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Abstract— For fixed c Prolate Spheroidal Wave Functions ψn,c form a basis with remarkable prop-
erties for the space of band-limited functions with bandwith c and have been largely studied and
used after the seminal work of Slepian. Recently, they have been used for the approximation of
functions of the Sobolev space Hs([−1, 1]). The choice of c is then a central issue, which we address.
Such functions may be seen as the restriction to [−1, 1] of almost time-limited and band-limited
functions, for which PSWFs expansions are still well adapted. To be able to give bounds for the
speed of convergence one needs uniform estimates in n and c. To progress in this direction, we push
forward the WKB method and find uniform approximation of ψn,c in terms of the Bessel function
J0 while only pointwise asymptotic approximation was known up to now. Many uniform estimates
can be deduced from this analysis. Finally, we provide the reader with numerical examples that
illustrate in particular the problem of the choice of c.
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1 Introduction

Traditionally, the prolate spheroidal wave functions (PSWFs) have been used for solving various
problems from physics and signal processing, see [7, 14, 15, 27]. Perhaps, the PSWFs were specially
known for their important contributions in solving many problems from antenna theory, see for
example [14]. Note that for a given real number c > 0, called bandwidth, the PSWFs denoted
by (ψn,c(·))n≥0, were known as the eigenfunctions of the Sturm-Liouville operator’s Lc defined on
C2([−1, 1]) by

Lc(ψ) = (1− x2)
d2ψ

dx2
− 2x

dψ

dx
− c2x2ψ. (1)

The eigenvalues (−χn(c))n≥0 are fixed by the requirement that the eigenfunctions ψn,c(x) are
bounded as |x| → 1−. To the best of our knowledge, in [18], C. Niven was the first, in 1880, to
give a remarkably detailed theoretical, as well as computational study of the eigenfunctions and
the eigenvalues of the above Sturm-Liouville problem. In their pioneer work [12, 13, 22, 23, 24],
D. Slepian, H. Landau and H. Pollak have shown various important properties of the PSWFs and
their associated spectrum. Among these properties, they have proved that the PSWFs are also the

1 This work was supported in part by the ANR grant ”AHPI” ANR-07- BLAN-0247-01, the French-Tunisian

CMCU 10G 1503 project and the DGRST research grant 05UR 15-02.
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eigenfunctions of the compact integral operators Fc and Qc, defined on L2([−1, 1]) by

Fc(ψ)(x) =

∫ 1

−1

sin c(x− y)

π(x − y)
ψ(y) dy, Qc(f)(x) =

∫ 1

−1

ei c x yf(y) dy. (2)

As a result, they have shown that the PSWFs exhibits the unique properties to form an orthogonal
basis of L2([−1, 1]), an orthonormal system of L2(R) and an orthonormal basis of Bc, the Paley-

Wiener space of c−band-limited functions defined by Bc =
{
f ∈ L2(R), Support f̂ ⊂ [−c, c]

}
.

Here, f̂ denotes the Fourier transform of f. The PSWFs are normalized by using the following rule,

∫ 1

−1

|ψn,c(x)|2 dx = 1,

∫

R

|ψn,c(x)|2 dx =
1

λn(c)
, n ≥ 0. (3)

(λn(c))n is the infinite sequence of the eigenvalues of Fc, arranged in the decreasing order 1 >
λ0(c) > λ1(c) > · · · > λn(c) > · · · .

Recently, there has been a growing interest in the study of the quality of the spectral approx-
imations by the PSWFs and the building of PSWFs based numerical schemes for solving various
problems from numerical analysis, see [3, 4, 5, 6, 25]. In particular, in [4], the author has shown
that a PSWFS approximation based method outperforms in terms of spatial resolution and stability
of timestep, the classical approximation methods based on Legendre or Tchebyshev polynomials.
The authors of [6] were among the first to study the quality of the approximation by the PSWFs
in the Sobolev space Hs([−1, 1]), s > 0. In particular, they have given an estimate of the decay of
the PSWFs expansion coefficients of a function f ∈ Hs([−1, 1]), see also [4]. Recently, in [25], the
author studied the speed of convergence of the expansion of such a function in a basis of PSWFs. We
should mention that the methods used in the previous three references are heavily based on the use
of the properties of the PSWFs as eigenfunctions of the differential operator Lc, given by (1). They
pose the problem of the best choice of the value of the band-width c > 0, for approximating well a
given f ∈ Hs([−1, 1]), but their answer is mainly experimental. It has been numerically checked in
[4, 25] that the smaller the value of s, the larger the value of c should be.

When starting this work, our aim was to clarify the way c should be chosen. We also wanted
to use the properties of the PSWFs related with the Fourier transform. These ones are not easy
to use for numerical computation because of the rapid decrease of the eigenvalues of Qc, but they
are nevertheless fondamental. To choose both c and the index of the partial sum used in the
approximation, the main difficulty is that this requires uniform bounds for the PSWFs for c variable.
The first main contribution of this work is to derive a whole set of qualitative and quantitative
properties of the PSWFs. Some of these results were already known in the literature from mainly
numerical evidences and/or asymptotic and heuristic justifications.

More precisely, the asymptotic behaviors of eigenvalues λn(c) and functions ψn,c are well-known
in different conditions, for c tending to 0 or ∞ for instance. These kinds of behaviors are confirmed
by numerical evidences [20, 24]. We give rigorous proofs, which are valid for the whole range of
values of n and c, or, for most of them, under the condition that c2 < χn(c), which is asymptotically

equivalent to the condition given in [4], that
c

c∗n
< 1, where c∗n =

π

2
(n+

1

2
). An emblematic estimate

that is frequently used in the literature is the following one,

|ψn,c(1)| <
√
n+ 1/2. (4)

This is stated in [20] without a rigorous proof, but justified by asymptotic expansions and numerical
evidence. This is a key point to prove that the sequence λn(c) decreases very rapidly. An analytic
proof of estimate (4) for all n and c seems out of reach. Nevertheless, by pushing forward different
methods, we obtain uniform estimates on the values of ψn,c that are sufficient to obtain an exponen-
tial decay of λn(c). We have a gain compared to these authors in the sense that we have a complete
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proof, while we loose on constants that appear in the exponential decay compared to theirs, which
are comforted by numerical evidence. The two approaches are clearly complementary, and we do
hope that having rigorous proofs valid in the whole range of c and n adds to the understanding of
the expansions in PSWFs.

Our second main contribution is to use different properties of the PSWFs as eigenfunctions of the
differential operator Lc and the finite Fourier integral operator Qc and give a study of the quality of
approximation by the PSWFs in the Sobolev spaces Hs([−1, 1]). More importantly, our study tries
to give a satisfactory answer to the previous important problem of the choice of the parameter c. To
this end, we are led to study various inequalities and asymptotic results associated with the PSWFs.

This work is organized as follows. In Section 2, we prove various uniform estimates of the
PSWFs. In particular, we use the WKB method and provide an explicit uniform approximation
over [0, 1] of the PSWFs. Also, we derive several useful bounds of the values the PSWFs and their
first derivatives. Moreover, we give two results on the approximation of the PSWFs by Legendre
polynomials. In Section 3, we give some practical and useful estimates of the decay of the eigenvalues
and the Legendre coefficients associated with the PSWFs. Our results improve the existence decay
results given in [6, 26]. In Section 4, we first give the quality of approximation by the PSWFs in
the set of almost time and band-limited functions. Then, we combine these results with those of
Section 2 and give a new L2([−1, 1])−error bound of approximating a function f ∈ Hs([−1, 1]) by
its Nth terms truncated PSWFs series expansion. The proof of this bound is based on the use of
the quality of approximation of almost bandlimited functions by the PSWFs. Also, by using the
Fourier characterization of periodic Sobolev spaces, we give another approach for functions that
extend into periodic functions with the same regularity. These new estimates provide us with a
way for the choice of the appropriate bandwidth c > 0 to be used by a PSWFs based method for
the approximation in a given Sobolev space Hs([−1, 1]). In Section 5, we first give an overview
concerning the computational aspects of the PSWFs, then we provide the reader with two methods
for the computation of the PSWFs approximate expansion coefficients of a function f ∈ Hs([−1, 1]).
Finally, we give some numerical examples that illustrate the different result of this work.

2 Uniform estimates for the PSWFs

In this section, we prove that the PSWFs ψn,c are uniformly approximated in terms of the Bessel
function J0 when c is not too large, namely, when c2 ≤ αχn(c), where α < 1. The proof of this
approximation result is based on the use of the well knownWKB method for the study of asymptotic
behavior of the solutions of the perturbed differential equations of the Sturm-Liouville type, see for
instance [17]. We emphasize the fact that the asymptotic behavior that we shall describe is well-
known for a single value of the variable and n tending to infinity (see for instance [4, 8] and the
references there). What is new here is the possibility to push forward the methods in order to
have uniformity. This allows us to have uniform bounds for the functions ψn,c within the prescribed
constraints on the parameters and recover partially the bounds given in [20] from numerical evidence.

2.1 Uniform approximation of the PSWFs by the WKB method

In the section we note qn(c) = c2

χn(c)
. Most of the results of this section are obtained under the

relatively weak constraint that qn(c) < 1. Also we always assume that ψn,c(1) ≥ 0. We prove
here that ψn,c can be approximated by a simple explicit function (once one knows χn(c)), up to a
multiplicative constant A(n, c) that takes into account the normalization that we have chosen for
ψn,c. This constant is not explicitly known, but tends to 1 when qn(c) tends to 0. On another side,
we compute explicitly the dependance in q of constants and do not allow the notations O and o,
except for functions of one variable and when there is no ambiguity.
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To simplify notation, we now skip the parameters and note ψ, q and χn. We only leave the
parameter n for the eigenvalue χn so that the asymptotic behavior of each term is clear. With these
notations, ψ satisfies the differential equation

d

dx

[
(1− x2)ψ′(x)

]
+ χn(1− qx2)ψ(x) = 0, x ∈ [−1, 1]. (5)

Because of the parity of the PSWFs, we can restrict to the interval [0, 1], which we will do from now
on in this sub-section. We then note

S(x) := Sq(x) =

∫ 1

x

√
1− qt2

1− t2
dt (6)

which defines a homeomorphism on the whole interval and is smooth in [0,+1). It is well-known as
an elliptic integral of the second kind. We look for ψ under the form

ψ(x) = ϕ(x)U(S(x)), ϕ(x) = (1 − x2)−1/4(1− qx2)−1/4. (7)

Replacing S′ by its explicit value, Equation (5) becomes

d

dx

[
−(1− x2)1/2(1− qx2)1/2ϕU ′ + (1− x2)ϕ′U

]
+ χn(1 − qx2)ϕU = 0. (8)

One can easily check that terms in U ′ disappear with this choice of ϕ, and the equation satisfied by
U on the interval [0,+1) may be written as

U ′′ + (χn + h1)U = 0, (9)

with

h1(S(x)) := ϕ(x)−1(1− qx2)−1 d

dx

[
(1 − x2)ϕ′(x)

]
.

Let us write
Q(x) := (1− x2)(1− qx2), (10)

so that

ϕ′/ϕ = −1

4
Q′/Q.

It follows that h1 ◦ S is a rational function with poles in ±1 and ±
√

1
q , which may be written

h1 ◦ S =
1

16
(1− qx2)−1

[
(1 − x2)

(Q′

Q

)2

− 4
d

dx

(
(1 − x2)

Q′

Q

)]
.

Only the pole 1 is of interest (because of the assumption on q). One easily computes the residue at
1, which is a = − 1

8 (1 − q)−1. So h1(S(x)) can be written as

h1(S(x)) =
(1− q)−1

8(1− x)
+ h2(S(x)),

with h2 ◦S a rational function without poles on [0, 1]. Elementary explicit computation proves that
this function is bounded by 2(1− q)−3.

Next we want to replace (1− x)−1 by a function of S(x). This possibility will be a consequence
of the following lemma.
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Lemma 1. One has the following inequalities, valid on the interval [0, 1].

2(1− q)(1− x) ≤ S2
q (x) ≤ 4(1− x). (11)

At 0 one has
1 ≤ Sq(0) ≤

π

2
.

Moreover
Sq(x)

2

1−x extends into a holomorphic function in a neighborhood of 1 and takes the value
2(1− q) at 1. Finally

0 ≤ Sq(x) −
√
2(1− q)(1− x) ≤ 2

3

(1− x)3/2

(1− q)1/2
. (12)

Proof. The first inequality comes from the facts that the function 1−qt2

1+t is decreasing and
∫ 1

x
dt√
1−t

=

2
√
1− x. Moreover the square root of 1−qt2

1+t extends into a holomorphic function in a neighborhood

of 1. Extending it into an entire series in 1−t, multiplying it by
√
1− t and taking the antiderivative,

we find that S(x)2

1−x also extends into an entire series in 1 − t. For the last inequality, we use the
elementary bound

0 ≤
√

1− qt2

1 + t
−
√

1− q

2
≤ 1− t

(1 − q)1/2
.

By dividing the previous inequalities by
√
1− t and then integrating the different sides of the in-

equalities over [x, 1) and using (6), the estimate (12) follows at once.

It follows from Lemma 1 that 1
2(1−q)

1
1−x − 1

S(x)2 extends into a holomorphic function in a neigh-

borhood of 1. Moreover it is bounded by 4
(1−q)2 . So we can write this difference as h3(S(x)), with

h3 a bounded and continuous function on [0, S(0)]. If we define F := −(h2 + h3/4), we have proved
that F is continuous and satisfies

|F (s)| ≤ 3

(1− q)3
. (13)

This is summarized in the following lemma.

Lemma 2. For q < 1 there exists a function F := Fq that is continuous on [0, S(0)] and satisfies
(13) such that U is a solution of the equation

U ′′(s) +

(
χn +

1

4s2

)
U(s) = F (s)U(s), s ∈ [0, S(0)]. (14)

Before using the properties of such an equation, let us translate for U the fact that ψ has norm
1.

Lemma 3. We have the equality

− 2

∫ 1

0

(1− qx2)−1|U(S(x))|2dS(x) = 1. (15)

In particular,

(1− q) ≤ 2

∫ S(0)

0

|U(s)|2ds ≤ 1. (16)

Proof. Just use the expression of ψ in terms of U and the expression of S′.
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Let us come back to Equation (14), which we will consider as an equation in U with second
member FU . It is well known that the associated homogeneous equation has the two independent
solutions

U1(s) = χ1/4
n

√
sJ0(

√
χns), U2(s) = χ1/4

n

√
sY0(

√
χns),

where J0 (resp. Y0) denotes the Bessel function of the first (resp. second) type. The Wronskian of
U1 and U2 is given by

W (U1, U2)(s) = U1(s)U
′
2(s)− U ′

1(s)U2(s)

= sχn [J0(
√
χns)Y

′
0(
√
χns)− J ′

0(
√
χns)Y0(

√
χns)]

= =
2
√
χn

π

when using the well-known identity for the Wronskian of Bessel functions. Then the general solution
of (14), according to the method of variations of constants, leads to the following identity.

U(s) = AU1(s) +BU2(s) +
π

2
√
χn

×
∫ s

0

√
stχn [J0(

√
χns)Y0(

√
χnt)− J0(

√
χnt)Y0(

√
χns)]F (t)U(t)dt. (17)

Let us pose
Kn(s, t) :=

√
stχn [J0(

√
χns)Y0(

√
χnt)− J0(

√
χnt)Y0(

√
χns)] .

Using the fact that
sup
s≥0

√
s(|J0(s)|+ |Y0(s)|) <∞,

we find that the kernel Kn is uniformly bounded. Using Schwarz Inequality, (16) and the estimate
on F , we find that ∣∣∣∣

π

2

∫ s

0

Kn(s, t)F (t)U(t)dt

∣∣∣∣ ≤
Cs1/2

(1− q)3
. (18)

Here C is a uniform constant, that does not depend on q.
In particular, this integral remains bounded when divided by s1/2 for s tending to 0. Let us

prove now that B = 0. Since ψ extends continuously to 1, the function

U(S(x))√
S(x)

= ψ(x)

(
(1 − x)

S(x)2

)1/4

× ((1 + x)(1 − qx2)1/4

remains bounded for x tending to 1 and the same is valid for U(s)/
√
s for s tending to 0. On another

side, J0(s) remains bounded while Y0(s) is not bounded for s tending to 0. This forces B to be 0.
So (17) can be rewritten as

U(s) = A(
√
χns)

1/2J0(
√
χns) +

π

2
√
χn

∫ s

0

Kn(s, t)F (t)U(t)dt. (19)

The following lemma is needed in the proof of the main result of this section, given by Theorem
1.

Lemma 4. Let I =
2√
χn

∫ √
χnSq(0)

0

t (J0(t))
2 dt. Then there exists a constant C′ independent of n

and c, such that ∣∣∣∣I −
2Sq(0)

π

∣∣∣∣ ≤
C′
√
χn
. (20)
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Proof. We first recall that 1 ≤ Sq(0) ≤ π/2. It is well known (see [2]) that

∫ x

0

t(J0(t))
2 dt =

x2

2

[
(J0(x))

2 + (J1(x))
2
]
, x > 0.

Moreover, we recall the asymptotic behavior of Bessel functions, see [19]

sup
x≥0

|
√
xJν(x)| ≤ cν , sup

x≥0

∣∣∣∣∣Jν(x)−
√

2

πx
cos
(
x− π

2
ν − π

4

)∣∣∣∣∣ ≤
dν
x3/2

, ν > −1. (21)

Here, cν , dν are constants depending only on the order ν. We easily get

∣∣∣∣∣

[
J0(

√
χnSq(0))

]2
+

[
J1(

√
χnSq(0))

]2
− 2

π
√
χnSq(0)

∣∣∣∣∣ ≤
K

χn(Sq(0))2
, K = d0c0 + d1c1 + 2

√
2

π
.

That is ∣∣∣∣I −
2Sq(0)

π

∣∣∣∣ ≤
C′
√
χn
, C′ = 2(d0c0 + d1c1) + 4

√
2

π
. (22)

We are now able to state our main theorem. We mention explicitly the parameters. In the
statement, we assume that ψn,c is such that ψn,c(1) ≥ 0.

Theorem 1. There exist constants C,C′ with the following properties. Assume that the parameters
n, c are such that q = c2/χn(c) < 1. Then one can find a constant A := A(n, c) ≤ M such that, for
0 ≤ x ≤ 1,

ψn,c(x) = A
χn(c)

1/4
√
Sq(x)J0(

√
χn(c)Sq(x))

(1− x2)1/4(1− qx2)1/4
+Rn,c(x) (23)

with

sup
x∈[0,1]

|Rn,c(x)| ≤ Cqχn(c)
−1/2, Cq =

C

(1− q)13/4
. (24)

Moreover, for any integer n satisfying χn >

(
C′π

2Sq(0)

)2

, where C′ is as given by Lemma 4, the

constant A is bounded above and below as follows,

π

2Sq(0)

(√
1− q −

√
2

Cq√
χn

)2

(
1 + π

2Sq(0)
C′√
χn

) ≤ A2 ≤ π

2Sq(0)

(
1 +

√
2

Cq√
χn

)2

(
1− π

2Sq(0)
C′√
χn

) . (25)

Proof. Using (19), we can write

ψ(x) = A
χn(c)

1/4
√
S(x)J0(

√
χn(c)Sq(x))

(1 − x2)1/4(1− qx2)1/4
+Rn,c(x),

with
Rn,c(x) = (1− x2)−1/4(1− qx2)−1/4R̃(Sq(x)),

where

R̃(s) =
π

2
√
χn(c)

∫ s

0

Kn(S(x), t)F (t)U(t)dt.

7



To bound Rn(x), we proceed as follows. From (18), we have sup
x∈[0,1]

R̃(S(x))√
S(x)

≤ C

(1− q)3
√
χn
. Also,

from (11), we get sup
x∈[0,1]

√
S(x)

(1− x2)1/4(1 − qx2)1/4
≤

√
2

(1− q)1/4
. Moreover, since

Rn,c(x) =
√
Sq(x)(1− x2)−1/4(1− qx2)−1/4 R̃(Sq(x))√

Sq(x)
,

then from the previous discussion, we conclude the bound of |Rn,c(x)|. To prove (25), we first pose

V (s) = (
√
χns)

1/2J0(
√
χns) for s ∈ [0, Sq(0)]. Note that U = AV + R̃. We deduce from the previous

estimates that the L2 norm of R̃ is bounded by
√
2Cqχn(c)

−1/2. Let us recall the inequalities (16).
It follows that √

1− q −
√
2Cqχn(c)

−1/2 ≤ |A|‖V ‖2 ≤ 1 +
√
2Cqχn(c)

−1/2. (26)

To conclude it is sufficient to prove that the norm of V is conveniently bounded above and below.
After a change of variable, we have to use the bounds above and below for the quantity I, given by

Lemma 4. More precisely, by writing A2‖V ‖22 = A2

∣∣∣∣I −
2Sq(0)

π
) +

2Sq(0)

π

∣∣∣∣ and by using (20) and

(26), one gets (25).

Theorem 1 may be used on the whole interval [−1,+1], using the parity of the functions ψn,c.
It gives precise indications on the functions ψn,c, both quantitatively and qualitatively. We could

as well have written the bounds for the rests in terms of n−1 instead of χn(c)
−1/2. Indeed, from the

inequality n(n+ 1) ≤ χn(c) ≤ n(n+ 1) + c2 one deduces that

n(n+ 1) ≤ χn(c) ≤
n(n+ 1)

1− q
. (27)

The next corollary gives bounds for ψn,c. It is an immediate consequence of Theorem 1 and
the fact that |J0(s)| + s1/2|J0(s)| is uniformly bounded for s ≥ 0. We use the same notations as in
Theorem 1.

Corollary 1. There is a constant C such that, for Cq = C(1− q)−4, the two following inequalities
hold.

sup|x|≤1 |ψn,c(x)| ≤ Cqχ
1/4
n,c (28)

sup|x|≤1(1− x2)1/4|ψn,c(x)| ≤ Cq. (29)

Remark that the first bound is sharp since

ψn,c(1) = A(n, c)χn(c)
1/4. (30)

Next we state as a lemma the fact that, for q close from 0, the constant A is close from 1.

Lemma 5. Let α < 1 and 0 < K < 1. Let C′ be as defined by Lemma 4. There are constants

H1 = H1(α,K) and H2 = H2(α,K) such that, for q ≤ α and n satisfying
C′
√
χn

≤ K
√
1− α, the

constant A(n, c) in Theorem 1 satisfies the inequality

|A2(n, c)− 1| ≤ H1(α,K)q +H2(α,K)χn(c)
−1/2. (31)

As a consequence, under the same assumptions on q,

ψn,c(1)
2 − n− 1

2
≤ H3qn+H2. (32)
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Proof. We first note that
π(1− q)1/2

2
≤ Sq(0) ≤

π

2
.

By using the previous inequalities as well as (25), we get

(1− q)
1− 2

√
2Cα(1−q)−1/2

√
χn

1 + C′(1−q)−1/2
√
χn

≤ A2 ≤ (1 − q)−1/2

(
1 +

√
2 Cα√

χn

)2

1− C′(1−α)−1/2
√
χn

. (33)

We find in particular that
1−A2 ≤ q + (C′ + 23/2Cα)χ

−1/2
n .

Under the condition that
C′
√
χn

≤ K
√
1− α, which implies that the denominator on the right hand

side is larger than 1−K, we also have

A2 − 1 ≤ q√
1− α

+ (1−K)−1(1− α)−1/2(23/2Cα + 2C2
α)χ

−1/2
n .

By combining the two estimates, one obtains (31) with H1 = (1−α)−1/2 and H2 = (1−K)−1(1−
α)−1/2(23/2Cα + 2C2

α).
Next, we use (30), (31) and the inequality

χn(c)
1/2 − n− 1

2
≤ c2√

χn

to conclude that
∣∣∣∣ψn,c(1)

2 − (n+
1

2
)

∣∣∣∣ ≤ ||A2 − 1|√χn + |√χn − (n+ 1/2)|

≤ (H1 + 1)q
√
χn +H2.

Remark that (32) can be compared to the conjecture that the left hand side is negative. Even
if much weaker, it will nevertheless be sufficient to prove the exponential decrease of the sequence
λn(c).

2.2 First approximation by Legendre polynomials

We now discuss the possibility to modify χn(c) in Formula (23). It is easily seen that Theorem 1
remains valid when χn(c) is replaced by χn(c) + β, for some fixed constant. Indeed, one just has to
change F into F + β. This is particularly interesting for c = 0, where, instead of χn(0) one can take

(n+1/2)2. With this modification, the well-known fact that Pn(1) =
√
n+ 1

2 leads to the fact that

A = 1. Also, S(x) = arccos(x). So, we have the following corollary of Theorem 1.

Theorem 2. The normalized Legendre polynomials satisfy the following, uniformly for 0 ≤ x ≤ 1.

Pn(x) =

√
n+

1

2

(
arccos(x)√

1− x2

)1/2

J0 ((n+ 1/2) arccos(x)) +O

(
1

n

)
(34)

The uniformity of the approximation seems new, even if the formula is not.

We can also replace χn(c) by (n+ 1/2)2 in Formula (23) for all c, except that now the constant
C has to be multiplied by (1 + c2). If we want that the second term behaves like a rest, we have to
assume that c2 is sufficiently small compared to χn(c)

1/2. This leads us to the condition:

9



• Condition C(α, ǫ):

c2 ≤ αχn(c)
1

4
−ǫ.

So let us assume this condition and replace χn(c) by (n + 1/2)2 in Formula (23). It is easy to see
that the rest of the proof remains unchanged. We do not give too many details because we will use
another method later on. So there there exists some constant B = B(c, n) such that we can write

ψn,c(x) = B

√
n+ 1

2

√
Sq(x)J0((n+ 1

2 )Sq(x))

(1− x2)1/4(1− qx2)1/4
+Rn,c(x) (35)

with |Rn,c| ≤ Cχn(c)
− 1

4
−ǫ, with C a uniform constant depending only on α and ǫ. Moreover (we

also proceed as in Lemma 5), the constant B is such that

|B(n, c)− 1| ≤ Hχn(c)
− 1

4
−ǫ.

So we can replace it by 1, which generates an error of the order χn(c)
− 1

4
−ǫ. In order to go further,

we want to replace Sq(x)) by arccos(x) without too much loss, in order to be able to prove that
ψn,c is close from the Legendre polynomial. Since Sq(x) ≥ (1 − q)1/2 arccos(x), the difference

arccos(x)−Sq(x))is also bounded byHχn(c)
− 1

2
−ǫ arccos(x). This implies that |J0((n+ 1

2 ) arccos(x))−
J0((n + 1

2 )Sq(x))| is bounded by Cχn(c)
−ǫ. The other factors are also easily shown to be close to

the analogous terms for the Legendre polynomial. We have proved finally the following proposition.

Proposition 1. Under the condition C(α, ǫ), there exists C such that

sup
|x|≤1

|ψn,c(x)− Pn(x)| ≤ Cn−2ǫ.

Different authors have proposed a second term as a candidate for the expansion of ψn,c in terms
of Legendre polynomials for q tending to zero, see for instance Boyd’s paper [4]. Our proof cannot
lead to this because our rest is not small compared to this second term.

The previous proposition does not answer a natural question, which is the approximation by Pn

for c tending to 0. We will give another method for this.

2.3 Second approximation by the Legendre polynomials

Proposition 2. Let α < 1. There exists a constant Mα with the following property. For all n and
c ≥ 0 such that qn(c) ≤ α, then

sup
x∈[−1,1]

∣∣ψn,c(x)− Pn(x)
∣∣ ≤Mα

c2√
n+ 1/2

, (36)

Proof. The proof follows the same lines as the proof of Theorem 1. We now see the equation satisfied
by ψ := ψn,c as

(1− x2)ψ′′ − 2xψ′ + n(n+ 1)ψn,c =
(
n(n+ 1)− χn + c2x2

)
ψ.

The homogeneous equation

(1− x2)ψ′′ − 2xψ′ + n(n+ 1)ψn,c = 0

has as solutions the Legendre polynomial Pn on one side, the Legendre function of the second kind
Qn on another side. Moreover (see [1]) the Wronskian is given by

W (Pn, Qn)(x) =
n+ 1/2

1− x2
.

10



The function G := n(n+ 1)− χn + c2x2 is uniformly bounded in modulus by c2. By the method of
variation of constants we can write

ψ(x) = APn(x) +BQn(x) +
1

n+ 1/2

∫ 1

x

(1− y2)
(
Pn(x)Qn(y)− Pn(y)Qn(x)

)
G(y)ψ(y) dt.

We pose
Ln(x, y) = (1− y2)

(
Pn(x)Qn(y)− Pn(y)Qn(x)

)
.

We claim that Ln is uniformly bounded, independently of n, x, y. Let us take this for granted and
go on for the proof. Then, for some uniform constant H , the error term satisfies

1

n+ 1/2

∣∣∣∣
∫ 1

x

Ln(x, y)G(y)ψ(y)dy

∣∣∣∣ ≤ H
c2

n+ 1/2
.

The consideration of the behavior of each term when x tends to 1 implies that B is equal to 0 and
we have, for again H a uniform constant,

|ψ −AP n| ≤ H
c2

n+ 1/2
.

Since both functions ψ and Pn have L2 norm 1, we have the inequality

|1−A| ≤ H
c2

n+ 1/2
.

Consequently, we have

sup
x∈[0,1]

|ψ(x) − Pn(x)| ≤ sup
x∈[0,1]

|ψn,c(x) −APn(x)|+ |A− 1| sup
x∈[0,1]

|Pn(x)|

≤ Mα
c2√

n+ 1/2
.

It remains to prove that Ln is uniformly bounded. It is a consequence of the fact that
√
1− x2|Pn(x)|

and
√
1− x2|Qn(x)| are bounded independently of x and n. For Pn, it is a consequence of (29). For

Qn it is given by the following lemma.

Lemma 6. There exists a constant H such that, for all n, we have the inequality

sup
x∈[−1,1]

√
1− x2|Qn(x)| ≤ H.

Proof. We recall that Qn(x) =
1

2
Pn(x) log

(
1 + x

1− x

)
− Vn−1(x), where

Vn−1(x) =
1

2

∫ 1

−1

Pn(x) − Pn(t)

x− t
dt =

√
n+ 1/2

[
n∑

m=1

1

m

Pm−1(t)√
m− 1/2

Pn−m(t)√
n−m+ 1/2

]
.

We can restrict to x ≥ 0. We recall that, by (29), (1 − x2)1/4|Pn(x)| is uniformly bounded. So the
required inequality follows at once for the first term. Next we consider Vn−1. Using again (29), it is
sufficient to prove that

n∑

m=1

√
n+ 1/2

m
√
m− 1/2

√
n−m+ 1/2

is uniformly bounded, which is elementary: just consider separately the casesm < n/2 andm ≥ n/2.
This finishes the proof of the proposition.
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2.4 Uniform bound estimates of the PSWFs and their derivatives.

In this paragraph, we give various estimates of the bounds of the ψn,c and ψ
′
n,c over [−1, 1].Moreover,

we give bounds for the successive derivatives of the PSWFs at x = 0. The content of this paragraph
will play later on a major role for the approximation of polynomials by their series in PSWFs. By
using the results of Theorem 1 and its corollary, we prove the following proposition that provides us
with a first set of uniform bounds.

Proposition 3. There exists a constant C depending only on α < 1 such that, for q =
c2

χn
< α,

then
sup

x∈[−1,1]

|ψ′(x)| ≤ Cχn
5/4, (37)

sup
x∈[−1,1]

(1− x2)|ψ′(x)| ≤ C
√
χn. (38)

Proof. To prove (37), it suffices to consider the case x ∈ [0, 1]. Then by using the identity

(1 − x2)ψ′(x) = χn

∫ 1

x

(1− qt2)ψ(t) dt, (39)

one gets

(1− x2)|ψ′(x)| ≤ χn(1 − x2)

∫ 1

x

|ψ(t)| dt.

Finally, inequality (28) gives us (37).
To prove (38), we start again from (39). We let s = S(t), t ∈ [0, 1]. Here, S(t) is given by (6).

Let L(s) be the function defined on [0, Sq(0)] by

L(s) = L(S−1t) = (1− qt2)1/4
(
(1− t2)1/2

S(t)

)1/2

.

It is easy to see that L(s) is of class C1 on [0, Sq(0)], with a norm bounded by a constant that
depends only on α. Moreover, by using (23), we get

∫ 1

x

(1− qt2)ψ(t) dt = Aχ1/4
n

∫ S(x)

0

L(s)sJ0(
√
χns) ds+

∫ 1

x

Rn,c(t) dt. (40)

Since (sJ1(s))
′ = sJ0(s), then an integration by parts gives us

χ1/4
n

∫ S(x)

0

L(s)sJ0(
√
χns) ds =

[
L(S(x))

√
S(x)χ1/4

n

√
S(x)J0(

√
χnS(x))

] 1√
χn

− 1√
χn

∫ S(x)

0

L′(s)χ1/4
n sJ1(

√
χns) ds. (41)

By combining (39), (40), (41) and using (21), (24), we easily conclude for (38).

Note that the constants in the previous proposition degenerate for q tending to 1. We will see
below than one has nevertheless uniform bounds in a neighborhood of 0 for |ψn,c| and |ψ′

n,c|. This
is the subject of the following proposition.

Proposition 4. There exists a constant C such that, for all n ≥ 0 and c ≥ 0,

sup
x∈[−1,1]

(1− x2)1/4|ψn,c(x)| ≤ (2χn(c))
1/4. (42)

sup
x∈[−1,1]

(1 − x2)|ψ′
n,c(x)| ≤ C(c2 + χn(c))

3/4. (43)
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Proof. We shall again use the differential equation (5) satisfied by ψn,c, which we note only ψ in
this proof, and the identity

∫ +1

−1

(1− x2)|ψ′(x)|2dx+ c2
∫ +1

−1

x2|ψ(x)|2dx = χn(c). (44)

The above identity is obtained by multiplying (5) from both sides by ψ(x) and then integrating the
result over [−1, 1]. We can consider only x ≥ 0 and replace 1− x2 by 1− x. By a simple integration

by parts applied to the quantity 2

∫ 1

x

(1− t)ψ(t)ψ′(t)dt, one obtains the following identity

(1− x)|ψ(x)|2 = −
∫ 1

x

|ψ(t)|2dt+ 2

∫ 1

x

(1− t)ψ(t)ψ′(t)dt. (45)

We prove that the left hand side of the previous identity is bounded by (1 − x)1/2
√
χn(c). To this

end, it suffices to bound the second integral. This is done as follows.

2

∣∣∣∣
∫ 1

x

(1 − t)ψ(t)ψ′(t)dt

∣∣∣∣ ≤ 2
√
1− x

∣∣∣∣
∫ 1

x

√
1− tψ(t)ψ′(t)dt

∣∣∣∣

≤ 2
√
1− x

[∫ 1

0

(1− t2)|ψ′(t)|2 dt
]1/2 [∫ 1

0

|ψ(t)|2 dt
]1/2

≤ 2
√
1− x

√
χn/2

√
1/2 (46)

The last inequality is a consequence of (44). By combining (45) and (46), we conclude for (42).
Next, we write

(1− x)2|ψ′(x)|2 = −2

∫ 1

x

(1 − t)|ψ′(t)|2dt+ 2

∫ 1

x

(1 − t)2ψ′(t)ψ′′(t)dt. (47)

Again, we use (5), multiply this later by
√
1− t2 and get

(1− t2)3/2ψ′′(t) = 2t
√
1− t2ψ′(t) + (c2t2 − χn)

√
1− t2ψ(t), t ∈ [−1, 1].

Since |t|,
√
1− t2 ≤ 1 and by using Minkowski inequality, one gets

‖(1− t2)3/2ψ′′‖2 ≤ 2‖
√
1− t2ψ′‖2 + (c2 + χn)‖ψ‖2. (48)

That is (∫ +1

−1

(1 − t2)3|ψ′′(t)|2dt
)1/2

≤ 2
√
χn(c) + χn(c) + c2.

Again, by using Schwarz inequality in the second integral of (47) and then combining (47) and (48),
one gets (43).

The following proposition gives us interesting bounds for the successive derivatives of the PSWFs
at x = 0.

Proposition 5. For any integers n, k ≥ 0, satisfying k(k + 1) ≤ χn, we have

∣∣∣ψ(k)
n,c(0)

∣∣∣ ≤ (
√
χn)

k |ψn,c(0)| , (49)

for n even and k even, and ∣∣∣ψ(k)
n,c(0)

∣∣∣ ≤ (
√
χn)

k−1 ∣∣ψ′
n,c(0)

∣∣ , (50)
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for n odd and k odd. In particular, under the assumption that q =
c2

χn
< 1, there exists a constant

C, depending only on q and such that for any positive integer k satisfying k(k + 1) ≤ χn, we have

∣∣∣ψ(k)
n,c(0)

∣∣∣ ≤ C(
√
χn)

k. (51)

Proof. We first study the case where n = 2m, k = 2i are even integers. We show that for a fixed n,

ψ(k)
n,c(0) has alternating signs, that is ψ

(k)
n,c(0) = (−1)k/2

∣∣∣ψ(k)
n,c(0)

∣∣∣ or equivalently ψ(k)
n,c(0)ψ

(k−2)
n,c (0) < 0.

Note that by an iterative use of (5), one can easily check that the ψ(k)
n,c(0) = ψ(k)(0) are given by the

following recurrence relation,

ψ(k+2)(0) = (k(k + 1)− χn)ψ
(k)(0) + k(k − 1)c2ψ(k−2)(0), k ≥ 0, (52)

with ψ(0) > 0, ψ(2)(0) = −χnψ(0). Note that ψ
(2)(0)ψ(0) < 0. By induction, assume that this is the

case for the order k − 2, that is ψ(k)(0)ψ(k−2)(0) < 0. Multiplying (52) from both sides by ψ(k)(0),
using the assumption that k(k+1) ≤ χn as well as the induction hypothesis, one concludes that the
induction assumption holds for the order k. Consequently, we have,

∣∣∣ψ(k+2)(0)
∣∣∣ = (χn − k(k + 1))

∣∣∣ψ(k)(0)
∣∣∣ + k(k − 1)c2

∣∣∣ψ(k−2)(0)
∣∣∣ , k ≥ 0. (53)

Let γk =
∣∣∣ψ(k)(0)

∣∣∣ = mk(
√
χn)

k. Then (53) is rewritten as follows,

mk+2 =

(
1− k(k + 1)

χn

)
mk + k(k − 1)

q

χn
mk−2, |ψ(0)| = m0. (54)

From ψ(2)(0) = −χnψ(0), we have m2 = m0. Moreover, from (54), we get

mk+2 ≤
(
1− k(k + 1)

χn

)
mk + k(k + 1)

q

χn
mk−2.

A simple induction gives us

mk+2 ≤
(
1− k(k + 1)

χn
(1− q)

)
m0 ≤ m0 = |ψ(0)|.

This concludes for (49). Similarly, one can easily prove (50). Finally, by combining (29), (38) and
(49), cone concludes for (51).

3 Decay estimates for the eigenvalues and the Legendre co-

efficients

3.1 Decay estimates for the eigenvalues

We first use the previous estimates to prove the exponential decay of the sequence λn(c). More
precisely we prove the following.

Theorem 3. Let δ > 0. There exists N and κ such that, for all c ≥ 0 and n ≥ max(N, κc),

λn(c) ≤ e−δ(n−κc).

This can be compared with the numerical evidence that one has super-exponential decay from
2c
π . It is a corollary of the following technical proposition.
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Proposition 6. Let α < 1. Then there exists constants M1, M2 such that

λn(c) ≤M1
n

2
(
e

4
)2n
(
c2

n2
exp(M2

c2

n2
)

)n

. (55)

Proof. We start from the well-known equality, see [20, 24], that for any positive integer n, we have
λn(c) = λ′ × λ′′, with

λ′ : =
c2n+1(n!)4

2((2n)!)2(Γ(n+ 3/2))2
(56)

λ′′ : = exp

(
2

∫ c

0

(ψn,τ (1))
2 − (n+ 1/2)

τ
dτ

)
. (57)

Let us first consider λ′′. We will use (32) and (36)

|(ψn,τ (1))
2 − (n+ 1/2)| ≤ M(1 + τ2/n) τ ≥ 1,

≤ Mτ2 τ ≤ 1.

It follows that

λ′′ ≤ e2M
(
e2M

c2

n2

)n
. (58)

On the other hand, we have

c2n+1(n!)2

2((2n)!)2
≤
( c
n

)2n c
2




n∏

j=1

(
1 +

j

n

)

−2

. (59)

Since
1

n

n∑

j=1

log(1 + j/n) ≥
n∑

j=1

∫ j/n

(j−1)/n

log(1 + x) dx = 2 log 2− 1, then




n∏

j=1

(
1 +

j

n

)

−2

≤ e−(4 log 2−2)n, ∀n ≥ 1.

By using the previous inequality together with (58), one gets the required inequality (55).

Remark 1. Numerical evidence, see [20], indicates that (ψn,τ )
2 − (n + 1/2) ≤ 0, ∀ t ≥ 0. If we

accept this assertion, then we observe that the sequence λn(c) decays faster than
c

2

( ec
4n

)2n
so that

the exponential decay has started at [ec/4].

3.2 Decay estimate of the Legendre expansion coefficients

In this paragraph, we study some decay estimates of the Legendre coefficients βn
k . Recall that

ψn,c(x) =
∑

k≥0

βn
kPk(x), ∀x ∈ [−1, 1], with βn

k =

∫ 1

−1

Pk(x)ψn,c(x) dx. It is well known, see [Theorem

3.4, [26]], that for a fixed positive integer n, we have

|βn
k | ≤

2

|µn(c)|
1

2k
, ∀ k ≥ 2([ec] + 1). (60)

Here µn(c) is the eigenvalue of the operator Qc defined in the introduction, for the eigenfunction
ψn,c. It is related to λn(c) through the identity

λn(c) =
c

2π
|µn(c)|2.

The following lemma improves the decay estimate given by (60).
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Lemma 7. For any real c > 0 and any integer n ≥ 0, we have

|βn
k | =

∣∣∣∣
∫ 1

−1

Pk(x)ψn,c(x) dx

∣∣∣∣ ≤
( c
2

)k √
π

Γ(k + 3/2)

1

|µn(c)|
, ∀ k ≥ 0. (61)

Proof. We start from the following identity relating Bessel functions of the first type and Legendre
polynomials, see [2] ∫ 1

−1

eixyPn(y) dy = in
√

2π

x
Jn+ 1

2

(x), ∀ x 6= 0. (62)

Since the ψn,c are eigenfunctions of Qc, that is

∫ 1

−1

ei c x yψn,c(y) dy = µn(c)ψn,c(x), (63)

then, by combining (63) and (62) and by using Plancherel Theorem, one gets

βn
k =

∫ 1

−1

Pk(x)ψn,c(x) dx =
1

µn(c)

∫ 1

−1

∫ 1

−1

(∫ 1

−1

eicxyPk(x) dx

)
ψn,c(y) dy

=
1

µn(c)

∫ 1

−1

√
k + 1/2

√
2π

cy
Jk+1/2(cy)ψn,c(y) dy.

By using the previous equality together with the well known bound of the Bessel function, see [2]

|Jα(x)| ≤
|x|α

2αΓ(α+ 1)
, ∀α > −1/2, ∀x ∈ R, (64)

one gets

|βn
k | ≤

√
π(2k + 1)ck

2k+1/2Γ(k + 3/2)|µn(c)|

∫ 1

−1

|yk||ψn,c(y)| dy

≤
√
π(2k + 1)ck

2k+1/2Γ(k + 3/2)|µn(c)|

√
2

2k + 1

(∫ 1

−1

|ψn,c(y)|2 dy
)1/2

=
( c
2

)k √
π

Γ(k + 3/2)

1

|µn(c)|
.

Remark 2. Our decay bound given by (61) outperforms in two directions, the one given by (60).
Firstly, it is valid for any integer k ≥ 0. Secondly, our decay bound decays much faster than the one
given by (60). In fact, Since Γ(s + 1) ≥

√
2πss+1/2e−s for all s > 0, see [1], then it is easy to see

that ( c
2

)k √
π

Γ(k + 3/2)

1

|µn(c)|
≤
(

1

2k+1

√
e

2k + 1

)(
1

2k−1

1

|µn(c)|

)
, ∀ k ≥ 2([ec] + 1).

4 Quality of the spectral approximations by the PSWFs

In this section, we first study the quality of approximation of almost band-limited functions by the
classical PSWFs ψn,c that are concentrated on [−b, b], for some b > 0. Then, we extend this study
to the case of periodic and non periodic Sobolev space Hs([−1, 1]), s > 0.
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4.1 Approximation of almost time and band-limited functions

In this paragraph, ‖ · ‖2 denotes the norm in L2(R). We show that the set {ψn,c(x), n ≥ 0} is well
adapted for the representation of almost time-limited and almost band-limited functions, which are
defined as follows.

Definition 1. Let T = [−a,+a] and Ω = [−b,+b] be two intervals. A function f , which we assume
to be normalized in such a way that ‖f‖2 = 1, is said to be ǫT−concentrated in T and ǫΩ−band
concentrated in Ω if ∫

T c

|f(t)|2 dt ≤ ǫ2T ,
1

2π

∫

Ωc

|f̂(ω)|2 dω ≤ ǫ2Ω.

Up to a re-scaling of the function f , we can always assume that T = [−1, 1] and Ω = [−c,+c],
with c := ab. Indeed, for f that is ǫT−concentrated in T = [−a,+a] and ǫΩ−band concentrated in
Ω = [−b,+b], the normalized function g(t) =

√
af(at) is ǫT−concentrated in [−1,+1] and ǫΩ−band

concentrated in [−ab,+ab].
Before stating the theorem, let us give some notations. For f an L2 function on R, we consider

its expansion f =
∑

n≥0 anψn,c in L
2([−1,+1]), with, due to the normalization of the functions ψn,c

given by (3), the following equality holds,

∫ +1

−1

|f(t)|2dt =
∑

n≥0

|an|2. (65)

We call SN,cf, the N -th partial sum, defined by

SN,cf(t) :=
∑

n<N

anψn,c(t). (66)

We write more simply SNf when there is no ambiguity. In the next lemma, we prove that SNf
tends to f rapidly when f belongs to the space of band-limited functions. This statement is both
very simple and classical, see for instance [21, 22] or Theorem 3.1 in [25].

Lemma 8. Let f ∈ Bc be an L2 normalized function. Then

∫ +1

−1

|f − SNf |2dt ≤ λN (c). (67)

Proof. Since the set of functions ψn,c is also an orthogonal basis of Bc, the function f may be written
on R as f =

∑
n≥0 anψn,c, with

∫

R

|f(t)|2dt =
∑

n≥0

|λn(c)|−1|an|2. (68)

The two expansions coincide on [−1,+1], and, from (68) applied to f − SNf , it follows that

∫ +1

−1

|f − SNf |2dt ≤ sup
n≥N

|λn(c)|
∑

n≥N

|λn(c)|−1|an|2.

We use the fact that the sequence |λn(c)| decreases and (68) to conclude.

Next we define the time-limiting operator PT and the band-limiting operator ΠΩ by:

PT (f)(x) = χT (x)f(x), ΠΩ(f)(x) =
1

2π

∫

Ω

eixω f̂(ω) dω.

The following proposition provides us with the quality of approximation of almost time- and band-
limited functions by the PSWFs.
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Proposition 7. If f is an L2 normalized function that is ǫT−concentrated in T = [−1,+1] and
ǫΩ−band concentrated in Ω = [−c,+c], then for any positive integer N, we have

(∫ +1

−1

|f − SNf |2dt
)1/2

≤ ǫΩ +
√
λN (c) (69)

and, as a consequence,
‖f − PTSNf‖2 ≤ ǫT + ǫΩ +

√
λN (c). (70)

More generally, if f is an L2 normalized function that is ǫT−concentrated in T = [−a,+a] and
ǫΩ−band concentrated in Ω = [−b,+b] then, for c = ab and for any positive integer N, we have

‖f − PTSN,c,af‖2 ≤ ǫT + ǫΩ +
√
λN (c) (71)

where SN,c,a gives the N -th partial sum for the orthonormal basis 1√
a
ψn,c(t/a) on [−a,+a].

Proof. We first prove (69) by writing f as the sum of ΠΩf and g. Remark first that
∫ +1

−1
|g −

SNg|2dt ≤ ‖g‖2 ≤ ǫΩ. We then use Lemma 8 for the band limited function ΠΩf to conclude. The
rest of the proof follows at once.

Remark 3. Let f be a normalized L2 function that vanishes outside [−1,+1] and is in Hs(R).
Then f gives an example of 0-concentrated in [−1,+1] and ǫc-band concentrated in [−c,+c], with
ǫc ≤Mf/c

s.

Indeed, take

M2
f =

1

2π

∫
|f̂(ξ)|2|ξ|2sdξ,

which is finite by assumption.

4.2 Approximation by the PSWFs in Sobolev spaces

In this paragraph, we study the quality of approximation by the PSWFs in the Sobolev space
Hs([−1, 1]). We provide an L2([−1, 1])–error bound of the approximation of a function f ∈ Hs([−1, 1])
by the N−th partial sum of its expansion in the basis of PSWFs.

To simplify notation we will write I := [−1, 1]. In this paragraph, ‖ · ‖2 denotes the norm in
L2(I). We should mention that different spectral approximation by the PSWFs in Hs = Hs(I) have
been already given in [4, 6, 25]. More precisely, the following result has been proved in [6]. Here

ak(f) :=
∫ 1

−1 f(x)ψk,c(x) dx.

Theorem 4. (Theorem3.1 in [6]). Let f ∈ Hs(I), s ≥ 0. Then

|aN(f)| ≤ C


N−2/3s‖f‖Hs +

(√
c2

χN (c)

)δN

‖f‖L2(I)


 ,

where C, δ are independent of f,N and c.

In [25], the author has used a different approach for the study of the spectral approximation by

the PSWFs. More precisely, by considering the weighted Sobolev space H̃r(I), associated with the
differential operator

Dcu = −(1− x2)u′′ + 2xu′ + c2x2u,

18



and given by

H̃r(I) =



f ∈ L2(I), ‖f‖2

H̃r = ‖Dr/2
c f‖2 =

∑

k≥0

(χk)
r|f̂k|2 < +∞



 ,

the following result has been given in [25].

Theorem 5. (Theorem3.3 in [25]). For any f ∈ H̃r(I), with r ≥ 0, we have

‖f − SNf‖2 ≤ (χN (c))−r/2‖f‖H̃r ≤ N−r‖f‖H̃r .

It is important to mention that the error bounds of the spectral approximations given by the
previous two theorems, do not indicate how to choose a convenient value of the bandwidth c to be
used to approximate a given f ∈ Hs(I). By a simultaneous use of the properties of the PSWFs as
eigenfunctions of the differential operator Lc and the integral operator Qc, we give a first answer to
this question. This is the subject of the following theorem.

Theorem 6. Let c ≥ 0 be a positive real number. Assume that f ∈ Hs(I), for some positive real
number s > 0. Then for any integer N ≥ 1, we have

‖f − SNf‖2 ≤ K(1 + c2)−s/2‖f‖Hs +K
√
λN (c)‖f‖2. (72)

Here, the constant K depends only on s. Moreover it can be taken equal to 1 when f belongs to the
space Hs

0 (I).

Proof. To prove (72), we first use the fact that for any real number s ≥ 0, there exists a linear and
continuous extension operator E : Hs(I) → Hs(R). Moreover, if f ∈ Hs(I) and F = E(f) ∈ Hs(R),
then there exists a constant K > 0 such that

‖F‖L2(R) ≤ K‖f‖2, ‖F‖Hs(R) ≤ K‖f‖Hs . (73)

We recall that the Sobolev norm of a function F on R is given by

‖F‖2Hs(R) :=
1

2π

∫

R

(1 + |ξ|2)s|f̂(ξ)|2 dξ.

In particular, for F c−bandlimited, one has

‖F‖2L2(R) ≤ (1 + c2)−s‖F‖2Hs(R).

Next, if F denotes the Fourier transform operator and if

G = F−1(F̂ · 1[−c,c]), H = F−1(F̂ · (1− 1[−c,c])),

then G is c−bandlimited and F = G + H. Moreover, since ‖Ĝ‖L2(R) ≤ ‖F̂‖L2(R) and ‖H‖L2(R) ≤
c−s‖F‖Hs(R), then by using (73), one gets

‖G‖L2(R) ≤ K‖f‖2, ‖H‖2 ≤ K(1 + c2)−s/2‖f‖Hs . (74)

Finally, by using the previous inequalities and the fact that G is c−bandlimited, one concludes that

‖f − SNf‖2 ≤ ‖G − SNG‖2 + ‖H − SNH‖2
≤

√
λN (c)‖G‖L2(R) + ‖H‖2

≤
√
λN (c)K‖f‖2 +K(1 + c2)−s‖f‖Hs .

This concludes the proof for general f . When f is in the subspace Hs
0(I), one can take as

extension operator the extension by 0 outside [−1, 1], so that the constant K can be replaced by
1.
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Remark 4. This should be compared with the results of [25], given by Theorem 5. This has the
advantage to give an error term for all values of c, while the first term in (72) is only small for c
large enough. On another side, Wang compares this specific Sobolev space with the classical one and
finds that

‖f‖
H̃s

c
≤ C(1 + c2)s/2‖f‖Hs .

For large values of N we clearly have χN (1 + c2) ≪ (1 + c2)−1, but it goes the other way around
when χN and 1+ c2 are comparable. So it may be useful to have both kinds of estimates in mind for
numerical purpose and for the choice of the value of c.

Remark 5. Remark that the second error term in (72) is negligible as soon as N is comparable to
c, due to the super-exponential decay of the sequence λN (c), and also to the fact that the L2 norm
may be very small compared to the norm in Hs. A convenient choice of the value of the truncation
order Nc to be used is given by

Nc = min{N ∈ N,
√
λN (c)‖f‖2 ≤ c−s‖f‖Hs}.

If N < Nc, then the error bound in (72) is concentrated in the quantity
√
λN (c)‖f‖2 which can

be significantly reduced by considering larger value of N. On the other hand, if N > Nc, then the
error bound is concentrated in the quantity c−s‖f‖Hs . Hence, larger values of N will not reduce in
a significant manner this error bound.

It may be useful to consider in particular the subspace Hs
per of functions in Hs(I) that extend

into 2−periodic functions of the same regularity. For such functions, one can also use the norm

‖f‖2Hs
per

=
∑

k∈Z

(1 + (kπ)2)s|bk(f))|2.

Here,

bk(f) =
1√
2

∫ +1

−1

f(x)e−iπkxdx =
1√
2
f̂(kπ)

is the coefficient of the Fourier series expansion of f. A precise error analysis of the quality of
approximation by the PSWFs in the space Hs

per is given by the following theorem. We should
mention that the proof of this result is essentially based on combining the Fourier characterization
of Hs

per with some properties of the PSWFs as the eigenfunctions of the finite Fourier transform
operator Qc.

Theorem 7. Let s > 0, c > 0, be any positive real numbers and let f ∈ Hs
per([−1, 1]). Then for any

integer N ≥ 1, we have

‖f − SNf‖2 ≤
√
(1/2 +

π

4c
)
∑

n≥N

‖ψn,c‖2∞λn(c)‖f‖2 + c−s‖f − f[c/π]‖Hs
per
. (75)

Here, f[c/π] is the truncated Fourier series expansion of f to the order
[
c
π

]
. In particular, for any

positive integer N satisfying q = c2/χN < 1, we have

‖f − SNf‖2 ≤ Kq

√∑

n≥N

√
χnλn(c)‖f‖2 + c−s‖f − f[c/π]‖Hs

per
, (76)

where Kq =
√
(1/2 + π

4c)Cq and Cq is as given by Corollary 1.
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Proof. Recall Plancherel Formula
∑

k∈Z

|bk(f)|2 = ‖f‖22. We consider two auxiliary functions g, h ∈

Hs
per([−1, 1]), given by the following formulae,

g(x) =
∑

|k|≤[ c
π ]

bk(f)
eikπx√

2
, h(x) =

∑

|k|≥[ c
π ]+1

bk(f)
eikπx√

2
, (77)

so that f = g + h on [−1, 1]. Moreover, we have ‖g‖2 ≤ ‖f‖2 and

‖h‖22 =
∑

|k|≥[ c
π ]+1

|bk(f)|2 ≤
∑

|k|≥[ c
π ]+1

(1 + (kπ)2)−s(1 + (kπ)2)s|bk(f)|2 ≤ c−2s‖f − f[c/π]‖2Hs . (78)

We then proceed as in the proof of the previous theorem. The main point is the computation of the
PSWFs series of g. We use the following computation of coefficients of the exponential eiλx.

an(e
iλ·) =

∫ 1

−1

eiλxψn,c(x)dx = µn(c)ψn,c

(
λ

c

)
. (79)

It follows, by linearity, that

an(h) =
1√
2
µn(c)

∑

|k|≤[ c
π ]

bk(f)ψn,c

(
kπ

c

)
. (80)

Then by using Schwarz Inequality as well as the fact that all quantities kπ/c ar contained in the
interval [−1, 1], we get

|an(h)|2 ≤ |µn(c)|2
2

‖ψn,c‖2∞



∑

|k|≤[ c
π ]

|bk(f)|2






∑

|k|≤[ c
π ]

1


 (81)

≤
(
1

2
+
π

4c

)
2c

π
|µn(c)|2‖ψn,c‖2∞‖f‖22 =

(
1

2
+
π

4c

)
λn(c)‖ψn,c‖2∞‖f‖22. (82)

One obtains

‖g − SNg‖2 =


∑

n≥N

|an(g)|2



1/2

≤
√
(1/2 +

π

4c
)
∑

n≥N

‖ψn,c‖2∞λn(c)‖f‖2,

which allows to conclude for (75). Finally, by combining the previous inequality and the result of
Corollary 1, we conclude for (76).

Remark 6. The last theorem may also be used for trigonometric polynomials
∑
bke

ikπx as long as
their degree is smaller than c/π, so that the second term in (75) vanishes.

Remark 7. We also have a bound of the error for ordinary polynomials. Indeed, if we consider the
polynomial f(x) := xj , then

an(f) =

∫ 1

−1

yjψn,c(y) dy = (−i)jc−jµn(c)ψ
(j)
n,c(0), with i2 = −1.
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We can then use Proposition 5 to conclude that if c2/χN < 1, then

‖f − SNf‖22 ≤ C2
∑

k≥N

(
χk(c)

c2

)j

|µk(c)|2. (83)

This gives an alternative way to find and improve the results of Theorems 3 and 4, given in [6].
Indeed, the authors approach f by a polynomial, then consider coefficients of the PSWFs expansion
for a polynomial.

Remark 8. It is important to note that when the bandwidth c is comparable with the truncation
order N, then the error bounds given by our previous two theorems are of the expected order O(N−s),
for the values of N in the decay region of the λn(c).

5 Numerical results

In the first part of this section, we give a brief description of the numerical methods of computation
of the PSWFs as well as the PSWFs series expansion coefficients of a function from the Sobolev
spaceHs([−1, 1]). Note that Flammer’s method is among the first methods that have been developed
for the computation of the PSWFs inside [−1, 1]. This method is well described in [9]. The explicit
analytic extension of the PSWFs to the whole real line is given by D. Slepian.

Recently, there is an extensive amount of work devoted to new highly accurate computational
methods of the PSWFs, see [3, 10, 11, 26]. In particular, the methods given in [3, 26] are based
on an efficient quadrature method on the unit circle that provides highly accurate values of the
PSWFs inside [−1, 1], as well as accurate approximations of the different eigenvalues µn(c), n ≥ 0.
The methods developed in [10, 11] for computing the values of the ψn,c(x) inside [−1, 1] and the
eigenvalues µn(c) are either based on an appropriate matrix representation of the finite Fourier
transform operator Qc, given by (63) or a Gaussian type quadrature formula applied to Qc.

In the sequel, we will adopt Flammer’s method for computing the PSWFs. This choice is based
on the facts that the values of the analytic extensions of the PSWFS over R, are easily obtained by
this method. This later is briefly described as follows. We write as before the Legendre expansion
of the PSWFs,

ψn,c(x) =
∞∑

k=≥0

′

βn
kPk(x). (84)

where the sign

∞∑

k=0,1

′

means that the sum is over even or odd integers depending on whether the

order n is even or odd. It is well known that the different expansion coefficients (βn
k )k as well as the

corresponding eigenvalues χn(c) are obtained by solving the following eigensystem

(k + 1)(k + 2)

(2k + 3)
√
(2k + 5)(2k + 1)

c2βn
k+2 +

(
k(k + 1) +

2k(k + 1)− 1

(2k + 3)(2k − 1)

)
c2βn

k

k(k − 1)

(2k − 1)
√
(2k + 1)(2k − 3)

c2βn
k−2 = χn(c)β

n
k , k ≥ 0.

In [22], the author has shown that the analytic extension of the PSWFs outside [−1, 1] is simply
given by the following formula,

ψn,c(x) =

√
2π

|µn(c)|
∑

k≥0

(−1)kβn
k

√
k + 1/2

Jk+1/2(cx)√
cx

, ∀ |x| > 1, (85)
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where

µn(c) =
2π

c

[∑′
k≥0,1 i

k
√
k + 1/2 βn

k Jk+1/2(c)∑
k≥0 β

n
k

√
k + 1/2

]
, (86)

is the exact value of the n−th eigenvalue of the finite Fourier transform operator Qc.

Remark 9. If f ∈ Hs
per , s > 0, then its different PSWFs series expansion coefficients can be easily

approximated by the use of formula (79). More precisely for a positive integer K, an approximation
aKn (f) to an(f) is given by the following formula

aKn (f) =
µn(c)√

2

K∑

k=−K

bk(f)ψn,c

(
kπ

c

)
= an(f) + ǫK , (87)

where the bk(f) are the Fourier coefficients of f and where ǫK =
1√
2

∑

|k|≥K+1

µn(c)bk(f)ψn,c

(
kπ

c

)
.

Moreover, from the well known asymptotic behavior of the ψn,c(x), for large values of x, see for

example [10], one can easily check that ǫK = o

(
1

(K + 1)π)1+s

)
. This computational method of the

an(f) has the advantage to work for small as well as large values of the smoothness coefficient s > 0.

Remark 10. If f ∈ Hs([−1, 1]), where s > 1/2 + 2m,m ≥ 1, is an integer, then f ∈ C2m([−1, 1]).
Moreover since ψn,c ∈ C∞(R), then the classical Gaussian quadrature method, see for example [2]
gives us the following approximate value ãn(f) of the (n + 1)−th expansion coefficient an(f) =<
f, ψn,c >,

ãn(f) =
m∑

l=1

ωlf(xl)ψn,c(xl) = an(f) + ǫn, (88)

with |ǫn| ≤ sup
η∈[−1,1]

1

b2m

(f · ψn,c)
(2m)(η)

(2m)!
. Here, bm is the highest coefficient of Pm, and the different

weights ωl and nodes xl, are easily computed by the special method given in [2].

Next, to illustrate the quality of approximation by the PSWFs, as well as to explain the contri-
bution of the bandwidth c ≥ 0 in this quality of approximation, we give the following examples.

Example 1: In this example, we show that the PSWFs outperforms the Legendre polynomials
in the approximation of a class of functions from the Sobolev space Hs([−1, 1]), having significant
large coefficients at some high frequency components. To fix the idea, let λ > 0, be a relatively large
positive real number and let fλ(x) = eiλx, x ∈ [−1, 1]. The Legendre series expansion coefficients of
fλ are given by

αn(0) =

∫ 1

−1

eiλxPn(x) dx = (i)n
√

2π

λ
Jn+1/2(λ).

In this case, we have

‖fλ −
N∑

n=0

αn(0)Pn‖22 =
2π

λ

∑

n≥N+1

(Jn+1/2(λ))
2. (89)

If c > 0 is a positive real number, then the corresponding PSWFs series expansion coefficients of fλ
are simply given as follows,

αn(c) =

∫ 1

−1

eiλxψn,c(x) dx = µn(c)ψn,c(λ/c).
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In this case, the L2−approximation error is given by

EN (c) = ‖f −
N∑

n=0

αn(c)ψn,c‖22 =
∑

n≥N+1

|µn(c)|2
(
ψn,c

(
λ

c

))2

. (90)

In the special case where c = λ, the previous error bound becomesEN (λ) =
∑

n≥N+1

|µn(c)|2 (ψn,c(1))
2
.

Since ψn,c(1) = O(
√
n), and if we accept the numerical evidence that the exponential decay of the

sequence (|µn(c)|2)n≥0 starts at [ec/4], then from (89) and (90), one concludes that the PSWFs are
better adapted for the approximation of the fλ by its N−th order truncated PSWFs series expansion
with c = λ and N = [λ]. More generally, if 0 ≤ c < λ, then λ

c > 1 and the blowup of the ψn,c

(
λ
c

)

implies that αn(c) = µn(c)ψn,c(λ/c) has as lower decay that αn(λ) = µn(λ)ψn,c(1). Moreover, if
c > λ, then the decay of the |µn(c)|2 and consequently, the fast decay of the αn(c) is possible only
if n lies beyond a neighborhood of ec

4 > eλ
4 . This means that c = λ is the appropriate value of

the bandwidth to be used to approximate the function fλ(x) = eiλx by its first N−th truncated
PSWFs series expansion, with N = [λ]. This explains the numerical results given in [25] concerning
the approximation of the test function u(x) = sin(20πx), where the author has checked numerically
that c = 20π is the appropriate value of the bandwidth for approximating u(x) by the PSWFs ψn,c

with a given high precision and minimal number of the truncation order N. As another example, we
consider the value of λ = 50, then we find that

‖fλ −
50∑

n=0

αn(0)Pn‖2 ≈ 3.087858E − 01, ‖fλ −
50∑

n=0

αn(50)ψn,50‖2 ≈ 1.356604E − 08.

Example 2: In this example, we consider the Weirstrass function

Ws(x) =
∑

k≥0

cos(2kx)

2ks
, −1 ≤ x ≤ 1. (91)

Note thatWs ∈ Hs−ǫ([−1, 1]), ∀ǫ < s, s > 0.We have considered the value of c = 100, and computed

Ws,N , the N−th terms truncated PSWFs series expansion of Ws with different values of
3

4
≤ s ≤ 2

and different values of 20 ≤ N ≤ 100. Also, for each pair (s,N), we have computed the corresponding

approximate L2− error bound EN (s) =

[
1

50

50∑

k=−50

(Ws,N (k/50)−Ws(k/50))
2

]1/2
. Table 1 lists the

obtained values of EN (s). Note that the numerical results given by Table 1, follow what has been
predicted by the theoretical results of the previous section. In fact, the L2−errors ‖Ws − ΠNWs‖2
is of order O(N−s), whenever N ≥ Nc ∼

ec

4
− 1. In the case, where c = 100, Nc = 67. The graphs

of W3/4(x) and W3/4,N (x), N = 90 are given by Figure 1.

Example 3: In this example, we consider the Weirstrass function

f(x) =
∑

k≥0

cos(2kπx)

2ks
, −1 ≤ x ≤ 1, s = 1.4. (92)

It is clear that f ∈ H1
per([−1, 1]), with ‖f‖22 =

∑

k≥0

1

22ks
. Also, we fix the value of the badnwidth c to

100. In this case, we have ‖f‖2 ≈ 1.0805838, ‖f − f[c/π]‖H1 ≈ 1.203854. Next, we have computed
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Table 1: Values of En(s) for various values of n and s.

s = 0.75 s = 1 s = 1.25 s = 1.5 s = 1.75 s = 2.0
n En(s) En(s) En(s) En(s) En(s) En(s)
20 4.57329E-01 4.66173E-01 4.85990E-01 5.05973E-01 5.23232E-01 5.37227E-01
30 3.15869E-01 3.11677E-01 3.28241E-01 3.48562E-01 3.67260E-01 3.82963E-01
40 1.06843E-01 1.52009E-01 1.91237E-01 2.20969E-01 2.43432E-01 2.60523E-01
50 4.09844E-02 6.88472E-02 1.01827E-01 1.26518E-01 1.44809E-01 1.58520E-01
60 3.30178E-02 2.09084E-02 3.25551E-02 4.28999E-02 5.06959E-02 5.65531E-02
70 3.15097E-02 8.82446E-03 2.51157E-03 7.35725E-04 2.33066E-04 1.04137E-04
80 3.01566E-02 8.55598E-03 2.40312E-03 6.87458E-04 1.98993E-04 5.80481E-05
90 2.67972E-02 7.64167E-03 2.14661E-03 6.15062E-04 1.78461E-04 5.22848E-05
100 2.39141E-02 6.72825E-03 1.82818E-03 5.10057E-04 1.45036E-04 4.19238E-05

Figure 1: (a) graph of W3/4(x), (b) graph of W3/4,N (x), N = 90.

the different approximate L2− error EN =

[
1

50

50∑

k=−50

(f(k/50)− SNf(k/50))
2

]1/2
. In figure 2, we

have plotted the graphs of the actual error EN versus the error bound of Theorem 5. Note that once
N becomes larger than the critical value for the decay of the λn(c), which in our case, is given by
Nc = [ec/4] = 67, the theoretical error bound, given by Theorem 5 becomes very close to the actual
error.
Example 4: In this example, we let s > 0 be any positive real number and we consider the Brownian
motion function Bs(x) given by as follows.

Bs(x) =
∑

k≥1

Xk

ks
cos(kπx), −1 ≤ x ≤ 1. (93)

Here, Xk is a Gaussian random variable. It is well known that Bs ∈ Hs([−1, 1]). For the special
case s = 1, we consider the band-width c = 100, a truncation order N = 80 and compute B1,N the
approximation of B1 by its N−th terms truncated PSWFs series expansion. The graphs of B1 and
B1,N are given by Figure 3.

Remark 11. From the quality of approximation in the Sobolev spaces Hs([−1, 1]) given in this
paper and in [4, 6, 25], one concludes that for any value of the bandwidth c ≥ 0, the approximation
error ‖f −SNf‖2 has the asymptotic order O(N−s). Nonetheless, for a given f ∈ Hs([−1, 1]), s > 0
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Figure 2: (a) Graphs of the theoretical and the actual error bound for example 2. (b) Graph of
the decay of λn(c).

Figure 3: (a) graph of B1(x), (b) graph of B1,N (x), N = 80.

which we may assume to have a unit L2−norm and for a given error tolerance ǫ, the appropriate
value of the bandwidth c ≥ 0, corresponding to the minimum truncation order N, ensuring that
‖f − SNf‖2 ≤ ǫ, depends on whether or not, f has some significant Fourier expansion coefficients,
corresponding to large frequency components. In other words, the faster decay to zero of the Fourier
coefficients of f, the smaller the value of the bandwidth should be and vice versa.
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