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DUALITY FOR COCHAIN DG ALGEBRAS

PETER JØRGENSEN

Abstract. This paper develops a duality theory for connected
cochain DG algebras, with particular emphasis on the non-com-
mutative aspects.

One of the main items is a dualizing DG module which induces
a duality between the derived categories of DG left-modules and
DG right-modules with finitely generated cohomology.

As an application, it is proved that if the canonical module
A/A≥1 has a semi-free resolution where the cohomological degree
of the generators is bounded above, then the same is true for each
DG module with finitely generated cohomology.

0. Introduction

This paper develops a duality theory for connected cochain DG alge-
bras. Some of the ingredients are dualizing DG modules, section and
completion functors, and local duality.

Particular emphasis is given to the non-commutative aspects of the the-
ory. For instance, Theorem B below says that the dualizing DG module
defined in the paper induces a duality between the derived categories
of DG left-modules and DG right-modules with finitely generated co-
homology.

As an application, it is proved that if the canonical module A/A≥1 has a
semi-free resolution where the cohomological degree of the generators is
bounded above, then the same is true for each DG module with finitely
generated cohomology.

Setup 0.1. Throughout the paper, A is a connected cochain DG alge-
bra over a field k; that is, A = A≥0 and A0 = k.
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See [4, chp. 10] for an introduction to DG homological algebra.

Since A is connected, it has a canonical DG bimodule A/A≥1 which
is also denoted by k. The canonical module can be viewed as a DG
left-A-module Ak or a DG right-A-module kA, and there are inclusions
of localizing subcategories 〈Ak〉 →֒ D(A) and 〈kA〉 →֒ D(Aop) where
D(A) and D(Aop) are the derived categories of DG left-A-modules,
respectively DG right-A-modules. Under technical assumptions spelled
out in Setup 3.1, the inclusions have right-adjoint functors Γ and Γop

which behave like derived local section functors, and the following is
our first main result, see Theorem 3.3.

Theorem A. There is a single DG A-bimodule F such that Γ(−) =

F
L
⊗
A
− and Γop(−) = −

L
⊗
A
F .

The DG algebra A may be very far from commutative, but the DG
bimodule F behaves like a two-sided Čech complex for A which links
DG left- and right-modules. This is seen most clearly by passing to
the k-linear dual D = Homk(F, k) which will be called a dualizing DG
module of A. The following is our second main result, see Theorem 3.4;
like Theorem C below it will be proved under the additional assumption
that H(A) is noetherian with a balanced dualizing complex.

Theorem B. Let Df(A) and D
f(Aop) be the derived categories of DG

modules with finitely generated cohomology over H(A). Then there are
quasi-inverse contravariant equivalences

D
f(A)

RHomA(−,D)
//

D
f(Aop).

RHomAop (−,D)
oo

As an application of the theory, we prove the following in Theorem 4.7.

Theorem C. If Ak has a semi-free resolution where the cohomological
degree of the generators is bounded above, then the same is true for
each DG left-A-module with finitely generated cohomology.

Note that despite the bound on the degree, there may be infinitely many
generators in each semi-free resolution of Ak. For a simple example,
view A = k[T ]/(T 2) as a DG algebra with T in cohomological degree
1 and ∂ = 0. Then the minimal semi-free resolution of Ak has all
generators in degree 0, but there are infinitely many of them. Hence



DUALITY FOR COCHAIN DG ALGEBRAS 3

each semi-free resolution of Ak has infinitely many generators and Ak
is not compact in the derived category.

The following describes three types of connected cochain DG algebras
where the results apply, see Section 5.

(i) H(A) is noetherian AS regular.

(ii) A is commutative in the DG sense and H(A) is noetherian.

(iii) dimk H(A) <∞.

Between them, (i) and (ii) cover many DG algebras which arise in
practice, for instance as cochain DG algebras of topological spaces.
Note that in case (ii), Theorem A is trivial but Theorems B and C
are not. In this case, the categories D

f(A) and D
f(Aop) are the same,

but Theorem B says that this category has the non-trivial property of
being self dual.

Section 1 summarises part of Dwyer and Greenlees’s theory of section
and completion functors from [6]. Section 2 considers the Greenlees
spectral sequence [9] in a version given by Shamir [13], evaluates it
in the present situation, and gives a technical consequence. Section 3
proves Theorems A and B, Section 4 proves Theorem C, and Section 5
provides some examples, not least by showing that the theorems apply
to the algebras described in (i)–(iii) above.

It should be mentioned that Mao and Wu [12] have provided some
technical tools which will be important in the proofs, and that Ext
regularity (with the opposite sign) was studied in their paper under
the name width. There is previous work on duality for DG algebras in
[8] and the more general S-algebras in [7].

Notation 0.2. Opposite rings and DG algebras are denoted by the
superscript “op”. Right (DG) modules are identified with left (DG)
modules over the opposite. Subscripts are sometimes used to indicate
left or right (DG) module structures.

If M is a DG module and ℓ an integer, then M≥ℓ is the hard truncation
with (M≥ℓ)n = 0 for n < ℓ.

Let D denote the derived category of an abelian category or of left DG
modules over a DG algebra. In the case of the standing DG algebra A,
let Df(A) be the full subcategory of objects M ∈ D(A) for which H(M)
is finitely generated over H(A).

If M is an object of a derived category D, then 〈M〉 denotes the loca-
lizing subcategory generated by M .
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If N is a subcategory, then

N
⊥ = {M | Hom(N,M) = 0 for N ∈ N },

⊥
N = {M | Hom(M,N) = 0 for N ∈ N }.

The notation (−)∗ stands for HomA(−, A) or HomAop(−, A) and we
write (−)∨ = Homk(−, k). These functors interchange DG left- and
right-A-modules.

For the theory of (balanced) dualizing complexes over connected graded
algebras see [15].

If M is a complex or a DG module, then we write

infM = inf{ ℓ | Hℓ(M) 6= 0 }, supM = sup{ ℓ | Hℓ(M) 6= 0 }.

These are integers or ±∞. Note that inf and sup of the empty set are
∞ and −∞, respectively, so inf(0) =∞ and sup(0) = −∞.

1. Dwyer-Greenlees theory

Setup 1.1. In this section and the next, we assume that K is a K-
projective DG left-A-module which satisfies the following conditions as
an object of D(A): It is compact and there is an equality of localizing
subcategories 〈K〉 = 〈Ak〉.

Remark 1.2 (Dwyer-Greenlees theory). The DG module K can be
used as an input for Dwyer and Greenlees’s theory from [6]. Technically
speaking, they only considered the case of K being a complex over a
ring, but everything goes through for a DG module over a DG algebra.
Let us give a brief recap of some of their results.

Consider

E = HomA(K,K)

which is a DG algebra with multiplication given by composition. Then
K acquires the structure A,EK whileK∗ = RHomA(K,A) has the struc-
ture K∗

A,E . Define functors

T (−) = −
L
⊗
E

K,

E(−) = RHomA(K,−) ≃ K∗
L
⊗
A
−,

C(−) = RHomE op(K∗,−)

which form adjoint pairs (T,E) and (E,C) between D(E op) and D(A).
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Set N = 〈Ak〉
⊥ = 〈AK〉

⊥ in D(A); in terms of these null modules we
define the torsion and the complete DG modules by

D
tors(A) = ⊥

N , D
comp(A) = N

⊥.

Note that
D

tors(A) = 〈Ak〉 = 〈AK〉.

There are pairs of quasi-inverse equivalences of categories as follows.

D
comp(A)

E
//

D(E op)
C

oo

T
//

D
tors(A)

E
oo

In particular, EC and ET are equivalent to the identity functor on
D(E op), so if we set

Γ = TE, Λ = CE

then we get endofunctors of D(A) which form an adjoint pair (Γ,Λ)
and satisfy

Γ2 ≃ Γ, Λ2 ≃ Λ, ΓΛ ≃ Γ, ΛΓ ≃ Λ.

These functors are adjoints of inclusions as follows, where left-adjoints
are displayed above right-adjoints.

D
comp(A)

inc
//
D(A)

Λ
oo

Γ
//
D

tors(A)
inc

oo

Note that the counit and unit, Γ(−)
ǫ
−→ (−) and (−)

η
−→ Λ(−), are

K-equivalences, that is, they become isomorphisms when the functor
HomD(A)(Σ

ℓK,−) is applied. Equivalently, their mapping cones are
in 〈Ak〉

⊥. Along with Γ(−) ∈ D
tors(A) and Λ(−) ∈ D

comp(A), this
characterizes them up to unique isomorphism.

It is useful to remark that in particular, for M ∈ D
tors(A) = 〈Ak〉,

the counit morphism Γ(M)
ǫM−→ M is an isomorphism, and for M ∈

D
comp(A), the unit morphism M

ηM
−→ Λ(M) is an isomorphism. For

M ∈ 〈Ak〉
⊥, we get Γ(M) = 0.

Definition 1.3. We will write

F = K∗
L
⊗
E

K, D = F∨

and refer to D as a dualizing DG module of A.

In a more laborious notation we have F = K∗
A,E

L
⊗
E

A,EK, so F has the

structure AFA and D the structure ADA. It is easy to check that

Γ(−) = F
L
⊗
A
−, Λ(−) = RHomA(F,−)
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and adjointness yields

Γ(−)∨ = RHomA(−, D). (1)

The DG module F plays the role of the Čech complex and Γ and Λ
behave like derived local section and completion functors. Equation
(1) is the local duality formula.

Remark 1.4. Since Γ and Λ are given as derived ⊗ and Hom with the
DG A-bimodule F , they can be applied to DG A-bimodules and this
will give new DG A-bimodules.

Specifically, Γ(AMA) = AFA

L
⊗
A

AMA has a left-structure which comes

from the left-structure of F and a right-structure which comes from
the right-structure of M . And Λ(AMA) = RHomA(AFA, AMA) has a
left-structure which comes from the right-structure of F and a right-
structure which comes from the right-structure of M .

It is easy to check that when the functors are applied to DG A-

bimodules, the counit and unit, Γ(−)
ǫ
−→ (−) and (−)

η
−→ Λ(−),

can be viewed as morphisms in D(Ae), the derived category of DG
A-bimodules.

2. The Greenlees spectral sequence in a version given by

Shamir

Remark 2.1. In this remark, assume that H(A) is noetherian.

The Greenlees spectral sequence was originally given for group coho-
mology in [9, thm. 2.1]. It was developed further by Benson, Dwyer,
Greenlees, Iyengar, and Shamir in [3], [7], and [13]. The most general
version is given by Shamir in [13]; we will apply it to the situation at
hand.

The cohomology H(A) is a connected graded k-algebra with graded
maximal ideal m = H≥1(A). Let T denote the m-torsion graded left-
H(A)-modules, that is, the graded modules such that each element t
has m

ℓt = 0 for ℓ ≫ 0. Then T is a hereditary torsion class in the
abelian category GrH(A) of graded left-H(A)-modules, in the sense of
[13, def. 3.1]. For X ∈ GrH(A), view X as an object of the derived
category D(GrH(A)) and, using the notation of [13, def. 2.1], consider

a morphism Cell
H(A)
T

(X)
η
−→ X in D(GrH(A)) characterized by the

properties that Cell
H(A)
T

(X) ∈ 〈T 〉 and HomD(GrH(A))(Σ
ℓT, η) is an iso-

morphism for each integer ℓ and T ∈ T . These properties determine
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η up to unique isomorphism, and using that H(A) is noetherian, it is
not hard to show that η can be obtained as the canonical morphism
RΓmX → X where RΓm is the functor on the derived category which
underlies local cohomology; see [15, sec. 4].

Consider the class

C = {C ∈ D(A) | H(C) ∈ T }.

Shamir refers to objects of C as T -cellular and objects of C ⊥ as T -
null; see for instance [13, p. 1 and defs. 2.1 and 2.3]. For each DG left-
A-module M , Shamir obtains in [13, lem. 5.4] a distinguished triangle
C → M → N in D(A) with N ∈ C ⊥ and a spectral sequence

E2
p,q = Hp,q(RΓm(HM))⇒ Hp+q(C).

On the left hand side, p comes from the numbering of the modules in
an exact couple and q is an internal degree; see [13, proof of lem. 5.4].
A consequence is that p is homological degree along the complex RΓm

and q is graded degree along the graded module HM . The sequence
can hence also be written

E2
p,q = H−p

m
(HM)q ⇒ Hp+q(C) (2)

where Hℓ
m
= Hℓ ◦RΓm is local cohomology; see [15, sec. 4].

The spectral sequence is conditionally convergent to the colimit; com-
pare [13, last part of proof of lem. 5.4] with [5, def. 5.10]. In fact, the
p in [13] corresponds to the s in [5, eq. (0.1)], except that they have
opposite signs. Now note that E2

p,∗ = 0 for p > 0 by construction, so
the spectral sequence is a half-plane spectral sequence in the sense of
[5, sec. 7]. By [5, thm. 7.1], to get strong convergence, all we need is
to check RE∞ = 0 in the notation of [5].

In particular, using [5, rmk. after thm. 7.1], the spectral sequence (2)
is strongly convergent if

dimk E
2
p,q = dimk H

−p
m
(HM)q <∞ (3)

for all p, q.

Lemma 2.2. If M ∈ D(A) has Hℓ(M) = 0 for ℓ≫ 0 then M ∈ 〈Ak〉.

Proof. Using [12, sec. 1.5] to truncate, we can suppose M ℓ = 0 for
ℓ≫ 0 and desuspending if necessary, we can suppose M ℓ = 0 for ℓ > 0
so M≥1 = 0. There is a direct system

M≥0 →M≥−1 →M≥−2 → · · ·
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in D(A) with homotopy colimit M , so it is enough to see M≥n ∈ 〈Ak〉
for each n. However, there are distinguished triangles

M≥n+1 → M≥n → N(n)

where H(N(n)) is concentrated in cohomological degree n, and it is
easy to check that hence N(n) ∼=

∐
Σ−nk so N(n) ∈ 〈Ak〉. Induction

starting with M≥1 = 0 gives M≥n ∈ 〈Ak〉 for each n as desired. �

The following proof uses the methods of [13, sec. 6].

Theorem 2.3. Assume (in addition to Setup 1.1) that H(A) is noe-
therian with a balanced dualizing complex. For M ∈ D

f(A) there is a
spectral sequence which is strongly convergent in the sense of [5, def.
5.2],

E2
p,q = H−p

m
(HM)q ⇒ Hp+q(ΓM).

Proof. The condition in Equation (3) holds because H(A) is noetherian
with a balanced dualizing complex and H(M) is finitely generated;
combine [14, thms. 5.1 and 6.3]. Hence the spectral sequence (2) is
strongly convergent by the observation at the end of Remark 2.1.

To complete the proof, we must see C ∼= ΓM where C is the object in
(2). There is a distinguished triangle C → M → N , so by [13, prop.
2.4] it is enough to see C ∈ 〈Ak〉 and N ∈ 〈Ak〉

⊥.

For the latter, it suffices to see HomA(Σ
ℓk,N) = 0 for each ℓ, and this

is clear because N ∈ C ⊥ in the notation from Remark 2.1.

For the former, note that H(A) is noetherian with a balanced dualizing
complex and H(M) is finitely generated. Hence H>n

m
(HM) = 0 for some

n, and for each p the graded module Hp
m
(HM) is zero in sufficiently

high degree; this is by [14, thms. 5.1 and 6.3] again. The degree in
question stems from the cohomological grading of H(M) so we learn
Hp

m
(HM)q = 0 for q ≪ 0 since q figures as a subscript, hence with a

sign change. So E2
p,q is concentrated in a vertical strip which is bounded

below, and strong convergence to Hp+q(C) implies Hℓ(C) = 0 for ℓ≪ 0.
But then C ∈ 〈Ak〉 by Lemma 2.2. �

Remark 2.4. Note that it is easy to show that C ∈ 〈Ak〉 implies
H(C) ∈ T . If we also had the opposite implication, then we could
conclude that Γ(M) was CellA

T
(M) in the notation of [13], and obtain

Theorem 2.3 as a special case of [13, thm. 1].

Corollary 2.5. Assume that H(A) is noetherian with a balanced dua-
lizing complex. Then M ∈ D

f(A) implies (ΓM)∨ ∈ D
f(Aop).
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Proof. We must show that if H(M) is finitely generated over H(A) then
H(ΓM)∨ is finitely generated over H(A)op.

As indicated in Remark 2.1, in the spectral sequence, q is internal
degree. The same hence applies to the spectral sequence of Theorem
2.3. But by [14, thms. 5.1 and 6.3], the graded modules H−p

m
(HM)

are the k-linear duals of finitely generated H(A)op-modules, and only
finitely many of them are non-zero.

So the terms E2
p,∗ are the k-linear duals of finitely many finitely ge-

nerated H(A)op-modules whence the same is true for the terms E∞
p,∗.

Hence H(ΓM) has a filtration where the quotients are the k-linear
duals of finitely many finitely generated H(A)op-modules. This proves
the result. �

3. Properties of the Čech and dualizing DG modules

Setup 3.1. In this section and the next, we assume that AK and LA

are K-projective DG A-modules which satisfy the following conditions
as objects of D(A) and D(Aop):

• AK is compact, 〈AK〉 = 〈Ak〉, and K∗
A ∈ 〈kA〉,

• LA is compact, 〈LA〉 = 〈kA〉, and AL
∗ ∈ 〈Ak〉.

Remark 3.2. The DG moduleK can be used as input for the theory of
the previous sections. In particular, Section 1 used K to define various
objects which will be important: E , F , D, Γ, Λ.

Similarly, L can be used as input for the theory applied to Aop, that
is, to DG right-A-modules. In this case we get the endomorphism DG
algebra

F = HomAop(L, L),

the DG module L acquires the structure FLA, and we can define the
DG A-bimodules

G = L∗
L
⊗
F

L, E = G∨

along with the functors

Γop(−) = −
L
⊗
A
G, Λop(−) = RHomAop(G,−).

Then F , G, E, Γop, Λop are the right handed versions of E , F , D, Γ,
Λ.

The following is Theorems A and B of the introduction.
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Theorem 3.3. We have F ∼= G and D ∼= E in the derived category
D(Ae) of DG A-bimodules.

Proof. We know that FL is built from FF using (de)suspensions, dis-
tinguished triangles, coproducts, and direct summands. The functor

AL
∗
F

L
⊗
F

− preserves these operations and 〈Ak〉 is closed under them, so

AL
∗ ∈ 〈Ak〉 implies AG = AL

∗
F

L
⊗
F

FL ∈ 〈Ak〉. By symmetry, FA ∈ 〈kA〉.

However, we have

AGA
ǫG←− Γ(AGA) = AFA

L
⊗
A

AGA = Γop(AFA)
ǫ
op

F−→ AFA

where the counit morphisms ǫG and ǫopF are morphisms in D(Ae) as
explained in Remark 1.4. Now, AG is in 〈Ak〉 so by the last paragraph
of Remark 1.2, if we forget the right-A-structures, then ǫG is an iso-
morphism in D(A). This just means that its cohomology is bijective
whence ǫG itself is an isomorphism in D(Ae). By symmetry, ǫopF is an
isomorphism in D(Ae) and the proposition follows. �

Theorem 3.4. Assume (in addition to Setup 3.1) that H(A) is noe-
therian with a balanced dualizing complex. Then there are quasi-inverse
contravariant equivalences

D
f(A)

RHomA(−,D)
//

D
f(Aop).

RHomAop (−,D)
oo

Proof. Definition 1.3, Remark 3.2, and Theorem 3.3 show that the two
functors in the theorem are Γ(−)∨ and Γop(−)∨. They take values in
the correct categories by Corollary 2.5 and its analogue for Γop.

To see that the functors are quasi-inverse equivalences, first observe
that by adjointness,

Γ(−)∨ = (F
L
⊗
A
−)∨ ≃ RHomAop(F, (−)∨) = Λop((−)∨).

This gives the first of the following natural isomorphisms for M ∈
D

f(A).

Γop(Γ(M)∨)∨ ∼= Γop(Λop(M∨))∨
(a)
∼= Γop(M∨)∨

(b)
∼= M∨∨ ∼= M.

Here (a) is because ΓopΛop ≃ Γop by Remark 1.2, and (b) is because
when H(M) is finitely generated, it has Hℓ(M) = 0 for ℓ ≪ 0 whence
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Hℓ(M∨) = 0 for ℓ ≫ 0; hence M∨ ∈ 〈kA〉 by the right-module version
of Lemma 2.2 and so Γop(M∨) ∼= M∨.

The reverse composition of functors is handled by symmetry. �

4. An application to Ext regularity

Definition 4.1. For M ∈ D(A) we define the Ext and Castelnuovo-
Mumford regularities by

Ext.regM = − inf RHomA(M, k), CMregM = sup ΓM,

and similarly for M ∈ D(Aop).

Note that Ext.reg(0) = CMreg(0) = −∞; see the last part of Notation
0.2.

Remark 4.2. If M ∈ D(A) has Hℓ(M) = 0 for ℓ ≪ 0, then it follows
from [12, prop. 2.4] that M has a minimal semi-free resolution P with
generators between cohomological degrees infM and Ext.regM . That
is, if we write i = infM and r = Ext.regM , then

P ♮ =
∐

−r≤ℓ≤−i

Σℓ(A♮)(βℓ) (4)

where ♮ sends DG modules to graded modules by forgetting the dif-
ferential and (βℓ) indicates a coproduct. If, additionally, H(M) 6= 0,
then infM is a finite number and P has at least one generator. Hence

Hℓ(M) = 0 for ℓ≪ 0 and H(M) 6= 0

⇒ −∞ < infM ≤ Ext.regM. (5)

If H(A) is noetherian with a balanced dualizing complex, then Equation
(1) in Definition 1.3 along with Theorem 3.4 give

M ∈ D
f(A) and H(M) 6= 0 ⇒ −∞ < CMregM <∞. (6)

By considering kA
L
⊗
A

Ak, one proves Ext.reg(kA) = Ext.reg(Ak), and this

common number will be denoted by Ext.reg k. Equation (5) implies

0 ≤ Ext.reg k.

By using Theorem 3.3 we get Γop(A) = A
L
⊗
A
F ∼= FA and Γ(A) =

F
L
⊗
A
A ∼= AF , so CMreg(AA) = CMreg(AA), and this common number

will be denoted by CMregA.
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Definition 4.3 (He and Wu [10, def. 2.1]). A DG A-module M is
Koszul if it has a semi-free resolution P all of whose basis elements are
in degree 0.

The DG algebra A is Koszul if Ak is a Koszul DG module.

Remark 4.4. If M is a DG A-module with Hℓ(M) = 0 for ℓ≪ 0, then
it is immediate from Remark 4.2 that it is Koszul precisely if H(M) = 0
or infM = Ext.regM = 0.

Consequently, the DG algebra A is Koszul precisely if Ext.reg k = 0.

Lemma 4.5. Suppose that M ∈ D(A) has Hℓ(M) = 0 for ℓ ≪ 0 and
dimk H

ℓ(M) <∞ for each ℓ. Then Λ(M) ∼= M .

Proof. The assumptions on M imply M ∼= RHomk(M
∨, k). This gives

the first of the following isomorphisms, and the second one is by ad-
jointness.

Λ(M) = RHomA(F,M)

∼= RHomA(F,RHomk(M
∨, k))

∼= RHomk(M
∨

L
⊗
A
F, k)

= (M∨
L
⊗
A
F )∨

= Γop(M∨)∨

(a)
∼= (M∨)∨

∼= M

Here (a) follows from the right-module version of Lemma 2.2 and the
final paragraph of Remark 1.2.

Note that the proof uses the two-sided theory of Section 3: It is neces-
sary to know that Λ and Γop are given by formulae involving the same
DG bimodule F . �

The following is a DG version of [11, thms. 2.5 and 2.6].

Proposition 4.6. Let M ∈ D(A) have Hℓ(M) = 0 for ℓ ≪ 0 and
H(M) 6= 0. Then

(i) CMregM 6= −∞.

(ii) Ext.regM ≤ CMregM + Ext.reg k.

(iii) CMregM ≤ Ext.regM + CMregA.
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Proof. (i) Observe that Λk ∼= k by Lemma 4.5, so

RHomA(M, k) ∼= RHomA(M,Λk)

= RHomA(M,RHomA(F, k))

(a)
∼= RHomA(F

L
⊗
A
M, k)

= RHomA(ΓM, k) (7)

where (a) is by adjointness. Hence

Ext.regM = − inf RHomA(ΓM, k). (8)

Now, CMregM = sup ΓM = −∞ would mean ΓM = 0. By Equation
(8) this would imply Ext.regM = −∞, but this is false by Equation
(5) in Remark 4.2.

(ii) By part (i) and Equation (5) we have CMregM and Ext.reg k
different from −∞. Hence, despite the potential for either regularity
to be∞, the right hand side of the inequality in the proposition makes
sense because it does not read ∞−∞.

Set X = ΓM and let P be a minimal semi-free resolution of kA. Then

Ext.regM
(b)
= − inf RHomA(X, k)

(c)
= − inf HomA(X,P ∨) = (∗)

where (b) is Equation (8) and (c) is because P ∨ is a K-injective reso-
lution of Ak.

We have supX = CMregM so by truncation we can suppose Xℓ = 0
for ℓ > CMregM , cf. [12, 1.6], and so

(X∨)j = 0 for j < −CMregM .

Write i = inf k = 0 and r = Ext.reg k. Then P satisfies Equation (4)
in Remark 4.2 and a computation shows

HomA(X,P ∨)♮ ∼=
∏

−r≤ℓ

Σ−ℓ((X∨)♮)βℓ

where the power βℓ indicates a product. The last two equations imply

(∗) ≤ CMregM + r = CMregM + Ext.reg k

as desired.

(iii) Note that the right hand side of the inequality makes sense again,
for the same reason as in part (ii).
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Let P be a minimal semi-free resolution of M . Then

CMregM = supΓM = supF
L
⊗
A
M = supF ⊗

A
P = (∗∗).

As noted in Remark 4.2 we have FA
∼= Γop(A) and since CMregA =

supΓop(A) we can suppose by truncation that

F j = 0 for j > CMregA.

Write i = infM and r = Ext.regM . Then P satisfies Equation (4) in
Remark 4.2 and a computation shows

(F ⊗
A
P )♮ ∼=

∐

−r≤n

Σn(F ♮)(βn).

The last two equations imply

(∗∗) ≤ r + CMregA = Ext.regM + CMregA

as desired. �

Part (i) of the following establishes Theorem C of the introduction
while (ii) is a DG version of [11, cor. 2.9].

Theorem 4.7. Assume (in addition to Setup 3.1) that H(A) is noethe-
rian with a balanced dualizing complex. Let M ∈ D

f(A) have H(M) 6=
0.

(i) If Ext.reg k <∞ then Ext.regM <∞.

(ii) If A is a Koszul DG algebra and CMregM ≤ t for an integer
t, then Σt(M≥t) is a Koszul DG module.

Proof. (i) follows by combining Equation (6) in Remark 4.2 with Propo-
sition 4.6(ii).

As for (ii), it holds trivially if H(Σt(M≥t)) = 0, so suppose that we
have H(Σt(M≥t)) 6= 0.

There is a short exact sequence of DG modules 0 → M≥t → M →
M/M≥t → 0 which induces a distinguished triangle Σ−1(M/M≥t) →
M≥t →M in D(A), and hence a distinguished triangle

Γ(Σ−1(M/M≥t))→ Γ(M≥t)→ ΓM

in D(A).

Lemma 2.2 and the last paragraph of Remark 1.2 imply the isomor-
phism Γ(Σ−1(M/M≥t)) ∼= Σ−1(M/M≥t), so sup Γ(Σ−1(M/M≥t)) ≤ t.
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By assumption, sup ΓM = CMregM ≤ t. So the distinguished tri-
angle implies sup Γ(M≥t) ≤ t. Hence sup Γ(Σt(M≥t)) ≤ 0, that is
CMreg Σt(M≥t) ≤ 0. But then Ext.reg Σt(M≥t) ≤ 0 by Proposition
4.6(ii).

On the other hand, it is clear that inf Σt(M≥t) ≥ 0, and Equation (5)
in Remark 4.2 now implies inf Σt(M≥t) = Ext.reg Σt(M≥t) = 0, so
Σt(M≥t) is a Koszul DG module. �

5. Examples

Recall from Setup 0.1 that A is a connected cochain DG algebra over
a field k.

Example 5.1. If H(A) is noetherian AS regular [1], then all results in
the paper apply to A.

To see so, we must find K and L as in Setup 3.1 and show that H(A)
has a balanced dualizing complex. The latter is true by [15, cor. 4.14].

We know dimk Tor
H(A)
∗ (k, k) <∞, and using the Eilenberg-Moore spec-

tral sequence shows

dimk H(k
L
⊗
A
k) <∞

whence k is compact from either side. Also, dimk Tor
H(A)
∗ (H(A)∨, k) =

dimk Ext
∗
H(A)(k,H(A)) < ∞, and using the Eilenberg-Moore spectral

sequence shows

dimk H(RHomA(k, A)) = dimk H(A
∨

L
⊗
A
k) <∞

whence supRHomA(k, A) < ∞ so (Ak)
∗ ∈ 〈kA〉 by Lemma 2.2. Hence

the K-projective resolution of Ak can be used for AK. Similarly, the
k-projective resolution of kA can be used for LA.

Example 5.2. If A is commutative in the DG sense and H(A) is noe-
therian, then all results in the paper apply to A.

To see so, we must again find K and L as in Setup 3.1 and show that
H(A) has a balanced dualizing complex. The former can be done by
using a DG version of the construction of the Koszul complex.

Since H(A) is graded commutative noetherian, it is a quotient of a
tensor product B ⊗

k
C where B is a polynomial algebra with finitely

many generators in even degrees and C is an exterior algebra with
finitely many generators in odd degrees. It follows from [14, thm. 6.3]
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that B ⊗
k
C has a balanced dualizing complex. Now combine [14, thm.

6.3], [2, prop. 7.2(2)], and [2, thm. 8.3(2+3)] to see that so does any
quotient of B ⊗

k
C.

Example 5.3. If dimk H(A) < ∞ then all results in the paper apply
to A. Namely, 〈Ak〉 = 〈AA〉 = D(A) and 〈kA〉 = 〈AA〉 = D(Aop) so we
can use AK = AA and LA = AA. Moreover, H(A) has the balanced
dualizing complex H(A)∨.

In this case, we can easily find the dualizing DG module. Since we

have AA ∈ 〈Ak〉, the counit morphism Γ(A)
ǫA−→ A is an isomorphism.

Hence F
L
⊗
A
A ∼= A, that is, F ∼= A, and this is an isomorphism in D(Ae);

see the last paragraph of Remark 1.2 and Remark 1.4. So the dualizing
DG module of A is

D ∼= A∨

and the functors in Theorem 3.4 are just (−)∨.

Example 5.4. Let A = k[T ] have T in cohomological degree d ≥ 1
and differential ∂ = 0. All results in the paper apply to A by Example
5.1. Let us compute the dualizing DG module.

While A is commutative as a ring, it is not necessarily commutative in
the DG sense because this means xy = (−1)|x||y|yx for graded elements
x, y. This fails if d is odd and k has characteristic different from 2.

However, it remains the case that 1 7→ T extends to a unique homo-

morphism of DG A-bimodules Σ−dA
ϕ
−→ A. The homomorphism is

injective with cokernel AkA, so there is a distinguished triangle

Σ−dA
ϕ
−→ A −→ k (9)

in D(Ae).

We can consider N = k[T, T−1] as a DG A-bimodule with T in coho-
mological degree d and differential ∂ = 0. Then there is a short exact
sequence of DG A-bimodules 0 → A → N → C → 0 which induces a
distinguished triangle

Σ−1C → A→ N (10)

in D(Ae).

It is easy to check that applying RHomA(−, N) to (9) sends ϕ to an
isomorphism, so RHomA(k,N) = 0 whence AN ∈ 〈Ak〉

⊥ and Γ(N) = 0;
see the last paragraph of Remark 1.2. We have A(Σ

−1C) ∈ 〈Ak〉 by
Lemma 2.2, so Γ(Σ−1C) ∼= Σ−1C. Note that this is an isomorphism in
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D(Ae), see Remark 1.4, so it follows that applying Γ to (10) produces

an isomorphism Σ−1C ∼= Γ(A) in D(Ae). However, Γ(A) = F
L
⊗
A
A ∼= F

in D(Ae), so we get

Σ−1C ∼= F

in D(Ae). Hence the dualizing DG module of A is

D = F∨ = (Σ−1C)∨.

More explicitly, C is the DG quotient module k[T, T−1]/k[T ], and based
on this, a concrete computation of D = (Σ−1C)∨ yields the following:
As a graded vector space, D has a generator eℓ in cohomological degree
dℓ + d − 1 for each ℓ ≥ 0. It has differential ∂ = 0, and the left and
right actions of A on D are given by

T jeℓ = ej+ℓ, eℓT
j = (−1)jdej+ℓ.

As a DG left-A-module, D is just Σ−(d−1)A. The right action of A is
twisted by the DG algebra automorphism α : T j 7→ (−1)jdT j. Deno-
ting the twist by a superscript, we finally have

D ∼= (Σ−(d−1)A)α

in D(Ae).

There is no way to get rid of the twist: IfD were isomorphic to Σ−(d−1)A
in D(Ae), then the cohomologies of the two DG modules would be iso-
morphic as graded H(A)-bimodules. However, H(Σ−(d−1)A) is a sym-
metric H(A)-bimodule, but if d is odd and k has characteristic different
from 2, then H(D) is not.

The presence of twists in the theory of two sided duality is not sur-
prising since it occurs already for rings, see for instance [15, thm. 7.18
and the remark preceding it].

Remark 5.5. In Definition 1.3, the dualizing DG module D depends
on the choice of the object K made in Setup 1.1. However, in the
two previous examples, the computations show that any choice of K
produces the same D. It would be interesting to know if D is unique
in general.

Acknowledgement. Katsuhiko Kuribayashi provided useful com-
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