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Abstract

In this paper, we describe a complete computer classification of the hemisystems in the two known flock
generalized quadrangles of order (52, 5) and give numerous further examples of hemisystems in all the
known flock generalized quadrangles of order (s2, s) for s 6 11. By analysing the computational data, we
identify two possible new infinite families of hemisystems in the classical generalized quadrangle H(3, s2).
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1. Introduction

A hemisystem of lines of a generalized quadrangle of order (s2, s) is a set H of lines such that every
point P is incident with (s + 1)/2 elements of H; that is, exactly half of the lines incident with each
point lie in H. The complementary set of lines to a hemisystem is also a hemisystem that may or may
not be equivalent under the automorphism group of the generalized quadrangle — if it is equivalent to
its complement then we call it self-complementary. Hemisystems give rise to various other combinatorial
objects, including partial quadrangles (Cameron [6]), strongly regular graphs with certain parameters, and
4-class imprimitive cometric Q-antipodal association schemes1 that are not metric (see Martin, Muzychuk
and van Dam [14]), all of which were thought to be somewhat rare.

The notion of a hemisystem was introduced in 1965 by Segre [20] in his work on regular systems of
the Hermitian surface, and he proved that there is a unique hemisystem of lines (up to equivalence) of
the classical generalized quadrangle H(3, 32). It was long thought that this was the only hemisystem
in H(3, q2) and indeed Thas [22] conjectured this as late as 1995. However, forty years after Segre’s
seminal paper, Cossidente and Penttila [8] constructed an infinite family of hemisystems of the classical
quadrangles H(3, q2) and other authors subsequently constructed sporadic examples in H(3, q2) [4, 7] and
a single example in the non-classical generalized quadrangle FTWKB(5) (see [2]). The first main result
of this paper extends the complete classification of hemisystems to the (known) generalized quadrangles
of order (52, 5).

Theorem 1.1. A hemisystem of the classical generalized quadrangle H(3, 52) is equivalent to one of the
two self-complementary hemisystems described in Table 5 and a hemisystem of the Fisher-Thas-Walker-
Kantor-Betten generalized quadrangle FTWKB(5) is equivalent to one of the three complementary pairs
described in Table 6.

All known generalized quadrangles of order (s2, s), s odd, arise from flocks of the quadratic cone and
hence are called flock generalized quadrangles. In [3] we gave a general construction for hemisystems that
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q GQ Type I hemisystems Other hemisystems Total

3 H(3, 32) 1 0 1

5 H(3, 52) 2 0 2

FTWKB(5) 1× 2 2× 2 6

7 H(3, 72) 2 4 6

K2(7) 6× 2 + 2 6× 2 + 2 28

9 H(3, 92) 3 4 7

K1(9) 3 2 5

Fi(9) 6× 2 + 9 4× 2 + 5 34

11 H(3, 112) 6 1× 2 + 5 13

FTWKB(11) 10× 2 20

Fi(11) 42× 2 + 6 6× 2 102

PM(11) 74× 2 + 8 18× 2 192

Table 1: Known hemisystems in the flock generalized quadrangles of order (s2, s) for s 6 11

produces a hemisystem in every flock generalized quadrangle, known or unknown. In fact (as pointed
out to us by Tim Penttila), our construction shows that the number of hemisystems in any infinite
family of flock generalized quadrangles grows exponentially with the size of the generalized quadrangle.
Therefore, far from being rare, hemisystems and their associated partial quadrangles, strongly regular
graphs etc. actually exist in great profusion. Of course this is an asymptotic result only, and so in this
companion paper to [3], we consider hemisystems in the small (known) flock generalized quadrangles,
namely those of order (s2, s) for all (odd) s 6 11. Using a mixture of computation and analysis driven
by the computational data, we discover large numbers of new hemisystems that do not arise from our
general construction.

Table 1 summarizes the results of our investigations, dividing the hemisystems into those of Type
1 arising from construction of [3] which we review in Section 3, and those that do not arise from this
construction. In this table, notation of the form 6×2+2 is used to indicate that, up to equivalence under
the automorphism group of the generalized quadrangle, there are 6 complementary pairs of hemisystems
and 2 self-complementary hemisystems, for a total of 14 hemisystems. In Theorem 3.3 we show that
a hemisystem of Type 1 in a generalized quadrangle of order (q2, q) is invariant under an elementary
abelian group of order q2, so one way to verify that a hemisystem is not of Type I is to show that it is
not invariant under such a group.

By analysing the computational data for the classical generalized quadrangles H(3, q2), we identify
patterns that suggest the existence of three possible new infinite families of hemisystems. For these
candidate families, we extend the computations to higher values of q and, based on these computations,
conjecture that just two of the three candidate families continue indefinitely. These families are discussed
in Section 4.

We end the paper in Section 8 by discussing a number of questions and directions for future research
suggested by our results.

2. Some basic background theory

A generalized quadrangle is an incidence structure of points and lines such that if P is a point and ℓ
is a line not incident with P , then there is a unique line through P which meets ℓ in a point. From this
property, if there is a line containing at least three points or if there is a point on at least three lines, then
there are constants s and t such that each line is incident with s + 1 points, and each point is incident
with t + 1 lines. Such a generalized quadrangle is said to have order (s, t), and its point-line dual is a
generalized quadrangle of order (t, s).

In this paper we are concerned with generalized quadrangles of order (s2, s), for s odd. The classical
example is the incidence structure of all points and lines of a non-singular Hermitian variety in PG(3, q2),
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which forms the classical generalized quadrangleH(3, q2) of order (q2, q) (see [16, 3.2.3]). Further examples
can be constructed from BLT-sets using the Knarr model. We briefly outline this construction below.

2.1. Flocks of quadratic cones and BLT-sets

A flock of the quadratic cone C with vertex v in PG(3, q) is a partition of the points of C\{v} into
conics. J. A. Thas [21] showed that a flock gives rise to an elation generalized quadrangle of order (q2, q),
which we call a flock quadrangle. A BLT-set of lines of W(3, q) is a set O of q + 1 lines of W(3, q) such
that no line of W(3, q) is concurrent with more than two lines of O. In [1], it was shown that, for q odd,
a flock of a quadratic cone in PG(3, q) gives rise to a BLT-set of lines of W(3, q). Conversely, a BLT-set
gives rise to possibly many flocks, however we only obtain one flock quadrangle up to isomorphism (see
[15]).

For q odd, Knarr [11] gave a direct geometric construction of a flock quadrangle from a BLT-set of
lines of W(3, q). Applying this construction to a linear BLT-set of lines (i.e., a regulus obtained from
field reduction of a Baer subline) of W(3, q), yields a generalized quadrangle isomorphic to the classical
object H(3, q2).

The BLT-sets of lines of W(3, q) have been classified by Law and Penttila [13] for prime powers q
at most 29, and this has recently been extended by Betten [5] to q 6 67. We outline the main infinite
families in Section 5.

2.2. The Knarr model

The symplectic polar space W(5, q) of rank 3 is the geometry arising from taking the one-, two- and
three-dimensional vector subspaces of GF(q)6 for which a given alternating bilinear form restricts to the
zero form (i.e., the totally isotropic subspaces). For example, one can take this alternating bilinear form
to be defined by

β(x,y) = x1y6 − x6y1 + x2y5 − x5y2 + x3y4 − x4y3.

In particular β(x,y) = xJ ′yT where

J ′ =





















0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0

−1 0 0 0 0 0





















This bilinear form also determines a null polarity ⊥ of the ambient projective space PG(5, q), defined by
U 7→ U⊥ := {v ∈ GF(q)6 : β(u,v) = 0 for all u ∈ U}.

The ingredients of the Knarr construction are as follows:

• a null polarity ⊥ of PG(5, q);

• a point P of PG(5, q);

• a BLT-set of lines O of W(3, q).

Note that the totally isotropic lines and planes incident with P yield the quotient polar space P⊥/P
isomorphic to W(3, q). So we will abuse notation and identify O with a set of totally isotropic planes on
P . Then we construct a generalized quadrangle K(O) as follows:

We now describe how the Knarr model leads to some obvious automorphisms of the resulting gen-
eralized quadrangle K(O). Let G be the semisimilarity group of the form β, that is, the group of all
semilinear transformations g of GF(q)6 for which there exists λ ∈ GF(q) and σ ∈ Aut(GF(q)) such that
β(ug,vg) = λβ(u,v)σ for all u,v ∈ GF(q)6. Let H be the group of similarities of β, that is, the group of
all linear transformations that preserve β up to a scalar. Then

H = {A ∈ GL(6, q) | AJ ′AT = λJ ′ for some λ ∈ GF(q)} ∼= GSp(6, q).
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Points Lines

(i) points of PG(5, q) not in P⊥ (a) totally isotropic planes not contained in
P⊥ and meeting some element of O in a
line

(ii) lines not incident with P but contained in
some element of O

(b) elements of O

(iii) the point P

Incidence is inherited from that of PG(5, q).

Let

J =











0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0











and take P to be the span of [1, 0, 0, 0, 0, 0]. Then HP = E ⋊ (Q×R) where

E =

















1 0 0

JTaT I 0

z a 1







∣

∣

∣ a ∈ GF(q)4, z ∈ GF(q)











Q =

















λ 0 0

0 I 0

0 0 λ−1







∣

∣

∣
λ ∈ GF(q)\{0}











∼= Cq−1

R =

















λ 0 0

0 A 0

0 0 1







∣

∣

∣ A ∈ GL(4, q), AJAT = λJ











∼= GSp(4, q)

and (HP )O = E ⋊ (Q×RO) ∼= E ⋊ (Q×GSp(4, q)O). Moreover, GP = 〈HP , σ〉, where σ is the standard
Frobenius map. Note that 〈R, σ〉 ∼= ΓSp(4, q) and acts on E/Z(E) as in its natural action on a 4-
dimensional vector-space over GF(q). Moreover, (GP )O = E ⋊ (Q ⋊ 〈R, σ〉O) ∼= E ⋊ (Q ⋊ ΓSp(4, q)O).
The group (GP )O preserves the flock generalized quadrangle K(O) and contains the subgroup Z of all
scalar matrices. Hence E⋊ΓSp(4, q)O ∼= (GP )O/Z 6 Aut(K(O)). In fact, if the flock quadrangle K(O) is
not classical, then these are the only automorphisms that you get, that is, Aut(K(O)) = E ⋊ ΓSp(4, q)O
[17, IV.1 and IV.2]. (Note: In the paper [3] we incorrectly claimed that additional automorphisms could
arise for the Kantor-Knuth generalized quadrangles.)

3. Hemisystems of Type I and their automorphisms

In this section we revise the construction given in [3] and discuss the stabiliser of the resulting hemisys-
tems.

Lemma 3.1 (Bamberg, Giudici and Royle [3]). Consider a set O of totally isotropic planes of W(5, q)
each incident with a point P such that {π/P : π ∈ O} is a BLT-set of lines of the quotient symplectic
space P⊥/P ∼= W(3, q). Define a binary relation ≡ℓ on O by setting π ≡ℓ π

′ if and only if

π = π′ or {〈Y, Y ⊥ ∩ π〉 | Y ∈ ℓ} ∩ {〈Y, Y ⊥ ∩ π′〉 | Y ∈ ℓ} = ∅.

Then ≡ℓ is an equivalence relation yielding a partition of O into two parts of equal size.

Theorem 3.2 (Bamberg, Giudici and Royle [3]). Consider a set O of totally isotropic planes of
W(5, q) each incident with a point P such that {π/P : π ∈ O} is a BLT-set of lines of the quotient
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symplectic space P⊥/P ∼= W(3, q). Suppose that we have a line ℓ of W(5, q) not meeting any element of
O, and let ≡ℓ be the binary relation on O defined in Lemma 3.1 with equivalence classes O+ and O−.
Let S be a subset of the totally isotropic planes on ℓ of size (q− 1)/2, not containing 〈P, ℓ〉, and let Sc be
the complementary set of planes on ℓ. Let

(i) L+
S be the totally isotropic planes that meet some element of O+ in a line, and which meet some

element of S in a point; and

(ii) L−
Sc be the totally isotropic planes that meet some element of O− in a line, and which meet some

element of Sc in a point;

Then O+ ∪ L+
S ∪ L−

Sc is a hemisystem of lines of K(O).

Recall that Cossidente and Penttila showed that for each odd q, there exists a hemisystem Hq of
H(3, q2) admitting PΩ−(4, q). It was shown in [3] that these hemisystems could be constructed using
Theorem 3.2. Moreover, the number of hemisystems produced by this construction grows exponentially
with q. To see this, note that the number of choices of (q + 1)/2 things from (q + 1) things is the

binomial coefficient; asymptotically this has value
2q+1

√
2/π√

q+2
, or basically, Θ(2q/

√
q). Whereas the auto-

morphism group of the generalized quadrangle is polynomial in size and hence there are exponentially
many inequivalent choices.

Theorem 3.3. Let H be the hemisystem exhibited in Theorem 3.2 and let G be the automorphism group
of the generalized quadrangle K(O). Then GH contains T ⋊ Sp(4, q)O+,O−,ℓ′ , where T is an elementary
abelian group of order q2 and ℓ′ is the line of W(3, q) obtained by projecting ℓ onto P⊥/P . The group T
acts semiregularly on the set of lines of type (a) of K(O) and fixes each line of type (b).

Proof. Consider the group

E =

















1 0 0

JTaT I 0

z a 1







∣

∣

∣ a ∈ GF(q)4, z ∈ GF(q)











which acts on the generalized quadrangle K(O).
Let O be our BLT-set, considered as a set of lines in W(3, q). Each 〈u1,u2〉 ∈ O is identified with the

3-space 〈P, [0,u1, 0], [0,u2, 0]〉 in V . Note that

[0,u, 0]







1 0 0

JTaT I 0

z a 1






= [uJTaT ,u, 0]

Hence E fixes each plane on P and hence each element of O. Moreover, given a line ℓ in P⊥ that is
disjoint from every element of O, we have that E fixes 〈P, ℓ〉. Now 〈P, ℓ〉 contains q2 lines not on P . If
we take ℓ′ = 〈[0,w1, 0], [0,w2, 0]〉 to be a line on 〈ℓ, P 〉 we see that

Eℓ′ =

















1 0 0

JTaT I 0

z a 1







∣

∣

∣ z ∈ GF(q),w1J
TaT = w2J

TaT = 0











which has order q3. Thus E acts transitively on the set of lines of 〈P, ℓ〉 not on P and so we may choose
ℓ = 〈[0,w1, 0], [0,w2, 0]〉. We let ℓ′ = 〈w1,w2〉, a totally isotropic line in W(3, q).

Let R be the set of totally isotropic planes on ℓ other than 〈P, ℓ〉. Note that Eℓ fixes R setwise. These
planes are of the form 〈ℓ, [x1, 0, 0, 0, 0, 1]〉 with x1 ∈ GF(q). Let T be the elementary abelian subgroup of
Eℓ of order q2 consisting of all elements with z = 0. Then

[x1, 0, 0, 0, 0, 1]







1 0 0

JTaT I 0

0 a 1






= [x1,a, 1]
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Since a ∈ 〈w1,w2〉⊥ = 〈w1,w2〉, it follows that [x1,a, 1] ∈ 〈ℓ, [x1, 0, 0, 0, 0, 1]〉 and so T fixes each element
of R.

Let S be a subset of size (q− 1)/2 of R and Sc be the complementary set of totally isotropic planes of
size (q + 1)/2. Then T fixes S and Sc elementwise. Hence T fixes the hemisystem H = O+ ∪ L+

S ∪ L−
Sc .

Let B ∈ Sp(4, q)O and consider the element

X =







1 01×4 0

04×1 B 04×1

0 01×4 1







which acts on the flock generalized quadrangle K(O). If B ∈ Sp(4, q)O+,O−,ℓ′ then X fixes each element
of R setwise and hence stabilises the hemisystem O+ ∪ L+

S ∪ L−
Sc . Thus T ⋊ Sp(4, q)O+,O−,ℓ′ 6 GH.

The lines of K(O) are the elements of O and the totally isotropic planes not on P and meeting
some element of O in a line. We have seen already that T fixes each of the elements of O. Now let
U = 〈P, [0,u1, 0], [0,u2, 0]〉 ∈ O and recall that 〈u1,u2〉 ∩ 〈w1,w2〉 = {0}. Then

T〈[0,u1,0],[0,u2,0]〉 =

















1 0 0

JTaT I 0

0 a 1






∈ T

∣

∣

∣ u1J
TaT = u2J

TaT = 0











Since such elements lie in T they also satisfyw1J
TaT = w2J

TaT = 0. If a 6= 0, we have {x | xJTaT = 0}
has dimension 3 but contains the complementary 2-spaces 〈u1,u2〉 and 〈w1,w2〉. This is a contradiction
and so T〈[0,u1,0],[0,u2,0]〉 = 1. Thus T acts regularly on the q2 lines in U not containing P , and hence acts
semiregularly on the totally isotropic planes not on P and meeting some element of O in a line. �

Remark 3.4. The stabiliser GH can be larger than the group given by Theorem 3.3. Sometimes extra
automorphisms can arise from the structure of the Knarr model. For example, if S were chosen to be
{〈ℓ, [x2, 0, 0, 0, 0, 1]〉 | x ∈ GF(q)} then the elements







λ 01×4 0

04×1 I4×4 04×1

0 01×4 λ−1







will fix H. Similarly, suitable choices of S may give rise to semisimilarities of β that stabilise H.
Alternatively, H(3, q2) has more automorphisms than those arising from the Knarr model.. The

Cossidente-Pentilla hemisystems in these generalized quadrangles admit at least PΣL(2, q2).

4. Potential new infinite families of hemisystems of H(3, q2)

Examination of our computational data uncovered three promising candidates for new infinite families
of hemisystems of H(3, q2), and in this section we investigate these possible families in more detail.

4.1. Hemisystems that are invariant under a Singer type element

In this section, we present a way of viewing hemisystems of H(3, q2) that are invariant under a Singer
type element, and we give some computational data which shows the existence of such hemisystems for all
q 6 29, except (curiously) q ∈ {13, 25}. For q = 3 we obtain the Segre hemisystem, for q = 5 we obtain
the hemisystem invariant under (3 · A7).2 discovered by Cossidente and Penttila [8] and for q = 7, 9 the
examples are given in [4]. In what follows, we will work in the dual generalized quadrangle; the points
and lines of the elliptic quadric Q−(5, q). A hemisystem of lines of H(3, q2) transfers to a hemisystem of
points of Q−(5, q).

We begin with GF(q6) and equip it with the following bilinear form over GF(q):

B(x, y) := Trq6→q(xy
q3).
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(Note that Trq6→q is the relative trace map x 7→ x+ xq + xq2 + xq3 + xq4 + xq5). This form is symmetric

and defines an elliptic orthogonal space isomorphic to Q−(5, q). Now let ω = ξ(q
3−1)(q+1) where ξ is a

primitive element of GF(q6). Let K = 〈ω〉 and note that K is independent of the choice of ξ (it is just

the set of elements x such that xq2−q+1 = 1). Then K is irreducible and acts semiregularly on the totally
isotropic points of Q−(5, q), and is occasionally known as a Singer type isometry of Q−(5, q). So the
number of orbits of K on totally isotropic points is (q+1)2. It is not difficult to see that each point orbit
is of the form

{〈u〉 | u(q2−q+1)(q−1) = r},
where r is a singular element of GF(q6)∗ such that r(q+1) ∈ GF(q3). In what follows, we will use the
underlying vectors instead of the projective points as the equations will be simpler. Note that the K-
orbits on singular nonzero vectors are each of the form

{u ∈ GF(q6)∗ | uq2−q+1 = r}, r ∈ R

where
R := {r ∈ GF(q6) | rq+1 ∈ GF(q3),Trq6→q(r

q+1) = 0}.
The elements of R lie on the mutually disjoint lines

ℓa : Xq2 − aX = 0

where a is an element of GF(q3) such that aq+1 + a+ 1 = 0.
So to construct a hemisystem, we need to construct a set of 1

2 (q+1)2 elements ofR. Of the hemisystems

we found, all were invariant under the field automorphism τ : a 7→ aq
2

fixing GF(q2) elementwise, and it
acts on the set of lines {ℓa}. The orbits of 〈τ〉 on {ℓa} are the zero sets of the GF(q2)-irreducible factors
of the polynomial Xq+1 + X + 1. Now every element r ∈ R can be uniquely represented by the pair
(rq

2−1, rq
3−1). The possible values of rq

2−1 are the q + 1 zeros of Xq+1 +X + 1, and the possible values

of rq
3−1 are the q + 1 solutions to Xq+1 = 1; let this latter set be denoted by N . So a 〈τ〉-orbit on R is

uniquely determined by a GF(q2)-irreducible factor i(X) of Xq+1 +X + 1 and an element n ∈ N :

{r ∈ R : i(rq
2−1) = 0, rq

3−1 = n}.

The hemisystems we construct arise from unions of these orbits.
Below we list the hemisystems that we found for 3 6 q 6 9. In each table we describe each solution

by unions of 〈τ〉-orbits on R. The constituents of these unions are described by which values of N appear
as right-hand values for each i(X).

Example 4.1. For q = 3, N = {1,−1, z2, z6}, where z is the primitive root of GF(q2). The GF(q2)-
irreducible factors of Xq+1 +X + 1 are

i1(X) : X − 1 and i2(X) : X3 +X2 +X − 1.

Let Π be the subset of the ordered pairs {i1, i2}×N described by specifying the right-hand coordinates per
possible left-hand coordinate:

X − 1 1, z6

X3 +X2 +X − 1 −1, z2

Now let
HR

Π := {r ∈ R | i(rq2−1) = 0, (i(X), rq
3−1) ∈ Π}.

Then our hemisystem of points of Q−(5, q) is simply

HΠ :=
{

〈u〉 | u(q2−q+1)(q−1) ∈ HR
Π

}

.

Moreover, we know that HΠ is projectively equivalent to the Segre hemisystem.
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In each case below, z denotes the primitive element of GF(q2). For each q below, we list one solution,
and all the solutions can be obtained by taking the given solution and its orbit under the action of 〈z〉.

q i(X) N

3 X − 1 1, z6

X3 +X2 +X − 1 −1, z2

5 X3 + 2X2 −X − 1 1, z8, z16

X3 + 3X2 − 1 1, z4, z20

7 X + 3 z6, z12, z30, z36

X + 5 1,−1, z18, z42

X3 + 4X − 1 1,−1, z18, z42

X3 −X2 + 3X − 1 z6, z12, z30, z36

9 X − 1 1, z8, z24, z56, z72

X3 −X2 −X − 1 1, z16, z32, z48, z64

X3 + z50X2 + z50X − 1 1, z8, z16, z64, z72

X3 + z70X2 + z70X − 1 1, z24, z32, z48, z56

Table 2: Sets Π of ordered pairs (i(X), rq
3
−1).

We have found hemisystems for larger q and we summarise them below.

q q2 − q + 1 Stabiliser

3 7 PSL(3, 4).2

5 21 3 · A7 · 2
7 43 43 : 6

9 73 73 : 6

11 111 111 : 6, 333 : 3

17 273 273 : 3

19 1715 1715 : 6

23 507 507 : 6

27 703 at least 703 : 3

Problem 4.2. Does there exist a hemisystem invariant under a Singer type element for all odd prime
powers q 6≡ 1 (mod 12)?

4.2. Hemisystems invariant under the stabiliser of a triangle: tyranny of the small?

Another interesting sequence of hemisystems apparent in our data is that for q = 7, 9 and 11, the
generalized quadrangle H(3, q2) contains a hemisystem invariant under a group K = C2

q+1 : S3. In fact,
for q = 9 and 11 there are several such hemisystems. Moreover, the stabiliser of the Segre hemisystem
for q = 3 contains such a subgroup, as does the group (3 · A7).2 for q = 5.

The group K can be realised as follows. The stabiliser of a nondegenerate hyperplane of H(3, q2)
contains a group H ∼= C3

q+1 : (S3 × C2f ) where q = pf that fixes a set T of mutually orthogonal
nondegenerate points {〈v1〉, 〈v2〉, 〈v3〉} of the underling projective space. In particular, taking v1, v2, v3 as
the first three elements of a basis of the underlying vector space, the pointwise stabiliser in PGU(4, q) of
T is the group D of all diagonal matrices diag(λ1, λ2, λ3, 1) such that λq+1

1 = λq+1
2 = λq+1

3 = 1. Letting
σ and τ be the permutation matrices such that σ : v1 7→ v2 7→ v3 7→ v1 and τ : v1 7→ v1, v2 7→ v3 7→ v1,
we have 〈σ, τ〉 ∼= S3. Moreover, H = D : (〈σ, τ〉 × 〈φ〉) where φ is the field automorphism such that
φ :
∑

λivi 7→
∑

λp
i vi. The group H contains a normal subgroup R isomorphic to C2

q+1 given by

R := {diag(λ1, λ2, λ3, 1) | λq+1
i = 1, λ1λ2λ3 = 1}.
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The groupK that leaves invariant a hemisystem for the values of q examined is R⋊〈σ, diag(λ, λ, λ, 1)τφf 〉
where λ is an element of order q + 1.

So naturally we may ask if there exists a hemisystem of H(3, q2) invariant under K for all q? For
q = 13 and q = 17, we constructed the group K and, as anticipated, found hemisystems stabilised by
K, but to our surprise the sequence appears to stop there and for q = 19, 23, 25 and 27 there are no
hemisystems stabilised by K. (We were sufficiently surprised by this that we ran the linear program with
a second integer programming package — GLPK — in addition to Gurobi.)

4.3. Hemisystems invariant under 24.A5

A further interesting sequence is that for H(3, 72) and H(3, 112) there is a hemisystem with stabiliser
of shape 24.A5. The stabiliser of the Segre hemisystem for q = 3 also contains such a subgroup, and
further calculations have verified the existence of a hemisystem invariant under 24.A5 when q = 19. The
group PGU(3, q) contains a subgroup H isomorphic to 24.A6 for all q ≡ 3 (mod 4) (such a subgroup is
usually referred to as a C6-group, or the normaliser of a symplectic type r-group, see for example [10,
§4.6]). The group H contains two groups of shape 24.A5, corresponding to the two classes of A5 in A6.
The group which arises as a stabiliser of a hemisystem for q = 3, 7, 11 and 19 is the one for which the A5

acts transitively on the nontrivial elements of the 24.

Problem 4.3. Is there a hemisystem of H(3, q2) invariant under 24.A5 for all q ≡ 3 (mod 4)?

These hemisystems are especially intriguing (and also potentially harder to search for) as the order
of their stabiliser is constant.

5. q-clans and BLT-sets

A 2-by-2 matrix M over GF(q) is anisotropic if xAxT = 0 (x ∈ GF(q)2) holds only when x = (0, 0). A
q-clan is a set of 2-by-2 matrices over GF(q), of size q, the difference of any two being anisotropic. Payne
introduced q-clans in [18], and used them to construct flock quadrangles of order (q2, q). In particular,
a q-clan gives rise to a BLT-set of lines of W(3, q) which we describe as follows. Let q be an odd prime
power. Suppose we have a q-clan C written as symmetric matrices

C :=

{(

t ft

ft gt

)

: t ∈ GF(q)

}

.

We can find in Payne’s 1988 paper [19, §2] how to obtain a BLT-set of lines of W(3, q) directly from a
q-clan, but since our model is slightly different here, we provide the details behind the connection between
these two objects.

Lemma 5.1. Let ℓt, ℓu, ℓv be three 2-by-4 matrices over GF(q) representing three skew lines of PG(3, q).
Suppose, without loss of generality, that ℓv = ℓu + ℓt. Let

{mx : x ∈ GF(q) ∪ {∞}}
be the set of transversal lines to ℓt, ℓu, ℓv, and let M be the Gram matrix of a symplectic form for which
ℓt, ℓu, ℓv are each totally isotropic. Then one of the mx is totally isotropic with respect to this symplectic
form if and only if there exists a nonzero vector (x, y) ∈ GF(q)2 such that

(x, y)ℓuMℓTv (x, y)
T = 0.

That is, none of the mx are totally isotropic if and only if ℓuMℓTv is anisotropic.

Proof. First, it is a simple exercise to establish that the set of q + 1 transversal lines to ℓt, ℓu, ℓv are
given by

mx =

(

1 x 0 0

0 0 1 x

)(

ℓu

ℓv

)

, x ∈ GF(q),

m∞ =

(

0 1 0 0

0 0 0 1

)(

ℓu

ℓv

)

.

9



Suppose that mx is totally isotropic, for some x ∈ GF(q). Then

(

1 x 0 0

0 0 1 x

)(

ℓu

ℓv

)

M
(

ℓTu ℓTv

)

(

1 x 0 0

0 0 1 x

)T

= 0

which implies that

(

(1, x)ℓuMℓTu (1, x)
T (1, x)ℓuMℓTv (1, x)

T

(1, x)ℓvMℓTu (1, x)
T (1, x)ℓvMℓTv (1, x)

T

)

=

(

0 (1, x)ℓuMℓTv (1, x)
T

(1, x)ℓvMℓTu (1, x)
T 0

)

= 0.

So (1, x)ℓuMℓTv (1, x)
T = 0 and the result follows. Similarly, ifm∞ is totally isotropic, then (0, 1)ℓuMℓTv (0, 1)

T =
0. �

Now suppose we are in the 3-dimensional symplectic space W(3, q) defined by the form β(x, y) =
x1y4 − x4y1 + x2y3 − x3y2.

Lemma 5.2. Let C be a set of matrices of the form

At :=

(

t ft

ft gt

)

, t ∈ GF(q)

where f and g are maps on GF(q). Consider the following lines L of W(3, q):

ℓ∞ :=

(

0 0 1 0

0 0 0 1

)

, ℓt :=

(

1 0 ft t

0 1 gt ft

)

for all t ∈ GF(q).

Then L is a BLT-set of lines of W(3, q) if and only if C is a q-clan.

Proof. If M is the Gram matrix of the aforementioned form, it is not difficult to see that

ℓuMℓTv = Av −Au.

The result follows from Lemma 5.1. �

We now summarise the q-clans that generate the flock quadrangles used in this paper. Our information
has been taken from [12]. Four of the families are outlined in Table 3.

Flock quadrangle Abbreviation ft gt Conditions

Linear H(3, q2) 0 −nt n is a nonsquare in GF(q)

Fisher-Thas-Walker-
Kantor-Betten

FTWKB(q) 3
2 t

2 3t3 q ≡ 2 (mod 3)

Kantor Monomial K2(q)
5
2 t

3 5t5 q ≡ ±2 (mod 5), 5 is a nonsquare in
GF(q)

Kantor-Knuth K1(q) 0 −ntσ n ∈ GF(q) nonsquare, q not prime, 1 6=
σ ∈ Aut(GF(q))

Table 3: q-clans for some flock quadrangles. For each q-clan, the variable t runs over GF(q).

For the remaining flock quadrangles considered in this paper, the q-clans are a little more difficult to
write down but we outline them below.
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The Fisher q-clans:

The following model was taken from Payne [19] (see also [12]). Let q be an odd prime power, let ζ
be a primitive element of GF(q2), so that ωq+1 is a primitive element of GF(q). Let i = ζ(q+1)/2 and
write z = ζq−1 = a + bi. Note that a = (z + zq)/2 and b = (z − zq)/2. For each t ∈ GF(q) such that
t2 − 2/(1 + a) is a square, we set

At =

(

t 0

0 −ωt

)

.

For the remaining (q + 1)/2 values of t, we set

At(j) =

(

−(z2j+1 + z−2j)/(z + 1) −i(z2j+1 − z−2j)/(z + 1)

−i(z2j+1 − z−2j)/(z + 1) −ω(z2j+1 + z−2j)/(z + 1)

)

, 0 6 j 6 (q − 1)/2.

The Penttila-Mondello q-clans:
The authors are not aware of any nice representation of these q-clans, so we simply list here explicitly

the q-clan that gives rise to PM(11), namely:
(

0 8

8 1

)

,

(

1 0

0 8

)

,

(

2 7

7 3

)

,

(

3 4

4 2

)

,

(

4 8

8 5

)

,

(

5 0

0 6

)

,

(

6 1

1 10

)

,

(

7 5

5 9

)

,

(

8 0

0 4

)

,

(

9 0

0 7

)

,

(

10 0

0 0

)

.

6. Computational methods

The point-line incidence matrix of a generalized quadrangle is the matrix A with rows indexed by
points and columns by lines such that

AP,ℓ =

{

1, P is on ℓ;

0, otherwise.

In order to construct the point-line incidence matrix of a flock generalized quadrangle, we used the GAP
package FinInG2. This software can construct flock generalized quadrangles from a q-clan.

A hemisystem is a subset of the columns of A that sum to (s+ 1)/2 jT where j is the all-ones (row)
vector or, equivalently, a {0, 1}-vector h such that

AhT = (s+ 1)/2 jT . (1)

For all but the smallest generalized quadrangles, the matrix A is so large that we cannot hope to solve
the equations completely. To reduce the problem, we assume the existence of some group G stabilizing
the hemisystem. Suppose that G has orbits {P1,P2, . . . ,Pm} on points and {L1,L2, . . . ,Ln} on lines.
Then every point in a point-orbit Pi is incident with the same number of lines in the line-orbit Lj . If we
denote this number by bij and define the m× n matrix B = (bij), then a {0, 1}-vector h such that

BhT = (s+ 1)/2 jT (2)

determines a hemisystem that is stabilized by the group G.
There are a variety of approaches to solving equations such as (2). In particular, the system of

equations can be viewed either as an integer linear program or as a constraint satisfaction problem.
After experimenting with software for each type of problem, we determined that the commercial integer
programming package Gurobi [9] (available with a free academic license) was the most effective for our
purposes.

A linear program attempts to find values for variables x1, x2, . . . , xn that maximize (or minimize) a
linear objective function subject to linear constraints. An integer linear program, or just integer program,
is a linear program with the additional restriction that the variables must take integral values. Solving

2This can be found at http://cage.ugent.be/geometry/fining.php. This package is currently in development.
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(2) does not involve any maximizing or minimizing and so the objective function can be taken to be
a constant, say 0, and then any feasible solution x = (x1, x2, . . . , xn) to the following integer program
yields a hemisystem:

Maximize: 0

subject to: BxT = (s+ 1)/2 jT

xi ∈ {0, 1}.
In order to find all the solutions to a given system of equations, the system is augmented as each

solution is found with an additional constraint excluding that particular solution, and the system is then
re-solved. When all the solutions have been found and excluded, the resulting system has no integer
feasible solutions. In order to exclude a particular solution h = (h1, h2, . . . , hn) it suffices to add a
constraint of the form

∑

{i|hi=1}
xi <

∑

i

hi

which merely says that x cannot agree with h in every coordinate position, and so must differ in at least
one place. In principle, a constraint of this form only eliminates vectors identical to h and still permits
the solver to investigate vectors that have almost all of their entries identical to h. However, if we know
an upper bound, say α, on the size of the intersection of two hemisystems, then we can strengthen this
constraint to

∑

{i|hi=1}
xi 6 α (3)

without missing any hemisystems. The exhaustive search for hemisystems in H(3, 52) was made feasible
by using two basic techniques to shorten the search time:

• Use the automorphism group of H(3, 52) to determine the largest possible set of lines that can freely
be assumed to be in a hemisystem.

• Use knowledge of the possible intersection sizes of a hemisystem with the two known hemisystems
to add strong constraints of the same type as (3) during the search.

A more detailed description of the computation for H(3, 52) follows:

Proof of Theorem 1.1 for H(3, 52).

Let G be the full automorphism group of H(3, 52) and let H be a hemisystem. As G is transitive on
the set of lines of H(3, 52) we can assume without loss of generality that ℓ1 ∈ H. Then the stabiliser Gℓ1

has two orbits on the remaining lines, those disjoint from ℓ1 and those that meet ℓ1. It is easy to see
that any hemisystem containing ℓ1 must contain a line disjoint from ℓ1 and so we can arbitrarily pick a
second line, say ℓ2 , and assume without loss of generality that ℓ1, ℓ2 ∈ H. This process can be continued
in a semi-automated fashion as follows: suppose that we have a set ℓ1, . . . , ℓi of lines that we can already
assume are contained in H, and consider the orbits of the setwise stabiliser G{ℓ1,...,ℓi} on lines. An orbit
O is denoted essential if a search for a hemisystem that contains ℓ1, . . . , ℓi but does not contain any
line from O is infeasible. If O is essential, then H contains at least one line from O, and we can select
ℓi+1 arbitrarily from O. This process can be continued until the set of lines is sufficiently large that its
stabiliser is so small that it has no essential orbits. In this fashion, we found a particular set of 8 lines
ℓ1, . . . , ℓ8 that can be assumed to lie in H.

The next important step was to determine that no hemisystem has a “large” intersection with either
of the two known hemisystems. Let H1 and H2 be representatives of the two known hemisystems. First
we found the maximum possible size in which any hemisystem (known or unknown) can intersect H1

by running the integer linear program where the objective function to be maximised is the sum of the
variables corresponding to the lines in H1. This revealed that a hemisystem different from H1 can
intersect H1 in at most 306 lines. By running the linear program again with the additional constraint
that the intersection with H1 has size exactly 306, we determined all the hemisystems that intersect H1

in 306 lines and confirmed that no new hemisystems arose. We repeated this process with the “next
largest” intersection, which proved to be size 300, then 282, then 270 and then 258, eventually confirming
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that any hemisystem that meets H1 in 258 or more lines is isomorphic to either H1 or H2. Similar results
were obtained for H2 and similarly we determined that any hemisystem meeting H2 in 258 or more lines
is isomorphic to H1 or H2.

Finally, the exhaustive search is run where the variables corresponding to ℓ1, . . . , ℓ8 are initially set to
1 and every time a hemisystem is found, it is excluded by adding a constraint similar to (3) with α = 257.
Notice that this constraint is much stronger than simply excluding the hemisystem that has just been
found and will exclude other hemisystems. However if the just-found hemisystem is one of the two known
ones, then the “extra” hemisystems that are excluded by the constraint are necessarily isomorphic to the
known ones, and hence not of interest. Therefore if unknown hemisystems do exist, then at least one
of them will be discovered by the search. As this does not occur, we conclude that there are no other
hemisystems of H(3, 52). �

In this computation, there is a trade-off involved in choosing the value 258 used in the constraints
to exclude solutions as they are found. Using a lower value would make the final exhaustive part of the
search run faster, but it would take longer to establish that only known hemisystems intersect H1 or H2

in that many lines.
The computation for FTWKB(5) was done in an exactly analogous fashion.

7. A summary of the known hemisystems of flock quadrangles

In this section we catalogue all the known hemisystems of lines of flock quadrangles of order (s2, s) for
s 6 11. These include those which arise in the pre-existing literature, those obtained via Theorem 3.2, and
numerous further examples constructed by computer. Each row of the table describes a complementary
pair of hemisystems; the column SC (for “self-complementary”) indicates whether the hemisystem is
equivalent to its complement in which case it contributes just 1 to the total count of hemisystems.

The tables contain an exhaustive listing of all the hemisystems that arise by Theorem 3.2 and are
complete for the known generalized quadrangles of order up to (52, 5). However there may be many more
hemisystems, though necessarily with small automorphism groups, that remain to be found.

Proposition 7.1. Let H be a hemisystem of a flock quadrangle of order (s2, s) with s 6 9 such that H
arises from Theorem 3.2. Then H appears in one of the tables in this section.

We also list all hemisystems arising from Theorem 3.2 for H(3, 112) in Table 12. Due to the large
number of hemisystems of Type I for the remaining flock quadrangles of order (112, 11), they are listed
in Appendix A which is only included in the version of this paper on the arxiv.

The data given for the Type I hemisystems in our table is sufficient to reconstruct the actual hemisys-
tem given some additional knowledge about the particular choices that have been made for the variables
in the construction. The point P is (1, 0, 0, 0, 0, 0) and the BLT-sets are the ones given in Section 5. Each
totally isotropic plane can be represented uniquely by a 3 × 6 matrix written in Hermite normal form,
whose row space gives us the corresponding 3-dimensional vector subspace. The totally isotropic planes
on ℓ are sorted into lexicographic order and indexed by {1, . . . , q + 1}, and the chosen subset S is given
by a (q − 1)/2 subset of this index set.

7.1. Linear, H(3, 32)

Segre [20] established that there is just one example of a hemisystem (up to projectivity) in H(3, 32).
The strongly regular graph (andpartial quadrangle) arising is the Gewirtz graph on 56 vertices.

Group Size Self-complementary Construction/Author(s) ℓ Subset S
PSL(3, 4).2 40320 true Theorem 3.2, Segre [20], [ 0 1 0 1 0 0

0 0 1 1 1 0 ] any

Sections 4.1, 4.2 and 4.3

Table 4: The hemisystem of H(3, 32).
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7.2. Linear, H(3, 52)

The full automorphism group of this generalized quadrangle is PΓU(4, 5) which has order 29×34×56×
7× 13. There were two previously known hemisystems in this generalized quadrangle and our computer
searches have confirmed that there are no more.

Group Size SC Construction/Author(s) ℓ Subset S
PΣL(2, 25) 15600 true Theorem 3.2, Cossidente–Penttila [8] [ 0 1 0 1 0 0

0 0 1 0 1 0 ] any

(3 · A7).2 15120 true Cossidente–Penttila [8], Sections 4.1 and 4.2

Table 5: The hemisystems of H(3, 52).

7.3. Fisher-Thas/Walker/Kantor/Betten, FTWKB(5)

The full automorphism group of this generalized quadrangle is 51+4 : (SL(2, 9) : C4), which has order
26×32×56. There was one previously known hemisystem of this generalized quadrangle in the literature
and Theorem 3.2 yields a second example. Our computer searches uncovered a third example with group
S3, and confirmed that there are no more.

Group Size SC Construction/Author(s) ℓ Subset S
C2

5 : (C4 × S3) 600 false Theorem 3.2 [ 0 1 0 0 1 0
0 0 1 1 0 0 ] any

AGL(1, 5)× S3 120 false Bamberg–De Clerck–Durante [2]

S3 6 false New

Table 6: The hemisystems of FTWKB(5).

7.4. Linear, H(3, 72)

The full automorphism group of this generalized quadrangle is PΓU(4, 7), which has order 213 × 32 ×
52×76×43. There were five previously known hemisystems in this quadrangle and our computer searches
have uncovered a sixth.

Group Size SC Construction/Author(s) ℓ Subset S
PΣL(2, 49) 117600 true Theorem 3.2, Cossidente–Penttila [8] [ 0 1 0 1 0 0

0 0 1 1 1 0 ] {1, 3, 4}
C2 × (C2

7 : Q16) 1568 true Penttila (personal communication), {1, 3, 5}
Theorem 3.2

24.A5 960 true Bamberg–Kelly–Law–Penttila [4]

Section 4.3

C2 × (C43 : C6) 516 true Bamberg–Kelly–Law–Penttila [4]

C2
8 : S3 384 true New, Section 4.2

C2 × PSL(2, 7) 336 true Cossidente–Penttila [7], Section 4.1

Table 7: Known hemisystems of H(3, 72).

7.5. Kantor Monomial, K2(7)

The full automorphism group of this generalized quadrangle is 71+4 : (C3 × (Q8 : (SL(2, 3).2) : 2)),
which has order 28 × 32 × 75. In addition to the 14 examples obtained by Theorem 3.2, we have found a
further 15 hemisystems; all are listed in Table 8.

14



Group Size SC Construction/Author(s) ℓ Subset S
C2

7 : (C3 × SL(2, 3)) 3528 false Theorem 3.2 [ 0 1 0 1 0 0
0 0 1 0 1 0 ] {1, 3, 4}

C2
7 : (SL(2, 3).2) 2352 false Theorem 3.2 {1, 3, 5}

C2
7 : (Q16 × C3) 2352 false Theorem 3.2 [ 0 1 0 0 1 0

0 0 1 4 0 0 ] {1, 3, 4}
(C2

7 : Q16)× C2 1568 false Theorem 3.2 {1, 3, 5}
C2

7 : (C6 × C3) 882 true Theorem 3.2 [ 0 1 0 0 1 0
0 0 1 3 0 0 ] {1, 3, 4}

C2
7 : (C3 : C4) 588 true Theorem 3.2 {1, 3, 5}

C2
7 : C12 588 false Theorem 3.2 [ 0 1 0 0 1 0

0 0 1 1 0 0 ] {1, 3, 4}
C2

7 : Q8 392 false Theorem 3.2 {1, 3, 5}
C3 × F42 126 false New

C3 × F42 126 true New

C2 × (C7 : C3) 42 false New

AGL(1, 7) 42 false New

(C2 ×Q8) : C2 32 false New

(C2 ×Q8) : C2 32 false New

C7 : C3 21 false New

C7 : C3 21 true New

C3 3 true New

Table 8: Known hemisystems of K2(7).

7.6. Linear, H(3, 92)

The full automorphism group of this generalized quadrangle is PΓU(4, 9), which has order 212 ×
312 × 53 × 41 × 73. In addition to the two previously known hemisystems, we found two more arising
fromTheorem 3.2 and three others; all are listed in Table 9.

Group Size SC Construction/Author(s) ℓ Subset S
PΣL(2, 81) 1062720 true Theorem 3.2, Cossidente–Penttila [8] [ 0 1 0 1 0 0

0 0 1 0 1 0 ] {1, 3, 4, 5}
C4

3 : (C20 : C4) 6480 true Theorem 3.2 {1, 3, 5, 6}
C4

3 : (C5 : C8) 3240 true Theorem 3.2 {1, 3, 5, 9}
C73 : C12 876 true Bamberg–Kelly–Law–Penttila [4],

Section 4.1

(C2
10 : C4) : C3 1200 true New, Section 4.2

C2
10 : S3 600 true New, Section 4.2

(C5 × (C5 : C4)) : C4 400 true New

Table 9: Known hemisystems of H(3, 92).

7.7. Kantor-Knuth, K1(9)

The full automorphism group of this generalized quadrangle is E9 : (((SL(2, 9).C4) : C8) : C2) where
E9 is the Heisenberg group of order 95 with centre of order 9. The order of the automorphism group is
210 × 312 × 5.
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Group Size SC Construction/Author(s) ℓ Subset S
C4

3 : (C4 × C8) 2592 true Theorem 3.2 [ 0 1 0 1 0 0
0 0 1 0 1 0 ] {1, 3, 5, 9}

C4
3 : (C2 × C8) 1296 true Theorem 3.2 {1, 3, 5, 6}

C4
3 : C8 648 true Theorem 3.2 {1, 3, 4, 5}

C4 × AGL(1, 9) 288 true New

AGL(1, 9) 72 true New

Table 10: Known hemisystems of K1(9).

7.8. Fisher, Fi(9)

The full automorphism group of this generalized quadrangle is E9 : (C2
5 : (D16.Q8)) which has order

27 × 310 × 52. (Here E9 is the Heisenberg group of order 95 with centre of order 9.)

Group Size SC Construction/Author(s) ℓ Subset S
C4

3 : C5 : C8 3240 false Theorem 3.2 [ 0 1 0 0 0 0
0 0 1 0 0 0 ] {1, 3, 4, 5}

C4
3 : C20 : C4 6480 false Theorem 3.2 {1, 3, 5, 6}

C4
3 : C5 : (C4.(C4 × C2)) 12960 false Theorem 3.2 {1, 3, 5, 9}

C4
3 : C2 162 false Theorem 3.2 [ 0 1 0 0 0 0

0 0 1 z 0 0 ] {1, 3, 4, 5}
C4

3 : C4 324 false Theorem 3.2 {1, 3, 5, 6}
C4

3 : C8 648 false Theorem 3.2 {1, 3, 5, 9}
C4

3 : C4 324 true Theorem 3.2 [ 0 1 0 1 1 0
0 0 1 2 1 0 ] {1, 3, 4, 5}

C4
3 : C4 × C2 648 true Theorem 3.2 {1, 3, 5, 6}

C4
3 : C8 × C2 1296 true Theorem 3.2 {1, 3, 5, 9}

C4
3 : C4 324 true Theorem 3.2

[

0 1 0 1 1 0
0 0 1 z2 1 0

]

{1, 3, 4, 5}
C4

3 : C4 × C2 648 true Theorem 3.2 {1, 3, 5, 6}
C4

3 : C8 × C2 1296 true Theorem 3.2 {1, 3, 5, 9}
C4

3 : C4 324 true Theorem 3.2
[

0 1 0 1 z2 0
0 0 1 z3 1 0

]

{1, 3, 4, 5}
C4

3 : C4 × C2 648 true Theorem 3.2 {1, 3, 5, 6}
C4

3 : C8 × C2 1296 true Theorem 3.2 {1, 3, 5, 9}
C2 × AGL(1, 9) 144 true New

AGL(1, 9) 72 4× 2 + 4 New

Table 11: Known hemisystems of Fi(9).

7.9. Linear, H(3, 112)

The full automorphism group of this generalized quadrangle is PΓU(4, 11), which has order 210× 34×
52 × 116 × 37× 61.
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Group Size SC Construction/Author(s) ℓ Subset S
PΣL(2, 121) 1771440 true Theorem 3.2 [ 0 1 0 1 0 0

0 0 1 2 1 0 ] { 1, 3, 4, 5, 8 }
C2

11 : C2 × (C3 : Q8) 5808 true Theorem 3.2 { 1, 3, 4, 5, 7 }
C2

11 : C2 × (C3 : Q8) 5808 true Theorem 3.2 { 1, 3, 4, 5, 9 }
C2

11 : C3 : Q8 2904 true Theorem 3.2 { 1, 3, 4, 5, 10 }
C2

11 : C3 : Q8 2904 true Theorem 3.2 { 1, 3, 4, 5, 11 }
C2

11 : C3 : Q8 2904 true Theorem 3.2 { 1, 3, 4, 5, 6 }
3.A6.2 2160 true New

C333 : C6 1998 true New, Section 4.1

24.A5 960 true New, Section 4.3

C2
12 : S3 864 true New, Section 4.2

C2
12 : S3 864 true New, Section 4.2

C111 : C6 666 false New, Section 4.1

Table 12: Known hemisystems of H(3, 112).

7.10. Fisher-Thas-Walker-Kantor-Betten, FTWKB(11)

The full automorphism group of this generalized quadrangle is 111+4
⋊ GL(2, 11) which has order

24 × 3× 52 × 116. There are 20 hemisystems of Type I, listed in Table A.15 of Appendix A3, and we do
not know any other hemisystems in this generalized quadrangle.

7.11. Fisher, Fi(11)

The full automorphism group of this generalized quadrangle is 111+4 : (C5× (((C3× (C3 : C4)) : Q8) :
C2)) which has order 26 × 32 × 5 × 115. There are 90 hemisystems of Type I, listed in Table A.16 of
Appendix A3, and we know 12 further hemisystems listed in Table 13.

Group Size Number

AGL(1, 11) 110 6× 2

Table 13: Non Type I hemisystems of Fi(11)

7.12. Penttila-Mondello, q = 11

The full automorphism of this generalized quadrangle is 111+4
⋊ (C5 × (C3 × SL(2, 3).2) : 2) which

has order 25 × 32 × 5× 115. There are 164 hemisystems of Type I, listed in Table A.17 of Appendix A3,
and we know 36 further hemisystems listed in Table 14.

Group Size Number

AGL(1, 11) 110 18× 2

Table 14: Non Type I hemisystems of PM(11)

3Due to its size, this Appendix is only included in the arxiv version of this paper
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8. Open Problems

We saw in Section 3 that in any infinite family of generalized quadrangles of order (q2, q) the number
of hemisystems arising from Theorem 3.2 grows exponentially in q. Hemisystems that do not arise from
Theorem 3.2 are then of particular interest, and so it is natural to ask the whether they always exist.

Problem 8.1. Does every flock generalized quadrangle of order (s2, s) with s ≥ 7 contain a hemisystem
that does not arise from Theorem 3.2?

We have found such hemisystems in all of the generalized quadrangles that we have examined with
the exception of the small cases (H(3, 32) and H(3, 52)) and FTWKB(11).

Although we have outlined two possibilities for infinite families of hemisystems in H(3, q2) in Section
4, we do not have any proven general constructions for hemisystems other than Theorem 3.2.

Problem 8.2. Find a natural construction for an infinite family of hemisystems (not of Type I) in
H(3, q2) or in one of the known families of non-classical generalized quadrangles.

By Theorem 3.3, a hemisystem coming from Theorem 3.2 is invariant under a particular elementary
abelian group of order q2 denoted by T . Thus if a hemisystem is not invariant under such a group, then
it does not arise from the construction. However, we do not know if the converse is true.

Problem 8.3. Are there hemisystems invariant under the elementary abelian group T of order q2 de-
scribed in Theorem 3.3 that do not arise from Theorem 3.2?

At the other end of the symmetry spectrum, we currently do not know of any hemisystems with a
trivial group. However this is not surprising, as almost all of our searches have assumed the existence of
symmetries. Hence we expect a positive answer to the following question, although it may be challenging
to find such a hemisystem.

Problem 8.4. Is there a hemisystem with trivial group?

Each hemisystem gives a strongly regular graph and the stabiliser of the hemisystem in the automor-
phism group of the generalized quadrangle gives a group of automorphisms of the strongly regular graph.
In all cases investigated so far, the automorphism group of the strongly regular graph is induced by the
stabiliser of the hemisystem in the automorphism group of the generalized quadrangle. It is not apparent
why this should always be the case.

Problem 8.5. Is the full automorphism group of the strongly regular graph obtained from a hemisys-
tem always induced by the stabiliser of the hemisystem in the automorphism group of the generalized
quadrangle?

A related problem is whether isomorphic strongly regular graphs can arise from different generalized
quadrangles.

Problem 8.6. Are there hemisystems in different generalized quadrangles whose associated strongly reg-
ular graphs are isomorphic?
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Appendix A. Tables of Type I hemisystems

Appendix A.1. Type I hemisystems of FTWKB(11)

Group Size SC ℓ Subset S

C2

11 : C4 484 false [ 0 1 0 0 1 0

0 0 1 2 0 0
] {1, 3, 4, 5, 6}

C2

11 : C4 484 false {1, 3, 4, 5, 7}

C2

11 : C20 2420 false {1, 3, 4, 5, 8}

C2

11 : C4 484 false {1, 3, 4, 5, 9}

C2

11 : C4 484 false {1, 3, 4, 5, 10}

C2

11 : C4 484 false {1, 3, 4, 5, 11}

C2

11 : C4 484 false {1, 3, 4, 5, 12}

C2

11 : C4 484 false {1, 3, 4, 6, 10}

C2

11 : C4 484 false {1, 3, 4, 7, 10}

C2

11 : C20 2420 false {1, 3, 4, 7, 12}

Table A.15: Type I hemisystems of FTWKB(11).

Appendix A.2. Type I hemisystems of Fi(11)

Group Size SC ℓ Subset S

C2

11 : C2 242 false [ 0 1 0 0 1 0

0 0 1 1 0 0
] { 1, 3, 4, 5, 6 }

C2

11 : C4 484 false { 1, 3, 4, 5, 7 }

C2

11 : C10 1210 false { 1, 3, 4, 5, 8 }

C2

11 : C4 484 false { 1, 3, 4, 5, 9 }

C2

11 : C2 242 false { 1, 3, 4, 5, 10 }

C2

11 : C2 242 false { 1, 3, 4, 5, 11 }

C2

11 : C2 242 false [ 0 1 0 0 1 0

0 0 1 2 0 0
] { 1, 3, 4, 5, 6 }

C2

11 : C4 484 false { 1, 3, 4, 5, 7 }

C2

11 : C10 1210 false { 1, 3, 4, 5, 8 }

C2

11 : C4 484 false { 1, 3, 4, 5, 9 }

C2

11 : C2 242 false { 1, 3, 4, 5, 10 }

C2

11 : C2 242 false { 1, 3, 4, 5, 11 }

C2

11 : C2 242 true [ 0 1 0 0 1 0

0 0 1 10 0 0
] { 1, 3, 4, 5, 6 }

C2

11 : C4 484 true { 1, 3, 4, 5, 7 }

C2

11 : C10 1210 true { 1, 3, 4, 5, 8 }

C2

11 : C4 484 true { 1, 3, 4, 5, 9 }

C2

11 : C2 242 true { 1, 3, 4, 5, 10 }

C2

11 : C2 242 true { 1, 3, 4, 5, 11 }

C2

11 : C3 : Q8 2904 false [ 0 1 0 0 1 0

0 0 1 9 0 0
] { 1, 3, 4, 5, 6 }

C2

11 : C2 × (C3 : Q8) 5808 false { 1, 3, 4, 5, 7 }

C2

11 : C5 × (C3 : Q8) 14520 false { 1, 3, 4, 5, 8 }

C2

11 : C2 × (C3 : Q8) 5808 false { 1, 3, 4, 5, 9 }

C2

11 : C3 : Q8 2904 false { 1, 3, 4, 5, 10 }

C2

11 : C3 : Q8 2904 false { 1, 3, 4, 5, 11 }

C2

11 : C4 484 false [ 0 1 0 1 2 0

0 0 1 1 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 7 }

C2

11 : C20 2420 false { 1, 3, 4, 5, 8 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 9 }
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C2

11 : C4 484 false { 1, 3, 4, 5, 10 }

C2

11 : C4 484 false { 1, 3, 4, 5, 11 }

C2

11 : C4 484 false [ 0 1 0 1 2 0

0 0 1 5 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 7 }

C2

11 : C20 2420 false { 1, 3, 4, 5, 8 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 9 }

C2

11 : C4 484 false { 1, 3, 4, 5, 10 }

C2

11 : C4 484 false { 1, 3, 4, 5, 11 }

C2

11 : C4 484 false [ 0 1 0 1 4 0

0 0 1 8 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 7 }

C2

11 : C20 2420 false { 1, 3, 4, 5, 8 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 9 }

C2

11 : C4 484 false { 1, 3, 4, 5, 10 }

C2

11 : C4 484 false { 1, 3, 4, 5, 11 }

C2

11 : C4 484 false [ 0 1 0 1 4 0

0 0 1 10 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 7 }

C2

11 : C20 2420 false { 1, 3, 4, 5, 8 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 9 }

C2

11 : C4 484 false { 1, 3, 4, 5, 10 }

C2

11 : C4 484 false { 1, 3, 4, 5, 11 }

Table A.16: Type I hemisystems of Fi(11).

Appendix A.3. Type I hemisystems of PM(11)

Group Size SC ℓ Subset S

C2

11 : C4 484 false [ 0 1 0 0 0 0

0 0 1 1 0 0
] { 1, 3, 4, 5, 6 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 7 }

C2

11 : C20 2420 false { 1, 3, 4, 5, 8 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 9 }

C2

11 : C4 484 false { 1, 3, 4, 5, 10 }

C2

11 : C4 484 false { 1, 3, 4, 5, 11 }

C2

11 : C4 484 false [ 0 1 0 0 0 0

0 0 1 2 0 0
] { 1, 3, 4, 5, 6 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 7 }

C2

11 : C20 2420 false { 1, 3, 4, 5, 8 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 9 }

C2

11 : C4 484 false { 1, 3, 4, 5, 10 }

C2

11 : C4 484 false { 1, 3, 4, 5, 11 }

C2

11 : C4 484 true [ 0 1 0 0 0 0

0 0 1 5 0 0
] { 1, 3, 4, 5, 6 }

C2

11 : Q8 968 true { 1, 3, 4, 5, 7 }

C2

11 : C20 2420 true { 1, 3, 4, 5, 8 }

C2

11 : Q8 968 true { 1, 3, 4, 5, 9 }

C2

11 : C4 484 true { 1, 3, 4, 5, 10 }

C2

11 : C4 484 true { 1, 3, 4, 5, 11 }

C2

11 : C2 242 false [ 0 1 0 0 0 0

0 0 1 10 0 0
] { 1, 3, 4, 5, 6 }

C2

11 : C2 242 false { 1, 3, 4, 5, 7 }

C2

11 : C10 1210 false { 1, 3, 4, 5, 8 }

C2

11 : C2 242 false { 1, 3, 4, 5, 9 }
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C2

11 : C2 242 false { 1, 3, 4, 5, 10 }

C2

11 : C2 242 false { 1, 3, 4, 5, 11 }

C2

11 : C2 242 false { 1, 3, 4, 5, 12 }

C2

11 : C2 242 false { 1, 3, 4, 6, 10 }

C2

11 : C2 242 false { 1, 3, 4, 7, 10 }

C2

11 : C10 1210 false { 1, 3, 4, 7, 12 }

C2

11 : C2 242 false [ 0 1 0 0 0 0

0 0 1 3 0 0
] { 1, 3, 4, 5, 6 }

C2

11 : C4 484 false { 1, 3, 4, 5, 7 }

C2

11 : C10 1210 false { 1, 3, 4, 5, 8 }

C2

11 : C4 484 false { 1, 3, 4, 5, 9 }

C2

11 : C2 242 false { 1, 3, 4, 5, 10 }

C2

11 : C2 242 false { 1, 3, 4, 5, 11 }

C2

11 : C2 242 false [ 0 1 0 1 0 0

0 0 1 0 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : C4 484 false { 1, 3, 4, 5, 7 }

C2

11 : C10 1210 false { 1, 3, 4, 5, 8 }

C2

11 : C4 484 false { 1, 3, 4, 5, 9 }

C2

11 : C2 242 false { 1, 3, 4, 5, 10 }

C2

11 : C2 242 false { 1, 3, 4, 5, 11 }

C2

11 : C2 242 false [ 0 1 0 1 1 0

0 0 1 1 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : C2 242 true { 1, 3, 4, 5, 7 }

C2

11 : C10 1210 false { 1, 3, 4, 5, 8 }

C2

11 : C2 242 true { 1, 3, 4, 5, 9 }

C2

11 : C2 242 false { 1, 3, 4, 5, 10 }

C2

11 : C2 242 false { 1, 3, 4, 5, 11 }

C2

11 : Q8 968 false [ 0 1 0 1 1 0

0 0 1 4 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : C2 ×Q8 1936 false { 1, 3, 4, 5, 7 }

C2

11 : C5 ×Q8 4840 false { 1, 3, 4, 5, 8 }

C2

11 : C2 ×Q8 1936 false { 1, 3, 4, 5, 9 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 10 }

C2

11 : Q8 968 false { 1, 3, 4, 5, 11 }

C2

11 : C6 726 false [ 0 1 0 1 8 0

0 0 1 8 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : C3 : C4 1452 false { 1, 3, 4, 5, 7 }

C2

11 : C30 3630 false { 1, 3, 4, 5, 8 }

C2

11 : C3 : C4 1452 false { 1, 3, 4, 5, 9 }

C2

11 : C6 726 false { 1, 3, 4, 5, 10 }

C2

11 : C6 726 false { 1, 3, 4, 5, 11 }

C2

11 : C2 242 false [ 0 1 0 1 8 0

0 0 1 7 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : C4 484 false { 1, 3, 4, 5, 7 }

C2

11 : C10 1210 false { 1, 3, 4, 5, 8 }

C2

11 : C4 484 false { 1, 3, 4, 5, 9 }

C2

11 : C2 242 false { 1, 3, 4, 5, 10 }

C2

11 : C2 242 false { 1, 3, 4, 5, 11 }

C2

11 : C2 242 false [ 0 1 0 1 5 0

0 0 1 7 1 0
] { 1, 3, 4, 5, 6 }

C2

11 : C4 484 false { 1, 3, 4, 5, 7 }

C2

11 : C10 1210 false { 1, 3, 4, 5, 8 }

C2

11 : C4 484 false { 1, 3, 4, 5, 9 }

C2

11 : C2 242 false { 1, 3, 4, 5, 10 }

C2

11 : C2 242 false { 1, 3, 4, 5, 11 }

C2

11 : C3 : C4 1452 false [ 0 1 0 1 10 0

0 0 1 9 1 0
] { 1, 3, 4, 5, 6 }
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C2

11 : C3 : Q8 2904 false { 1, 3, 4, 5, 7 }

C2

11 : C5 × (C3 : C4) 7260 false { 1, 3, 4, 5, 8 }

C2

11 : C3 : Q8 2904 false { 1, 3, 4, 5, 9 }

C2

11 : C3 : C4 1452 false { 1, 3, 4, 5, 10 }

C2

11 : C3 : C4 1452 false { 1, 3, 4, 5, 11 }

C2

11 : C3 : C4 1452 false [ 0 1 0 2 2 0

0 0 1 0 2 0
] { 1, 3, 4, 5, 6 }

C2

11 : C3 : Q8 2904 false { 1, 3, 4, 5, 7 }

C2

11 : C5 × (C3 : C4) 7260 false { 1, 3, 4, 5, 8 }

C2

11 : C3 : Q8 2904 false { 1, 3, 4, 5, 9 }

C2

11 : C3 : C4 1452 false { 1, 3, 4, 5, 10 }

C2

11 : C3 : C4 1452 false { 1, 3, 4, 5, 11 }

Table A.17: Type I hemisystems of PM(11)
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