normal crossings divisor.

In applications, it is important to bound the denominator of LssX/Y .

Theorem 3.1 ([FM00, Theorem 3.1]). Under the above notations and assump-

tions, let E → F be the cover associated to the b-th root of the unique element of

|bKF |. Let E be a nonsingular projective model of E and let Bm be its m-th Betti

number. Then there is a natural number N = N(Bm) depending only on Bm such

that NLssX/Y is a divisor.

Let ∆ =
∑

P sPP . We have the following result about the coefficients sP .

Proposition 3.2 ([FM00, Propostion 2.8]). Under the notations and the assump-

tions as above, let N ∈ Z>0 be such that NLssX/Y is a Weil divisor. Then we

have

LX/Y = LssX/Y +
∑

P

sPP,

where sP ∈ Q for every codimension one point P of Y is such that

(1) For each P , there exists uP , vP ∈ Z>0, such that 0 < vP ≤ bN and

sP = (bNuP − vP )/(NuP ).
(2) sP = 0 if f∗(P ) has only canonical singularities or if X → Y has a

semistable resolution in a neighbourhood of P .

Moreover, sP depends only on f |f−1(U) where U is an open set of Y containing P .

For convenience, we write MY = LssX/Y /b and BY = ∆/b, then all non-zero

coefficients of BY are contained in

A(b,N) := {
bNu− v

bNu
|u, v ∈ Z>0; 0 < v ≤ bN}\{0}.

Lemma 3.3 ([VZ07, Lemma 1.2]). Under the notations as above, the following

hold true.

(1) The set A(b,N) is a DCC set, and one has

1

bN
≤ inf A(b,N).

(2) (Y,BY ) is log smooth and has klt singularities.

(3) The Q-divisor KY +MY +BY is big.

(4) For every s ∈ Z>0, we have

H0(Y,OY (⌊sb(KY +MY +BY )⌋)) ∼= H0(X,OX(sbKX));

further the map φsbKX
is birational to the Iitaka fibration f if and only if

|sb(KY +MY +BY )| gives rise to a birational map.

(5) bNMY is an integral nef Cartier divisor.

(6) If m ∈ Z>0 is divisible by bN , then ⌊mBY ⌋ ≥ (m− 1)BY .

Lemma 3.4. Under the same notations and assumptions as in Lemma 3.3, (Y,MY+
BY ) has a log terminal model and a log canonical model.
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Proof. Since KY +MY +BY is big, we may write KY +MY +BY ∼Q A+E, where
A is an ample Q-divisor and E is an effective Q-divisor. By (2) of Lemma 3.3,
(Y,BY ) is klt, so (Y,BY + ǫE) is also klt for 0 < ǫ≪ 1. By (5) of Lemma 3.3, MY

is nef, so MY + ǫA is ample. Thus there exist a sufficiently ample divisor A′ and a
rational number 0 < ǫ′ ≪ 1 such that MY + ǫA ∼Q ǫ

′A′ and (Y,BY + ǫE + ǫ′A′) is
also klt. It follows that

(1 + ǫ)(KY +MY +BY ) ∼Q KY +MY + BY + ǫA+ ǫE

∼Q KY +BY + ǫE + ǫ′A′.

By [BCHM10], (Y,BY +ǫE+ǫ′A′) has a log terminal model Y m and a log canonical
model Y c. It is easy to see that Y m (resp. Y c) is also a log terminal model (resp.
log canonical model) of (Y,MY +BY ). �

Lemma 3.5. Under the notations and assumptions as in Lemma 2.10, the bound-

ary part BV of fW is the restriction of BY to V and the moduli part MV of fW is

Q-linearly equivalent to the restriction of MY .

Proof. Since (Y,BY ) is log smooth and V is a very general fiber of ϕ : Y → T , we
may assume that BY |V has simple normal crossings support. Let BY =

∑

P rPP
and BV =

∑

Q r
′
QQ. Recall that 1− rP is the log canonical threshold of f∗P with

respect to (X,−DX/b) over the generic point of P and 1− r′Q is the log canonical

threshold of f∗
WQ with respect to (W,−DW /b) over the generic point of Q, where

DX = bKX − f
∗(bKY + LX/Y ) and DW = bKW − f

∗
W (bKV + LW/V ) (see [Fuj03,

Defintion 3.4]). Since W is a very general fiber, we have DX |W = DW . Hence
r′Q = 0 when Q is not contained in the support of BY |V and r′Q = rP when Q is

the restriction of some component P of BY . Therefore BV = BY |V . On the other
hand, we have KV +MV +BV ∼Q (KY +MY +BY )|V . Hence MV ∼Q MY |V . �

Variation. Let f : X → Y be an algebraic fiber space. Let K ⊃ C be an al-

gebraically closed field contained in C(Y ) such that there is a finitely generated

extension L of K such that Q(L ⊗K C(Y )) ∼= Q(C(X) ⊗C(Y ) C(Y )) over C(Y ),
where Q denotes the fraction field. The minimum of tr.degCK for all such K is
called the variation of f and denoted by Var(f).

Theorem 3.6. Let f : X → Y be the Iitaka fibration as in [FM00, 4.4]. If the

generic fiber F of f has a good minimal model, then the following are equivalent:

(1) MY is numerically trivial.

(2) MY ∼Q 0.
(3) κ(Y,MY ) = 0.
(4) Var(f) = 0.

Proof. (1)⇐⇒(2) is followed by [Amb05, Theorem 3.5]. The implication (2)=⇒(3)
is trivial. Since F has a good minimal model, following [Kaw85, Theorem 1.1], we
have (3)⇐⇒(4) (cf. [Fuj03, Remark 3.9]). Finally, Fujino [Fuj03, Theorem 3.11]
proves the implication (4)=⇒(2). �

4. Birational covering families of pure log canonical centers

In this section, we construct a birational covering family of pure log canonical
centers.

Recall that a subset P of a variety Y is called countably dense if it is not
contained in the union of countably many closed subsets of Y .
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Lemma 4.1. Let (Y,∆) be a log pair, where Y is projective and let D be a big Q-

Cartier divisor on Y . Suppose that for every point y ∈ P , where P is a countably

dense subset of Y , we can find a pair (∆y,Wy) such that Wy is a pure log canonical

center for KY +∆+∆y at y and ∆y ∼Q D/wy for some positive rational number

wy. Then there exists a diagram

Y ′
π //

ϕ

��

Y

T

such that ϕ is a dominant morphism of normal projective varieties with connected

fibers and for a general fiber Vt of ϕ there exists y ∈ ϕ(Vt) so that ϕ(Vt) is a pure

log canonical center for KY + ∆ + ∆t with ∆t ∼Q D/w at y, for some weight w.
Also π is a generically finite and dominant morphism of normal varieties.

Proof. See [McK02, Lemma 3.2] or [Tod08, Lemma 3.2]. �

Lemma 4.2 (McKernan). Let (Y,∆) be a log pair, where Y is a normal projective

variety of dimension n′. Let D be a nef and big Q-Cartier divisor. Let (∆t, Vt) be
a covering family of weight less than w and dimension k.

If (∆t, Vt) is not birational then we may find a covering family of (Γs,Ws) of

weight w/(n′ − k) and dimension l, where either

(1) l > k, or
(2) l < k and (Γs,Ws) is a birational family.

Remark 4.3. Lemma 4.2 still holds if we only assume that D is big instead of nef
and big.

Proof. See [McK02, Lemma 4.2]. �

Corollary 4.4. Let (Y,∆) be a log pair, where Y is a normal projective variety of

dimension n′. Let D be a big Q-Cartier divisor. Let (∆t, Vt) be a covering family

of weight w and dimension k. Then there exists a birational covering family of

(Γs,Ws) of weight w
′ ≥ w/(n′ − 1)!.

Proof. This is immediate from Lemma 4.2. �

By Lemma 3.3, KY +MY + BY is a big Q-divisor on Y , where Y is a smooth
projective variety of dimension n′, so for each point y ∈ Y , we can find a pair
(Dy, Vy) such that

(1) Dy ∼Q λ(KY +MY +BY ), for some rational number λ > 0,
(2) Vy is a pure log canonical center of (Y,Dy) at y.

Note that we can take the same λ for every point in a countably dense subset of Y
with dim(Vy) = k. Then by the previous corollary we obtain a diagram

Y ′
π //

ϕ

��

Y

T

such that

(1) π is birational and ϕ is dominant.
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(2) Let Vt = π(V ′
t ), where V

′
t is a general fiber of ϕ. Then there exists a Q-

divisor Dt ∼Q λ
′(KY +MY +BY ) on Y such that Vt is a pure log canonical

center of (Y,Dt) and λ
′ ≤ λ(n′ − 1)!.

Proposition 4.5. Let f : X → Y be the Iitaka fibration satisfying the hypotheses

of Theorem 1.2. Suppose that for any y in a countably dense subset of Y , there

is an effective Q-divisor Dy ∼Q λ(KY +MY + BY ) such that y ∈ Non-klt(Y,Dy).
Then there exists a diagram

X ′

f ′

��

// X

f

��

Y ′

ϕ

��

π // Y

T

such that

(1) X ′ and Y ′ are smooth projective varieties.

(2) π is birational, ϕ is dominant with dimT ≥ 0 and f ′ satisfies the hypotheses

of Theorem 1.2.

(3) For any very general fiber V ′
t of ϕ, there exists an effecitive Q-divisor D′

t ∼Q

λ′(KY ′ +MY ′ +BY ′) on Y ′ such that V ′
t is a pure log canonical center of

(Y ′, D′
t) and λ

′ ≤ λ(n′ − 1)!, where n′ = dimY .

Proof. By our discussions above, there exists a covering family Y ′ ϕ
→ T such that

Y ′ π
→ Y is birational. Now replace Y ′ by a smooth model and let X ′ be the

resolution of the main component of X ×Y Y
′. It is easy to see that f ′ and f have

the same generic fiber. Hence, (1) and (2) are satisfied. We only need to show (3).
Let Vt = π(V ′

t ). By our assumptions and previous discussions, there is an effec-
tive Q-divisor Dt ∼Q λ

′(KY +MY +BY ) on Y such that Vt is a pure log canonical
center of (Y,Dt) and λ′ ≤ λ(n′ − 1)!. Since π is birational, for all m ∈ Z>0 suffi-
ciently divisible, we have

H0(Y ′,OY ′(m(KY ′ +MY ′ +BY ′))) ∼= H0(X ′,OX′(mKX′))
∼= H0(X,OX(mKX))
∼= H0(Y,OY (m(KY +MY +BY ))).

So there is an effective Q-divisor D′
t ∼Q λ′(KY ′ +MY ′ + BY ′) on Y ′ such that

π(D′
t) = Dt. Since V ′

t is a very general fiber of ϕ, (Y ′, D′
t, V

′
t ) and (Y,Dt, Vt) are

isomorphic at the generic point of V ′
t . Therefore, V

′
t is a pure log canonical center

of (Y ′, D′
t). �

Lemma 4.6 ([McK02, Lemma 5.3]). Let (Y,∆) be a log pair and let D be a Q-

divisor of the form A + E where A is ample and E is effective. Let (∆t, Vt) be a

covering family of weight greater than w and dimension k. Let At be the restriction

of A to Vt. Suppose that for all very general points t ∈ U we may find a covering

family of (Γt,s,Wt,s) on Vt of weight, with respect to At, greater than w′.

Then we may find a covering family of (Γs,Ws) of dimension less than k and

weight

w′′ =
ww′

w + w′
.



10 XIAODONG JIANG

Further if both (∆t, Vt) and (Γt,s,Wt,s) are birational families then so is (Γs,Ws).

5. Subadjunction

In his fundamental paper [Kaw98], Kawamata proves a remarkable subadjunction
theorem. An immediate consequence of this theorem is that if (X,D) is a log
canonical pair, V is a non-klt center of (X,D), then we have (KX + D)|V ∼Q

KV +∆V , where ∆V is a pseudoeffective divisor on V . Actually, one can prove a
more precise result.

Proposition 5.1 (Subadjunction). Let X be a normal variety and D an effective

Q-divisor on X such that (X,D) is a log pair. If V is a pure log canonical center

of (X,D) and ν : V ν → V is the normalization, then we have

(KX +D)|V ν ∼Q KV ν +∆V ν ,

where ∆V ν is an effective Q-divisor.

Remark 5.2. Recently, Fujino and Gongyo [FG10] prove the much stronger result
that if (X,D) is an lc pair and V is a minimal non-klt center of (X,D), then there
exists an effective Q-divisor ∆V on V such that (KX + D)|V ∼Q KV + ∆V and
(V,∆V ) is klt.

This result depends on Ambro’s results on the moduli (b-)divisor associated to
an lc-trivial fibration .

Theorem 5.3 (Ambro). Let f : (X,B)→ Y be an lc-trivial fibration such that the

generic geometric fiber Xη̄ = X ×Y Spec(k(Y )) is a projective variety and Bη̄ is

effective. Then there exists a diagram

(X,B) (X !, B!)

f





y

f !





y

Y
τ

←−−−− Ȳ
̺

−−−−→ Y !

satisfying the following properties:

• f ! : (X !, B!)→ Y ! is an lc-trivial fibration.

• τ is generically finite and surjective and ̺ is surjective.

• There exists a nonempty open subset U ⊂ Ȳ and an isomorphism

(X,B)×Y Ȳ |U
≃ //

&&LLLLLLLLLLL (X !, B!)×Y ! Ȳ |U

xxpppppppppppp

U

• Let M and M! be the corresponding moduli Q-b-divisors. Then M! is b-

nef and big and τ∗M = ̺∗(M!), which implies M is b-nef and good. In

particular, M is Q-linearly equivalent to an effective divisor.

Proof. See [Amb05, Theorem 3.3]. �

Before giving the proof of 5.1, we need the following useful lemmas.
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Lemma 5.4 (Hacon). Let X be a normal quasi-projective variety and B a boundary

R-divisor on X such that KX + B is R-Cartier. Then, there exists a projective

birational morphism f : Y → X from a normal quasi-projective variety Y with the

following properties.

(1) Y is Q-factorial.

(2) a(E,X,B) ≤ −1 for every f -exceptional divisor E on Y .

(3) We put

BY = f−1
∗ B +

∑

E:⊂Ex(f)

E.

Then (Y,BY ) is dlt and

KY +BY = f∗(KX +B) +
∑

a(E,X,B)<−1

(a(E,X,B) + 1)E.

In particular, if (X,B) is lc, then KY + BY = f∗(KX + B). Moreover, if

(X,B) is dlt, then we can assume that f is small, that is, f is an isomor-

phism in codimension one.

Proof. See e.g. [Fuj09, Theorem 10.4]. �

Remark 5.5. Lemma 5.4 still holds if the coefficients of some components of B are
greater than 1. But we need to replace (3) by

(3’) Let

BY = f−1
∗ B≤1 + Suppf−1

∗ B>1 +
∑

E:⊂Ex(f)

E.

Then (Y,BY ) is dlt and

KY +BY = f∗(KX +B) +
∑

a(F,X,B)<−1

(a(F,X,B) + 1)F.

Lemma 5.6 (Adjunction for dlt pairs). Let (X,D) be a dlt pair. We put S = ⌊D⌋
and let S =

∑

i∈I Si be the irreducible decompostion of S. Then, W is a non-klt

centre for the pair (X,D) with codimXW = k if and only if W is an irreducible

component of Si1 ∩Si2 ∩ · · · ∩Sik for some {i1, i2, · · · , ik} ⊂ I. By adjunction, we

obtain

KSi1
+Diff(D − Si1) = (KX +D)|Si1

,

and (Si1 ,Diff(D − Si1)) is dlt. Note that Si1 is normal, W is a non-klt center for

the pair (Si1 ,Diff(D − Si1)), Sij |Si1
is a reduced component of Diff(D − Si1) for

2 ≤ j ≤ k, and W is an irreducible component of (Si2 |Si1
)∩(Si3 |Si1

)∩· · ·∩(Sik |Si1
).

By applying adjunction k times, we obtain a Q-divisor ∆ ≥ 0 on W such that

(KX +D)|W = KW +∆

and (W,∆) is dlt.

Proof. See [Cor07, Proposition 3.9.2]. �

Proof of Proposition 5.1. Applying Lemma 5.4 and Remark 5.5, we may get a mor-
phism f : Y → X satisfying the properties of Lemma 5.4. Let DY = f−1

∗ D≤1 +
Suppf−1

∗ D>1 +
∑

E:⊂Ex(f)E. Then we have

f∗(KX +D) = KY +DY −
∑

a(F,X,D)<−1

(a(F,X,D) + 1)F,
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and the pair (Y,DY ) is dlt. Since V is a pure log canonical center of (X,D), F is
vertical over V if a(F,X,D) < −1.

Let W be a minimal non-klt center of (Y,DY ) over the generic point of V and
ν : V ν → V the normalization of V . We obtain the following diagram

W

g

��

s

~~||
||

||
||

�
�

// Y

f

��

U
t // V ν

ν // V
�
�

// X

where g : W → V ν is the induced morphism and W
s
→ U

t
→ V ν is the Stein

factorization of g.
By Lemma 5.6, there exists a log pair (W,∆W ), where ∆W ≥ 0, such that

KW +∆W ∼Q (KY +DY −
∑

a(F,X,D)<−1

(a(F,X,D) + 1)F )|W ∼Q f
∗(KX +D)|W ,

and the non-klt centers of (W,∆W ) are vertical over V ν , so (W,∆W ) has klt singu-
larities over the generic point of V ν . It follows that (W,∆W ) is klt over the generic
point of U . Moreover,

KW +∆W ∼Q g
∗((KX +D)|V ν ) ∼Q s

∗((KX +D)|U ).

Therefore, s : (W,∆W )→ U is an lc-trivial fibration as defined in [Amb04, Defini-
tion 2.1].

We may write (KX +D)|U ∼Q KU +M +B, where M is the moduli part and B
is the boundary part of this lc-trivial fibration. Since ∆W ≥ 0, B ≥ 0. By Theorem
5.3, we may assume that M is effective. Let ∆U =M +B, then,

(KX +D)|U ∼Q KU +∆U

and ∆U ≥ 0. Since t : U → V ν is finite and KU + ∆U ∼Q t∗((KX +D)|V ν ), it is
easy to see that there exists an effective Q-divisor ∆V ν on V ν such that

(KX +D)|V ν ∼Q KV ν +∆V ν .

�

6. Creating isolated non-klt centers

Proposition 6.1. Assume that Theorem 1.2 holds for varieties of dimensions < n.
Let f : X → Y be the Iitaka fibration satisfying the hypotheses of Theorem 1.2 with

dimX = n and dimY = n′. Then there exist positive constants α and β depending

on n, b and k, such that for any very general point y ∈ Y there is an effective

Q-divisor Dy such that

(1) Dy ∼Q λ(KY +MY +BY ), where λ <
α

vol(Y,KY +MY +BY )1/n
′
+ β;

(2) y is an isolated point of Non-klt(Y,Dy).

Proof. Take a very general point y ∈ Y . Since KY + MY + BY is big, by the
argument in the proof of [Pac07b, Theorem 6.2], we can pick an effective Q-divisor
D0 ∼Q λ0(KY +MY + BY ) which has multiplicity > n0 at y, where n0 = n′ and

λ0 < n0(vol(Y,KY +MY + BY ))
−1/n0 + ε0 with 1 ≫ ε0 > 0. Hence there is a

component V0 of Non-klt(Y,D0) passing through y. Multiplying D0 by a positive
rational number ≤ 1, we can assume that V0 is a pure log canonical center of
(Y,D0).
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By Proposition 4.5, we may replace Y with a higher smooth birational model
such that there exists a morphism ϕ : Y → T satisfying the properties of 4.5.
Therefore, the point y is contained in a very general fiber V1 of ϕ and there is
an effective Q-divisor D1 ∼Q λ1(KY +MY + BY ) on Y with λ1 ≤ λ0(n0 − 1)! <

n0!(vol(Y,KY +MY +BY ))
−1/n0 + ε0(n0− 1)!, such that V1 is a pure log canonical

center of (Y,D1).
By Lemma 3.4, there is a log canonical model Y ′ of (Y,MY +BY ). Replacing Y

with a higher smooth birational model, we may assume that there is a morphism
φ : Y → Y ′. Let MY ′ = φ∗MY and BY ′ = φ∗BY . Then KY ′ +MY ′ + BY ′ is
Q-Cartier and ample on Y ′.

By our assumption, the generic fiber of f has a good minimal model. Applying
Theorem 2.11, there exists a good minimal model X ′ of X . Replacing X with a
higher smooth birational model, we may assume that there is a morphism ψ : X →
X ′. Hence, we obtain a diagram

X

f

��

ψ
// X ′

f ′

��
�

�

�

Y

ϕ

��

φ
// Y ′

T

where f ′ is the induced rational map.

Remark 6.2. The generic fiber of f may have changed after running the Minimal
Model Program, so f may not satisfy the hypotheses of Theorem 1.2. But since
our new X is a higher birational model of the original one, we do not change either
MY or BY by the Canonical Bundle Formula.

Lemma 6.3. We have the following:

(1) Y ′ is isomorphic to the weak canonical model (X ′)w of X ′ in the sense that

(X ′)w = Proj
⊕

m≥0

H0(X ′,OX′(mKX′)).

(2) f ′ is a morphism and KX′ ∼Q f
′∗(KY ′ +MY ′ +BY ′).

Proof. X ′ is a good minimal model, so X ′ admits a morphism to its weak canonical
model (X ′)w. On the other hand, KY ′ +MY ′ +BY ′ is ample on Y ′, so

Y ′ = Proj
⊕

m≥0

H0(Y ′,OY ′(⌊m(KY ′ +MY ′ +BY ′)⌋)).

If m ∈ Z>0 is sufficiently divisible, by the Canonical Bundle Formula we have

H0(X ′,OX′(mKX′)) ∼= H0(X,OX(mKX))
∼= H0(Y,OY (⌊m(KY +MY +BY )⌋))

∼= H0(Y ′,OY ′(⌊m(KY ′ +MY ′ +BY ′)⌋)).

Hence Y ′ is the weak canonical model of X ′ and (2) follows from (1). �

Now let y′ = φ(y), V ′
1 = φ(V1), and D

′
1 = φ∗(D1) and let n1 = dimV1 = dimV ′

1 .
Since V1 is a pure log canonical center of (Y,D1) and y

′ is very general, it follows that
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V ′
1 is a pure log canonical center of (Y ′,MY ′ +BY ′ +D′

1) at y
′. Let W1 = f−1(V1),

W ′
1 = f ′−1(V ′

1), V
ν
1 the normalization of V ′

1 , W
ν
1 the normalization of W ′

1 and
γ :W ν

1 → V ν1 the induced morphism. We have the following diagram

W1
//

fW1

��

� o

��
??

?
W ν

1
//

γ

��

W ′
1 � o

��
??

?

��

X //

��

X ′

��

V1 //
� o

��
??

?

��

V ν1 // V ′
1 � o

��
??

?

Y //

��

Y ′

t1
∈

T

By Lemma 2.10 and Lemma 3.5, the morphism fW1
: W1 → V1 is the Iitaka

fibration of (W1,KW1
) and the moduli part MV1

of fW1
is Q-linearly equivalent to

the restriction of MY to V1. Thus we can assume that fW1
satisfies the hypotheses

of Theorem 1.2.

Remark 6.4. As in Remark 6.2, the generic fiber of fW1
may be different from the

original one. However this does not affect the computation of MV1
and BV1

.

Lemma 6.5. There exists a constant δ > 0 depending on n− 1, b and k, such that

vol(V1,KV1
+MV1

+BV1
) ≥ δ.

Proof. Since dimW1 < n, by our assumptions in Proposition 6.1, there exists a
positive integer m1 depending on n − 1, b and k, such that φm1(KV1

+MV1
+BV1

)

gives a birational map. Then vol(V1,m1(KV1
+MV1

+ BV1
)) ≥ 1 by Lemma 2.2.

Therefore,

vol(V1,KV1
+MV1

+BV1
) =

1

mn1

1

vol(V1,m1(KV1
+MV1

+BV1
))

≥
1

mn1

1

≥
1

mn−1
1

.

Now let δ be 1/mn−1
1 . �

We have the following fact.

Lemma 6.6. vol(V ′
1 , (KY ′ +MY ′ +BY ′ +D′

1)|V ′

1
) ≥ δ.

Proof. By Lemma 6.3, we have KX′ ∼Q f ′∗(KY ′ +MY ′ + BY ′). V ′
1 is a pure log

canonical center of (Y ′,MY ′ + BY ′ +D′
1) and y′ is a very general point of Y ′, so

W ′
1 is a pure log canonical center of (X ′, f ′∗D′

1).
By Proposition 5.1, there exists an effective Q-divisor ∆Wν

1
on W ν

1 , such that

(KX′ + f ′∗D′
1)|Wν

1
∼Q KWν

1
+∆Wν

1
.

On the other hand,

(KX′ + f ′∗D′
1)|Wν

1
∼Q γ

∗((KY ′ +MY ′ +BY ′ +D′
1)|V ν

1
).
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For all m ∈ Z>0 sufficiently divisible, by the Projection Formula we have

h0(W ν
1 ,OWν

1
(m(KWν

1
+∆Wν

1
))) = h0(V ν1 ,OV ν

1
(m(KY ′+MY ′+BY ′+D′

1)|V ν
1
)). (∗)

By the Canonical Bundle Formula,

h0(W1,OW1
(mKW1

)) = h0(V1,OV1
(m(KV1

+MV1
+BV1

))). (∗∗)

Since W1 is smooth and ∆Wν
1
≥ 0, it follows that

h0(W ν
1 ,OWν

1
(m(KWν

1
+∆Wν

1
))) ≥ h0(W1,OW1

(mKW1
)).

Therefore, by equations (∗) and (∗∗),

h0(V ν1 ,OV ν
1
(m(KY ′ +MY ′ +BY ′ +D′

1)|V ν
1
)) ≥ h0(V1,OV1

(m(KV1
+MV1

+BV1
))),

which implies

vol(V ν1 , (KY ′ +MY ′ +BY ′ +D′
1)|V ν

1
) ≥ vol(V1,KV1

+MV1
+BV1

).

Note that the normalization ν : V ν1 → V ′
1 is birational. Thus we have

vol(V ′
1 , (KY ′ +MY ′ +BY ′ +D′

1)|V ′

1
) = vol(V ν1 , (KY ′ +MY ′ +BY ′ +D′

1)|V ν
1
)

≥ vol(V1,KV1
+MV1

+BV1
)

≥ δ.

�

Let φV1
: V1 → V ′

1 be the restriction of φ to V1. We have

φ∗(KY ′ +MY ′ +BY ′)|V1
∼Q φ

∗
V1
((KY ′ +MY ′ +BY ′)|V ′

1
).

Recall that D′
1 ∼Q λ1(KY ′ +MY ′ +BY ′), so by Lemma 6.6 it follows that

vol(V1, φ
∗(KY ′ +MY ′ +BY ′)|V1

) = vol(V ′
1 , (KY ′ +MY ′ +BY ′)|V ′

1
)

=
vol(V ′

1 , (KY ′ +MY ′ +BY ′ +D′
1)|V ′

1
)

(1 + λ1)n1

≥
δ

(1 + λ1)n1

.

Hence for any very general fiber Vt of ϕ, we always have

vol(Vt, φ
∗(KY ′ +MY ′ +BY ′)|Vt

) ≥ δ(1 + λ1)
−n1 .

Then for any point p ∈ Vt, there exists an effective Q-divisor Et,p ∼Q λt,p(φ
∗(KY ′ +

MY ′ +BY ′)|Vt
) on Vt such that multpEt,p > n1 and

λt,p <
n1

vol(Vt, φ∗(KY ′ +MY ′ +BY ′)|Vt
)1/n1

+ ε1

<
n0!n1

δ1/n1vol(Y,KY +MY +BY )1/n0

+ (1 + ε0(n0 − 1)!)
n1

δ1/n1

+ ε1

where 0 < ε1 ≪ 1. This implies that there is a component of Non-klt(Vt, Et,p)
passing through p . Multiplying Et,p by a positive rational number ≤ 1, we can
assume that p is contained in a pure log canonical center of (Vt, Et,p).

Applying Lemma 4.1 and Corollary 4.4, there exists a birational covering family
of (Γt,s,Wt,s) on Vt of weight w

′ with respect to φ∗(KY ′ +MY ′ +BY ′)|Vt
such that
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Γt,s ∼Q (1/w′)φ∗(KY ′ +MY ′ + BY ′)|Vt
and the image of Wt,s on Vt is a pure log

canonical center of (Vt,Γt,s), where

1

w′
<

n0!n1!

δ1/n1vol(Y,KY +MY +BY )1/n0

+ (1 + ε0(n0 − 1)!)
n1!

δ1/n1

+ ε1(n1 − 1)!.

By Lemma 4.6, we can find a new birational covering family of (D′
s, V

′′
s ) on Y

′

of dimension less than n1 and weight w′′ such that

1

w′′
= λ1 +

1

w′

<
n0!n1!δ

−1/n1 + n0!

vol(Y,KY +MY +BY )1/n0

+(1 + ε0(n0 − 1)!)
n1!

δ1/n1

+ ε1(n1 − 1)! + ε0(n0 − 1)!.

Therefore, we obtain the following diagram

Y ′′
φ′′

//

ϕ′′

��

Y ′

S

where φ′′ is birational and ϕ′′ is surjective. For the very general point y′ ∈ Y ′,
there are an effective Q-divisor D′

s ∼Q λ2(KY ′ +MY ′ +BY ′) on Y ′ with λ2 = 1/w′′

and a very general fiber V ′′
s of ϕ′′ such that V ′

2 = φ′′(V ′′
s ) is a pure log canonical

center of (Y ′,MY ′ + BY ′ + D′
s) at y′ with dimV ′

2 < dimV ′
1 = n1. Replacing Y ′′

with the common higher smooth model of Y, Y ′ and Y ′′, we can assume that Y ′′ is
smooth and the dimension of any very general fiber of ϕ′′ : Y ′′ → S is strictly less
than that of ϕ : Y → T . The moduli part MY ′′ on Y ′′ is still Q-linearly trivial,
since it is the pullback of MY .

Repeating above procedure at most n′−1 times, there exists an effectiveQ-divisor
D′ ∼Q λ(KY ′ +MY ′ + BY ′) on Y ′ with λ < α(vol(Y,KY +MY + BY ))

−1/n′

+ β,
where α and β depend only on n, k and b, such that y′ is a pure log canonical center
of (Y ′,MY ′ + BY ′ +D′). By the standard tie-breaking technique, we can assume
that y′ is the unique non-klt center of (Y ′,MY ′ +BY ′ +D′) on a neighborhood of
y′, i.e. y′ is an isolated point of Non-klt(Y ′,MY ′ + BY ′ + D′). Since Y ′ and Y
are birational, there is a unique effective Q-divisor Dy ∼Q λ(KY +MY + BY ) on
Y such that φ∗(Dy) = D′. Then Dy satisfies the requirements in Proposition 6.1.
This completes the proof. �

7. Proof of Theorem 1.2

Lemma 7.1. Let f : X → Y be the Iitaka fibration satisfying the hypotheses of

Theorem 1.2. Let m0 be a positive integer and assume that for any very general

point y ∈ Y , there exists an effective Q-divisor Dy ∼Q λ(KY +MY + BY ) where

λ ≤ m0 − 1, such that y is an isolated point in Non-klt(Y,Dy). Then for all

m ≥ m0 such that mMY is an integral divisor, i.e. m is divisible by bN , we have

h0(X,OX(mKX)) > 0 and moreover, if m ≥ 2m0, then h
0(X,OX(mKX)) ≥ 2.

Proof. Since KY + MY + BY is big, there exist an ample Q-divisor H and an
effective Q-divisor G on Y such that KY +MY +BY ∼Q H+G. Pick a very general
point y ∈ Y not contained in the support of G + BY . By Lemma 3.3, the divisor
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(⌊mBY ⌋−(m−1)BY ) is effective. LetD
′
y = Dy+(m−1−λ)G+⌊mBY ⌋−(m−1)BY .

Then
⌊m(KY +MY +BY )⌋ −KY −D

′
y ∼Q (m− 1− λ)H +MY

is ample so that H1(Y,OY (⌊m(KY +MY +BY )⌋)⊗ J (Y,D
′
y)) = 0.

Consider the short exact sequence of coherent sheaves on Y

0→ OY (⌊m(KY +MY +BY )⌋)⊗J (Y,D
′
y)→ OY (⌊m(KY +MY +BY )⌋)→ Q→ 0

where Q denotes the corresponding quotient. By the discussion above, the map

H0(Y,OY (⌊m(KY +MY +BY )⌋))→ H0(Y,Q)

is surjective. Since y is an isolated point in Non-klt(Y,D′
y), Cy is a direct summand

of H0(Y,Q). Thus, we have

h0(X,OX(mKX)) = h0(Y,OY (⌊m(KY +MY +BY )⌋)) > 0.

Pick a very general point y1 ∈ Y . Then there is an effective Q-divisor Dy1 ∼Q

λ(KY +MY + BY ) such that y1 is an isolated point in Non-klt(Y,Dy1). Now we
may pick a very general point y2 ∈ Y not contained in the support of Dy1 , and pick
a very general divisor Dy2 ∼Q λ(KY +MY +BY ) such that y2 is an isolated point
in Non-klt(Y,Dy2) and y1 is not contained in the support of Dy2 . Hence y1 and y2
are isolated points in Non-klt(Y,Dy1 + Dy2). Then h0(X,OX(mKX)) ≥ 2 by an
argument similar to the discussion above. �

Lemma 7.2. Let f : X → Y be the Iitaka fibration satisfying the hypotheses of The-

orem 1.2. Let m′
0 be a positive integer divisible by bN . Assume that h0(X,mKX) ≥

2 for all m ≥ m′
0 such that m is divisible by bN . Let X ′ → Y ′ → P1 be any

morphism induced by sections of OX(m′
0KX) on an appropriate birational model

f ′ : X ′ → Y ′ of f : X → Y . Let p ∈ P1 be a very general point. fW : W → V
denotes the restriction of f ′ to the fiber over p. If there is a positive integer s divis-
ible by bN such that |sKW | induces the Iitaka fibration for any very general point

p, then |tKX | induces the Iitaka fibration for all t ≥ m′
0(2s + 2) + s such that t is

divisible by bN .

W

fW

��

�
�

// X ′

f ′

��

// X

f

��

V

��

�
�

// Y ′

��

// Y

p ∈ P1

Proof. Following [Kol86, Theorem 4.6] and its proof, |(m′
0(2s + 1) + s)KX | gives

the Iitaka fibration. Since mKX is effective for all m ≥ m′
0 such that m is divisible

by bN , the assertion follows. �

Proof of Theorem 1.2. Since the moduli part is Q-linearly trivial by Theorem 3.6,
we always have vol(Y,KY +MY +BY ) = vol(Y,KY +BY ). The proof is by induction
on the dimension of X . It is well known that the theorem holds for n = 1. Assume
that the theorem holds when dimX ≤ n− 1. Let f : X → Y be the Iitaka firation
satisfying the hypotheses of Theorem 1.2 with dimX = n and dimY = n′. By
Proposition 6.1, for any very general point y ∈ Y , there exists an effective Q-
divisor Dy ∼Q λ(KY +MY + BY ) with λ < α(vol(Y,KY +MY + BY ))

−1/n′

+ β,
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where α and β are two positive constants depending only on n, b and k, such that
y is an isolated point in Non-klt(Y,Dy).

If vol(Y,KY +MY +BY ) = vol(Y,KY +BY ) ≥ 1 , Proposition 6.1, Lemma 7.1
and Lemma 7.2 imply that there exists an positive integer mn only depending on
n, b and k such that mKX gives the Iitaka fibration if m ≥ mn and divisible by bN .

Now we prove the case when vol(Y,KY +MY + BY ) = vol(Y,KY + BY ) < 1.
By induction, there exists a positive integer s such that |sKW | gives the Iitaka
fibration for all W with dimW ≤ n − 1 satisfying the hypotheses of Theorem 1.2.
By Proposition 6.1, Lemma 7.1 and Lemma 7.2, |mKX | induces the Iitaka fibration,
for

m = 8bNs⌈
α

vol(Y,KY +MY +BY )1/n
′
+ β + 1⌉,

so φm(KY +MY +BY ) gives a birational map. As mMY is a Q-linearly trivial Cartier
divisor, φKY +(2n′+1)m(KY +BY ) is also birational by Lemma 2.3. We have

vol(Y, (2n′ + 1)m(KY +BY )) = (2n′ + 1)n
′

mn′

vol(Y,KY +BY )

≤ (2n′ + 1)n
′

(8bNs)n
′

(α + β + 2)n
′

≤ (2n+ 1)n(8bNs)n(α+ β + 2)n.

It follows that there is a constant A such that vol(Y, (2n′ + 1)m(KY + BY )) ≤ A.
Then Lemma 3.3 and Theorem 2.5 imply that the set of such log pairs (Y,BY ) is
log birationally bounded.

By Theorem 2.6, there exists a constant δn > 0 such that

vol(Y,KY +BY ) ≥ δn.

So we are done by applying Proposition 6.1, Lemma 7.1 and Lemma 7.2 again. �
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