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ON THE HEIGHT OF CYCLOTOMIC POLYNOMIALS

BART LOMIEJ BZDȨGA

Abstract. Let An denote the height of cyclotomic polynomial Φn,
where n is a product of k distinct odd primes. We prove that An ≤

εkϕ(n)k
−12k−1

−1 with − log εk ∼ c2k, c > 0. The same statement is
true for the height Cn of the inverse cyclotomic polynomial Ψn.

Additionally, we improve on a bound of Kaplan for the maximal
height of divisors of xn

− 1, denoted by Bn. We show that Bn <

ηkn
(3k−1)/(2k)−1, with − log ηk ∼ c3k and the same c.

1. Introduction

The polynomial

Φn(x) =
∑

0≤m≤ϕ(n)

an(m)xm =
∏

k≤n, (k,n)=1

(x− ζkn)

where ζn = e2iπ/n, is called the n-th cyclotomic polynomial. We are inter-
ested in estimating its coefficients, so we define

An = max
m

|an(m)| and Sn =

ϕ(n)∑

m=0

|an(m)|.

We define also

Ψn(x) =
1

Φn(x)
=
∑

m≥0

cn(m)xm, Cn = max
m

|cn(m)|.

The polynomial (1 − xn)Ψn(x) is called the n-th inverse cyclotomic poly-
nomial (see [10] for details). We remark that cn(m) is equal to the m′−th
coefficient of the n−th inverse cyclotomic polynomial, where 0 ≤ m′ < n
and m′ ≡ m (mod n).

We consider the numbers n which are odd and square free only, since it is
known that Aker(n) = An = A2n, where ker(n) is the product of all distinct
prime factors of n (see [13] for details). The same fact is true for inverse
cyclotomic polynomials.

The order of Φn is the number ω(n) of primes dividing n. For ω(n) ≤ 4
the following bounds are known:

(1) Ap = 1, Apq = 1, Apqr ≤ ǫ3p, Apqrs ≤ ǫ4p
3q.
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The first of them is obvious. The second one is due to A. Migotti [9].
The third one with ǫ3 = 1 is due to A. S. Bang [2]. It has been improved

by some authors. Presently it is known that one can take ǫ3 = 3/4 (see
[1, 4, 6]) and that one cannot replace ǫ3 by a constant smaller than 2/3 (see
[7]). It is strongly believed that the estimate holds with ǫ3 = 2/3 (J. Zhao
and X. Zhang [14], preprint). This conjecture is known as the Corrected
Beiter Conjecture (see [7]).

The fourth inequality with ǫ4 = 1 was established by Bloom [5]. We use
a simple argument from [3] to show that the inequality is true with ǫ4 = ǫ3.

For inverse cyclotomic polynomials we know the following bounds

Cp = 1, Cpq = 1, Cpqr ≤ p− 1.

The first and the second of them are easy to obtain. The third was proved
by P. Moree [10] who in the same paper proved that p−1 cannot be replaced
by a smaller number.

In the general case, we know the following result by P. T. Bateman, C.
Pomerance and R. C. Vaughan [3] for standard cyclotomic polynomials.

(2) Ap1...pk ≤ Mk ≤ nk−12k−1−1,

where Mk =
∏k−2

i=1 p2k−i−1−1
i (this notation we use troughout the paper).

The same authors came up with the following conjecture (cf. [3], p. 175).

Conjecture 1. In (2) one can replace n by ϕ(n).

We prove this conjecture and moreover, we improve it by multiplying the
right hand side by a constant depending on k only and decreasing quickly
when k grows. We prove also a similar result for the inverse cyclotomic
polynomials and give the bound for the maximal magnitude of the coefficient
of any divisor of xn−1, improving on an earlier result of N. Kaplan [8]. The
idea of estimating the maximal magnitude of coefficient of any divisor of
xn − 1 comes from C. Pomerance and N. C. Ryan [11].

By ǫk we denote the smallest positive real number for which the inequality
Ap1...pk ≤ ǫkMk holds with any distinct primes p1, . . . , pk. In the same way
we define ǫinvk for the inverse cyclotomic polynomial and Ek. Let

(3) d = max
p,q,r

Spqr

p2qr
, ρ =

∞∏

i=0

(
2i+ 5

2i+ 6

)1/2i

, C =

(
3

4
ǫ
3/2
3 dρ1/4

)1/32

.

Note that C < 1. Our main results are the four following theorems.

Theorem 1. We have log ǫk ≤ 2k log(C + o(1))

Theorem 2. We have log ǫinvk ≤ 2k log(C + o(1))

Theorem 3. If Bn = ηkn
(3k−1)/(2k)−1, then log ηk < 3k log(C + o(1)) for

every n free of squares.
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Theorem 4. Conjecture 1 holds true, that is we have Mk ≤ ϕ(n)k
−12k−1−1

with n = p1 . . . pk.

In the proof of Theorem 1 we also establish the following bounds

(4) Apqrs ≤
3

4
p3q, Apqrst ≤

135

512
p7q3r, Apqrstu ≤ 18225

262144
p15q7r3s,

where we assumed ǫ3 = 3/4. For ǫ3 = 2/3 we establish constants 2
3 ,

2
9 ,

32
729 ,

respectively.
Also for the inverse cyclotomic polynomial

(5) Cpqrs ≤
3

4
p3q, Cpqrst ≤

9

16
p7q3r, Cpqrstu ≤ 10935

131072
p15q7r3s

for ǫ3 = 3/4. If ǫ3 = 2/3, then we obtain constants 2
3 ,

4
9 ,

8
81 , respectively

Let us remark that Theorem 1, but with larger constant, can be obtained
by the original method of P. T. Bateman, C. Pomerance and R. C. Vaughan.
Our method is a bit different. It is based on a different recursive formula
given in Lemma 1. We use also some basic combinatorics.

2. Preliminaries

Our primary tool is the following lemma.

Lemma 1. Let p1, . . . , pk be distinct primes. Then

(6) Φp1...pk(x) = f(x) ·
k−2∏

j=1

Pj(x),

where

(7) f(x) = (1− xp1...pk) ·
∏k

i=2(1− xp2...pk/pi)
∏k

i=1(1− xp1...pk/pi)

and Pj =
∏k

i=j+2 Φp1...pj (x
pj+2...pk/pi).

As deg(Φn) = ϕ(n) < n, we may replace f by f∗ ≡ f (mod xp1...pk) in
(6), where deg(f∗) < p1 . . . pk. Then we have congruence modulo xp1...pk in
(6) instead of equality, which does not matter for our purposes. In addition
in the next section we prove the following lemma.

Lemma 2. We have H(f∗) ≤ bk−2 =
( k−2
⌊(k−2)/2⌋

)
.

Lemmas 1 and 2 allow us to give the following recursive bound on ǫk.

Lemma 3. We have ǫk ≤ Ek =
bk−2d

k−4

2k−3

∏k−2
j=1 ǫ

k−j−1
j .

To start the induction we need also the following estimates.

Lemma 4. We have ǫ4 ≤ ǫ3.
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Proof. It is known that S1 = 2 and Spq ≤ pq/2 (see [5] for a proof of the
second equality). By Lemma 4 on pages 182–183 in [3],

Apqrs ≤ ApqrSpqSpS1 ≤ ǫ3 · p3q,

so the estimate holds. �

Lemma 5. For d defined in (3) we have d ≤ ǫ3(2− ǫ3)/2.

Proof. Bloom [5] proved that

|apqr(m)| = |apqr(ϕ(pqr)−m)| ≤ 2(⌊m/qr⌋ + 1).

Thus

Spqr ≤ 2

ϕ(pqr)/2∑

k=0

min{ǫ3p, 2(⌊m/qr⌋ + 1)}

≤ ǫ3p(ϕ(pqr) + 2− 2⌊ǫ3p/2⌋qr) + 2qr

⌊ǫ3p/2⌋−1∑

a=0

(2a+ 2)

= ǫ3p(p− 1)(q − 1)(r − 1) + 2ǫ3p− 2⌊ǫ3p/2⌋ǫ3pqr

+2⌊ǫ3p/2⌋(2⌊ǫ3p/2⌋+ 1)qr

< ǫ3(2− ǫ3)p
2qr/2,

which completes the proof. �

3. Proof of Lemma 1, 2 and 3

Proof of Lemma 1. We prove this lemma by induction on k. By (see [5]) it
holds for k < 5. Let us define

f̃(x) = (1− xp2...pk) ·
∏k

i=3(1− xp3...pk/pi)
∏k

i=2(1− xp2...pk/pi)

and P̃j(x) =
∏k

i=j+2 Φp2...pj (x
pj+2...pk/pi). By the inductive assumption,

(8) Φp2...pk = f̃(x) ·
k−2∏

j=2

P̃j(x).

It is known that Φnp(x) = Φn(x
p)/Φn(x) for a prime p not dividing n (see

[13]). Then also

Φp1...pk(x) =
Φp2...pk(x

p1)

Φp2...pk(x)
and Pj(x) =

P̃j(x
p1)

P̃j(x)
.

By this and (8)

Φp1...pk(x) =
f̃k(x

p1) ·∏k−2
j=2 P̃j(x

p1)

f̃k(x) ·
∏k−2

j=2 P̃j(x)
=

f̃(xp)

f̃(x)P1(x)
·
k−2∏

j=1

Pj(x).
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Finally,

f̃(xp1)

f̃(x)
= P1(x)(1 − xp1...pk) ·

∏k
i=2(1− xp2...pk/pi)

∏k
i=1(1− xp1...pk/pi)

= P1(x)f(x),

which completes the proof. �

Proof of Lemma 2. Let n = p1 . . . pk and f∗(x) =
∑n−1

m=0 dmxm. By (7) we
have

(9) f∗(x) ≡
k∏

i=2

(1− xp2...pk/pi)
∑

α1,...,αk≥0

xα1n/p1+...+αkn/pk (mod xn).

Let

Λ = {λ = (λ2, . . . , λk) : λi ∈ {0, 1} for i = 2, . . . , k}, s(λ) = (−1)λ2+...+λk .

By (9)

(10) dm =
∑

λ∈Λ

s(λ)χ(m− 〈λ, v/p1〉),

where 〈·, ·〉 is the scalar product in R
k−1, v = (n/p2, . . . , n/pk) and

χ(m) =

{
1 if m is of the form α1n/p1 + . . .+ αkn/pk,
0 otherwise.

We define a number β(λ) and a vector α(λ) = (α2(λ2), . . . , ak(λk)) by the
congruence

(11) m− 〈λ, v/p1〉 ≡ β(λ)n/p1 + 〈α(λ), v〉 (mod n).

The numbers αi(0) and αi(1) depend only on the residue class of m modulo
pi, so (11) holds for every λ ∈ Λ. We have the following equivalences

χ(m− 〈λ, v/p1〉) = 1

⇐⇒ 〈λ, v/p1〉+ 〈α(λ), v〉 ≤ m

⇐⇒ 〈λ, v/p1〉+ 〈α(λ) − α(θk−1), v〉 ≤ m− 〈α(θk−1), v〉,

where θk−1 = (0, . . . , 0). We have

〈α(λ)−α(θk−1), v〉 =
k∑

i=2

(αi(λi)−αi(0))vi =
k∑

i=2

(αi(1)−αi(0))viλi = 〈λ,w〉,

where w = ((αi(1) − αi(0))vi)
k
i=2. Therefore

χ(m− 〈λ, v/p1〉) = 1 ⇐⇒ 〈λ, u〉 ≤ D,

where u = v/p1 + w and D = m− 〈α(θk−1), v〉. By (10)

(12) dm =
∑

λ∈Λ, 〈λ,u〉≤D

s(λ).

Without loss of generality we may assume that 0 ≤ uk ≤ u2, . . . , uk−1.
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There is a natural bijection between Λ and the family of subsets of
{2, 3, . . . , k}, defined by

Sλ = {i ∈ {2, . . . , k} : λi = 1} for λ ∈ Λ.

We say that λ = (λ2, . . . , λk−1, 0) is maximal if 〈λ, u〉 ≤ D and for every
λ′ = (λ′

2, . . . , λ
′
k−1, 0) such that Sλ ⊂ Sλ′ we have 〈λ′, u〉 > D. Note that for

λ0 = (λ2, . . . , λk−1, 0) and λ1 = (λ2, . . . , λk−1, 1)

the following statements are true.

• If λ0 is not maximal and 〈λ0, u〉 ≤ D then 〈λ1, u〉 ≤ D.
• If 〈λ1, u〉 ≤ D then 〈λ0, u〉 ≤ D.
• s(λ0) + s(λ1) = 0.

By this observation and (12) we conclude that

(13) |dm| ≤ #{λ ∈ Λ : λ is maximal}.
Let λ1, . . . , λt ∈ Λ be maximal. By the definition of maximal λ, we have
Sλi ⊂ {2, . . . , k − 1} and Sλi 6⊂ Sλj for every i 6= j.

Theorem 5 (E. Sperner, 1928). Let A1, . . . , At ⊂ A, where #A ≤ ∞. If

Ai 6⊂ Aj for every i 6= j, then t ≤
( #A
⌊#A/2⌋

)
. �

For the proof see [12].

By Theorem 5 and (13), |dm| ≤ t ≤
(

k−2
⌊(k−2)/2⌋

)
. �

Proof of Lemma 3. For a formal power series f(x) =
∑

m≥0 amxm ∈ Z[[x]]

we define H,S ∈ [0,∞]

H(f) = max
m≥0

|am|, S(f) =
∑

m≥0

|am|.

We call H(f) the height of f . Note that

(14) H

(
f(x)

k∏

i=1

Qi(x)

)
≤ H(f)

k∏

i=1

S(Qi),

(15) S

(
k∏

i=1

Qi(x)

)
≤

k∏

i=1

S(Qi)

for polynomials Q1, Q2, . . . , Qk ∈ Z[x] and a formal power series f . By (15)
we have for j < k

Sp1...pj ≤ (deg(Φp1...pj) + 1)Ap1...pj ≤ ǫj · pj · p2j−2

1 p2j−3

2 . . . p2
j−2pj−1,

as deg(Φn) = ϕ(n) < n for n > 1. Then again by (15)

(16) S(Pj) ≤ ǫk−j−1
j

(
pj · p2j−2

1 p2j−3

2 . . . p2
j−2pj−1

)k−j−1
,

where Pj is defined in Lemma 1. Additionally,

(17) Sp1p2 < p1p2/2, Sp1p2p3 ≤ d · p2
1p2p3.
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Applying (14), (16), (17) and Lemma 2 to Lemma 1 we receive

Ap1...pk ≤ bk−2d
k−4

2k−3
·
k−2∏

j=1

ǫk−j−1
j ·

k−2∏

j=1

(
pj · p2j−2

1 p2j−3

2 . . . p2
j−2pj−1

)k−j−1

= EkMk,

which completes the proof. �

4. Proof of Theorem 1, 2, 3 and 4

Proof of Theorem 1. Consider a sequence (e) given by the following condi-
tions:

e1 = e2 = 1, e3 = e4 = ǫ3,

ek =
bk−2d

k−4

2k−3

k−2∏

j=1

ek−j−1
j for k ≥ 5.

By Lemmas 3 and 4 we have ǫk ≤ ek. We can easily compute that

(18) e5 =
3

4
ǫ3d, e6 =

9

16
ǫ3
3d

2, . . .

For k ≥ 7
ek/ek−1

ek−1/ek−2
= ek−2 ·

bk−2bk−4

b2
k−3

,

then

ek = e2
k−1 ·

bk−2bk−4

b2
k−3

,

therefore

ek = e2k−6

6 ·
k∏

i=7

(
bi−2bi−4

b2
i−3

)2k−i

.

Note that
bi−2bi−4

b2
i−3

=

{ i−2
i−1 , for odd i
i−2
i−3 , for even i.

Then

ek = e2k−6

6 ·
(
5

6

)2k−7

·
(
6

5

)2k−8

·
(
7

8

)2k−9

·
(
8

7

)2k−10

· . . .

=

(
9

16
ǫ3
3d

2

)2k−6

· (1 + o(1))

⌊k/2⌋∏

i=4

(
2i− 3

2i− 2

)2k−2i

=

(
3

4
ǫ
3/2
3 dρ1/4 + o(1)

)2k−5

,

which completes the proof of the Theorem 1. �

Note that (18) implies the bounds from (4).
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Proof of Theorem 2. By the well known formula Ψnp(x) = Ψn(x
p)Φn(x) we

have

cnp(m) =

⌊m/p⌋∏

i=1

cn(k)an(m− kp).

We note that an(t) = 0 for t 6∈ {0, . . . , ϕ(n)}, and therefore

Cp1...pk ≤
(⌊

ϕ(p1 . . . pk−1)

pk

⌋
+ 1

)
Ap1...pk−1

Cp1...pk−1
≤ p1 . . . pk−2 ·AnCn

for k ≥ 2. Thus

Cp1...pk ≤ Cp1p2

k−1∏

j=2

(p1 . . . pj−1 ·Ap1...pj ) ≤ ǫ2 . . . ǫk−1Mk.

Therefore

ǫinvk ≤ ǫ2 . . . ǫk−1 ≤ e2 . . . ek−1 =
bk−2

bk−3
ek

for k ≥ 6. It completes the proof. �

We can also prove that

ǫinv4 ≤ ǫ3, ǫinv5 ≤ ǫ2
3, ǫinv6 ≤ 3

4
ǫ3
3d

to justify (5).

Proof of Theorem 3. We recall that every divisor of xn − 1 is of the form∏
d∈D Φd(x), where D is a subset of the set of divisors of n. By (14) and

Theorem 1

Bn ≤ An

∏

d|n, d<n

Sd ≤ 2

n

∏

d|n

dAd

≤ 2

n



∏

d|n

d





∏

d|n

ǫω(d)





∏

d|n

Mk(d)


 ,

where Mk(d) =
∏κ−2

i=1 p2κ−i−1−1
δi

for d = pδ1 . . . pδκ , pδ1 < . . . < pδκ . We have

1

n

∏

d|n

d = n2k−1−1,

∏

d|n

Mk(d) ≤
k∏

ω=1

(((
k
√
n
)ω)2ω−1/ω−1

)(kω)
= n(3k−1)/(2k)−2k−1

.
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and by Theorem 1

log


2
∏

d|n

ǫω(d)


 ≤ log 2 +

∑

d|n

2ω(d) log(C + ξ′ω(d))

∼ 3k logC +

k∑

ω=0

(
k

ω

)
2ωξω,

where ξ′ω, ξω → 0 with ω → ∞. It remains to prove that the sum equals
o(3k). Indeed,

k∑

ω=0

(
k

ω

)
2ωξω ≤ ξ0

⌊log k⌋∑

ω=0

(
k

ω

)
2ω + ξ⌈log k⌉

k∑

ω=0

(
k

ω

)
2ω

= O(2log kelog2 k log k) + o(3k) = o(3k),

and the proof is done. �

In case n = p1 . . . pk and pi 6≫ pi−1 for i = 2, . . . , k Theorem 3 improves
the result of N. Kaplan [8] showing that

Bn <
k−1∏

j=1

p4·3k−2−1
j ≤ n(4·3k−2−1)(k−1)/k.

Proof of Theorem 4. We have M1 = M2 = 1, so theorem holds for k = 1, 2.
We prove it by induction on k. We assume that p1 < . . . < pk. Then for
k ≥ 3

Mk ≤ p2k−2−1
1 · ϕ(p2 . . . pk)

2k−2/(k−1)−1

=

(
p1

p1 − 1

) 2k−1

k
−1

·
(

pk−1
1

ϕ(p2 . . . pk)

) 2k−2

k−1
− 2k−1

k(k−1)

· (ϕ(p1 . . . pk))
2k−1

k
−1

≤
(
p1 + 1

p1

) 2k−1

k
−1

·
(

p1

p1 + 1

)2k−2− 2k−1

k

· (ϕ(p1 . . . pk))
2k−1

k
−1

≤ (ϕ(p1 . . . pk))
2k−1/k−1,

which completes the proof of Theorem 4. �

5. Concluding remarks

We analyze the value of the constant C. It is proved that ǫ3 ∈ [2/3, 3/4],
however we do not know the exact value of ǫ3. Similarly, we can only
estimate the value of d. In the case ǫ3 = 3/4 and if we have the equality in
Lemmas 4 and 5, then C ≈ 0.953. If the Corrected Beiter Conjecture holds,
then C ≈ 0.946.
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Let us remark, that there exist a constant ǫ > 0 such that for C < ǫ the
bound from Theorem 1 is false. Indeed, if pj is the j−th odd prime number
for j ≥ 1, then

1 ≤ Ap1...pk ≤ (C + o(1))2
k
Mk

and therefore

C + o(1) ≥ M−2k

k =

∞∏

j=1

p−23−j

j + o(1).

Using the prime number theorem we easily obtain that the product is con-
vergent to a positive constant.

Recall the following conjecture of P. T. Bateman, C. Pomerance and R.
C. Vaughan [3].

Conjecture 2. For every k there exist a constant ǫ′k such that

An ≥ ǫ′kn
2k−1/k−1

for infinitely many cyclotomic polynomials Φn of order k.

If the conjecture is true, one of the most interesting questions is whether

the maximal ǫ′k is of the form (C ′ + o(1))2
k
for some constant 0 < C ′ < 1.

Acknowledgments

The author would like to thank Pieter Moree for his suggestions how to
make the paper more interesting and making some corrections. The author
would also like to thank Wojciech Gajda for his remarks on the paper.

References

[1] G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number The-
ory 100 (2003), 104–116.

[2] A.S. Bang, Om Ligningen Φn(x) = 0, Nyt Tidsskr. for Math., Afdeling B, 6 (1895),
6–12.

[3] P.T. Bateman, C. Pomerance and R.C. Vaughan On the sise of the coefficients of

the cyclotomic polynomial Proc. Colloquium on Number Theory 34 (1981), Topics
in Classical Number Theory, North Holland, 1984, 171–202.

[4] M. Beiter Magnitude of the coefficients of the cyclotomic polynomial Φpqr, II, Duke
Math. J. 38 (1971), 591–594.

[5] D.M. Bloom, On the coefficients of the cyclotomic polynomials, Amer. Math. Monthly
75 (1968), 370-372.
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