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GENERALIZED COMPOSITIONS WITH A FIXED NUMBER OF

PARTS

MILAN JANJIĆ

Abstract. We investigate compositions of a positive integer with a fixed num-

ber of parts, when there are several types of each natural number. These

compositions produce new relationships among binomial coefficients, Catalan

numbers, and numbers of the Catalan triangle.

1. Introduction

A k-tuple (i1, i2, . . . , ik) of positive integers, such that i1 + i2 + · · · + ik = n, is
called a composition of n with k parts. In [MJ], the following generalization of com-
positions is considered: Let b = (b1, b2, . . . , ) be a sequence of nonnegative integers,
and let n be a positive integer. The composition of n is a k-tuple (i1, i2, . . . , ik) such
that i1+i2+ · · ·+ik = n, assuming that there are b1 different types of 1, b2 different
types of 2, and so on. We call such a composition the generalized composition of n
with k parts.

The generalized compositions extend several types of compositions which are
investigated in some earlier papers. First of all this is the case with usual compo-
sitions, which are obtained when bi = 1 for each i. In [DS], the author considers
the compositions in which there are two different types of 1, and one type of each
other natural number. Next, in [AG], the case bi = i, (i = 1, 2, . . .) is investigated.

The generalized compositions may be described as the colored compositions, in
which the part i is colored by one of bi colors. Different kinds of compositions have
already been called colored compositions. For example, them-colored compositions,
as they are defined in [DK], are, freely speaking, the generalized compositions in
which bi ∈ {ω, ω2, . . . ωm−1}, where ω is a primitive mth root of 1. As well, the
composition in which bi = i, for any i, considered in [AG], is also called an m-
colored compositions. The above-mentioned compositions, as well as many other
interesting results on compositions can be found in a recently-published book [HU].

In [MJ], several recursions and some closed formulas for the number of all gen-
eralized compositions are obtained.

In this paper, we investigate the generalized compositions with a fixed number
of parts. The paper is organized as follows. In Section 2 we outline some basic
properties of the generalized compositions with a fixed number of parts. We also
show that they extend the notion of the matrix composition, considered in [MU].
Then we derive several recurrence equations and closed formulas, by choosing for
bi different functions of i. In particular, we obtain the formula for the number of
n-colored compositions, given in [DK], as well as the formula for the number of
n-colored compositions, given in [AG]. Section 3 deals with the case when bi is
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a binomial coefficient. Several closed formulas will be derived. Also, if bi is of
the form bi =

(

i+p−1
q

)

, we prove that the numbers of all generalized compositions

satisfy a homogenous recurrence equation with constant coefficients, of order q+1.
In particular, the m-matrix compositions satisfy such a recurrence equation. For
the case p = 1, we derive a closed formula for both the number of the generalized
compositions with a fixed number of parts and for the number of all generalized
compositions. In Section 4, we investigate relationships of the generalized compo-
sitions with the Catalan numbers. Finally, a result which connects the Catalan
numbers, the numbers of the Catalan triangle, and the binomial coefficients is de-
rived.

2. Some preliminary results

Let b = (b0, b1, . . .) be a sequence of nonnegative integers, and n, k be positive
integers. We let C(b)(n, k) denote the number of the generalized compositions of n
with k parts. We also define C(b)(0, 0) = 1, C(b)(i, 0) = 0, (i > 0).

In [MJ], the number of all generalized compositions of n is denoted by C(b)(n).
Obviously,

(1) C(b)(n) =
n
∑

k=1

C(b)(n, k).

In the following two propositions we state some basic properties of the generalized
compositions.

Proposition 2.1. The following equations are true:

C(b)(i, 1) = bi, (i = 1, 2, . . .), C(b)(n, n) = bn1 , C
(b)(n, k) = 0, (k > n).

Proof. All equations are easy to verify. �

Proposition 2.2. The following recursions are true:

(2) C(b)(n, k) =
n−k+1
∑

i=1

biC
(b)(n− i, k − 1). (k ≤ n).

(3) C(b)(n) =

n
∑

i=1

biC
(b)(n− i),

providing that C(b)(0) = 1.

Proof. Equation (2) is true since there are biC
(b)(n− i, k− 1) generalized composi-

tions ending with one of the i’s, for i = 1, . . . , n− k+1. A similar argument proves
equation (3). �

We next prove that the matrix compositions, considered in [MU], are a particular
case of the generalized compositions. A k- matrix composition of n is a matrix with
k rows, which entries are nonnegative integers, no column consists of zeroes only,
and the sum of all entries equals n. We let MC(n) denote its number.

Proposition 2.3. If bi =
(

i+k−1
i

)

, (1 = 1, 2, . . .), then

MC(n) = C(b)(n).
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Proof. It is a well-known that, for a given positive integer k, the equation x1+x2+
· · ·+xk = i has

(

i+k−1
i

)

nonnegative solutions. This means that
(

i+k−1
k

)

MC(n− i)
is the number of k-compositions of n, ending with a column in which the sum of
all elements equals i. Taking MC(0) = 1 we obtain

MC(n) =

n
∑

i=1

(

i+ k − 1

i

)

MC(n− i),

Comparing this equation with (3) we easily conclude that

MC(n) = C(b)(n),

and the proposition is proved. �

In the rest of this section we shall choose for bi different functions of i and obtain
several closed formulas. We first consider the case when b is a constant sequence.

Proposition 2.4. Let n, p be positive integers, and let bi = p, (i = 1, 2, . . .). Then

C(b)(n, k) = pk
(

n− 1

k − 1

)

.

Proof. In this case, the connection between compositions and generalized compo-
sitions is simple. From a composition of n with k parts we obtain pk different
generalized compositions with k parts, since each part my take p different values.
In this way we obtain all generalized compositions of n with k parts. Moreover,
there are

(

n−1
k−1

)

compositions of n with k parts, and the proposition follows. �

Corollary 2.5. In the conditions of Proposition 2.4 we have

C(b)(n) = p(1 + p)n−1.

Proof. The formula (1) now takes the form:

C(b)(n) =

n
∑

k=1

(

n− 1

k − 1

)

pk,

and the assertion follows from the binomial formula. �

Remark 2.6. The number C(b)(n) from the preceding corollary equals the number
of the p-colored compositions, as they are defined in [DK].

Next, we investigate the case when b is a constant sequence with several leading
zeroes.

Proposition 2.7. Let p,m, n be positive integers, and let bi = 0, (i = 1, 2, . . . ,m−
1), bi = p, (i ≥ m). Then

C(b)(n, k) = pk
(

n− (m− 1)k − 1

k − 1

)

.

Proof. In this case, we consider the set X of the generalized compositions of n

with k parts, all of which are ≥ m. There is a bijection between the set X and
the set Y of the generalized compositions of n− (m− 1)k with k parts, which are
considered in Proposition 2.4. Namely, subtracting m − 1 from each term of an
element of X, we obtain an element of Y. Conversely, adding m− 1 to each term of
an arbitrary element of Y, we obtain an element of X. The proposition now follows
from Proposition 2.4. �
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As an immediate consequence of (1) we state

Corollary 2.8. In the conditions of Proposition 2.7 we have

C(b)(n) =

n
∑

k=1

(

n− (m− 1)k − 1

k − 1

)

pk.

We shall now consider the case when bi is an exponential function of i.

Proposition 2.9. Let p, n, k be positive integers, and let bi = pi−1, (i = 1, 2, . . .).
Then

C(b)(n, k) = pn−k

(

n− 1

k − 1

)

.

Proof. Equation (2) has the form:

C(b)(n, k) =

n−k+1
∑

i=1

pi−1C(b)(n− i, k − 1). (k ≤ n).

We prove the formula by induction on k. It is obviously true for k = 1. Suppose it
is also true for k − 1. Then the preceding equation takes the form:

C(b)(n, k) = pn−k

n−k+1
∑

i=1

(

n− i− 1

k − 2

)

.

On the other hand, by a well-known horizontal recursion for the binomial coefficients
we have

(

n− 1

k − 1

)

=
n−k+1
∑

i=1

(

n− i− 1

k − 2

)

,

and the formula is true. �

Using the binomial formula, for the number of all generalized compositions, we
obtain

C(b)(n) = (1 + p)n−1.

This is the formula (i), Corollary 13, in [MJ].
In the next two results we consider the case when bi is a linear function of i.

Proposition 2.10. Let p,m, n be positive integers, and let bi = m(i − 1), (i =
1, 2, . . .). Then

C(b)(n, k) = mk ·

(

n− 1

2k − 1

)

.

Proof. The proposition is obviously true for k = 1. Assume that it is true for k− 1.
Equation (2) has the form:

C(b)(n, k) = m

n−k+1
∑

i=1

(i− 1)C(b)(n− i, k − 1), (k ≤ n).

Using the induction hypothesis yields

C(b)(n, k) = mk

n−k+1
∑

i=1

(i − 1)

(

n− i− 1

2k − 3

)

, (k ≤ n).
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It follows that

C(b)(n, k) = mk

n−k
∑

i=1

i

(

n− i− 2

2k − 3

)

, (k ≤ n).

Denote S =
∑n−k

i=1 i
(

n−i−2
2k−3

)

. Then,

S =
n−k
∑

i=0

(

n− i− 2

2k − 3

)

+
n−k
∑

i=2

(

n− i− 2

2k − 3

)

+ · · ·+
n−k
∑

i=n−k

(

n− i− 2

2k − 3

)

.

Using the horizontal recursion for the binomial coefficients we obtain

S =

(

n− 2

2k − 2

)

+

(

n− 3

2k − 2

)

+ · · ·+

(

2k − 2

2k − 2

)

.

Using the same recursion once more we obtain

S =

(

n− 1

2k − 1

)

.

�

For the number of all generalized composition we get

Corollary 2.11. In the conditions of Proposition 2.10 we have

C(b)(n) =

n
∑

k=1

(

n− 1

2k − 1

)

mk.

In a similar way we may prove the following:

Proposition 2.12. If bi = mi, (i = 1, 2, . . .), then

C(b)(n, k) = mk ·

(

n+ k − 1

2k − 1

)

.

Also,

C(b)(n) =

n
∑

k=1

(

n+ k − 1

2k − 1

)

mk.

Remark 2.13. Taking in particular m = 1 in the preceding equation, we obtain
Theorem 3.23, in [HU], about the so called n-colored compositions, defined in [AG].

3. Binomial coefficients

In this section we investigate the generalized compositions, when the b’s are some
binomial coefficients. We first derive two closed formulas.

Proposition 3.1. Let k, p, n be positive integers, and let bi =
(

p

i−1

)

, (i = 1, 2, . . .).
Then,

C(b)(n, k) =

(

pk

n− k

)

.

Also,

C(b)(n) =
n
∑

k=1

(

pk

n− k

)

.
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Proof. We go by induction on k. For k = 1 the proposition is obviously true. Using
the induction hypothesis we see that the first assertion is equivalent to the following
identity:

(

pk

n− k

)

=
n−k+1
∑

i=1

(

p

i− 1

)(

pk − p

n− i− k + 1

)

,

which is merely the Vandermonde convolution. �

The next result concerns the figured numbers.

Proposition 3.2. Let p, k, n be positive integers, and let

bi =

(

p+ i− 1

p

)

, (i = 1, 2, . . .).

Then,

C(b)(n, k) =

(

n+ pk − 1

pk + k − 1

)

.

Proof. We use induction on k. For k = 1 the proposition is obviously true. Using
the induction hypothesis we see that the the assertion is equivalent to the following
identity:

(

n+ pk − 1

pk + k − 1

)

=

n−k+1
∑

i=1

(

p+ i− 1

p

)(

n− i+ pk − p− 1

pk − p+ k − 2

)

.

To prove this identity, we shall count pk+k−1-subsets of the set X = {1, 2, . . . , n+
pk − 1} according to the place of its (p+ 1)the element in such a subset. Suppose
that this element is the (p + i)th element of X. Such a subset may be chosen in
(

p+i−1
p

)

·
(

n−i+pk−p−1
pk−p+k−2

)

ways. We also conclude that i ranges from 1 to n − k + 1,

which proves the proposition.
�

The following two results concern the number of all generalized compositions.
We first prove that, in the case bi =

(

i+p−1
q

)

, (i = 1, 2, . . .), where p, q are positive

integers, the numbers C(b)(n) satisfy a homogenous linear recurrence equation of
the (q + 1)th order, with constant coefficients.

Proposition 3.3. Let p, q, n be positive integers, and let bi =
(

i+p−1
q

)

, (i =

1, 2, . . .). Then there exist integers mi(p, q), (i = 0, 1, . . . , q), not depending on n,

such that

(4) C(b)(n+ q + 1) =

q
∑

i=0

mi(p, q)C
(b)(n+ i), (n ≥ 2).

Proof. We define the function F (n, j) in the following way:

(5) F (n, j) =
n−1
∑

i=1

(

n− i + p

q − j

)

C(b)(i − 1),

where 0 ≤ j ≤ q, 2 ≤ n. We want to prove that the following equation holds

(6) F (n, j) =

j+1
∑

i=0

c(i, j)C(b)(n+ i− 1),
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where c(i, j) are integers, depending only on p and q.

The proof goes by induction on j. Taking n = 1 in (1) we get C(b)(1) =
(

p

q

)

. For
n > 1 we get

(7) C(b)(n) =

(

p

q

)

C(b)(n− 1) +

n−1
∑

i=1

(

n− i+ p

q

)

C(b)(i− 1).

It follows that

(8) F (n, 0) = C(b)(n)−

(

p

q

)

C(b)(n− 1).

Hence, taking

c(0, 0) = −

(

p

q

)

, c(1, 0) = 1,

we see that (6) holds for j = 0 and n ≥ 2.
Suppose that (6) holds for some j ≥ 0. Replacing n by n+ 1 in (5) yields

F (n+ 1, j) =
n
∑

i=1

(

n+ 1− i+ p

q − j

)

C(b)(i − 1).

Using the standard recursion for the binomial coefficients one obtains

F (n, j + 1) = F (n+ 1, j)− F (n, j)−

(

p+ 1

q − j

)

C(b)(n− 1).

Using the induction hypothesis yields

F (n, j + 1) =

=

j+1
∑

i=0

c(i, j)C(b)(n+ i)−

j+1
∑

i=0

c(i, j)C(b)(n+ i− 1)−

(

p+ 1

q − j

)

C(b)(n− 1).

Denoting

c(0, j + 1) = −c(0, j)−

(

p+ 1

q − j

)

, c(j + 2, j + 1) = c(j + 1, j),

c(i, j + 1) = c(i− 1, j)− c(i, j), (1 ≤ i ≤ j + 1),

implies

F (n, j + 1) =

j+2
∑

i=0

c(i, j + 1)C(b)(n+ i− 1), (n ≥ 2),

and (6) is true.

Since F (n, q) =
∑n−1

i=1 C(b)(i− 1), we have

(9)

q+1
∑

i=0

c(i, q)C(b)(n+ i− 1) =

n−1
∑

i=1

C(b)(i − 1).

Replacing n by n+ 1 in (9) yields

(10)

q+1
∑

i=0

c(i, q)C(b)(n+ i) =

n
∑

i=1

C(b)(i− 1).
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Subtracting (10) from (9) we obtain

(11)

q+1
∑

i=0

c(i, q)
[

C(b)(n+ i− 1)− C(b)(n+ i)
]

+ C(b)(n− 1) = 0.

Further, we obviously have c(q+1, q) = 1. Also, we may easily obtain the values
for c(0, q + 1). First, we have

c(0, 1) = −c(0, 0)−

(

p+ 1

q

)

=

(

p

q

)

−

(

p+ 1

q

)

= −

(

p

q − 1

)

.

Using induction easily implies that

(12) c(0, j) = −

(

p

q − j

)

, (j = 0, 1, . . . , q).

In particular, c(0, q) = −1, which means that C(b)(n−1) vanishes in equation (11).
Hence, equation (11) becomes (4), if we take

mi(p, q) = −c(i+ 1, q + 1), (i = 0, 1, . . . , q).

�

Remark 3.4. We have seen, in Proposition 2.3, that in the case p − 1 = q, the
number C(b)(n) is the number of q-matrix compositions, as they are defined in [MU].
Thus the numbers of q-matrix compositions satisfy a (q + 1)th order homogenous
linear recurrence equation with constant coefficients.

Remark 3.5. The coefficients c(i, j), (j = 0, 1, . . . ; i = 0, 1, . . . , j+1) form a kind
of a Pascal-like triangle.

We shall now consider the particular case p = 1, q > 1, and show that then the
coefficients mi(1, q) can be obtained explicitly.

Proposition 3.6. Let q be a positive integer, and let bi =
(

i

q

)

, (i = 1, 2, . . .). Then,

C(b)(n+ q + 1) =

q
∑

i=0

(−1)i+q

(

q + 1

i

)

C(b)(n+ i) + C(b)(n+ 1), (n ≥ 2).

Proof. Firstly, we have

c(0, 0) = 0, c(1, 0) = 1.

For j ≥ 1, by (12), we have

c(0, j) = −

(

1

q − j

)

.

It follows that

c(0, q − 1) = c(0, q) = −1, and c(0, j) = 0 otherwise .

Furthermore, for j < q we have

c(1, j) = c(0, j − 1)− c(1, j − 1) = −c(1, j − 1) = c(1, j − 2) = . . . = (−1)j ,

and

c(1, q) = c(0, q − 1)− c(1, q − 1) = −1− c(1, q − 1) = . . . = −1 + (−1)q.

Also,

c(2, j) = (−1)j−1j, (j ≤ q).
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We next prove that for j, satisfying the condition 2 ≤ j ≤ q, we have

c(i, j) = (−1)j−i+1

(

j

i− 1

)

, (i = 2, . . . , j).

The equation is true for i = 2, by the preceding equation. Suppose that it is true
for some i− 1 ≥ 2. From the equation

c(i, j) = c(i− 1, j − 1)− c(i, j − 1),

using the induction hypothesis we obtain

c(i, j) = (−1)j−i+1

(

j − 1

i− 2

)

− c(i, j − 1).

From this we easily conclude that

c(i, j) = (−1)j−i+1

[(

j − 1

i− 2

)

+

(

j − 2

i− 2

)

+ · · ·+

(

i− 2

i− 2

)]

.

The assertion is true, by the horizontal recursion for the binomial coefficients. In
particular, we have

(−1)i+q[c(i+ 1, q)− c(i, q)] =

(

q

i

)

+

(

q

i− 1

)

=

(

q + 1

i

)

.

�

Now, we shall derive the closed formula for the recursion from the preceding
proposition.

Proposition 3.7. Let q be a positive integer, and let bi =
(

i
q

)

, (i = 1, 2, . . .). Then,

C(b)(n, k) =

(

n+ k − 1

qk + k − 1

)

.

Proof. We first conclude that each term of any generalized composition is ≥ q. It
follows that C(b)(n, k) = 0, if n < qk. This means that the assertion holds for
n < qk. Assume that n ≥ qk.

Using induction we easily conclude that the assertion is equivalent to the follow-
ing binomial identity:

(

n+ k − 1

qk + k − 1

)

=

n−k+1
∑

i=1

(

i

q

)(

n+ k − 2− i

qk − q + k − 2

)

, (qk ≤ n).

Adjusting the lower and the upper bounds in the sum on the right-hand side, we
obtain the following identity:

(

n+ k − 1

qk + k − 1

)

=

n−qk+q
∑

i=q

(

i

q

)(

n+ k − 2− i

qk − q + k − 2

)

, (qk ≤ n).

To prove this identity we shall count (qk + k − 1)- subsets of the set X =
{1, 2, . . . , n+k−1} in the following way: Suppose that x is the (q+1)th element of
a (qk+k− 1)-subset of X, and suppose that we have i elements of X in the subset,
which are less than x. It follows that there are

(

i

q

)(

n+ k − 2− i

qk − q + k − 2

)
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subsets with this property. The assertion is true, since i ranges from q to n− qk +
q. �

As an immediate consequence we have

Corollary 3.8. If bi =
(

i

q

)

, (i = 1, 2, . . .), then

C(b)(n) =

n
∑

k=1

(

n+ k − 1

qk + k − 1

)

.

Remark 3.9. The preceding equation is the closed formula for the recurrence
equation from Proposition 3.6.

4. Catalan numbers

In this section we consider the case when the b’s are Catalan numbers. In the
first result we shall prove that the numbers of generalized compositions with a fixed
number of parts, may be expressed in terms of the numbers of the so called Catalan
triangle, introduced by Chapiro, [SH]. We let ci denote the ith Catalan number.
Also, B(n, k) denotes a number of Catalan triangle. Thus,

B(n, k) =
k

n

(

2n

n+ k

)

, (k ≤ n).

Proposition 4.1. Let n, k be positive integers, and let bi = ci, (i = 1, 2, . . .). Then,

C(b)(n, k) = B(n, k).

Further,

C(b)(n) =

(

2n− 1

n

)

.

Proof. Equation (2), in this case, has the form:

C(b)(n, k) =

n−k+1
∑

i=1

ciC
(b)(n− i, k − 1), (k ≤ n).

The assertion follows by induction, using Theorem 14.3, [KS]. The second assertion
follows from Theorem 14.2, [KS].

Remark 4.2. Note that, in the preceding proposition, we have an example when
the number of all generalized compositions is a binomial coefficient.

�

We now slightly change the conditions of the preceding corollary to obtain a
relationship among Catalan numbers, binomial coefficients, and the numbers of
Catalan triangle.

Proposition 4.3. Let n, k be positive integers, and let bi = ci, (i = 0, 1, . . .). Then,
for n ≥ k, we have

(13) C(b)(n, k) =
k−1
∑

i=0

(

k

i

)

B(n− k, k − i).
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Proof. We shall first prove that, for 1 ≤ k ≤ n, the following equation

(14) C(b)(n, k) =
∑

i1+i2+···+ik=n−k

ci1 · ci2 · · · cik ,

holds. The sum is taken over i1 ≥ 0, i2 ≥ 0, . . . , ik ≥ 0. We use induction on k. For
k = 1, by (2), we have C(b)(n, 1) = cn−1. On the other hand, (14) has the form:

C(b)(n, 1) =
∑

i1=n−1

ci1 = cn−1,

and the proposition is true. Suppose that the proposition is true for k ≥ 1. Then,

C(b)(n, k + 1) =

n−k
∑

i=1

ci−1C
(b)(n− i, k).

Using the induction hypothesis yields

C(b)(n, k + 1) =

n−k
∑

i=1

ci−1

∑

i1+i2+···+ik=n−i−k

ci1 · ci2 · · · cik .

Denote i− 1 = ik+1 to obtain

C(b)(n, k + 1) =
∑

i1+i2+···+ik+ik+1=n−k−1

ci1 · ci2 · · · cik · cik+1
,

and (14) is true.
Collecting terms with a fixed number of zeroes in (14) we obtain

C(b)(n, k) =

k−1
∑

j=0

(

k

j

)

∑

i1+i2+···+ik−j=n−k

ci1 · ci2 · · · cik−j
,

where all sums on the right-hand side are taken over it ≥ 1. According to Theorem
14. 4, [KS], we have

B(n, k) =
∑

i1+i2+···+ik=n

ci1 · ci2 · · · cik ,

where i1 ≥ 1, . . . , ik ≥ 1, and the proposition is true. �

In [MJ] it is proved that the sum on the right-hand side of equation (14) equals
the number of the weak compositions of n− k in which exactly k parts equal 0. We
thus have

Corollary 4.4. Let n, k be positive integers, and let bi = ci, (i = 0, 1, . . .). Then
C(b)(n, k) is the number of the weak generalized compositions of n − k in which
there are exactly k zeroes.

It is proved in Proposition 3, [MJ], that in this case cn is the number of all gener-
alized compositions. We thus obtain a formula which shows that Catalan numbers
are some kind of convolution of the numbers of Pascal and Catalan triangles.

Corollary 4.5. Let n be a positive integer. Then

cn = 1 +
n−1
∑

k=1

k−1
∑

i=1

(

k

i

)

B(n− k, k − i).
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