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Abstract

The A-hypergeometric system was introduced by Gel’fand, Kapranov
and Zelevinsky in the 1980’s. Among several classes of A-hypergeometric
functions, those for 1-simplex × (n − 1)-simplex are known to be a very
nice class. We will study an incomplete analog of this class.

1 Introduction

The A-hypergeometric systems was introduced by Gel’fand, Kapranov and
Zelevinsky in the 1980’s ([1]). It is a system of homogeneous differential equa-
tions with parameters associated to an integer matrix A and contains a broad
class of hypergeometric functions as solutions. Recently, the incomplete A-
hypergeometric system was proposed toward applications to statistics and a

detailed study was given in the case of A =





1 1 0 0
0 0 1 1
0 1 0 1



 = 1-simplex ×

1-simplex ([6]). The system includes the incomplete Gauss’ hypergeometric in-

tegral I(a,b)(α, β, γ;x) =

∫ b

a

tβ−1(1 − t)γ−β−1(1 − xt)αdt and the incomplete

elliptic integral of the first kind F (z; k) =

∫ z

0

1
√

(1− t2)(1 − k2t2)
dt as solu-

tion. It is interesting to describe properties of these functions in a general
framework. Among several classes of (complete) A-hypergeometric functions,
those for ∆1 ×∆n−1 (1-simplex × (n− 1)-simplex) are known to be a very nice
class (see, e.g., [9, Section 1.5]).

In this paper, we study an incomplete analog of this class. In the section
2, we give a definition of an incomplete ∆1 ×∆n−1-hypergeometric system and
prove that the existence of a solution of the system. In the section 3, we give
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a particular solution of the system and describe general solutions by combining
with a base of the solutions of (homogeneous) A-hypergeometric system. In the
last section 4, we give the complete list of contiguity relations for the incomplete
∆1 ×∆n−1-hypergeometric function.

2 Incomplete ∆1 ×∆n−1-hypergeometric system

Wewill work over theWeyl algebra in 2n variablesD = C

〈

x11, · · · , x1n, ∂11, · · · , ∂1n
x21, · · · , x2n, ∂21, · · · , ∂2n

〉

.

Definition 1 We call the following system of differential equations the incom-
plete ∆1 ×∆n−1-hypergeometric system:



















(θi1 + θi2 − αi) • f = 0, (1 ≤ i ≤ n)
(

n
∑

i=1

θ2i + γ + 1

)

• f = [g(t, x)]t=b
t=a,

(∂1i∂2j − ∂1j∂2i) • f = 0, (1 ≤ i < j ≤ n)

(1)

where g(t, x) = tγ+1
∏n

k=1(x1k + x2kt)
αk and αi, γ ∈ C are parameters. The

operator θij = xij∂ij is called the Euler operator.

If g(t, x) = 0 in (1), the system agrees with the A-hypergeometric or GKZ
hypergeometric system associated to ∆1 ×∆n−1.

Remark 1 The incomplete ∆1 × ∆n−1-hypergeometric system introduced in
Definition 1 is a special but interesting case of the incomplete A-hypergeometric
system (see appendix, [6]). Let A be the following (n+ 1)× 2n matrix:

A =















1 1 01 1
. . .

0 1 1
0 1 0 1 · · · 0 1















.

We set β = (α1, . . . , αn,−γ − 1) ∈ Cn+1 and g = (0, . . . , 0, [g(t, x)]t=b
t=a). Then

the incomplete A-hypergeometric system associated to A, β, g is the incomplete
∆1 ×∆n−1-hypergeometric system.

We note that the ideal 〈∂1i∂2j − ∂1j∂2i | 1 ≤ i < j ≤ n〉 generated by the
third operators of (1) is called the affine toric ideal associated to the matrix A
and it is denoted by IA. Moreover, IA is Cohen-Macaulay because A is normal
([2]).

We note that the inhomogeneous system (1) does not necessarily have a
solution f , when the inhomogeneous part [g(t, x)]t=b

t=a is randomly given.

Proposition 1 For any αi, γ ∈ C, there exists a classical solution of the in-
complete ∆1 ×∆n−1-hypergeometric system.
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Proof. We may verify conditions (7) and (8) in Theorem 5 in the appendix with
respect to g = (0, . . . , 0, [g(t, x)]t=b

t=a). For 1 ≤ i ≤ n, we have

(θ1i + θ2i − αi) • t
γ+1

n
∏

k=1

(x1k + x2kt)
αk

= αix1it
γ+1(x1i + x2it)

αi−1
n
∏

k 6=i

(x1k + x2kt)
αk

+ αix2it
γ+2(x1i + x2it)

αi−1
n
∏

k 6=i

(x1k + x2kt)
αk − αit

γ+1
n
∏

k=1

(x1k + x2kt)
αk

= {x1i + x2it− (x1i + x2it)}αit
γ+1(x1i + x2kt)

αi−1
n
∏

k 6=i

(x1k + x2kt)
αk

= 0.

Thus the condition (7) holds.
For 1 ≤ i < j ≤ n, we have

∂1i∂2j • g(t, x) = ∂1i • αjt
γ+2(x1j + x2jt)

αj−1
n
∏

k 6=j

(x1k + x2kt)
αk

= αiαjt
γ+2(x1i + x2it)

αi−1(x1j + x2jt)
αj−1

n
∏

k 6=i,j

(x1k + x2kt)
αk .

Since this expression is symmetric in the indices i and j, we have (∂1i∂2j −
∂1j∂2i) • g(t, x) = 0. Thus the condition (8) holds.

Our definition of the incomplete ∆1×∆n−1 hypergeometric system is natural
in terms of a definite integral with parameters.

Proposition 2 If Re γ, Reαi > 0, then the integral

Φ(β;x) =

∫ b

a

tγ
n
∏

k=1

(x1k + x2kt)
αkdt (2)

is a solution of the incomplete ∆1×∆n−1 hypergeometric system (Definition 1).

Proof. From the general theory of A-hypergeometric systems, Φ(β;x) is
annihilated by the elements of IA and θi1 + θi2 − αi for 1 ≤ i ≤ n (see, e.g., [9,
Section 5.4]). We will prove that

(

n
∑

i=1

θ2i + γ + 1

)

• Φ(β;x) = [g(t, x)]t=b
t=a.

3



Applying
∑n

i=1 θ2i to the integrand, we get

(

n
∑

i=1

θ2i

)

• tγ
n
∏

k=1

(x1k + x2kt)
αk =

n
∑

i=1

αix2i(x1i + x2it)
αi−1tγ+1

n
∏

k 6=i

(x1k + x2kt)
αk

=
n
∑

i=1

tγ+1 ∂(x1i + x2it)
αi

∂t

n
∏

k 6=i

(x1k + x2kt)
αk

= tγ+1 ∂ (
∏n

k=1(x1k + x2kt)
αk)

∂t
.

By Stokes’ theorem, we obtain

(

n
∑

i=1

θ2i

)

• Φ(β;x) =

∫ b

a

(

n
∑

i=1

θ2i

)

• tγ
n
∏

k=1

(x1k + x2kt)
αkdt

=

∫ b

a

tγ+1∂ (
∏n

k=1(x1k + x2kt)
αk)

∂t
dt

=

[

tγ+1
n
∏

k=1

(x1k + x2kt)
αk

]t=b

t=a

− (γ + 1)Φ(β;x).

Thus the proposition is proved.

Example 1 We consider the following system of differential equations:















(∂11∂22 − ∂12∂21) • f = 0,
(θ11 + θ21 − α1) • f = 0,
(θ12 + θ22 − α2) • f = 0,
(θ21 + θ22 + γ + 1) • f = [g(t, x)]t=b

t=a.

Here, g(t, x) = tγ+1(x11 + x21t)
α1(x12 + x22t)

α2 .

This is the incomplete ∆1×∆1 hypergeometric system forA =





1 1 0 0
0 0 1 1
0 1 0 1



,

β = (α1, α2,−γ − 1), and g1 = 0, g2 = 0, g3 = [g(t, x)]t=b
t=a.

A detailed study on the system is given in [6].

3 Series Solution

The Lauricella function FD is defined by

FD(a, b1, . . . , bn, c; z1, . . . , zn)

=
∞
∑

m1,...,mn=0

(a)m1+···+mn
(b1)m1 · · · (bn)mn

(c)m1+···+mn
(1)m1 · · · (1)mn

zm1
1 · · · zmn

n .

4



It is well-known that the Lauricella function FD of n− 1 variables gives a series
solution of ∆1 ×∆n−1-hypergeometric system. We can give series solutions of
our incomplete system in terms of the Lauricella series when parameters are
generic. We need FD of n variables to give a solution.

Theorem 1 If γ is not negative integer, the incomplete ∆1×∆n−1-hypergeometric
system has a series solution which can be expressed in terms of the Lauricella
function FD as

F (β;x) =
n
∏

k=1

xαk

1k

(

bγ+1

γ + 1
FD

(

γ + 1;−α1, . . . ,−αn; γ + 2;
−x21b

x11
, . . . ,

−x2nb

x1n

)

−
aγ+1

γ + 1
FD

(

γ + 1;−α1, . . . ,−αn; γ + 2;
−x21a

x11
, . . . ,

−x2na

x1n

))

.

Proof. For simplicity, we introduce some multi-index notations. An n-
dimensional multi-index is an n-tuple m = (m1, . . . ,mn) of non-negative in-
tegers. The norm of a multi-index is defined by |m| = m1 + · · · + mn. For
a vector xi = (xi1, . . . , xin) (i = 1, 2), define xm

i = xm1

i1 · · ·xmn

in and for a
vector α = (α1, . . . , αn) ∈ Cn, define the Pochhammer symbol by (α)m =
(α1)m1 · · · (αn)mn

. By using these notations, the series F can be written as

F = xα
1

∑

m≥0

cm

(

x2

x1

)m

, cm =
(−1)|m|(−α)m

(γ + |m|+ 1)(1)m
(bγ+|m|+1 − aγ+|m|+1).

We note that

θ1k • F = (αk −mk)F,

θ2k • F = mkF.

We now prove that the series F satisfies the incomplete system (1). Firstly,
(θ1i + θ2i − αi) • F = 0 for 1 ≤ i ≤ n follows from above fact immediately.
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Secondly, we will prove

(

n
∑

i=1

θ2i + γ + 1

)

• F = [g(t, x)]t=b
t=a, which can be

shown as
(

n
∑

i=1

θ2i + γ + 1

)

• F = (|m|+ γ + 1)F

= xα
1

∑

m≥0

(−1)|m|(−α)m
(1)m

(bγ+|m|+1 − aγ+|m|+1)

(

x2

x1

)m

=



tγ+1xα
1

∑

m≥0

(−α)m
(1)m

(

−
x2t

x1

)m




t=b

t=a

=

[

tγ+1xα
1

n
∏

k=1

(

1 +
x2kt

x1k

)αk

]t=b

t=a

=

[

tγ+1
n
∏

k=1

(x1k + x2kt)
αk

]t=b

t=a

.

In the last two steps, we take a branch such that the equality holds.
Finally, we will prove (∂1i∂2j − ∂1j∂2i) • F = 0 for 1 ≤ i < j ≤ n. This

follows from the following two calculations:
(

θ1iθ2j −
x2jx1i

x1jx2i
θ1jθ2i

)

• F = xα
1

∑

m≥0

(αi −mi)mjcm

(

x2

x1

)m

− xα
1

∑

m≥0

(αj −mj)micm

(

x2

x1

)m−ei+ej

= xα
1

∑

m≥0

(αi −mi)(mj + 1)cm+ej

(

x2

x1

)m+ej

− xα
1

∑

m≥0

(αj −mj)(mi + 1)cm+ei

(

x2

x1

)m+ej

and

(αi −mi)(mj + 1)cm+ej = (αi −mi)(mj + 1)
(−1)|m+ej |(−α)m+ej

(γ + |m+ ej |+ 1)(1)m+ej

(bγ+|m+ej|+1 − aγ+|m+ej|+1)

=
(−1)|m|+1(−α)m+ej+ei

(γ + |m|+ 2)(1)m
(bγ+|m|+2 − aγ+|m|+2)

= (αj −mj)(mi + 1)
(−1)|m+ei|(−α)m+ei

(γ + |m+ ei|+ 1)(1)m+ei

(bγ+|m+ei|+1 − aγ+|mi|+1)

= (αj −mj)(mi + 1)cm+ei .

Therefore, the theorem is proved.

6



Gel’fand, Kapranov and Zelevinsky ([1]) gave a base of the solutions of the
(complete) A-hypergeometric system. We will give a base of solutions of our
incomplete system by utilizing their result and Theorem 1.

For a parameter β = (α1, . . . , αn,−γ − 1) ∈ Cn+1, we set a 2× n matrix

s(ℓ) = (s
(ℓ)
ij ) =

(

β1 · · · βℓ−1

∑n+1
j=ℓ βj 0 · · · 0

0 · · · 0 −
∑n+1

j=ℓ+1 βj βℓ+1 · · · βn

)

for 1 ≤ ℓ ≤ n. Let M (ℓ) be a set of 2× n matrices

M (ℓ) =

ℓ−1
∑

k=1

N0 · (e2k + e1ℓ − e1k − e2ℓ) +

n
∑

k=ℓ+1

N0 · (e1k + e2ℓ − e2k − e1ℓ),

where eij is the 2× n matrix whose (i, j)-entry is 1 and the other entries are 0.
We suppose that the condition of parameter β called “T -nonresonant”, that is
the sets s(ℓ) ±M (ℓ) (1 ≤ ℓ ≤ n) are pairwise disjoint ([1, Definition 3]). Define
series Ψ(ℓ)(x) as

Ψ(ℓ)(x) = Γ(s(ℓ) + 1)
∑

k∈M(ℓ)

1

Γ(s(ℓ) + k + 1)
xs(ℓ)+k,

where Γ(s(ℓ)+k+1) =
∏2

i=1

∏n
j=1 Γ(s

(ℓ)
ij +kij+1) and xs(ℓ)+k =

∏2
i=1

∏n
j=1 x

s
(ℓ)
ij

+kij

ij .
These series are linearly independent and have the open domain

∣

∣

∣

∣

x21

x11

∣

∣

∣

∣

<

∣

∣

∣

∣

x22

x12

∣

∣

∣

∣

< · · · <

∣

∣

∣

∣

x2n

x1n

∣

∣

∣

∣

as a common domain of convergence. Moreover they span the solution space of
(complete) ∆1 ×∆n−1-hypergeometric system ([1, Theorem 3]).

By using this result, we obtain the following theorem.

Theorem 2 Suppose the parameter β is T -nonresonant and γ is not negative
integer.

1. The common domain of convergence of F (β;x) and Ψ(ℓ)(x) is

U :

∣

∣

∣

∣

x21

x11

∣

∣

∣

∣

<

∣

∣

∣

∣

x22

x12

∣

∣

∣

∣

< · · · <

∣

∣

∣

∣

x2n

x1n

∣

∣

∣

∣

<
1

max(|a|, |b|)
.

2. Any holomorphic solution of the incomplete system (1) on U can be written
as

F (β;x) +

n
∑

ℓ=1

ciΨ
(ℓ)(x), ci ∈ C.

Proof. Since the domain of convergence of the series F is

U0 :

∣

∣

∣

∣

x21

x11

∣

∣

∣

∣

<
1

max(|a|, |b|)
,

∣

∣

∣

∣

x22

x12

∣

∣

∣

∣

<
1

max(|a|, |b|)
, · · · ,

∣

∣

∣

∣

x2n

x1n

∣

∣

∣

∣

<
1

max(|a|, |b|)
,

we have the statement 1. The statement 2 is clear.
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Theorem 3 For σ ∈ Sn, we suppose the parameter σ(β) is T -nonresonant and
γ is not negative integer.

1. The domain of convergence of the series F (β;x) and σ(Ψ(ℓ)(x)) is

σ(U) :

∣

∣

∣

∣

x2σ(1)

x1σ(1)

∣

∣

∣

∣

<

∣

∣

∣

∣

x2σ(2)

x1σ(2)

∣

∣

∣

∣

< · · · <

∣

∣

∣

∣

x2σ(n)

x1σ(n)

∣

∣

∣

∣

<
1

max(|a|, |b|)
.

2. Any holomorphic solution of the incomplete system (1) on σ(U) can be
written as

F (β;x) +

n
∑

ℓ=1

ciσ(Ψ
(ℓ)(x)), ci ∈ C.

Here, σ(Ψ(ℓ)(x)) is given by the permutations xij ↔ xiσ(j), s
(ℓ)
ij ↔ s

(ℓ)
iσ(j) and

βj ↔ βσ(j).

Proof. The theorem follows immediately from the σ-invariance of F .

Remark 2 The closure of the union of σ(U) coincides with the closure of U0.
That is

U0 =
⋃

σ∈Sn

σ(U).

4 Contiguity Relation

Contiguity relation is a relation among two functions of which parameters are
different by integer. Miller ([5]) gave contiguity relations for Lauricella functions
and Sasaki ([11]) gave contiguity relations for Aomoto-Gel’fand hypergeometric
functions, which include the case of complete ∆1 ×∆n−1-hypergeometric func-
tions. In [8] and [9], they give algorithms to compute contiguity relations in the
case of A-hypergeometric functions. These results are for complete functions.
In [6], an algorithm of computing contiguity relations under some conditions is
given for incomplete A-hypergeometric functions and the complete list of them
for the incomplete ∆1 ×∆1-hypergeometric function is derived.

We will give contiguity relations of our incomplete system in this section.
We put δ = −γ − 1 (i.e., β = (α1, . . . , αn, δ)) to make formulas of contiguity
relations of the incomplete ∆1 ×∆n−1-hypergeometric function simpler forms.
We put

Φ(β;x) =

∫ b

a

t−δ−1
n
∏

k=1

(x1k + x2kt)
αkdt,

and assume Re (−δ− 1), Reαk > 0. Then, we note that Φ(β;x) is a solution of
the following incomplete ∆1 ×∆n−1-hypergeometric system:







zi • f = 0, zi := θ1i + θ2i − αi, (1 ≤ i ≤ n)
z • f = [g(t, x)]t=b

t=a, z :=
∑n

i=1 θ2i − δ,
IA • f = 0,

8



where g(t, x) = t−δ
∏n

k=1(x1k +x2kt)
αk . Let a1k and a2k be vectors correspond-

ing to the (2k − 1)-st and the 2k-th columns of A respectively.

Theorem 4 The incomplete ∆1×∆n−1-hypergeometric function Φ(β;x) satis-
fies the following contiguity relations.

• Shifts with respect to a1k:

S(β;−a1k)Φ(β;x) = αkΦ(β − a1k;x), (3)

S(β − a1k; +a1k)Φ(β − a1k;x) =

(

n
∑

i=1

αi − δ

)

Φ(β;x) − [g(t, x)]t=b
t=a,

(4)

where

S(β;−a1k) = ∂1k,

S(β − a1k; +a1k) =
n
∑

i=1,i6=k

(x1ix2k − x1kx2i)∂2i +
n+1
∑

i=1

αix1k.

• Shifts with respect to a2k:

S(β;−a2k)Φ(β;x) = αkΦ(β − a2k;x), (5)

S(β − a2k; +a2k)Φ(β − a2k;x) = δΦ(β;x) + [g(t, x)]t=b
t=a, (6)

where

S(β;−a2k) = ∂2k,

S(β − a2k; +a2k) =

n
∑

i=1,i6=k

x1kx2i∂1i +





n
∑

i=1,i6=k

θ2i + αk



x2k.

Proof. The down-step relations (3) and (5) are easily verified. We will prove
only the up-step relations (4) and (6).

Let L1 be the operator





n
∑

i=1,i6=k

(x1ix2k − x1kx2i)∂2i +
n
∑

i=1

αix1k



 ∂1k−αk

(

n
∑

i=1

αi − δ

)

+αk

(

n
∑

i=1

θ2i − δ

)

.

We now prove that L1 • Φ(β;x) = 0 which together with (3) will prove the
contiguity relation (4). The operator L1 can be reduced by zk (1 ≤ k ≤ n) as

9



follows:

L1 =

n
∑

i=1,i6=k

x1ix2k∂2i∂1k −

n
∑

i=1

(θ2i − αi)θ1k + θ2kθ1k − αk

n
∑

i=1

αi + αk

n
∑

i=1

θ2i

=

n
∑

i=1,i6=k

x1ix2k∂2i∂1k −

n
∑

i=1

(θ2i − αi)(θ1k + θ2k − αk)

+

n
∑

i=1

(θ2i − αi)(θ2k − αk) + θ2kθ1k + αk

n
∑

i=1

(θ2i − αi)

=
n
∑

i=1,i6=k

x1ix2k∂2i∂1k −
n
∑

i=1

(θ2i − αi)zk +
n
∑

i=1

θ2k(θ2i − αi) + θ2kθ1k

=

n
∑

i=1,i6=k

x1ix2k∂2i∂1k −

n
∑

i=1

(θ2i − αi)zk +

n
∑

i=1

θ2k(θ1i + θ2i − αi)−

n
∑

i=1

θ2kθ1i + θ2kθ1k

=

n
∑

i=1,i6=k

x1ix2k(∂2i∂1k − ∂2k∂1i)−

n
∑

i=1

(θ2i − αi)zk +

n
∑

i=1

θ2kzi.

Since the ∂2i∂1k − ∂2k∂1i are elements of the toric ideal IA, we obtain L1 •
Φ(β;x) = 0.

Let L2 be the operator




n
∑

i=1,i6=k

x1kx2i∂1i +





n
∑

i=1,i6=k

θ2i + αk



 x2k



 ∂2k − αkδ + αk

(

n
∑

i=1

θ2i − δ

)

.

Since L2 can be written as

L2 =

n
∑

i=1,i6=k

x1kx2i(∂1i∂2k − ∂2i∂1k) +

n
∑

i=1

θ2izk,

we obtain L2 • Φ(β;x) = 0 in an analogous calculation with the case of L1.

Theorem 4 gives contiguity relations for ek = a1k = (0, . . . , 0,
k

1̌, 0, . . . , 0)
(1 ≤ k ≤ n), but it does not give those for en+1 = (0, . . . , 0, 1). The set of
vectors {e1, . . . , en+1} is the standard basis of Zn+1. The contiguity relations
for en+1 can be obtained from Theorem 4 as follows.

Corollary 1 The incomplete ∆1 ×∆n−1-hypergeometric function Φ(β;x) sat-
isfies the following contiguity relations.

• Shifts with respect to en+1:

S(β + en+2;−en+2)Φ(β + en+2;x) = αk

(

n
∑

i=1

αi − δ

)

Φ(β;x) − αk[g(t, x)]
t=b
t=a,

S(β − en+2; +en+2)Φ(β − en+2;x) = αkδΦ(β;x) + αk[g(t, x)]
t=b
t=a,
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where

S(β + en+2;−en+2) = S(β − a1k; +a1k)∂2k,

S(β − en+2; +en+2) = S(β − a2k; +a2k)∂1k for 1 ≤ k ≤ n+ 1.

Although we prove these contiguity relations for the integral representation
of the incomplete ∆1×∆n−1 function, they hold for functions which satisfy the
system and the two conditions (3) and (5). By an easy calculation to check these
conditions for the series solution F (β;x), we obtain the following corollary.

Corollary 2 The series solution F (β;x) satisfies the same contiguity relations.

We note that Φ(β;x) can be formally expanded in F (β;x).

5 Appendix: A solvability of incomplete A-hypergeometric

systems

Let D be the Weyl algebra in n variables. We denote by A = (aij) a d×n-matrix
whose elements are integers. We suppose that the set of the column vectors of
A spans Zd.

Definition 2 ([6]) We call the following system of differential equationsHA(β, g)
an incomplete A-hypergeometric system:

(Ei − βi) • f = gi, Ei − βi =

n
∑

j=1

aijxj∂j − βi, (i = 1, . . . , d)

�u,v • f = 0, �u,v =

n
∏

i=1

∂ui

i −

n
∏

j=1

∂
vj
j

with u, v ∈ Nn
0 running over all u, v such that Au = Av.

Here, N0 = {0, 1, 2, . . .}, and β = (β1, . . . , βd) ∈ Cd are parameters and g =
(g1, . . . , gd) where gi are given holonomic functions.

We denote by E − β the sequence E1 − β1, . . . , Ed − βd and IA the affine
toric ideal generated by �u,v (Au = Av) in C[∂1, . . . , ∂n].

Lemma 1 If the first homology of the Euler-Koszul complex vanishes;

H1(K•(E − β;D/DIA)) = 0,

then the syzygy module syz(E1 − β1, . . . , Ed − βd) ⊂ (D/DIA)
d is generated by

(Ei − βi)ej − (Ej − βj)ei (1 ≤ i < j ≤ d).
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Proof. The Euler-Koszul complex of D/DIA is the following complex

0 −→ D/DIA
dd−→ · · ·

d3−→ (D/DIA)
(d2) d2−→ (D/DIA)

d d1−→ D/DIA −→ 0

and the differential is defined by

dp(ei1,...,ip) =

p
∑

k=1

(−1)k−1(Eik − βik)ei1,...,îk,...,ep .

Here, ei1,...,ip are basis vectors of (D/DIA)
(dp). The kernel of d1 is syz(E1 −

β1, . . . , Ed − βd) and the image of d2 is generated by (Ei − βi)ej − (Ej − βj)ei
(1 ≤ i < j ≤ d) over (D/DIA)

d. Since the first homology is zero, the conclusion
is obtained.

Theorem 5 ([12]) If the first homology H1(K•(E − β;D/DIA)) vanishes and
the gi are holonomic functions satisfying the following relations

(Ei − βi) • gj = (Ej − βj) • gi, (i, j = 1, . . . , d) (7)

�u,v • gi = 0, (i = 1, . . . , d, Au = Av, u, v ∈ Nn
0 ) (8)

then the incomplete hypergeometric system has a (classical) solution.

Proof. By virtue of [3, Theorem 4.1], Ext1D(D/DHA(β),O) vanishes at
generic points in Cn. Therefore, it is sufficient to prove that ℓ1g1+· · ·+ℓdgd = 0
for all (ℓ1, . . . , ℓd, ℓd+1, · · · , ℓd+m) ∈ syz(E − β,�), where � is a finite sequence
�u1,v1 , . . . ,�um,vm which are generators of IA. Since for (ℓ1, . . . , ℓd, ℓd+1, · · · , ℓd+m) ∈

syz(E − β,�), the relation
∑d

i=1 ℓi(Ei − βi) +
∑m

i=1 ℓd+i�ui,vi = 0 holds, we
have (ℓ1, . . . , ℓd) ∈ syz(E − β) over (D/DIA)

d. By Lemma 1,

ℓ1g1 + · · ·+ ℓdgd = (ℓ1, . . . , ℓd) · g

=
∑

1≤i<j≤d

cij{(Ei − βi)ej − (Ej − βj)ei} · g, cij ∈ C

=
∑

1≤i<j≤d

cij{(Ei − βi)gj − (Ej − βj)gi}

= 0.

Remark 3 Matusevich, Miller and Walther ([4, Theorem 6.3]) showed that if
the toric ideal IA is Cohen-Macaulay, the i-th homology of the Euler-Koszul
complex vanishes for all positive integers i.

The following facts are known about Cohen-Macaulay property of toric ideals.

1. If the initial monomial ideal of IA is square-free, then A is normal (see,
e.g., [10, Proposition 13.15]).

2. If the matrix A is normal, then IA is Cohen-Macaulay ([2]).

This is an easy tool for showing Cohen-Macaulayness of toric ideals. When A
is ∆1 ×∆n−1, we can easily verify the condition 1.
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