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NON-COMPACT VERSIONS OF EDWARDS’ THEOREM

NIHAT G. GOGUS, TONY L. PERKINS AND EVGENY A. POLETSKY

Abstract. Edwards’ Theorem establishes duality between a convex cone in
the space of continuous functions on a compact space and the set of repre-
senting or Jensen measures for this cone. In this paper we prove non-compact
versions of this theorem.

1. Introduction

Let X be a Hausdorff topological space X and let C(X) be the set of all contin-
uous functions on X with the topology of uniform convergence on compacta. With
each convex cone S ⊂ C(X) containing constants and a point x ∈ X we associate
the set JS

x of S-Jensen measures which are probability measures µ with compact
support such that µ(φ) ≥ φ(x) for all φ ∈ S. If φ is a function on X then its
S-envelope is

S(φ) = sup{ψ : ψ ∈ S, ψ ≤ φ}.

In 1965 Edwards proved ([E]) the following duality theorem:

Theorem 1.1 (Edwards’ Theorem). Let X be compact and let φ be a lower semi-

continuous function on X. Then

S(φ)(x) = inf{µ(φ) : µ ∈ JS
x (X)}.

Moreover, the infimum is attained.

This theorem found many applications in uniform algebras and pluri-potential
theory (see [Ga, G, W]). The theorem does not hold when X is not compact (see
an example in Section 3). However, the third author proved in [P] the following

Theorem 1.2. Let X be a domain in C
n and let S be the cone of continuous

plurisubharmonic functions on X. If φ is an upper semicontinuous function on X,

then

S̃(φ)(x) = inf{µ(φ) : µ ∈ JS
x (X)},

where

S̃(φ) = sup{u : u is plurisubharmonic on X,u ≤ φ}.

Moreover, the function S̃(φ) is plurisubharmonic.

While both theorems are almost identically shaped there are crucial differences.
The space in the second theorem is not compact and lower semicontinuity is re-
placed by upper semicontinuity. Moreover, the replacement is natural because
plurisubharmonic functions are upper semicontinuous by definition.

2000 Mathematics Subject Classification. Primary: 46A20; secondary: 46A55.
Key words and phrases. superlinear functionals, envelopes, representing measures, Jensen

measures.
The third author was supported by the NSF Grant DMS-0900877.

1

http://arxiv.org/abs/1012.3973v2


So the question appears: what is the natural version of Edwards’ Theorem on
non-compact spaces? In this paper we provide an answer to this question. Since the
original proof in [E] is based on the description of superlinear positive functionals
on C(X) in Section 2 we give the description of such functionals on C(X) when X
is a locally compact Hausdorff space countable at infinity. It allows us in Section 3
to prove the first non-compact version of Edwards’ Theorem.

Theorem 1.3. Let X be a locally compact Hausdorff space countable at infinity.

If φ ∈ C(X) then either

Sφ(x) = inf{µ(φ) : µ ∈ JS
x φ}

or S(φ) ≡ −∞.

As an example at the same section shows the dichotomy in this theorem cannot
be resolved. To get rid of it we introduce the notion of lower semicontinuous
multifunctions. Let P(X) be the set of regular Borel probability measures on
X with compact support. A multifunction (or a set) J ⊂ X × P(X) is lower

semicontinuous if for any x ∈ X and µ ∈ Jx = {ν : (x, ν) ∈ J} and every
neighborhood V of µ in C∗(X) there is a neighborhood W of x in X such that the
natural projection of (X × V ) ∩ J onto X contains W (see [G]).

As it happens the multifunction JS = {(x, µ) : x ∈ X,µ ∈ JS
x } is lower semi-

continuous when X is a domain in Rn or Cn and S is the cone of continuous
subharmonic functions or continuous plurisubharmonic functions. It is easy to see
this because a small translation µy(φ) = µ(φ(x+y)) of an S-Jensen measure is also
S-Jensen.

Under this assumption we obtain another non-compact version of Edwards’ The-

orem. Given a convex cone S ⊂ C(X) we denote by S̃ a convex cone of upper
semicontinuous functions φ on X such that µ(φ) ≥ u(x) for every x ∈ X and every
µ ∈ JS

x .

Theorem 1.4. Let X be a locally compact space countable at infinity and let S ∈
C(X) be a convex cone containing constants. If the multifunction JS is lower

semicontinuous then

S̃(φ)(x) = inf{µ(φ) : µ ∈ JS
x }

whenever φ is an upper semicontinuous function on X. Moreover, S̃(φ) ∈ S̃.

2. Superlinear operators

A functional F mapping C(X) into [−∞,∞) is called superlinear if:

(1) F (cφ) = cF (φ), c ≥ 0;
(2) F (φ1 + φ2) ≥ F (φ1) + F (φ2),

and positive if F (φ) ≥ 0 when φ ≥ 0.
If F is superlinear then F (−φ) ≤ −F (φ) because

F (−φ) + F (φ) ≤ F (−φ+ φ) = 0.

If, additionally, F is positive then F (φ1) ≤ F (φ2) if φ1 ≤ φ2, because

F (φ2) = F (φ2 − φ1 + φ1) ≥ F (φ2 − φ1) + F (φ1).

In further, we will consider spaces C(X) of continuous functions on a locally
compact Hausdorff space X countable at infinity. This means that every point of
X has a neighborhood with the compact closure and X is the union of countably
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many compact sets. The space C(X) will be endowed with the topology of uniform
convergence on compacta.

We will need two facts about spaces above.

Lemma 2.1. Let X be a locally compact Hausdorff space countable at infinity.

Then:

(1) X is the union of compact sets Xj, j = 1, 2, . . . , such that each Xj lies in

the interior Xo
j+1 of Xj+1;

(2) X is normal.

Proof. (1) By the definition X is the union of an increasing sequence of compact
sets Kj. Since X is locally compact we can cover K1 by finitely many open sets

Vm, 1 ≤ m ≤ n, with compact closures and let X1 = K1 ∪ (∪nm=1V j). Note that
X1 is compact. Let j1 be the first number such that Kj1 \ X1 6= ∅. We cover
Kj1 ∪X1 by finitely many open setsWm, 1 ≤ m ≤ n, with compact closures and let

X2 = Kj1 ∪X1 ∪ (∪nm=1W j). Note that X1 lies in the interior of X2. Continuing
this procedure we cover X by countably many compact sets Xj such that each Xj

lies in the interior of Xj+1.
(2) Let F and G be closed disjoint sets in X . We take compact sets Xj from

(1) and let Fj = F ∩ Xj and Gj = G ∩ Xj. Since any compact Hausdorff space
is normal there are open sets Uj and Vj in X such that Fj ⊂ Uj , Gj ⊂ Vj and

Uj ∩ Vj ∩ Xj = ∅. Define U ′
j = Uj ∩ Xo

j and V ′
j = Vj ∩ Xo

j . Now we let Ũ1 = U ′
1

and Ṽ1 = V ′
1 and define by induction

Ũj+1 = Ũj ∪ (U ′
j+1 \Xj) ∪ (Uj ∩ U

′
j+1 ∩ ∂Xj)

and

Ṽj+1 = Ṽj ∪ (V ′
j+1 \Xj) ∪ (Vj ∩ V

′
j+1 ∩ ∂Xj).

Clearly, Ũj ⊂ Ũj+1, Ṽj ⊂ Ṽj+1 and Ũj ∩ Ṽj = ∅. Let us show by induction

that the sets Ũj+1 and Ṽj+1 are open. Set X0 = ∅. Note that Ũ1 is open and

U ′
1 \X0 ⊂ Ũ1. Suppose that Ũj is open and contains U ′

j \Xj−1. Since the sets Ũj

and U ′
j+1 \Xj are open, to show that the set Ũj+1 is open it suffices to show that

any point x ∈ Uj ∩ U ′
j+1 ∩ ∂Xj has a neighborhood W lying in Ũj+1. For this we

take W ⊂ (Uj ∩ U
′
j+1) \Xj−1. Now W \Xj ⊂ U ′

j+1 \Xj ⊂ Ũj+1 and

W ∩Xo
j ⊂ (Uj \Xj−1) ∩X

o
j = U ′

j \Xj−1 ⊂ Ũj .

Hence W ⊂ Ũj+1. Thus the sets Ũj are open. The same reasoning shows that the

sets Ṽj are also open.

Evidently, Ũj and Ṽj form increasing sequences of open sets, Fj ⊂ Ũj+1 and

Gj ⊂ Ṽj+1. Moreover, the sets Ũj and Ṽj are disjoint. Hence, the sets U = ∪j Ũj
and V = ∪j Ṽj are disjoint and F ⊂ U and G ⊂ V . �

The main advantage of a locally compact Hausdorff space X countable at infinity
is the following lemma claiming that any positive linear functional on C(X) has a
compact support.

Lemma 2.2. Let X be a locally compact Hausdorff space countable at infinity. If

F is a positive linear functional on C(X), then there is a compact set K ⊂ X such

that Fφ = 0 whenever φ|K = 0.
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Proof. If X is compact then there is nothing to prove. Suppose that X is not
compact. Then by Lemma 2.1 X is the union of compact sets Xj , j = 1, 2, . . . ,
such that each Xj lies in the interior Xo

j+1 of Xj+1. Let us show that there is j0
such that F (φ) = 0 whenever suppφ ⊂ X \Xj0 and φ ≥ 0. If not then for every j
there is φj ∈ C(X) such that suppφj ⊂ X \Xj, φj ≥ 0 and F (φj) 6= 0. Multiplying
φj by an appropriate positive constant we also may assume that F (φj) = 1.

The function φ =
∑
φj is defined and is continuous because every point has a

neighborhood where only finitely many functions φj 6≡ 0. Since φ ≥
∑n

j=1 φj we

see that F (φ) ≥ n. Thus F is not defined on φ and this contradiction proves the
statement.

If φ ∈ C(X) is arbitrary then φ = φ+ + φ−, where φ+ = max{φ, 0} and φ− =
−max{−φ, 0}. If suppφ ⊂ X \Xj0 then suppφ∗ and suppφ− lie in X \Xj0 . Hence
F (φ+) = F (φ−) = 0. Thus F (φ) = 0. �

The following proposition describes positive linear functional on C(X).

Proposition 2.3. Let X be a locally compact space Hausdorff countable at infinity.

If µ is a positive linear functional on C(X), then µ ∈ C∗(X). Moreover, there is

a regular Borel measure with compact support which we will denote also by µ such

that

µ(φ) =

∫
φdµ.

Proof. By Lemma 2.2 and linearity of F there is a compact set K ⊂ X such
that Fφ = 0 whenever φ|K = 0. Let us define a functional µ′ on C(K) in the
following way: if φ ∈ C(K) then we take its continuous extension φ′ to X and let
µ′(φ) = µ(φ′). If φ1, φ2 ∈ C(X) and φ1 = φ2 on K then µ(φ1) = µ(φ2). Therefore,
the functional µ′ is well-defined. Moreover, if φ ≥ 0 on K, then replacing φ′ with
|φ′|, we see that µ′(φ) ≥ 0. By the Riesz’ Representation Theorem there is a regular
measure µ on K such that

µ′(φ) =

∫

K

φdµ.

If φ ∈ C(X) and φ′ is its restriction to K, then µ(φ) = µ′(φ′) and the lemma is
proved. �

The following theorem describes positive superlinear functionals on C(X). To
state it we will need the following constructions: if C is a convex cone in C(X) then
GC is a functional on C(X) equal to 0 on C and −∞ otherwise. Note that GC is
superlinear. Also for a given superlinear functional F we denote by F ∗ the set of
measures µ on X with compact support such that µ(φ) ≥ F (φ) for every φ ∈ C(X)
and let

F ′(φ) = inf{µ(φ); µ ∈ F ∗}

.

Theorem 2.4. Let X be a locally compact Hausdorff space countable at infinity.

A functional F on C(X) is positive and superlinear if and only if there is a convex

cone C ⊂ C(X) containing all non-negative functions such that

F (φ) = F ′(φ) +GC(φ).
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Proof. To prove the necessity we let C = {φ ∈ C(X) : F (φ) > −∞}. Clearly C
is a convex cone containing all non-negative functions. Let φ ∈ C. If t ≥ 0 then
F (tφ) = tF (φ). If t > 0 then F (−tφ) ≤ −tF (φ). Hence, on the line M = {tφ, t ∈
R} the functional f(tφ) = tF (φ) ≥ F (tφ). It is easy to see that the Hahn–Banach
theorem still holds when superlinear functionals can take −∞ as their values. Hence
there is a linear functional Gφ on C(X) such that Gφ ≥ F on C(X) and Gφ = f
on M.

If ψ ≥ 0 then F (ψ) ≥ 0 and, consequently, Gφ(ψ) ≥ 0. By Lemma 2.3 there is
a compactly supported measure µφ ∈ F ∗ such that Gφ(ψ) = µφ(ψ).

If F (φ) 6= −∞ then F (φ) = µφ(φ). On the other hand, µ(φ) ≥ F (φ) for any
µ ∈ F ∗. Therefore

Fφ = inf{µ(φ); µ ∈ F ∗}+GC(φ).

If φ 6∈ C then F (φ) = −∞ and GC(φ) = −∞ and again

Fφ = F ′(φ) +GC(φ).

To prove the converse we, firstly, note that the functional F ′(φ) is positive and
superlinear. If C is a convex cone in C(X) containing all non-negative functions,
then F = F ′ +GC is positive because GC(φ) = 0 when φ ≥ 0. Secondly, F (cφ) =
cF (φ), c ≥ 0, because both F ′ and GC have this property. And, thirdly, F is
superlinear because both F ′ and GC have this property. �

In general, F ′ 6= F . For example, let X = (0, 1) and let F (φ) = −∞ if
lim infx→1− φ(x) = −∞ and F (φ) = 0 otherwise. Clearly, F is superlinear and
positive but F ∗ = {0} and F ′ ≡ 0.

This examples misses an important property: there is a decreasing sequence
φj ∈ C(X) converging to φ ∈ C(X) but limF (φj) 6= F (φ). However, this property
is not sufficient for F to be equal to F ′. Indeed, let F (φ) = −∞ if infx∈(0,1) φ(x) < 0
and F (φ) = 0 otherwise. In this case, also F ∗ = {0} and F ′ ≡ 0 but if a decreasing
sequence φj ∈ C(X) converges to φ ∈ C(X) then limF (φj) = F (φ). Note that
F (−1) = −∞.

In the assumption that F (−1) > −∞ the following theorem gives the necessary
and sufficient condition for F ′ = F .

Theorem 2.5. Let X be a locally compact Hausdorff space countable at infinity

and let F be a positive and superlinear functional on C(X) such that F (−1) > −∞.

Then F = F ′ if and only if limF (φj) = F (φ) for every decreasing sequence φj ∈
C(X) converging to φ ∈ C(X).

Proof. If F = F ′ and a decreasing sequence φj ∈ C(X) converges to φ ∈ C(X),
then F (φ) ≤ limF (φj). On the other hand, if µ ∈ F ∗ then

limF (φj) ≤ limµ(φj) = µ(φ).

Hence,

limF (φj) ≤ inf{µ(φ); µ ∈ F ∗} = F ′(φ) = F (φ).

Thus limF (φj) = F (φ).
For the converse, we, firstly, note that if φ is bounded below by a constant c,

then F (φ) ≥ F (c) > −∞. Hence by Theorem 2.4 F (φ) = F ′(φ).
If F (φ) > −∞, then again Theorem 2.4 confirms that F (φ) = F ′(φ). If F (φ) =

−∞ then φ is unbounded below and the decreasing sequence of φj = max{φ,−j}
5



converges to φ. Consequently, limF (φj) = −∞. Since F (φj) = F ′(φj) we can find
measures µj ∈ F ∗ such that limµj(φj) = −∞. Hence

limµj(φ) ≤ limµj(φj) = −∞

and we see that F (φ) = F ′(φ). �

An operator E defined on C(X) and whose values are functions on X taking
values in [−∞,∞) is called superlinear if:

(1) E(cφ) = cE(φ), c ≥ 0;
(2) E(φ1 + φ2) ≥ Eφ1 + Eφ2,

and positive if E(φ1) ≤ E(φ2) when φ1 ≤ φ2.
Such an operator generates for every x ∈ X a set E∗

x of measures µ on X with
compact support such that µ(φ) ≥ E(φ)(x) for every φ ∈ C(X). Let

E′(φ)(x) = inf{µ(φ); µ ∈ E∗
x}.

As an immediate consequence of the previous results we can get the following
description of positive superlinear operators on C(X).

Corollary 2.6. Let X be a locally compact Hausdorff space countable at infinity.

An operator E on C(X) is positive and superlinear if and only if for every x ∈ X
there is a convex cone Cx ⊂ C(X) containing all non-negative functions such that

E(φ)(x) = E′(φ)(x) +GCx
(φ).

Moreover, if E(−1) > −∞, then

E(φ)(x) = E′φ(x)

if and only if limE(φj) = E(φ) for every decreasing sequence φj ∈ C(X) converging
to φ ∈ C(X).

3. Envelopes

Let us give two important examples of positive superlinear operators. Let S be a
convex cone in C(X) containing constants. This cone generates an operator defined
on the space of all functions on X by the formula

S(g)(x) = sup{u(x) : u ∈ S, u ≤ g}

if the set {u ∈ S, u ≤ g} is non-empty and we let Sg = −∞ otherwise. The lower-
semicontinuous function S(g) is called the S-envelope of a function g on X . Clearly,
S is a positive superlinear operator such that S(c) = c, c is a constant function,
and Sφ ≤ φ.

The cone S also generates a multifunction JS ⊂ X × P(X) whose fiber JS
x at

x is the set of all compactly supported measures µ such that µ(φ) ≥ φ(x) for all
φ ∈ S. Since S contains constants any µ ∈ JS is a probability measure. Clearly,
δx ∈ JS

x and JS
x is convex and weak-∗ closed. Moreover, the set JS is closed with

respect to the product topology on X ×C∗(X), where C∗(X) is equipped with the
weak-∗ topology.

At its turn the operator S generates a multifunction S∗ ⊂ X×P(X) whose fiber
at x is the set of all compactly supported measures µ such that µ(φ) ≥ S(φ)(x) for
all φ ∈ C(X).

Now we can prove the first non-compact version of Edwards’ theorem.
6



Proof of Theorem 1.3. By Corollary 2.6 for every x ∈ X there is a convex cone
Cx ⊂ C(X) containing all non-negative functions such that

S(φ)(x) = S′(φ)(x) +GCx
(φ).

Suppose that S(φ) 6≡ −∞. Then there is a function ψ in S such that ψ ≤ φ.
Hence S(φ)(x) 6= −∞ for all x ∈ X and, therefore, all cones GCx

are empty and
S(φ)(x) = S′(φ)(x).

Let us show that S∗ = JS . Indeed, S∗
x ⊂ JS

x since Sφ = φ whenever φ ∈ S. On
the other hand, if µ ∈ JS

x then µ(φ) ≥ φ(x) for every φ ∈ S and this means that
µ(ψ) ≥ Sψ(x) for every ψ ∈ C(X). Hence, µ ∈ S∗

x. Thus

S ′(φ) = inf{µ(φ) : µ ∈ JS
x φ}.

�

The dichotomy in Theorem 1.3 is unavoidable in the classical settings even if
we allow functions from S to take −∞ as their values. Indeed, let X = D2 be
the unit polydisk in C

2 and let S be the cone of all continuous plurisubharmonic
functions on X taking values at [−∞,∞). Take a negative subharmonic function
v on D such that v(1/n) = −∞, n = 2, 3, . . . and v(0) = −1. Let φ(z1, z2) =
max{v(z2),−1/(1− |z1|2)}. Then any continuous plurisubharmonic function u ≤ φ
on X is equal to −∞ when z2 = 1/n and, consequently, is equal to −∞ when
z2 = 0. Thus S(φ)(z1, 0) = −∞. On the other hand, v(z2) ≤ φ(z1, z2). Hence

inf{µ(φ) : µ ∈ JS
(0,0)} ≥ inf{µ(v) : µ ∈ JS

(0,0)}.

But by Theorem 1.2 the right side is equal −1 and we see that Theorem 1.3 fails
in this case.

4. The second version of Edwards’ Theorem

Lemma 4.1. Let X be a locally compact Hausdorff space countable at infinity. Let

φ be a locally bounded above function on X, let U be an open set in X and let

ψ ≥ φ be a continuous function on U . Then for every compact set K in X there is

a function f ∈ C(X) such that f ≥ φ on X and f = ψ on K.

Proof. By Lemma 2.1 X is the union of compact sets Xj , j = 1, 2, . . . , such that
each Xj lies in the interior Xo

j+1 of Xj+1. We may assume that K ⊂ Xo
1 and there

are numbers aj ≥ 0 such that φ ≤ aj on Xj . Since X is normal for j ≥ 2 there
are continuous functions φj ≥ 0 on X such that φj = aj on Xj \X0

j−1 and φj = 0
on Xj−2 ∪K (we let X0 = ∅). To define φ1 we take an open neighborhood W of
K such that W̄ ⊂ Xo

1 ∩ U and let φ1 to be a non-negative continuous function on
X equal to a1 on X \W and to 0 on K. We set φ0 as a non-negative continuous
function on X equal to ψ on W̄ .

It is easy to check that the function f =
∑∞

j=0 φj has all needed properties. �

This lemma has some important corollaries. To state them we introduce the
upper regularizations of a function φ on X . We define φ∗1 as the infimum of all
functions ψ ∈ C(X) such that ψ ≥ φ and let

φ∗2(x) = inf{sup
y∈U

φ(y) : U is open and x ∈ U}.

Clearly, φ∗1 is upper semicontinuous and φ∗1 ≥ φ∗2.
7



Corollary 4.2. If φ is a locally bounded above function on a locally compact Haus-

dorff space X countable at infinity, then φ∗1 = φ∗2 = φ∗.

Proof. Let ε > 0, x ∈ X and let U be a neighborhood of x such that c =
supy∈U φ(y) ≤ φ∗2(x) + ε. We take another neighborhood W of x such that W̄
is compact and lies in U . By Lemma 4.1 there is a continuous function ψ on X
equal to c on W̄ and greater or equal to φ on X . Hence, φ∗1(x) ≤ c ≤ φ∗2(x) + ε.
Since ε > 0 is arbitrary we see that φ∗1 = φ∗2. �

It is known that on metric spaces every upper semicontinuous function is the
limit of a decreasing sequence of continuous functions. Since our spaces are not
supposed to be metric the following corollary has some value.

Corollary 4.3. Let φ be an upper semicontinuous function on a locally compact

Hausdorff space X countable at infinity and let µ be a regular Borel measure on

X. Then for every ε > 0 there is a function ψ ∈ C(X) such that ψ ≥ φ and

µ(ψ) < µ(φ) + ε if µ(φ) > −∞ and µ(ψ) < −1/ε if µ(φ) = −∞.

Proof. We will prove this statement when µ(φ) > −∞. The case when µ(φ) = −∞
can be done in the same way. Let K = suppµ. There is c > 0 such that φ < c on
K and µ({φ ≤ −c}) < ε. We divide the interval (−c, c] into consecutive intervals
(cj , cj+1], j = 0, . . . , n, of length less than ε. Let Kj = φ−1((cj , cj+1]). Since µ is
a regular Borel measure we can find compact sets Kjm ⊂ Kj such that µ(Kjm) >
µ(Kj) − 1/m. By Lemma 4.1 there are continuous functions ψ′

m ≥ φ on X such
that ψ′

m = cj+1 on all Kjm. Let ψm = min{ψ′
1, . . . , ψ

′
m}. The sequence ψm is

decreasing to a function ψ and ψ = cj+1 on Kj except of a set of measure 0. Hence
µ(ψ) ≤ µ(φ)+ εµ(K)+ ε. Since the sequence ψm is decreasing there is m such that
µ(ψm) ≤ µ(φ) + εµ(K) + 2ε. �

The upper regularizations is frequently used when it preserves the subaverag-
ing inequality. This means that if a function φ is absolutely measurable, i. e.,
measurable with respect to any regular Borel measure, and satisfies the inequality
µ(φ) ≥ φ(x) for every x ∈ X and µ ∈ JS

x , then φ
∗ also has this property. As the

following theorem shows the lower semicontinuity of the multifunction JS suffice
for the upper regularizations to preserve the subaveraging inequality.

Theorem 4.4. Let X be a locally compact Hausdorff space countable at infinity

and let J ⊂ X × P(X) be a lower semicontinuous multifunction. If a function φ
is absolutely measurable and µ(φ) ≥ φ(x) for any x ∈ X and µ ∈ Jx, then φ∗ also

has the latter property.

Proof. Let µ ∈ Jx. By Corollary 4.3 for any ε > 0 there is a function ψ ∈ C(X)
such that ψ ≥ φ and µ(ψ) < µ(φ) + ε. Let V = {ν ∈ C∗(X) : ν(ψ) < µ(ψ) + ε}
and let W be a neighborhood of x lying in the natural projection of (V ×X) ∩ J
onto X . For any y ∈ W we select µy ∈ Jy ∩ V . Then

φ(y) ≤ µy(φ) ≤ µy(ψ) ≤ µ(ψ) + ε ≤ µ(φ) + 2ε ≤ µ(φ∗) + 2ε.

Hence φ∗(x) ≤ µ(φ∗) + 2ε for any ε > 0 and this means that φ∗(x) ≤ µ(φ∗). �

Let
S̃(g)(x) = sup{u(x) : u ∈ S̃, u ≤ g}

if the set {u ∈ S̃, u ≤ g} is non-empty and we let Sg = −∞ otherwise.
Now we can prove the second non-compact version of Edwards’ Theorem.
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Proof of Theorem 1.4. Firstly, we assume that φ is continuous and bounded below.
Let us show that the function

Eφ(x) = inf{µ(φ) : µ ∈ JS
x }

is upper semicontinuous. For this we take some ε > 0, x ∈ X and µ ∈ JS
x such

that Eφ(x) ≥ µ(φ) − ε. Let V = {ν ∈ C∗(X) : ν(φ) ≤ µ(φ) + ε}. Since JS is
lower semicontinuous there is a neighborhoodW of x in X such that for each point
y ∈ W we can find a measure ν ∈ JS

y ∩ V . Hence Eφ(y) ≤ µ(φ) + ε ≤ Eφ(x) + 2ε
and this proves the upper semicontinuity of Eφ.

Since S(φ) 6≡ −∞ by Theorem 1.3 S(φ) = Eφ. But the function S(φ) is lower
semicontinuous. Therefore, Eφ is continuous and, consequently, belongs to S. Since

Eφ ≤ φ this shows that S̃(φ) ≥ Eφ. On the other hand, if u ∈ S̃ and u ≤ φ, then

u(x) ≤ Eφ(x). Hence S̃(φ) ≤ Eφ and we see that S̃(φ) = Eφ.
If φ is a continuous function on X , then it is the limit of a decreasing sequence

of bounded below continuous functions φm = max{φm,−m}. It is easy to see
that Eφ = limm→∞Eφm

and that the sequence of the continuous functions Eφm
is

decreasing. Hence, the function Eφ is upper semicontinuous. Since all Eφm
∈ S̃,

the function Eφ also belongs to S̃ and we see that Eφ = S̃(φ).
If φ is upper semicontinuous then we consider the set A of all continuous functions

on X greater or equal to φ. By Corollary 4.3 this set is non-empty and let Aφ =
inf{Eψ, ψ ∈ A}.

The function Aφ is upper semicontinuous and Aφ ≤ φ by Corollary 4.3. To see

this just take µ = δx in the corollary. Let us show that Aφ ∈ S̃. For this we
take x ∈ X and µ ∈ JS

x and by Corollary 4.3 for every ε > 0 find a continuous
function f on X such that f ≥ Aφ and µ(f) < µ(Aφ) + ε. Since the support of µ
is compact and the function S(ψ) is upper semicontinuous for every ψ ∈ A, we can
find functions ψ1, . . . , ψm in A such that

min{Eψ1
, . . . , Eψm

} ≤ f + ε

on suppµ.
Let ψ = min{ψ1, . . . , ψm}. Since Eψj

≥ Eψ, 1 ≤ j ≤ m,

Eψ ≤ min{Eψ1
, . . . , Eψm

} ≤ f + ε

on suppµ. Hence

µ(Aφ) + 2ε ≥ µ(Eψ) ≥ Eψ(x) ≥ Aφ(x).

But ε can be as small as we want and, therefore, Aφ ∈ S̃.
Consequently, Eφ ≥ Aφ. But Eφ ≤ Eψ for every ψ ∈ A. Thus Eφ = Aφ =

S̃(φ). �
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