The paper will appear in Proc. Amer. Math. Soc..

CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS

ZHI-Hong Sun
School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223001, PR China
E-mail: szh6174@yahoo.com
Homepage: http://www.hytc.edu.cn/xsjl/szh

Abstract

Let p be an odd prime. In the paper, by using the properties of Legendre polynomials we prove some congruences for $\sum_{k=0}^{\frac{p-1}{2}}\binom{2 k}{k}{ }^{2} m^{-k}\left(\bmod p^{2}\right)$. In particular, we confirm several conjectures of Z.W. Sun. We also pose 13 conjectures on supercongruences.

MSC: Primary 11A07, Secondary 33C45, 11E25
Keywords: Legendre polynomial; Congruence

1. Introduction.

Let p be an odd prime. In 2003, Rodriguez-Villegas [11] conjectured the following congruence:

$$
\begin{equation*}
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}^{2}}{16^{k}} \equiv(-1)^{\frac{p-1}{2}}\left(\bmod p^{2}\right) \tag{1.1}
\end{equation*}
$$

This was later confirmed by Mortenson [7] via the Gross-Koblitz formula. See also [9] and [10, p.204]. Recently my twin brother Zhi-Wei Sun [13] obtained the congruences for $\sum_{k=0}^{p-1}\binom{2 k}{k}^{2} m^{-k}(\bmod p)$ in the cases $m=8,-16,32$, and made several conjectures for $\sum_{k=0}^{p-1}\binom{2 k}{k}^{2} m^{-k}\left(\bmod p^{2}\right)$. For example, he conjectured

$$
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}^{2}}{32^{k}} \equiv \begin{cases}0\left(\bmod p^{2}\right) & \text { if } 4 \mid p-3 \tag{1.2}\\ 2 a-\frac{p}{2 a}\left(\bmod p^{2}\right) & \text { if } 4 \mid p-1 \text { and } p=a^{2}+b^{2} \text { with } 4 \mid a-1\end{cases}
$$

Let $\left\{P_{n}(x)\right\}$ be the Legendre polynomials given by

$$
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} \quad(|t|<1) .
$$

It is well known that (see [6, pp. 228-232], [4, (3.132)-(3.133)])

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{[n / 2]} \frac{(-1)^{k}(2 n-2 k)!}{k!(n-k)!(n-2 k)!} x^{n-2 k}=\frac{1}{2^{n} \cdot n!} \cdot \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \tag{1.3}
\end{equation*}
$$

[^0]and $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$, where $[x]$ is the greatest integer not exceeding x.

In the paper, by using the expansions of Legendre polynomials we obtain some congruences for $P_{\frac{p-1}{2}}(x)$ modulo p^{2}, where p is an odd prime and x is a rational p-integer. For example, we have

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(x^{k}-(-1)^{\frac{p-1}{2}}(1-x)^{k}\right) \equiv 0\left(\bmod p^{2}\right) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(x^{k}-\left(\frac{x}{p}\right) x^{-k}\right) \equiv 0(\bmod p) \quad \text { for } \quad x \not \equiv 0(\bmod p) \tag{1.5}
\end{equation*}
$$

where $\left(\frac{x}{p}\right)$ is the Legendre symbol. Taking $x=1$ in (1.4) we obtain (1.1) immediately, and taking $x=\frac{1}{2}$ in (1.4) we deduce (1.2) for $p \equiv 3(\bmod 4)$. We also determine $\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{32^{k}} k(k-1) \cdots(k-r+1)\left(\bmod p^{2}\right)$ for $r \in\left\{1,2, \ldots, \frac{p-1}{2}\right\}, \sum_{k=0}^{[p / 3]} \frac{(3 k)!}{54^{k} \cdot k!^{3}}(\bmod p)$ and pose some conjectures on supercongruences concerning binary quadratic forms.

Throughout this paper we use \mathbb{Z}, \mathbb{N} and \mathbb{Z}_{p} to denote the sets of integers, positive integers and rational p-integers for a prime p, respectively.

2. Main results.

Lemma 2.1. For $n \in \mathbb{N}$ we have

$$
P_{n}(x)=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k}\left(\frac{x-1}{2}\right)^{k} .
$$

Proof. From $[4,(3.135)]$ we have the following result due to Murphy:

$$
\begin{equation*}
P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}\left(\frac{x-1}{2}\right)^{k} \tag{2.1}
\end{equation*}
$$

As $\binom{n+k}{2 k}\binom{2 k}{k}=\binom{n+k}{k}\binom{n}{k}$, we obtain the result.
Lemma 2.2. Let p be an odd prime and $k \in\{1,2, \ldots,(p-1) / 2\}$. Then

$$
\binom{\frac{p-1}{2}+k}{2 k} \equiv \frac{\binom{2 k}{k}}{(-16)^{k}}\left(1-p^{2} \sum_{i=1}^{k} \frac{1}{(2 i-1)^{2}}\right)\left(\bmod p^{4}\right)
$$

Proof. Clearly

$$
\begin{aligned}
\binom{\frac{p-1}{2}+k}{2 k} & =\frac{\left(\frac{p-1}{2}+k\right)\left(\frac{p-1}{2}+k-1\right) \cdots\left(\frac{p-1}{2}-k+1\right)}{(2 k)!} \\
& =\frac{(p+2 k-1)(p+2 k-3) \cdots(p-(2 k-3))(p-(2 k-1))}{2^{2 k} \cdot(2 k)!} \\
& =\frac{\left(p^{2}-1^{2}\right)\left(p^{2}-3^{2}\right) \cdots\left(p^{2}-(2 k-1)^{2}\right)}{2^{2 k} \cdot(2 k)!} \\
& \equiv \frac{(-1)^{k} \cdot 1^{2} \cdot 3^{2} \cdots(2 k-1)^{2}}{2^{2 k} \cdot(2 k)!}\left(1-p^{2} \sum_{i=1}^{k} \frac{1}{(2 i-1)^{2}}\right)\left(\bmod p^{4}\right)
\end{aligned}
$$

To see the result, we note that

$$
\frac{1^{2} \cdot 3^{2} \cdots(2 k-1)^{2}}{2^{2 k} \cdot(2 k)!}=\frac{(2 k)!^{2}}{(2 \cdot 4 \cdots(2 k))^{2} \cdot 2^{2 k} \cdot(2 k)!}=\frac{(2 k)!}{2^{4 k} \cdot k!^{2}}=\frac{\binom{2 k}{k}}{16^{k}}
$$

Let p be an odd prime, and let $\{A(n)\}$ be the Apéry numbers given by

$$
A(n)=\sum_{k=0}^{n}\binom{n+k}{k}^{2}\binom{n}{k}^{2} .
$$

It is well known that $($ see $[1],[10]) A\left(\frac{p-1}{2}\right) \equiv a(p)\left(\bmod p^{2}\right)$, where $a(n)$ is defined by

$$
q \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{4}\left(1-q^{4 n}\right)^{4}=\sum_{n=1}^{\infty} a(n) q^{n}
$$

By the fact $\binom{n+k}{k}\binom{n}{k}=\binom{n+k}{2 k}\binom{2 k}{k}$ and Lemma 2.2 we have

$$
A\left(\frac{p-1}{2}\right)=\sum_{k=0}^{\frac{p-1}{2}}\binom{\frac{p-1}{2}+k}{2 k}^{2}\binom{2 k}{k}^{2} \equiv \sum_{k=0}^{\frac{p-1}{2}}\left(\frac{\binom{2 k}{k}}{(-16)^{k}}\right)^{2}\binom{2 k}{k}^{2}\left(\bmod p^{2}\right)
$$

Hence

$$
\begin{equation*}
a(p) \equiv A\left(\frac{p-1}{2}\right) \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{4}}{4^{4 k}}\left(\bmod p^{2}\right) \tag{2.2}
\end{equation*}
$$

Let $b(n)$ be given by $q \prod_{n=1}^{\infty}\left(1-q^{4 n}\right)^{6}=\sum_{n=1}^{\infty} b(n) q^{n}$. Then Mortenson [8] proved the following conjecture of Rodriguez-Villegas:

$$
\begin{equation*}
\sum_{k=1}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{3}}{4^{3 k}} \equiv b(p)\left(\bmod p^{2}\right) \tag{2.3}
\end{equation*}
$$

Theorem 2.1. Let p be an odd prime and let x be a variable. Then

$$
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(x^{k}-(-1)^{\frac{p-1}{2}}(1-x)^{k}\right) \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(x^{k}-(-1)^{\frac{p-1}{2}}(1-x)^{k}\right) \equiv 0\left(\bmod p^{2}\right) .
$$

Proof. For a variable t, by Lemmas 2.1 and 2.2 we have

$$
\begin{equation*}
P_{\frac{p-1}{2}}(t)=\sum_{k=0}^{\frac{p-1}{2}}\binom{\frac{p-1}{2}+k}{2 k}\binom{2 k}{k}\left(\frac{t-1}{2}\right)^{k} \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(\frac{1-t}{2}\right)^{k}\left(\bmod p^{2}\right) . \tag{2.4}
\end{equation*}
$$

It is known that $($ see $[6]) P_{n}(t)=(-1)^{n} P_{n}(-t)$. Thus, by (2.4),

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(\frac{1-t}{2}\right)^{k} \equiv(-1)^{\frac{p-1}{2}} \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(\frac{1+t}{2}\right)^{k}\left(\bmod p^{2}\right)
$$

Now taking $t=1-2 x$ in the congruence we deduce $\sum_{k=0}^{\frac{p-1}{2} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(x^{k}-(-1)^{\frac{p-1}{2}}(1-~\right.}$ $\left.x)^{k}\right) \equiv 0\left(\bmod p^{2}\right)$. To complete the proof, we note that for $k \in\left\{\frac{p+1}{2}, \frac{p+3}{2}, \ldots, p-1\right\}$, $\binom{2 k}{k}=2 k(2 k-1) \cdots(k+1) / k!\equiv 0(\bmod p)$.

Theorem 2.2. Let p be an odd prime. Then

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{32^{k}} \equiv \begin{cases}0\left(\bmod p^{2}\right) & \text { if } 4 \mid p-3 \\ 2 a-\frac{p}{2 a}\left(\bmod p^{2}\right) & \text { if } 4 \mid p-1 \text { and } p=a^{2}+b^{2} \text { with } 4 \mid a-1\end{cases}
$$

Proof. When $p \equiv 3(\bmod 4)$, taking $x=\frac{1}{2}$ in Theorem 2.1 we obtain the result. Now suppose $p \equiv 1(\bmod 4)$ and so $p=a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$ and $a \equiv 1(\bmod 4)$. It is well known that ([6])

$$
\begin{equation*}
P_{2 n+1}(0)=0 \quad \text { and } \quad P_{2 n}(0)=\frac{(-1)^{n}}{2^{2 n}}\binom{2 n}{n} . \tag{2.5}
\end{equation*}
$$

Thus, by (2.4) and (2.5) we have

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{32^{k}} \equiv P_{\frac{p-1}{2}}(0)=\frac{(-1)^{\frac{p-1}{4}}}{2^{\frac{p-1}{2}}}\binom{\frac{p-1}{2}}{\frac{p-1}{4}}\left(\bmod p^{2}\right)
$$

According to the result due to Chowla, Dwork and Evans (see [2] or [3]), we have

$$
\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv \frac{2^{p-1}+1}{2}\left(2 a-\frac{p}{2 a}\right)\left(\bmod p^{2}\right)
$$

Set $q=\left(2^{\frac{p-1}{2}}-(-1)^{\frac{p-1}{4}}\right) / p$. Then $2^{p-1} \equiv 1+2(-1)^{\frac{p-1}{4}} q p\left(\bmod p^{2}\right)$. Thus

$$
\frac{2^{p-1}+1}{2 \cdot 2^{\frac{p-1}{2}}} \equiv \frac{2+2(-1)^{\frac{p-1}{4}} q p}{2\left((-1)^{\frac{p-1}{4}}+q p\right)}=(-1)^{\frac{p-1}{4}}\left(\bmod p^{2}\right)
$$

Hence

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{32^{k}} \equiv \frac{(-1)^{\frac{p-1}{4}}}{2^{\frac{p-1}{2}}}\binom{\frac{p-1}{2}}{\frac{p-1}{4}} \equiv \frac{(-1)^{\frac{p-1}{4}}}{2^{\frac{p-1}{2}}} \cdot \frac{2^{p-1}+1}{2}\left(2 a-\frac{p}{2 a}\right) \equiv 2 a-\frac{p}{2 a}\left(\bmod p^{2}\right)
$$

The proof is now complete.
Remark 2.1 Theorem 2.2 was conjectured by Zhi-Wei Sun ([13]), and the congruence for $\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{32^{k}}(\bmod p)$ was also proved by Zhi-Wei Sun in [13].
Theorem 2.3. Let p be an odd prime and $r \in\{1,2, \ldots,(p-1) / 2\}$. Then

$$
\begin{aligned}
& \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{32^{k}} k(k-1) \cdots(k-r+1) \\
& \equiv \begin{cases}0\left(\bmod p^{2}\right) & \text { if } 4 \mid(p+1-2 r), \\
(-1)^{\frac{p-1+2 r}{4}} 2^{-\frac{p-1}{2}} \frac{\left(\frac{p-1}{2}+r\right)!}{\frac{p-1-2 r}{4}!\frac{p-1+2 r}{4}!}\left(\bmod p^{2}\right) & \text { if } 4 \mid(p-1-2 r)\end{cases}
\end{aligned}
$$

Proof. By (2.4) we have

$$
\begin{align*}
\frac{d^{r} P_{\frac{p-1}{2}}(t)}{d t^{r}} & \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{(-32)^{k}} \cdot \frac{d^{r}(t-1)^{k}}{d t^{r}} \tag{2.6}\\
& =\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{(-32)^{k}} k(k-1) \cdots(k-r+1)(t-1)^{k-r}\left(\bmod p^{2}\right)
\end{align*}
$$

Hence

$$
\left.\frac{d^{r} P_{\frac{p-1}{2}}(t)}{d t^{r}}\right|_{t=0}=(-1)^{r} \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{32^{k}} k(k-1) \cdots(k-r+1) .
$$

By (1.3) we have

$$
\begin{aligned}
\frac{d^{r}}{d t^{r}} P_{\frac{p-1}{2}}(t)= & \frac{1}{2^{(p-1) / 2}} \cdot \frac{d^{r}}{d t^{r}} \sum_{m=0}^{\left[\frac{p-1}{4}\right]} \frac{(-1)^{m}(p-1-2 m)!}{m!\left(\frac{p-1}{2}-m\right)!\left(\frac{p-1}{2}-2 m\right)!} t^{\frac{p-1}{2}-2 m} \\
= & \frac{1}{2^{(p-1) / 2}} \sum_{m=0}^{\left[\frac{p-1-2 r}{4}\right]} \frac{(-1)^{m}(p-1-2 m)!}{m!\left(\frac{p-1}{2}-m\right)!\left(\frac{p-1}{2}-2 m\right)!} \\
& \times\left(\frac{p-1}{2}-2 m\right)\left(\frac{p-1}{2}-2 m-1\right) \cdots\left(\frac{p-1}{2}-2 m-r+1\right) t^{\frac{p-1}{2}-2 m-r}
\end{aligned}
$$

Thus,

$$
\left.\frac{d^{r} P_{\frac{p-1}{2}}(t)}{d t^{r}}\right|_{t=0}= \begin{cases}0 & \text { if } r \not \equiv \frac{p-1}{2}(\bmod 2) \\ \frac{(-1)^{m}(p-1-2 m)!}{2^{(p-1) / 2} \cdot m!\left(\frac{p-1}{2}-m\right)!} & \text { if } r=\frac{p-1}{2}-2 m\end{cases}
$$

Now combining all the above we obtain the result.

Corollary 2.1. Let p be an odd prime. Then

$$
\left.\sum_{k=0}^{\frac{p-1}{2}} \frac{k^{2}(2 k}{2}\right)^{2} 3^{k} \equiv \begin{cases}(-1)^{\frac{p+3}{4}} 2^{-\frac{p-1}{2} \frac{\frac{p+3}{2}!}{\frac{p-5}{4}!\frac{p+3}{4}!}\left(\bmod p^{2}\right)} & \text { if } p \equiv 1(\bmod 4) \\ (-1)^{\frac{p+1}{4}} 2^{-\frac{p-1}{2}} \frac{\frac{p+1}{2}!}{\frac{p-3}{4}!\frac{p+1}{4}!}\left(\bmod p^{2}\right) & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

Proof. By Theorem 2.3 we have

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{k\binom{2 k}{k}^{2}}{32^{k}} \equiv \begin{cases}0\left(\bmod p^{2}\right) & \text { if } p \equiv 1(\bmod 4) \\ (-1)^{\frac{p+1}{4}} 2^{-\frac{p-1}{2}} \frac{\frac{p+1}{2}!}{\frac{p-3}{4}!\frac{p+1}{4}!}\left(\bmod p^{2}\right) & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

and

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{k(k-1)\binom{2 k}{k}^{2}}{32^{k}} \equiv \begin{cases}(-1)^{\frac{p+3}{4}} 2^{-\frac{p-1}{2}} \frac{\frac{p+3}{2}!}{\frac{p-5}{4}!\frac{p+3}{4}!}\left(\bmod p^{2}\right) & \text { if } p \equiv 1(\bmod 4) \\ 0\left(\bmod p^{2}\right) & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

Observe that $k^{2}=k(k-1)+k$. From the above we deduce the result.
Lemma 2.3. Let p be a prime greater than 3 and let t be a variable. Then

$$
P_{\left[\frac{p}{3}\right]}(t) \equiv \sum_{k=0}^{[p / 3]} \frac{(3 k)!}{k!^{3}}\left(\frac{1-t}{54}\right)^{k}(\bmod p)
$$

Proof. Suppose $r=1$ or 2 according as $3 \mid p-1$ or $3 \mid p-2$. Then clearly

$$
\begin{aligned}
\binom{\frac{p-r}{3}+k}{2 k} & =\frac{\left(\frac{p-r}{3}+k\right)\left(\frac{p-r}{3}+k-1\right) \cdots\left(\frac{p-r}{3}-k+1\right)}{(2 k)!} \\
& =\frac{(p+3 k-r)(p+3 k-r-3) \cdots(p-(3 k+r-3))}{3^{2 k} \cdot(2 k)!} \\
& \equiv(-1)^{k} \frac{(3 k-r)(3 k-r-3) \cdots(3-r) \cdot r(r+3) \cdots(3 k+r-3)}{3^{2 k} \cdot(2 k)!} \\
& =\frac{(-1)^{k} \cdot(3 k)!}{3 \cdot 6 \cdots 3 k \cdot 3^{2 k} \cdot(2 k)!}=\frac{(-1)^{k} \cdot(3 k)!}{3^{k} \cdot k!\cdot 3^{2 k} \cdot(2 k)!}(\bmod p) .
\end{aligned}
$$

Hence, by Lemma 2.1 we have

$$
\begin{aligned}
P_{\left[\frac{p}{3}\right]}(t) & =\sum_{k=0}^{[p / 3]}\binom{\left[\frac{p}{3}\right]+k}{2 k}\binom{2 k}{k}\left(\frac{t-1}{2}\right)^{k} \equiv \sum_{k=0}^{[p / 3]} \frac{(-1)^{k} \cdot(3 k)!}{3^{3 k} \cdot k!(2 k)!} \cdot \frac{(2 k)!}{k!^{2}}\left(\frac{t-1}{2}\right)^{k} \\
& =\sum_{k=0}^{[p / 3]} \frac{(3 k)!}{27^{k} \cdot k!^{3}}\left(\frac{1-t}{2}\right)^{k}(\bmod p) .
\end{aligned}
$$

This proves the lemma.

Theorem 2.4. Let p be a prime greater than 3 and let x be a variable. Then

$$
\sum_{k=0}^{[p / 3]} \frac{(3 k)!}{27^{k} \cdot k!^{3}}\left(x^{k}-(-1)^{\left[\frac{p}{3}\right]}(1-x)^{k}\right) \equiv 0(\bmod p)
$$

Proof. As $P_{n}(t)=(-1)^{n} P_{n}(-t)$, using Lemma 2.3 we deduce

$$
\sum_{k=0}^{[p / 3]} \frac{(3 k)!}{27^{k} \cdot k!^{3}}\left(\left(\frac{1-t}{2}\right)^{k}-(-1)^{[p / 3]}\left(\frac{1+t}{2}\right)^{k}\right) \equiv 0(\bmod p)
$$

Now putting $t=1-2 x$ in the congruence we obtain the result.
Corollary 2.2. Let p be a prime greater than 3 . Then

$$
\sum_{k=0}^{[p / 3]} \frac{(3 k)!}{27^{k} \cdot k!^{3}} \equiv\left(\frac{p}{3}\right)(\bmod p)
$$

Proof. Taking $x=1$ in Theorem 2.4 and noting that $(-1)^{[p / 3]}=\left(\frac{p}{3}\right)$ we deduce the result.

Remark 2.2 By [8] or [10, p. 204] we have the following stronger supercongruence $\sum_{k=0}^{p-1} \frac{(3 k)!}{27^{k} \cdot k!^{3}} \equiv\left(\frac{p}{3}\right)\left(\bmod p^{2}\right)$.
Lemma 2.4. Let p be an odd prime and $k \in\left\{1,2, \ldots, \frac{p-1}{2}\right\}$. Then

$$
\binom{(p-1) / 2}{k} \equiv \frac{1}{(-4)^{k}}\binom{2 k}{k}\left(1-p \sum_{i=1}^{k} \frac{1}{2 i-1}\right)\left(\bmod p^{2}\right)
$$

Proof. It is clear that

$$
\begin{aligned}
\binom{\frac{p-1}{2}}{k} & =\frac{\frac{p-1}{2}\left(\frac{p-1}{2}-1\right) \cdots\left(\frac{p-1}{2}-k+1\right)}{k!}=\frac{(p-1)(p-3) \cdots(p-(2 k-1))}{2^{k} \cdot k!} \\
& \equiv \frac{(-1)(-3) \cdots(-(2 k-1))}{2^{k} \cdot k!}\left(1-p \sum_{i=1}^{k} \frac{1}{2 i-1}\right) \\
& =\frac{(-1)^{k} \cdot(2 k)!}{\left(2^{k} \cdot k!\right)^{2}}\left(1-p \sum_{i=1}^{k} \frac{1}{2 i-1}\right)\left(\bmod p^{2}\right) .
\end{aligned}
$$

This yields the result.
Theorem 2.5. Let p be a prime greater than 5. Then

$$
\sum_{k=0}^{[p / 3]} \frac{(3 k)!}{54^{k} \cdot k!^{3}} \equiv \begin{cases}0(\bmod p) & \text { if } 6 \mid p-5, \\ 2 A(\bmod p) & \text { if } 6 \mid p-1 \text { and } p=A^{2}+3 B^{2} \text { with } 3 \mid A-1 \\ 7\end{cases}
$$

and

$$
\sum_{k=0}^{[p / 3]} \frac{k \cdot(3 k)!}{54^{k} \cdot k!^{3}} \equiv \begin{cases}0(\bmod p) & \text { if } 6 \mid p-1 \\ \frac{1}{3}(-1)^{\frac{p+1}{6}} 2^{-\frac{p+1}{3}}\binom{(p+1) / 3}{(p+1) / 6}(\bmod p) & \text { if } 6 \mid p-5\end{cases}
$$

Proof. Taking $t=0$ in Lemma 2.3 and applying (2.5) and Lemma 2.4 we deduce that

$$
\sum_{k=0}^{[p / 3]} \frac{(3 k)!}{54^{k} \cdot k!^{3}} \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv 5(\bmod 6) \\ \frac{(-1)^{(p-1) / 6}}{2^{(p-1) / 3}}\binom{(p-1) / 3}{(p-1) / 6} \equiv\binom{(p-1) / 2}{(p-1) / 6}(\bmod p) & \text { if } p \equiv 1(\bmod 6)\end{cases}
$$

Now suppose $p \equiv 1(\bmod 6)$ and so $p=A^{2}+3 B^{2}$ with $A, B \in \mathbb{Z}$ and $A \equiv 1(\bmod 3)$. By [2, Theorem 9.4.4] we have $\binom{(p-1) / 2}{(p-1) / 6} \equiv 2 A(\bmod p)$. Thus the first part follows.

By Lemma 2.3 we have

$$
\frac{d}{d t} P_{\left[\frac{p}{3}\right]}(t) \equiv-\sum_{k=0}^{[p / 3]} \frac{(3 k)!}{54^{k} \cdot k!^{3}} \cdot k(1-t)^{k-1}(\bmod p)
$$

Thus, $\left.\frac{d}{d t} P_{\left[\frac{p}{3}\right]}(t)\right|_{t=0} \equiv-\sum_{k=0}^{[p / 3]} \frac{k \cdot(3 k)!}{54^{k} \cdot k!^{3}}(\bmod p)$. From (1.3) we know that

$$
\left.\frac{d}{d t} P_{\left[\frac{p}{3}\right]}(t)\right|_{t=0}= \begin{cases}0 & \text { if } p \equiv 1(\bmod 6) \\ 2^{-\frac{p-2}{3}} \cdot(-1)^{\frac{p-5}{6}} \frac{\frac{p+1}{3}!}{\frac{p-5}{6}!\frac{p+1}{6}!} & \text { if } p \equiv 5(\bmod 6)\end{cases}
$$

Thus the second part is true.
Lemma 2.5. Let p be an odd prime and $k \in\left\{1,2, \ldots, \frac{p-1}{2}\right\}$. Then

$$
\frac{(-1)^{k}\binom{(p-1) / 2+k}{k}}{\binom{(p-1) / 2}{k}} \equiv 1+2 p \sum_{i=1}^{k} \frac{1}{2 i-1} \equiv 3-2(-4)^{k} \frac{\binom{(p-1) / 2}{k}}{\binom{2 k}{k}}\left(\bmod p^{2}\right) .
$$

Proof. It is clear that

$$
\begin{aligned}
\frac{(-1)^{k}\binom{(p-1) / 2+k}{k}}{\binom{(p-1) / 2}{k}} & =\frac{\left(\frac{p-1}{2}+k\right)\left(\frac{p-1}{2}+k-1\right) \cdots\left(\frac{p-1}{2}+1\right)}{(-1)^{k} \frac{p-1}{2}\left(\frac{p-1}{2}-1\right) \cdots\left(\frac{p-1}{2}-k+1\right)} \\
& =\frac{(p+2 k-1)(p+2 k-3) \cdots(p+1)}{(-1)^{k}(p-1)(p-3) \cdots(p-(2 k-1))} \\
& \equiv \frac{1 \cdot 3 \cdots(2 k-1)\left(1+p \sum_{i=1}^{k} \frac{1}{2 i-1}\right)}{1 \cdot 3 \cdots(2 k-1)\left(1-p \sum_{i=1}^{k} \frac{1}{2 i-1}\right)} \\
& \equiv\left(1+p \sum_{i=1}^{k} \frac{1}{2 i-1}\right)^{2} \equiv 1+2 p \sum_{i=1}^{k} \frac{1}{2 i-1}\left(\bmod p^{2}\right)
\end{aligned}
$$

This together with Lemma 2.4 yields the result.

Theorem 2.6. Let p be an odd prime, $x \in \mathbb{Z}_{p}$ and $x \not \equiv-1(\bmod p)$. Then

$$
P_{\frac{p-1}{2}}(x) \equiv\left(\frac{2(x+1)}{p}\right) P_{\frac{p-1}{2}}\left(\frac{3-x}{1+x}\right)(\bmod p) .
$$

Proof. It is known that (see [4, (3.134)])

$$
P_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2}\left(\frac{x+1}{2}\right)^{n-k}\left(\frac{x-1}{2}\right)^{k} .
$$

Thus, using Lemma 2.5 and (2.1) we see that

$$
\begin{aligned}
P_{\frac{p-1}{2}}(x) & =\left(\frac{x+1}{2}\right)^{\frac{p-1}{2}} \sum_{k=0}^{\frac{p-1}{2}}\binom{\frac{p-1}{2}}{k}^{2}\left(\frac{x-1}{x+1}\right)^{k} \\
& \equiv\left(\frac{2(x+1)}{p}\right) \sum_{k=0}^{\frac{p-1}{2}}\binom{\frac{p-1}{2}}{k}\binom{\frac{p-1}{2}+k}{k}(-1)^{k}\left(\frac{x-1}{x+1}\right)^{k} \\
& =\left(\frac{2(x+1)}{p}\right) P_{\frac{p-1}{2}}\left(1+2 \cdot \frac{1-x}{1+x}\right)=\left(\frac{2(x+1)}{p}\right) P_{\frac{p-1}{2}}\left(\frac{3-x}{1+x}\right)(\bmod p)
\end{aligned}
$$

This proves the theorem.
Corollary 2.3. Let p be a prime of the form $4 k+3$. Then $p \left\lvert\, P_{\frac{p-1}{2}}(3)\right.$.
Proof. By Theorem 2.6 and (2.5) we have $P_{\frac{p-1}{2}}(3) \equiv\left(\frac{2}{p}\right) P_{\frac{p-1}{2}}(0)=0(\bmod p)$.
Theorem 2.7. Let p be an odd prime, $x \in \mathbb{Z}_{p}$ and $x \not \equiv 0(\bmod p)$. Then

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(x^{k}-\left(\frac{x}{p}\right) x^{-k}\right) \equiv 0(\bmod p)
$$

Proof. Clearly the result is true for $x \equiv 1(\bmod p)$. Now assume $x \not \equiv 1(\bmod p)$. As $P_{n}(t)=(-1)^{n} P_{n}(-t)$ (see [6]), using Theorem 2.6 we see that for $t \in \mathbb{Z}_{p}$ with $t \not \equiv \pm 1(\bmod p)$,

$$
\left(\frac{2(t+1)}{p}\right) P_{\frac{p-1}{2}}\left(\frac{3-t}{1+t}\right) \equiv(-1)^{\frac{p-1}{2}}\left(\frac{2(-t+1)}{p}\right) P_{\frac{p-1}{2}}\left(\frac{3+t}{1-t}\right)(\bmod p)
$$

Thus,

$$
P_{\frac{p-1}{2}}\left(\frac{3-t}{1+t}\right) \equiv\left(\frac{t^{2}-1}{p}\right) P_{\frac{p-1}{2}}\left(\frac{3+t}{1-t}\right)(\bmod p) .
$$

Now applying (2.4) we deduce that

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(\frac{1-\frac{3-t}{1+t}}{2}\right)^{k} \equiv\left(\frac{t^{2}-1}{p}\right) \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(\frac{1-\frac{3+t}{1-t}}{2}\right)^{k}(\bmod p)
$$

and so

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{16^{k}}\left(\left(\frac{t-1}{t+1}\right)^{k}-\left(\frac{(t-1) /(t+1)}{p}\right)\left(\frac{t+1}{t-1}\right)^{k}\right) \equiv 0(\bmod p)
$$

Set $t=(1+x) /(1-x)$. Then $t \not \equiv \pm 1(\bmod p)$ and $x=(t-1) /(t+1)$. Hence the result follows.

Let p be an odd prime, and $x \in \mathbb{Z}_{p}$ with $x \not \equiv 0,1(\bmod p)$. By Theorems 2.1 and 2.7 we have

$$
\begin{equation*}
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}^{2}}{(16 x)^{k}} \equiv\left(\frac{x(x-1)}{p}\right) \sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}^{2}}{(16(1-x))^{k}}(\bmod p) \tag{2.7}
\end{equation*}
$$

Theorem 2.8. Let p be an odd prime, $x \in \mathbb{Z}_{p}$ and $x \not \equiv 0(\bmod p)$. Then

$$
\sum_{k=0}^{\frac{p-1}{2}}\binom{2 k}{k}^{2}\left(\frac{x}{4}\right)^{2 k} \equiv\left(\frac{-x}{p}\right) P_{\frac{p-1}{2}}\left(\frac{x+x^{-1}}{2}\right)(\bmod p)
$$

Proof. From $[4,(3.138)]$ we have the following result due to Kelisky:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{2 n-2 k}{n-k}\binom{2 k}{k} x^{2 k}=2^{2 n} x^{n} P_{n}\left(\frac{x+x^{-1}}{2}\right) \tag{2.8}
\end{equation*}
$$

Taking $n=(p-1) / 2$ in (2.8) we have

$$
\sum_{k=0}^{\frac{p-1}{2}}\binom{p-1-2 k}{\frac{p-1}{2}-k}\binom{2 k}{k} x^{2 k}=2^{p-1} x^{\frac{p-1}{2}} P_{\frac{p-1}{2}}\left(\frac{x+x^{-1}}{2}\right) \equiv\left(\frac{x}{p}\right) P_{\frac{p-1}{2}}\left(\frac{x+x^{-1}}{2}\right)(\bmod p)
$$

To see the result, using Lemma 2.2 we note that for $0 \leq k \leq \frac{p-1}{2}$,

$$
\begin{align*}
\binom{p-1-2 k}{\frac{p-1}{2}-k} & =\frac{(p-1-2 k)(p-2-2 k) \cdots\left(p-\left(\frac{p-1}{2}+k\right)\right)}{\left(\frac{p-1}{2}-k\right)!} \tag{2.9}\\
& \equiv(-1)^{\frac{p-1}{2}-k} \frac{(2 k+1)(2 k+2) \cdots\left(\frac{p-1}{2}+k\right)}{\left(\frac{p-1}{2}-k\right)!} \\
& =(-1)^{\frac{p-1}{2}-k}\binom{\frac{p-1}{2}+k}{2 k} \equiv(-1)^{\frac{p-1}{2}} \frac{\binom{2 k}{k}}{16^{k}}(\bmod p)
\end{align*}
$$

Theorem 2.9. Let p be a prime of the form $4 k+1$ and $p=a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$ and $a \equiv 1(\bmod 4)$. Then

$$
\sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{8^{k}} \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{(-16)^{k}} \equiv P_{\frac{p-1}{2}}(3) \equiv(-1)^{\frac{p-1}{4}}\left(2 a-\frac{p}{2 a}\right)\left(\bmod p^{2}\right)
$$

Proof. By Theorem 2.1 and (2.4) we have $\sum_{k=0}^{\frac{p-1}{2}}\binom{2 k}{k}^{2} 8^{-k} \equiv \sum_{k=0}^{\frac{p-1}{2}}\binom{2 k}{k}^{2}(-16)^{-k} \equiv$ $P_{\frac{p-1}{2}}(3)\left(\bmod p^{2}\right)$. From Theorem 2.6, (2.5) and Gauss' congruence $\binom{(p-1) / 2}{(p-1) / 4} \equiv 2 a$ $(\bmod p)($ see $[2])$ we have

$$
P_{\frac{p-1}{2}}(3) \equiv\left(\frac{2}{p}\right) P_{\frac{p-1}{2}}(0)=\left(\frac{2}{p}\right) \frac{(-1)^{(p-1) / 4}}{2^{(p-1) / 2}}\binom{(p-1) / 2}{(p-1) / 4} \equiv(-1)^{\frac{p-1}{4}} \cdot 2 a(\bmod p) .
$$

Write $P_{\frac{p-1}{2}}(3)=(-1)^{\frac{p-1}{4}} \cdot 2 a+q p$. Then $P_{\frac{p-1}{2}}(3)^{2} \equiv 4 a^{2}+(-1)^{\frac{p-1}{4}} \cdot 4 a q p\left(\bmod p^{2}\right)$. By a result due to Van Hamme [15], we have $\left(\sum_{k=0}^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)\left(\frac{p-1}{2}+k\right)\right)^{2} \equiv 4 a^{2}-2 p\left(\bmod p^{2}\right)$. This together with (2.1) yields $P_{\frac{p-1}{2}}(3)^{2} \equiv 4 a^{2}-2 p\left(\bmod p^{2}\right)$. Hence $(-1)^{\frac{p-1}{4}} \cdot 4 a q \equiv$ $-2(\bmod p)$ and so $P_{\frac{p-1}{2}}(3) \equiv(-1)^{\frac{p-1}{4}} \cdot 2 a-\frac{p}{2(-1)^{(p-1) / 4} a}\left(\bmod p^{2}\right)$. Now combining all the above we obtain the result.

Remark 2.3 For a prime $p=4 k+1=a^{2}+b^{2}$ with $a \equiv 1(\bmod 4)$, the congruence $\sum_{k=0}^{(p-1) / 2}\binom{2 k}{k}^{2} 8^{-k} \equiv \sum_{k=0}^{(p-1) / 2}\binom{2 k}{k}^{2}(-16)^{-k} \equiv(-1)^{\frac{p-1}{4}} \cdot 2 a(\bmod p)$ was proved by ZhiWei Sun in [13], and he also conjectured $\sum_{k=0}^{(p-1) / 2}\binom{2 k}{k}^{2} 8^{-k} \equiv \sum_{k=0}^{(p-1) / 2}\binom{2 k}{k}^{2}(-16)^{-k}$ $\equiv(-1)^{\frac{p-1}{4}}\left(2 a-\frac{p}{2 a}\right)\left(\bmod p^{2}\right)$.

Theorem 2.10. Let p be a prime of the form $4 k+1$ and so $p=a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$ and $a \equiv 1(\bmod 4)$. Then

$$
\sum_{k=0}^{\frac{p-1}{4}} \frac{\binom{4 k}{2 k}^{2}}{16^{2 k}} \equiv \frac{1}{2}+(-1)^{\frac{p-1}{4}} a-(-1)^{\frac{p-1}{4}} \frac{p}{4 a}\left(\bmod p^{2}\right)
$$

Proof. Since $\sum_{k=0}^{\frac{p-1}{2}}\binom{2 k}{k}^{2} 16^{-k}+\sum_{k=0}^{\frac{p-1}{2}}\binom{2 k}{k}^{2}(-16)^{-k}=2 \sum_{k=0}^{\frac{p-1}{4}}\binom{4 k}{2 k}^{2} 16^{-2 k}$, by (1.1) and Theorem 2.9 we deduce the result.

For a prime $p>3$ and $A, B, C \in \mathbb{Z}_{p}$ let $\# E_{p}\left(y^{2}=x^{3}+A x^{2}+B x+C\right)$ be the number of points on the curve $E_{p}: y^{2}=x^{3}+A x^{2}+B x+C$ over the field \mathbb{F}_{p} of p elements.

Lemma 2.6 ([5]). Let $p>3$ be a prime and $\lambda \in \mathbb{Z}_{p}$ with $\lambda \not \equiv 0,1(\bmod p)$. Then

$$
p+1-\# E_{p}\left(y^{2}=x(x-1)(x-\lambda)\right) \equiv(-1)^{\frac{p-1}{2}} \sum_{k=0}^{\frac{p-1}{2}}\binom{\frac{p-1}{2}+k}{k}\binom{\frac{p-1}{2}}{k}(-\lambda)^{k}(\bmod p)
$$

Theorem 2.11. Let $p>3$ be a prime and $t \in \mathbb{Z}_{p}$. Then

$$
P_{\frac{p-1}{2}}(t) \equiv \sum_{k=0}^{\frac{p-1}{2}}\binom{2 k}{k}^{2}\left(\frac{1-t}{32}\right)^{k} \equiv-\left(\frac{-6}{p}\right) \sum_{\substack{x=0 \\ 11}}^{p-1}\left(\frac{x^{3}-3\left(t^{2}+3\right) x+2 t\left(t^{2}-9\right)}{p}\right)(\bmod p)
$$

Proof. For $t \equiv \pm 1(\bmod p)$ we have

$$
\begin{aligned}
& \sum_{x=0}^{p-1}\left(\frac{x^{3}-3\left(t^{2}+3\right) x+2 t\left(t^{2}-9\right)}{p}\right) \\
& =\sum_{x=0}^{p-1}\left(\frac{x^{3}-12 x \mp 16}{p}\right)=\sum_{x=0}^{p-1}\left(\frac{(2 x)^{3}-12(2 x) \mp 16}{p}\right)=\left(\frac{2}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}-3 x \mp 2}{p}\right) \\
& =\left(\frac{2}{p}\right) \sum_{x=0}^{p-1}\left(\frac{(x \pm 1)^{2}(x \mp 2)}{p}\right)=\left(\frac{2}{p}\right)\left(\sum_{x=0}^{p-1}\left(\frac{x \mp 2}{p}\right)-\left(\frac{\mp 3}{p}\right)\right)=-\left(\frac{\mp 6}{p}\right) .
\end{aligned}
$$

Thus applying (2.4) and the fact $P_{n}(\pm 1)=(\pm 1)^{n}$ (see [6]) we deduce the result.
Now assume $t \not \equiv \pm 1(\bmod p)$. For $A, B, C \in \mathbb{Z}_{p}$, it is easily seen that (see for example [12, pp. 221-222])

$$
\# E_{p}\left(y^{2}=x^{3}+A x^{2}+B x+C\right)=p+1+\sum_{x=0}^{p-1}\left(\frac{x^{3}+A x^{2}+B x+C}{p}\right)
$$

Taking $\lambda=(1-t) / 2$ in Lemma 2.6 and applying the above and (2.1) we see that

$$
\begin{aligned}
P_{\frac{p-1}{2}}(t) & =\sum_{k=0}^{\frac{p-1}{2}}\binom{\frac{p-1}{2}+k}{k}\binom{\frac{p-1}{2}}{k}\left(\frac{t-1}{2}\right)^{k} \\
& \equiv(-1)^{\frac{p-1}{2}}\left(p+1-\# E_{p}\left(y^{2}=x(x-1)(x-(1-t) / 2)\right)\right) \\
& =(-1)^{\frac{p+1}{2}} \sum_{x=0}^{p-1}\left(\frac{x(x-1)(x-(1-t) / 2)}{p}\right)(\bmod p) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{x=0}^{p-1}\left(\frac{x(x-1)(x-(1-t) / 2)}{p}\right) \\
& =\sum_{x=0}^{p-1}\left(\frac{\frac{x}{2}\left(\frac{x}{2}-1\right)\left(\frac{x}{2}-\frac{1-t}{2}\right)}{p}\right)=\left(\frac{2}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x(x-2)(x+t-1)}{p}\right) \\
& =\left(\frac{2}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}+(t-3) x^{2}-2(t-1) x}{p}\right) \\
& =\left(\frac{2}{p}\right) \sum_{x=0}^{p-1}\left(\frac{\left(x-\frac{t-3}{3}\right)^{3}+(t-3)\left(x-\frac{t-3}{3}\right)^{2}-2(t-1)\left(x-\frac{t-3}{3}\right)}{p}\right) \\
& =\left(\frac{2}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}-\frac{t^{2}+3}{3} x+\frac{2 t^{3}-18 t}{27}}{p}\right)=\left(\frac{2}{p}\right) \sum_{x=0}^{p-1}\left(\frac{\left(\frac{x}{3}\right)^{3}-\frac{t^{2}+3}{3} \cdot \frac{x}{3}+\frac{2 t^{3}-18 t}{27}}{p}\right) \\
& =\left(\frac{6}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}-3\left(t^{2}+3\right) x+2 t\left(t^{2}-9\right)}{p}\right),
\end{aligned}
$$

by the above and (2.4) we obtain the result. The proof is now complete.

Theorem 2.12. Let $p>3$ be a prime. Then

$$
\begin{aligned}
& P_{\frac{p-1}{2}}(-31) \equiv \sum_{k=0}^{\frac{p-1}{2}}\binom{2 k}{k}^{2} \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{256^{k}} \equiv-\left(\frac{p}{3}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}-723 x-7378}{p}\right)(\bmod p) \\
& P_{\frac{p-1}{2}}(33) \\
& \equiv \sum_{k=0}^{\frac{p-1}{2}}(-1)^{k}\binom{2 k}{k}^{2} \equiv(-1)^{\frac{p-1}{2}} \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{(-256)^{k}} \equiv(-1)^{\frac{p+1}{2}} \sum_{x=0}^{p-1}\left(\frac{x^{3}-91 x+330}{p}\right)(\bmod p), \\
& P_{\frac{p-1}{2}}(-15) \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{2^{k}} \equiv\left(\frac{2}{p}\right) \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{128^{k}} \equiv(-1)^{\frac{p+1}{2}} \sum_{x=0}^{p-1}\left(\frac{x^{3}-19 x-30}{p}\right)(\bmod p), \\
& P_{\frac{p-1}{2}}(9) \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{(-4)^{k}} \equiv(-1)^{\frac{p-1}{2}} \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{(-64)^{k}} \equiv(-1)^{\frac{p+1}{2}} \sum_{x=0}^{p-1}\left(\frac{x^{3}-7 x+6}{p}\right)(\bmod p) \\
& P_{\frac{p-1}{2}}(5) \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{(-8)^{k}} \equiv\left(\frac{-2}{p}\right) \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{(-32)^{k}} \equiv-\left(\frac{p}{3}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}-21 x+20}{p}\right)(\bmod p) .
\end{aligned}
$$

Proof. Taking $t=-31$ in Theorem 2.11 and applying Theorem 2.7 we see that

$$
\begin{aligned}
P_{\frac{p-1}{2}}(-31) & \equiv \sum_{k=0}^{\frac{p-1}{2}}\binom{2 k}{k}^{2} \equiv \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{256^{k}} \equiv-\left(\frac{-6}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}-3\left(31^{2}+3\right) x-62\left(31^{2}-9\right)}{p}\right) \\
& =-\left(\frac{-6}{p}\right) \sum_{x=0}^{p-1}\left(\frac{(2 x)^{3}-4 \cdot 723 \cdot 2 x-8 \cdot 7378}{p}\right) \\
& =-\left(\frac{-3}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}-723 x-7378}{p}\right)(\bmod p) .
\end{aligned}
$$

Taking $t=33$ in Theorem 2.11 and applying Theorem 2.7 we see that

$$
\begin{aligned}
& P_{\frac{p-1}{2}}(33) \\
& \equiv \sum_{k=0}^{\frac{p-1}{2}}(-1)^{k}\binom{2 k}{k}^{2} \equiv\left(\frac{-16}{p}\right) \sum_{k=0}^{\frac{p-1}{2}} \frac{\binom{2 k}{k}^{2}}{(-256)^{k}} \equiv-\left(\frac{-6}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}-3276 x+71280}{p}\right) \\
& =-\left(\frac{-6}{p}\right) \sum_{x=0}^{p-1}\left(\frac{(6 x)^{3}-36 \cdot 91 \cdot 6 x+216 \cdot 330}{p}\right) \\
& =-\left(\frac{-1}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{3}-91 x+330}{p}\right)(\bmod p) .
\end{aligned}
$$

The remaining congruences can be proved similarly.

For $a, b, n \in \mathbb{N}$, if $n=a x^{2}+b y^{2}$ for some $x, y \in \mathbb{Z}$, we say that $n=a x^{2}+b y^{2}$. In 2003, Rodriguez-Villegas[11] posed many conjectures on supercongruences. In particular, he conjectured that for any prime $p>3$,

$$
\sum_{k=0}^{p-1} \frac{(4 k)!}{256^{k} k!^{4}} \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 1,3(\bmod 8) \text { and so } p=x^{2}+2 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if } p \equiv 5,7(\bmod 8)\end{cases}
$$

and

$$
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}\binom{3 k}{k}}{108^{k}} \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } 3 \mid p-1 \text { and so } p=x^{2}+3 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if } 3 \mid p-2\end{cases}
$$

Recently the author's twin brother Zhi-Wei Sun ([13,14]) made a lot of conjectures on supercongruences. In particular, he conjectured that for a prime $p \neq 2,7$,

$$
\sum_{k=0}^{p-1}\binom{2 k}{k}^{3} \equiv \sum_{k=0}^{p-1} \frac{(4 k)!}{81^{k} k!^{4}} \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if }\left(\frac{p}{7}\right)=1 \text { and so } p=x^{2}+7 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if }\left(\frac{p}{7}\right)=-1\end{cases}
$$

Inspired by their work, we pose the following conjectures.
Conjecture 2.1. Let $p>3$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{(4 k)!}{648^{k} k!^{4}} \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 1(\bmod 4) \text { and } p=x^{2}+y^{2} \text { with } 2 \nmid x \\ 0\left(\bmod p^{2}\right) & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

Conjecture 2.2. Let $p>3$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{(4 k)!}{(-144)^{k} k!^{4}} \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 1(\bmod 3) \text { and so } p=x^{2}+3 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if } p \equiv 2(\bmod 3)\end{cases}
$$

Conjecture 2.3. Let $p \neq 2,3,7$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{(4 k)!}{(-3969)^{k} k!^{4}} \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 1,2,4(\bmod 7) \text { and so } p=x^{2}+7 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if } p \equiv 3,5,6(\bmod 7)\end{cases}
$$

Conjecture 2.4. Let $p \neq 2,3,11$ be a prime. Then
$\sum_{k=0}^{p-1} \frac{(6 k)!}{66^{3 k}(3 k)!k!^{3}} \equiv \begin{cases}\left(\frac{p}{33}\right)\left(4 x^{2}-2 p\right)\left(\bmod p^{2}\right) & \text { if } 4 \mid p-1 \text { and } p=x^{2}+y^{2} \text { with } 2 \nmid x, \\ 0\left(\bmod p^{2}\right) & \text { if } 4 \mid p-3 .\end{cases}$

Conjecture 2.5. Let $p>5$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{(6 k)!}{20^{3 k}(3 k)!k!^{3}} \equiv \begin{cases}\left(\frac{-5}{p}\right)\left(4 x^{2}-2 p\right)\left(\bmod p^{2}\right) & \text { if } p \equiv 1,3(\bmod 8) \text { and } p=x^{2}+2 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if } p \equiv 5,7(\bmod 8)\end{cases}
$$

Conjecture 2.6. Let $p>5$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{(6 k)!}{54000^{k}(3 k)!k!^{3}} \equiv \begin{cases}\left(\frac{p}{5}\right)\left(4 x^{2}-2 p\right)\left(\bmod p^{2}\right) & \text { if } 3 \mid p-1 \text { and so } p=x^{2}+3 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if } 3 \mid p-2\end{cases}
$$

Conjecture 2.7. Let $p>5$ be a prime. Then

$$
\begin{aligned}
& \sum_{k=0}^{p-1} \frac{(6 k)!}{(-12288000)^{k}(3 k)!k!^{3}} \\
& \equiv \begin{cases}\left(\frac{10}{p}\right)\left(L^{2}-2 p\right)\left(\bmod p^{2}\right) & \text { if } p \equiv 1(\bmod 3) \text { and so } 4 p=L^{2}+27 M^{2}, \\
0\left(\bmod p^{2}\right) & \text { if } p \equiv 2(\bmod 3)\end{cases}
\end{aligned}
$$

Conjecture 2.8. Let $p>7$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{(6 k)!}{(-15)^{3 k}(3 k)!k!^{3}} \equiv \begin{cases}\left(\frac{p}{15}\right)\left(4 x^{2}-2 p\right)\left(\bmod p^{2}\right) & \text { if }\left(\frac{p}{7}\right)=1 \text { and so } p=x^{2}+7 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if }\left(\frac{p}{7}\right)=-1\end{cases}
$$

Conjecture 2.9. Let $p \neq 2,3,5,7,17$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{(6 k)!}{255^{3 k}(3 k)!k!^{3}} \equiv \begin{cases}\left(\frac{p}{255}\right)\left(4 x^{2}-2 p\right)\left(\bmod p^{2}\right) & \text { if }\left(\frac{p}{7}\right)=1 \text { and so } p=x^{2}+7 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if }\left(\frac{p}{7}\right)=-1\end{cases}
$$

Conjecture 2.10. Let $p>3$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}\binom{3 k}{k}}{1458^{k}} \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 1(\bmod 3) \text { and so } p=x^{2}+3 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if } p \equiv 2(\bmod 3)\end{cases}
$$

Conjecture 2.11. Let $p>5$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}\binom{3 k}{k}}{15^{3 k}} \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 1,4(\bmod 15) \text { and so } p=x^{2}+15 y^{2} \\ 2 p-12 x^{2}\left(\bmod p^{2}\right) & \text { if } p \equiv 2,8(\bmod 15) \text { and so } p=3 x^{2}+5 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if } p \equiv 7,11,13,14(\bmod 15)\end{cases}
$$

Conjecture 2.12. Let $p>5$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}^{2}\binom{3 k}{k}}{(-8640)^{k}} \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } 3 \mid p-1, p=x^{2}+3 y^{2} \text { and } 5 \mid x y \\ p-2 x^{2} \pm 6 x y\left(\bmod p^{2}\right) & \text { if } 3 \mid p-1, p=x^{2}+3 y^{2}, 5 \nmid x y \\ & \text { and } \equiv \pm y, \pm 2 y(\bmod 5) \\ 0\left(\bmod p^{2}\right) & \text { if } 3 \mid p-2\end{cases}
$$

Conjecture 2.13. Let $p>3$ be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{(3 k)!}{54^{k} \cdot k!^{3}} \equiv \begin{cases}\left(\frac{x}{3}\right)\left(2 x-\frac{p}{2 x}\right)\left(\bmod p^{2}\right) & \text { if } 3 \mid p-1 \text { and so } p=x^{2}+3 y^{2} \\ 0\left(\bmod p^{2}\right) & \text { if } 3 \mid p-2\end{cases}
$$

References

1. S. Ahlgren and K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000), 187-212.
2. B.C. Berndt, R.J. Evans and K.S. Williams, Gauss and Jacobi Sums, John Wiley \& Sons, New York, 1998.
3. S. Chowla, B. Dwork and R. J. Evans, On the mod p^{2} determination of $\binom{(p-1) / 2}{(p-1) / 4}$, J. Number Theory 24 (1986), 188-196.
4. H.W. Gould, Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, Morgantown, W. Va., 1972.
5. P.-R. Loh and R.C. Rhoades, p-adic and combinatorial properties of modular form coefficients, Int. J. Number Theory 2 (2006), 305-328.
6. W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd. ed., Springer, New York, 1966, pp. 228-232.
7. E. Mortenson, A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function, J. Number Theory 99 (2003), 139-147.
8. E. Mortenson, Supercongruences between truncated ${ }_{2} F_{1}$ by hypergeometric functions and their Gaussian analogs, Trans. Amer. Math. Soc. 355 (2003), 987-1007.
9. E. Mortenson, Supercongruences for truncated ${ }_{n+1} F_{n}$ hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc. 133 (2005), 321-330.
10. K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Monograph 102, Amer. Math. Soc., Providence, R.I., 2004.
11. F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds. Calabi-Yau Varieties and Mirror Symmetry (Yui, Noriko (ed.) et al., Toronto, ON, 2001), 223-231, Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003.
12. Z.H. Sun, On the number of incongruent residues of $x^{4}+a x^{2}+b x$ modulo p, J. Number Theory 119 (2006), 210-241.
13. Z.W. Sun, On congruences related to central binomial coefficients, preprint, arXiv:0911.2415. http://arxiv.org/abs/0911.2415.
14. Z.W. Sun, Open conjectures on congruences, arXiv:0911.5665. http://arxiv.org/abs/0911.5665.
15. L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, Proceedings of the Conference on p-adic Analysis (N. De Grande-De Kimpe and L. Van Hamme, ed., Houthalen, 1987), pp. 189195, Vrije Univ. Brussel, Brussels, 1986.

[^0]: The author is supported by the Natural Sciences Foundation of China (grant 10971078).

