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Abstract

The A-hypergeometric system was introduced by Gel’fand, Kapranov
and Zelevinsky in the 1980’s. Among several classes of A-hypergeometric
functions, those for 1-simplex x (n — 1)-simplex are known to be a very
nice class. We will study an incomplete analog of this class.

1 Introduction

The A-hypergeometric systems was introduced by Gel’fand, Kapranov and
Zelevinsky in the 1980’s ([I]). It is a system of homogeneous differential equa-
tions with parameters associated to an integer matrix A and contains a broad
class of hypergeometric functions as solutions. Recently, the incomplete .A-
hypergeometric system was proposed toward applications to statistics and a

1100
detailed study was given in the case of A = 0 011 = 1l-simplex X
01 01

1-simplex ([6]). The system includes the incomplete Gauss’ hypergeometric in-

b
tegral I(qp) (o, B,v;2) = / tP=1(1 — t)Y7P~1(1 — 2t)*dt and the incomplete

a

elliptic integral of the first kind F(z;k dt as solu-

i 1

: / V-1 -0
tion. It is interesting to describe properties of these functions in a general
framework. Among several classes of (complete) A-hypergeometric functions,
those for Ay x A,,_1 (1-simplex x (n — 1)-simplex) are known to be a very nice
class (see, e.g., [9, Section 1.5]).

In this paper, we study an incomplete analog of this class. In the section
Bl we give a definition of an incomplete A; x A,,_1-hypergeometric system and
prove that the existence of a solution of the system. In the section B we give
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a particular solution of the system and describe general solutions by combining
with a base of the solutions of (homogeneous) A-hypergeometric system. In the
last section[d] we give the complete list of contiguity relations for the incomplete
Aj x A, _1-hypergeometric function.

2 Incomplete A; x A, _i;-hypergeometric system

We will work over the Weyl algebra in 2n variables D = C < T

To1," ", Ton, 021, -

Definition 1 We call the following system of differential equations the incom-
plete Ay x A, _1-hypergeometric system:

(9i1+9i2—ai)of :O, (ISZSTI,)
2921’ +y+1l|ef = [g(t,w)]iig, (1)
i=1
(01i025 — 01j09;) @ f =0, (1<i<j<n)

where g(t,z) = VT [[1_, (21 + 22xt)* and «;,7 € C are parameters. The
operator 0;; = x;;0;; is called the Euler operator.

If g(t,x) = 0 in (), the system agrees with the A-hypergeometric or GKZ
hypergeometric system associated to A; x A, _1.

Remark 1 The incomplete Ay x A, _;-hypergeometric system introduced in
Definition[dlis a special but interesting case of the incomplete A-hypergeometric
system (see appendix, [6]). Let A be the following (n + 1) x 2n matrix:

1 1
.0

1 1
0o 1 01 .- 0 1

We set 8 = (a1,...,an,—y —1) € C* and g = (0,...,0, [g(t,z)]}=%). Then
the incomplete A-hypergeometric system associated to A, 3, g is the incomplete
A1 X A, _1-hypergeometric system.

We note that the ideal (01,025 — 01;02; | 1 < i < j < n) generated by the
third operators of () is called the affine toric ideal associated to the matrix A
and it is denoted by I4. Moreover, I4 is Cohen-Macaulay because A is normal
(21)-

We note that the inhomogeneous system (I) does not necessarily have a

solution f, when the inhomogeneous part [g(t, z)]:=% is randomly given.

Proposition 1 For any «;, v € C, there exists a classical solution of the in-
complete A1 X A, _1-hypergeometric system.

 @1n, 011, -

) aln
) 8211



Proof. We may verify conditions (@) and (®) in Theorem [l in the appendix with
respect to g = (0,...,0, [g(t,z)]=b). For 1 <i < n, we have

n
(01i + 09 — ;) o 71 H(xlk + zopt)**
k=1
n

= qrt" (21 + moit)* H(Ilk + zopt)*
ki

n

n
+ ot T (w1 4 29it) ! H($1k + Topt)*r — it H(xlk + zopt) "
ki k=1
n

= {z1; + 22t — (v1; + T25t) Joit T (w1 + wopt) ¥ ! H(Ilk + zopt)*
ki
=0.

Thus the condition () holds.
For 1 <i < j <mn, we have

n

811-62j ° g(f, ,T) =0q; ® ajt’H_Q(,le + l‘gjt)aj_l H(,le + $2kt)ak
k#j

n
= O(iajt’H_z(LL‘li + l‘git)ai_l(,flj + l‘gjt)aj_l H (,le + l‘gkt)ak.
k#i,j

Since this expression is symmetric in the indices ¢ and j, we have (01;02; —
01;02;) ® g(t,x) = 0. Thus the condition (8] holds. 1

Our definition of the incomplete Ay x A, _1 hypergeometric system is natural
in terms of a definite integral with parameters.

Proposition 2 If Revy, Rea; > 0, then the integral
b n
‘I)(ﬂ, :Z?) = / t7 H(:Z?lk + .ngt)akdt (2)
@ k=1
is a solution of the incomplete Ay x A, _1 hypergeometric system (Definition[).

Proof. From the general theory of A-hypergeometric systems, ®(8;x) is
annihilated by the elements of T4 and ;1 + 6;2 — «v; for 1 < i < n (see, e.g., [9]
Section 5.4]). We will prove that

<Z 02 + v+ 1) i (I)(ﬁ;.%') = [g(t,x)]iiz.

i=1



Applying Y | 02; to the integrand, we get

n n n .
<Z 92i> o H(x”“ + wokt) = Z Qi (215 + woit) > 1O H(Cclk + oy t) "
=1 k=1 i—1 k;éi
n . n
O(x1;i + xait)™
= y+1 Y\ T 20 o
- Zt ot H_(x““ + wopt) ™"
i=1 ki
s 0 (HZ:l (Ilk + $2kt)°"“)
ot ‘

By Stokes’ theorem, we obtain

n b n n
(Z 921') e d(fx) = / <Z 921‘) ot H(Ilk + wort)** dt
i=1 a i=1 k=1

_ /b tw+1a(HZ:1(fE1k +aat)™)
N ot

n t=b
- [ﬂﬂ [T G+ I%t)%] — (v + D2(B;x).
k=1

Thus the proposition is proved. ]
Example 1 We consider the following system of differential equations:

(311322 - 312321) of =0
(011 + 021 — ) e f =0,
(012 + 022 —z) o f =0
(621 + 022 +y +1) o f = [g(t,2)]i=).

Here, g(t,z) = " (211 + 2211)** (212 + @221)2.

1100
This is the incomplete A1 x A; hypergeometric systemfor A= 0 0 1 1
01 01

B = (a17a27 - — 1)7 and g1 = 0792 = 0793 = [g(tax)]iz .

A detailed study on the system is given in [6].

3 Series Solution

The Lauricella function Fp is defined by

Fp(a,by,...,bn, ¢ 21,...,2n)
_ Z (@)t tmn (01)my =~ (b)), 2 g mn

=0 (@ matetmn (Dmy = (D,



It is well-known that the Lauricella function Fp of n — 1 variables gives a series
solution of A; x A, _1-hypergeometric system. We can give series solutions of
our incomplete system in terms of the Lauricella series when parameters are
generic. We need Fp of n variables to give a solution.

Theorem 1 If~ is not negative integer, the incomplete A1 X A, _1-hypergeometric
system has a series solution which can be expressed in terms of the Lauricella
function Fp as

cey

n b.y+1
F(p;x) = 7| —=F 1=,y —Qy; 2;
(ﬂ,.f) Hxlk ( D <FY+ ; —Qa, y T ’Y+ T11 T1n

k=1 v+1
a¥t! —z91a —Tona
FD<”y—|—1;—o¢1,...,—an;”y—|—2; 21 ey n ))
11 Tin

—21b —xznb)

+1

Proof. For simplicity, we introduce some multi-index notations. An n-
dimensional multi-index is an n-tuple m = (my,...,m,) of non-negative in-
tegers. The norm of a multi-index is defined by |m| = m; + --- + m,,. For
a vector z; = (Tij1,...,Tim) (0 = 1,2), define 2" = z|'---z" and for a

vector a = (aq,...,an) € C", define the Pochhammer symbol by («),, =
(01)my -+ (@n)m, . By using these notations, the series F' can be written as

= z¢ e (22 " Cm = (=D)"(=)m YHIml+l _ pyhlmi+l
Pt ) ’"( ) e T D )

We note that

Oiro F = (o —my)F,
92koF = mkF.

We now prove that the series F satisfies the incomplete system (). Firstly,
(01, + 02; — ;) « F =0 for 1 < i < n follows from above fact immediately.



Secondly, we will prove (Z O2; + v + 1) o I = [g(t,2)]!=", which can be
i=1
shown as

<292i+7+1> o '=(m|+y+1)F
i=1

1)lml(—

=z Z ED™M(=a)m ™ (prFmlL _ griml+ly (i_j)

m>0
- t=b

m
_ t'Y+1 <_I_2t)
m>0 1

L t=a

r n
t
= t’Y""lx‘ll H <1 4 xQ_k)
L k=1

L1k

- n t=b
= [+ H (x1k + xzkt)ak‘| .

k=1 t=a

In the last two steps, we take a branch such that the equality holds.
Finally, we will prove (01;02; — 01;02;) « F = 0 for 1 < i < j < n. This
follows from the following two calculations:

Toil1; 2o\ ™
<91192J 25414 HUHQZ) o F = .Il Z ml)mjcm <x_j>
m>0

T15X24
m—e;+e;
X9 ’
—:vl E mJ miCm | —
Z1

m>0

m+e;
Z T2
= {L'l - mz m] + 1)Cm+ej (I_)
1

m>0

m-+te;
a T2
- Z (aj —my)(mi + 1)cme, <:c_)

m>0 1

and

mtej|(
(-1 (=me, (brHImtesl+1

(ai - mi)(mj + 1)cm+€j = (ai - mi)(mj + 1) (7 + |m ¥+ €j| ¥ 1)(1)m+e-

_ O e e vHml+2 _ g ytlm]+2
T I T )

(_ )Im+ei‘(_a)m+€i (b'y+|m+ei\+1
(v + Im+ el + 1) (Lmte,

= (aj —my)(m; + L)cmie, -

= (aj —my)(mi +1)

Therefore, the theorem is proved. ]

— a7+|m+ej\+1)

_ a7+|mz‘|+1)



Gel'fand, Kapranov and Zelevinsky ([I]) gave a base of the solutions of the
(complete) A-hypergeometric system. We will give a base of solutions of our
incomplete system by utilizing their result and Theorem [Tl

For a parameter 3 = (a,...,an, —y — 1) € C"L we set a 2 x n matrix
n+1
N > ~ L S
ij o --- 0 Z;LE+1/BJ 5@4—1 o B
for 1 < ¢ <mn. Let M® be a set of 2 x n matrices
-1 n
M® = Z No - (e2r + €10 — e1x — €2¢) + Z No - (e1x + €20 — ear — €1¢),
k=1 k=0+1

where e;; is the 2 x n matrix whose (4, j)-entry is 1 and the other entries are 0.
We suppose that the condition of parameter 5 called “T’-nonresonant”, that is
the sets s() £ M@ (1 < ¢ < n) are pairwise disjoint ([T, Definition 3]). Define
series W) (z) as

1 ©
g (o) —T(s® 11 E: v sk
(@) =D +1) F(s<f>+k+1)x ’
keM©

kz
where T(s()+k+1) = [ o, [T/, T(s\) +kij+1) and o8 = [7 [T}, @ el

These series are linearly independent and have the open domain

Z21 Z22 Z2on

11 Z12 Tin

as a common domain of convergence. Moreover they span the solution space of
(complete) Ay x A,_1-hypergeometric system ([I, Theorem 3]).
By using this result, we obtain the following theorem.

Theorem 2 Suppose the parameter B is T-nonresonant and 7y is not negative
mteger.

1. The common domain of convergence of F(B;x) and W) (z) is

1
max(|al, [b])”

22 T2n

T12

T21

U: < <

T11 T1in

2. Any holomorphic solution of the incomplete system () on U can be written
as

n
—|— ZC \I/(e) , c; € C.
r=1
Proof. Since the domain of convergence of the series F is
o 18 [ S - S PN -1} [ S
11 max(|al, [b]) | 12 max(|al, |b]) T1n max(|al, |b])
we have the statement 1. The statement 2 is clear. 1



Theorem 3 For o € &,,, we suppose the parameter o(f3) is T-nonresonant and
v s not negative integer.

1. The domain of convergence of the series F(B;x) and o(90)(z)) is

1
max(|al, [b])”

T205(1)

T1o(1)

T2 (2)

T15(2)

T20(n)

T1o(n)

oU) :

2. Any holomorphic solution of the incomplete system (@) on o(U) can be

written as
n

F(B;x) + Z cio (U (), c; € C.

=1
o . ¢ ¢
Here, (U9 (z)) is given by the permutations x;; < Tig(j) sl(-j) > SEU)(j) and
Bi < Bos)-
Proof. The theorem follows immediately from the o-invariance of F. 1

Remark 2 The closure of the union of o(U) coincides with the closure of Up.
That is

ceG,

4 Contiguity Relation

Contiguity relation is a relation among two functions of which parameters are
different by integer. Miller ([5]) gave contiguity relations for Lauricella functions
and Sasaki ([11]) gave contiguity relations for Aomoto-Gel’fand hypergeometric
functions, which include the case of complete A; x A,,_1-hypergeometric func-
tions. In [8] and [9], they give algorithms to compute contiguity relations in the
case of A-hypergeometric functions. These results are for complete functions.
In [6], an algorithm of computing contiguity relations under some conditions is
given for incomplete A-hypergeometric functions and the complete list of them
for the incomplete A; x Aj-hypergeometric function is derived.

We will give contiguity relations of our incomplete system in this section.
We put 6 = —y —1 (ie., 8 = (aq,...,ap,0)) to make formulas of contiguity
relations of the incomplete A1 x A,,_1-hypergeometric function simpler forms.
We put

b n
(I)(ﬂ,x) = / t7671 H(Ilk + .ngt)akdt,
@ k=1

and assume Re (—d — 1), Reay, > 0. Then, we note that ®(3;z) is a solution of
the following incomplete A; x A,,_1-hypergeometric system:

zief =0, zi = 01; + 02 — a, (1<i<n)
ze f = [g(ta I)]f&zzn z = Z?:l 921’ - 5,
ITpef =0,



where g(t,z) =t [15_; (z1k + @2xt)**. Let a1y and agy be vectors correspond-
ing to the (2k — 1)-st and the 2k-th columns of A respectively.

Theorem 4 The incomplete Ay x A, _1-hypergeometric function ®(8;x) satis-
fies the following contiguity relations.

o Shifts with respect to ayy:
S(B; —a1k)®(B;2) = e ®(B — a1k; @), (3)
S(B — ark; +a1x)@(8 — aik; ) = (Z o — 5) (B 2) — [g(t, z)]1=0,
i=1
(4)

where
S(B; —air) = Ok,
n n+1
S(B — aik; +aix) = Z (T1iTok — T1KT2:) 02 + Z 04T
i=1,i#k i=1
o Shifts with respect to asy:

S(B; —agk)®(B;x) = ar®(B — agk; ), (5)
S(ﬂ — Q2k; +azk)‘1’(ﬂ - azk;ﬂf) = 5‘1)([3; l’) + [Q(ta l’)]zt;l;a (6)

where

S(B; —agk) = Oax,

n n
S(B = ask;+agk) = Y wkraidi+ | Y O+ ak | war.
i=1,ik i=1,ik

Proof. The down-step relations ([B]) and (Bl are easily verified. We will prove
only the up-step relations @) and (6.
Let L; be the operator

n

Z (w15%2k — T1kT2i) 02 + Z a;x1 | Ork—ou (Z Q; — 5) +ag (Z O — 5) :

i=1,i#k i=1 i=1 i=1

We now prove that L; ¢ ®(8;z) = 0 which together with @) will prove the
contiguity relation (). The operator L; can be reduced by z; (1 < k < n) as



follows:

L, = Z 21i%2k02: 01k — 2(921' — )bk + G201 — g Z oy + oy, Z B2

i=1,itk i=1 i=1 i=1

= Z 21i%2502: 01k — 2(921' — ;) (O1k + b2k — ax)
i=1,itk i=1

+ 2(921' — ;) (02r — ar) + O2b1k + o 2(921' — )
i=1 i=1

= Z Z1i%2502: 01k — 2(921' — )z + Z 021 (02 — ;) + 02101
i=1,itk i—1 i=1

= Z 21:%2502: 01k — 2(921' — )z + Z Ok (015 + b2 — ) — Z 021015 + 021011
i=1,itk i—1 i=1 i=1

= Z I1i$2k(82ialk - 32k31i) - 2(921' - Oéi)Zk + Z 0212
i=1,itk i=1 i=1

Since the 09;01r — Oox01; are elements of the toric ideal I4, we obtain L e
®(B;2) = 0.
Let Lo be the operator

> wzaidni+ [ Y Ot ak | @k | Oak — akd + o <Z O2i — 5) :

i=1,i#k i=1,i#k i=1
Since Ly can be written as
n n
Ly= Y x1372i(01:00 — 0201x) + Y _ O2iz,
i=1,i#k i=1

we obtain Lo @ ®(5;2) = 0 in an analogous calculation with the case of L1. |
k

Theorem [ gives contiguity relations for e; = ay;, = (0,...,0,1,0,...,0)
(1 < k < n), but it does not give those for e,y1 = (0,...,0,1). The set of
vectors {e1,...,en11} is the standard basis of Z"*!. The contiguity relations

for e,4+1 can be obtained from Theorem Ml as follows.

Corollary 1 The incomplete A1 X A, _1-hypergeometric function ®(5;x) sat-
isfies the following contiguity relations.

o Shifts with respect to epyq:
S(B+ ent2; —ent2)P(B + eny2;7) = g <Z Q; — 5) Q(B; ) — arlg(t, I)]fezz’
i=1
S(B = ento; +ens2)®(B — ent2; 1) = akd®(B; 1) + axg(t, x)]i=),

10



where

S(B+ ent2; —eny2) = S(B — aix; +air)Oax,
S(B — ento;tenta) = S(B — ask; +aok)0  for 1 <k <n-+1.

Although we prove these contiguity relations for the integral representation
of the incomplete A; x A,,_1 function, they hold for functions which satisfy the
system and the two conditions (B]) and (B). By an easy calculation to check these
conditions for the series solution F'(S;x), we obtain the following corollary.

Corollary 2 The series solution F(8;x) satisfies the same contiguity relations.

We note that ®(8;z) can be formally expanded in F(8;z).

5 Appendix: A solvability of incomplete A-hypergeometric
systems
Let D be the Weyl algebra in n variables. We denote by A = (a;;) a d x n-matrix

whose elements are integers. We suppose that the set of the column vectors of
A spans Z%.

Definition 2 ([6]) We call the following system of differential equations H4 (S, g)
an incomplete A-hypergeometric system:

(Ei—Bi)e f Yis Ei—ﬁi:Zaijxjaj—ﬂi, (i=1,...,d)
j=1

Du,'u L4 f = 0, Du,v = ﬁa;u‘l _ ﬁ a;)J
i=1 j=1

with u,v € N§j running over all u,v such that Au = Av.

Here, Ng = {0,1,2,...}, and 3 = (B1,...,84) € C? are parameters and g =
(g1, --,94) where g; are given holonomic functions.

We denote by E — 8 the sequence Fy — f1,...,FEq — B4 and I4 the affine
toric ideal generated by O, , (Au = Av) in C[d1, ..., 0n].

Lemma 1 If the first homology of the Euler-Koszul complex vanishes;
Hy(Ko(E - 3;D/D14)) =0,

then the syzygy module syz(Ey — By, ..., Eq — Ba) C (D/DIA)? is generated by
(Ei = Bi)ej — (Ej — Bjles (1 <i<j<d).

11



Proof. The Euler-Koszul complex of D/DI4 is the following complex
0 — D/DI4 24 ... % (D/D1,)) 25 (D/DI) % D/DIy — 0
and the differential is defined by

P

dp(eil ..... ’ip) = Z(_l)k_l(E'Lk - /Bik)eil),,,7{;c),,,7ep'

k=1

Bi,..., E;“—pﬁd) and the image of dy is generated by (E; — 8;)e; — (E; — Bj)e;
(1 <i<j<d)over (D/DI4)% Since the first homology is zero, the conclusion
is obtained. ]

Theorem 5 ([12]) If the first homology H1(Ke(E — 8; D/DI1,4)) vanishes and

the g; are holonomic functions satisfying the following relations

(Ei — Bi) @ g; = (Ej — B;) ® gi, (i, =1,...,d) (7)
Oyuv®gi =0, (i=1,...,d, Au = Av,u,v € N{) (8)

then the incomplete hypergeometric system has a (classical) solution.

Proof. By virtue of [3, Theorem 4.1], Exth(D/DH4(B),0) vanishes at
generic points in C™. Therefore, it is sufficient to prove that £1g1+- - -+£494 = 0
for all (41,..., 04,0411, ,Latrm) € syz(E — 5,0), where O is a finite sequence
Ouyvrs - - - s Duyy 0, which are generators of 14. Since for (€1, ..., 4q, bar1, -+ s Latm) €

syz(E — 8,0), the relation E?:l Ci(E; — Bi) + >t LariOu, v, = 0 holds, we
have (¢1,...,4q) € syz(E — 8) over (D/DI4)%. By Lemmal[ll
ligr+ -4 Laga = (l1,...,4a) - g

= Z cii{(Ei — Bi)ej — (Ej — Bj)ei} - g, cij € C
1<i<j<d
> cpl(Bi—Bg; — (B; — B)gi}
1<i<j<d
=0.

Remark 3 Matusevich, Miller and Walther (4, Theorem 6.3]) showed that if
the toric ideal I4 is Cohen-Macaulay, the i-th homology of the Euler-Koszul
complex vanishes for all positive integers .

The following facts are known about Cohen-Macaulay property of toric ideals.

1. If the initial monomial ideal of I is square-free, then A is normal (see,
e.g., [10, Proposition 13.15]).

2. If the matrix A is normal, then I, is Cohen-Macaulay ([2]).

This is an easy tool for showing Cohen-Macaulayness of toric ideals. When A
is A1 X A,,_1, we can easily verify the condition 1.

12
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