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REALIZABILITY OF POLYTOPES AS A LOW RANK

MATRIX COMPLETION PROBLEM

MICHAEL DOBBINS

Abstract. Here we show that the problem of realizing a polytope with
specified combinatorics is equivalent to a low rank matrix completion prob-
lem. This is comparable to known results reducing realizability to solving
systems of multinomial equations and inequalities, but the conditions we
give here are more simply stated. We see how this matrix is related to a
matrix appearing in a similar result by Dı́az.

1. Definitions and Statement of Theorem

We being by briefly reviewing some definitions used in this article. The
reader is advised to skim over the words in bold. A polytope P is the convex
hull of finitely many points {vi} in Rd, {∑i λivi ∶ ∑i λi = 1}. The faces of P
are subsets of P where a linear inequality that is satisfied at every point in P ,
(a, b) s.t. ⟨a,x⟩ ≤ b ∀x ∈ P , is an equality, F = {x ∈ P ∶ ⟨a,x⟩ = b}. We call The
0 dimensional faces vertices and the d−1 dimensional faces facets.

A lattice is a partially ordered set where every pair of comparables c d has
a unique minimal upper bound, the join denoted c∨d, and a unique maximal
lower bound, the meet denoted c ∧ d. The face lattice of a polytope is the
partially ordered set consisting of its faces ordered by containment. As the
name suggests this is a lattice. A flag of a poset is a maximal totally ordered
subset. It is not hard to see that in a lattice L with finite flags any subset of
comparables C has a unique minimal upper bound ⋁C and as such there is
a unique maximal comparable ⊺ = ⋁L, and likewise a unique maximal lower
bound ⋀C and minimal comparable � = ⋀L. We say a poset is graded when
all flags have the same length. The flag graph of a poset is a graph consisting
of a node for each flag F , and edges connecting F to other flags containing
all but one of F ’s comparables N(F) = {F ′ ∶ ∣F ∖ F ′∣ = 1}. An abstract

polytope lattice is a lattice satisfying the following conditions:

1 It is a graded lattice.
2 Every interval of length 2 consists of the bounds along with two other
elements between them.

3 The flag graph of every interval is connected.
1
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Note that every face lattice is an abstract polytope lattice, but the reverse may
not hold. When it does we say the abstract polytope lattice P is realizable.
That is when there is some polytope P with face lattice isomorphic P. In
this case we call P a realization of P. Abstract polytope lattices inherit all
of the terminology of faces, vertices, facets, dimension, and containment by
associating each comparable f with everything below it [�, f] and defining
dimension d so the length of flags are d + 1. If one wants to consider purely
combinatorial objects resembling a polytope there are more faithful things one
may consider, but abstract polytopes suffice here.

For an abstract polytope lattice P, we call a ∣vert(P)∣ × ∣facet(P)∣ matrix
M with Mi,j = 1 when vertex i is contained in facet j, vi ∈ Fj, and Mi,j < 1 for
all other entries, a filled incidence matrix of P. We are now ready to state
the theorem of this paper.

Theorem 1. An abstract polytope lattice P is realizable iff it has a rank d

filled incidence matrix.

2. Background and Remarks

Having an algebraic statement for determining when posets are realizable
allows us to at least use Tarski’s theorem on decidability of quantified algebraic
statements to decide whether a given poset is realizable. The most obvious
way to get this is to go directly to the definition, as Grünbaum does in [2].

Theorem 2. A poset P, given by a collection of subsets of I ∶= {1,⋯, n}
ordered by containment that includes {i} for each i ∈ I but not I, is realizable

iff there are vectors vi ∈ Rd such that for any subset f ⊊ I there is a vector

a ∈ Rd with ⟨a, vi⟩ = 1 for vi ∈ f and ⟨a, vi⟩ < 1 for vi ∉ f iff f ∈ P.
We first note that the combinatorics of P are much more relaxed here than in

theorem 1, but this is compensated for by more stringent algebraic conditions.
If we put the required vectors vi in a matrix V and restrict the conditions
to just the maximal comparables of P, which would be facets, and put the
required vectors a for each in a matrix A, then V ∗A would give us a rank d

filled incidence matrix of P. The algebraic part of theorem 2 requires us to
additionally find such vectors a for all faces, and show that no such vectors
exist for all other subsets of I.

There are, however, other simpler statements like this that tell us more about
the geometry of what can be realized. Dı́az in [1] provides such alternative
conditions. To state her theorem we need some additional definitions. Here
she considers polytopes in the d-sphere Sd = {x ∈ Rd ∶ ∥x∥ = 1}. For us it is
enough to define these as the intersection of positive linear combinations of
points in Rd × 1 with the unit sphere in Rd+1. Projecting through the origin
provides a bijection between polytopes defined this way in the sphere and in
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the euclidean plane that preserves combinatorics. We may also allow rotations
of these. We call a sequence of facets Fj1 ,⋯, Fjs of a polytope a truncated

oriented cycle when ⋂s
k=1Fjk is a face of the polytope, and when s = d+1 we

call this amaximal oriented cycle. We say two maximal oriented cycles have
the same orientation when the induced flags ∅ = ⋂d+1

k=1 Fjk , ⋂
d
k=1Fjk ,⋯, Fj1 ,P

are an even distance apart in the flag graph. Here we denote the minor of a
matrix G with rows j1⋯jn and columns k1⋯kn by G[j1⋯jm

k1⋯kn
].

Theorem 3 (Dı́az). Let G be a ∣facet(P)∣ × ∣facet(P)∣ matrix with diagonals

all 1. There is a polytope P ⊂ Sd realizing P iff G satisfies the following:

1 For every vertex of P and all facets Fj1⋯Fjn incident to it, the subma-

trix G[j1⋯jn
j1⋯jn
] has rank d.

2 For every face of rank d−s with 2 ≤ s ≤ d + 1 and truncated oriented

cycle Fj1 ,⋯, Fjs incident to it, det(G[j1⋯js
j1⋯js
]) > 0.

3 For every pair of maximal cycles Fj1,⋯, Fjd+1 and Fk1,⋯, Fkd+1 with the

same orientation, det(G[j1⋯jd+1
k1⋯kd+1

]) > 0.
Notice all variables here are existentially quantified. The matrix G is the

grammian the corresponding facets’ outward normal vectors in Rd+1. That is
its entries are the inner products of these vectors. This is nice because it tells
us what the dyhedral angles of a spherical polytope can be. Dı́az also provides
a similar theorem for finite volume hyperbolic polytopes.

We construct the polytope P from the filled incidence matrixM in theorem 1
by first computing its compact singular value decomposition UΣV ∗ =M . The
entries of M are the inner products of corresponding vertices and covertices
of the polytope. The covertices are the vertices of P ’s polar polytope

P ∗ ∶= {a ∶ ∀x ∈ P, ⟨a,x⟩ ≤ 1}. We will also refer to the facets of an abstract

polytope lattice as covertices. P ’s vertices are given by the rows of U
√
Σ, and

covertices by the rows of V
√
Σ. Each covertex corresponds to a facet of P

and scaling it by the distance from the origin to the affine span of this facet
gives the outward normal. We can construct the grammian of the vertices and
covertices together as follows.

G̃ = [
√
MM∗ M

M∗

√
M∗M

] = [ UΣU∗ UΣV ∗

V ΣU∗ V ΣV ∗
] = [ U

V
]Σ [ U∗ V ∗ ]

Symmetrically rescaling the diagonal blocks of G̃ so the diagonal entries are
all 1 gives a Euclidean analog of Dı́az’s matrix G for polytopes P and P ∗. We
also note that neither the span of U nor of V can contain the vector 1 with all
entries equal to 1, in the spaces of appropriate dimension. If we complete these
to the full singular value decomposition so that they include a normalized copy
of 1, then the remaining columns give the gale transform of these polytopes.
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Theorem 1 as stated requires us to provide an abstract polytope lattice along
with the filled incidence matrix, but the only combinatorial data appearing in
the matrix are the incidences between vertices and facets. These are in fact
equivalent, and we can generate the lattice with these incidences as we shall
see. We could just as well have stated the theorem as only asking for the
matrix and requiring the resulting lattice to be an abstract polytope lattice.
We get this lattice in a very intuitive way; we just recognize that each face
can be identified by the vertices and facets that are incident to it.

3. Reasoning

To see how we generate the lattice P from the the incidences between vertices
and facets we need some definitions. A bipartite graph is a graph with
nodes in two disjoint parts and edges only between nodes in different parts. A
biclique is a bipartite graph where every pair with one node from each part
is connected by an edge. A maxbiclique of a bipartite graph is a maximal
set of nodes and the edges between them such that this is a biclique. The
maxbiclique lattice of a bipartite graph with one part specified is the poset
consisting of it’s maxbicliques ordered by containment of nodes in the specified
part. A join irreducible is a comparable of a lattice that cannot be expressed
as the join of other comparables, and a meet irreducible is similarly defined
with order reversed.

Lemma 1. Every lattice where all flags are finite is isomorphic to the maxbi-

clique lattice of its meet and join irreducibles. For abstract polytope lattices

these are the vertices and covertices respectively.

The proof will make use of the following fact about lattices. The argument
appearing here comes from lemma 2.8 of [3], which proves a slightly more
general result.

Lemma 2. In a lattice with finite flags, every comparable c can be identified

uniquely as the join of all join irreducibles below it J or the meet of all meet

irreducibles above it M .

Proof. Suppose this is not the case, then there is some minimal comparable
c that is not the join of join irreducibles below it. c cannot itself be a join
irreducible since c = ⋁{c}, so it can be expressed as c = ⋁D where each
comparable d ∈ D is below c and as such can be expressed as the join of
join irreducibles d = ⋁Jd, so we have c = ⋁⋃d∈D Jd. Introducing more join
irreducibles can only increase their join, so c = ⋁J , and therefor, there can
be no such c. Likewise the dual statement holds for meet irreducibles by
symmetry. �
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Proof of Lemma 1. The pair (J,M) we get for a comparable c from lemma 2
induces a biclique in the incidence graph of the meet and join irreducibles of
the lattice, since for any pair (j,m) ∈ (J,M), j ≤ c ≤ m. From the definition
for comparables ci = ⋁Ji, we have that c1 ≤ c2 iff J1 ⊆ J2. Now we only have to
see that these bicliques are maximal. Suppose they are not, then by symmetry
we can assume there is a join irreducible j ∉ J that is not less than c, but is less
than all meet irreducibles M of c, j ≰ c = ⋀M . We see this is impossible, since
by the construction of M we have j ∈ ⋂m∈M{⋅ ≤m} ≤ c, so c must correspond
to a maxbiclique.

For abstract polytope lattices if a r-face f is not a vertex, r ≠ 0, then there
is some (r−2)-face c contained in f , and the interval [c, f] contains exactly
two other faces {d, e} of dimension r − 1. This gives d ∨ e = f , so f is not join
irreducible. If f is a vertex then there is only one face below it �, so it must
be join irreducible. By symmetry the facets are the meet irreducibles. �

The proof of theorem 1 works by constructing a polytope and showing that
there is an order preserving injection from the abstract polytope lattice given
to its face lattice. The following lemma shows that this is sufficient for it to
be a realization.

Lemma 3. An order monomorphism between abstract polytope lattices of the

same dimension is an isomorphism.

Proof. Suppose not, then there are abstract polytope lattices P and Q of
dimension d with a monomorphism sending P into Q that misses some face
f ∈ Q. Without loss of generality we can take P to be a subset of Q and the
monomorphism to be the identity, otherwise just replace P with its image.
Consider now the flag graphs G of P and H of Q. Every flag of P is a flag ofQ and two flags differ by one face in P iff they do so in Q, so G is an induced
subgraph of H . There is some flag in G, and f must belong to some flag of Q,
so ∅ ≠ G ⊊ H . By property 2 of abstract polytope lattices, their flag graphs are
d-regular. That is every node is connected to d other nodes. And, by property
3 their flag graphs are connected. This means G is a d-regular proper induced
subgraph of a connected d-regular graph, namely H , which is impossible.

To see this consider a path from a node that is in G to one that is not.
Let n be the last node along this path that is in G. This node must have d

neighbors in G and a neighbor that is not in G, the next node in the path, so
n must have at least d+1 neighbors in H contradicting the fact that H is also
d-regular. �

Proof of Theorem 1. We have the “only if” direction immediately since this is
just the matrix with entries equal to the inner products of vertices and cover-
tices. For the “if” direction we will construct a realization of the polytope
from a realization of its filled incidence matrix. Let P be a d dimensional
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abstract polytope lattice, and M = UΣV ∗ be the compact singular value de-
composition of a rank d filled incidence matrix of P. Now, let {wi} be the

rows of W = U
√
Σ, and {hj} be the rows of H = V

√
Σ, and P = conv({wi}).

We will show that P is a realization of P.
LetM ⊂ (I × J) be the pairs of indices for entries of M that are 1. This is

the incidence relation between vertices and covertices of P. By lemma 1 each
face a of P can be identified with each maxbiclique of vertices and covertices(Ia, Ja) of P, and moreover wi is in the hyperplane h=1j ∶= {⟨hj , ⋅ ⟩ = 1} for(i, j) ∈ M, but is in the open half space h<1j ∶= {⟨hj, ⋅ ⟩ < 1} for (i, j) ∉ M.
Also, since M has rank d so does W , and P has dimension at least d.

We will now construct a map from P to the face lattice of P and show that it
is an isomorphism. Let fa = P ⋂j∈Ja h

=1

j be the face of P we get by intersecting
it with the hyperplanes corresponding to covertices of a. We know this is a
face of P since these are all supporting hyperplanes of P .

First we see that a ↦ fa preserves order. In this context we require the
very strong condition that fa ⊆ fb iff a ≤ b. Suppose a ≤ b, then Ja ⊆ Jb and
⋂j∈Ja h

=1

j ⊆ ⋂j∈Jb
h=1j so fa ⊆ fb. For the other direction suppose a ≰ b, then

there is some i ∈ Ia but i ∉ Ib, so wi ∈ fa but wi ∉ fb and fa ⊈ fb. Thus order is
maintained.

We also have that a ↦ fa is an injection. To see this consider a pair of faces
ab of P that map to the same face fa = fb = f of P . With this wi ∈ f ⊂ h

=1

j for
any i ∈ Ia ∪ Ib and j ∈ Ja ∪ Jb, so mij = 1 and vi ≤ Fj where vi and Fj are the
corresponding vertices and facets of P respectively. Since (Ia, Ja) and (Ib, Jb)
are maxbicliques that are subsets of the same biclique (Ia∪Ib, Ja∪Jb) we must
have that a = b, and f is a monomorphism.

This induces an injection from a flag of P to a totally ordered set of P ’s
faces, which must be of the same size or less. A larger set cannot be injected
into a smaller one, so they must be the same size, and P must be of dimension
d. Now this is a monomorphism between abstract polytope lattices of the
same dimension, and by lemma 3 is therefore an isomorphism. Thus, P is a
realization of P. �
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