On Transverse Triangulations

Aleksey Zinger*

December 20, 2010

Abstract

We show that every smooth manifold admits a smooth triangulation transverse to a given smooth map. This removes the properness assumption on the smooth map used in an essential way in Scharlemann's construction [5].

1 Introduction

For $l \in \mathbb{Z}^{\geq 0}$, let $\Delta^l \subset \mathbb{R}^l$ denote the standard *l*-simplex. If $|K| \subset \mathbb{R}^N$ is a geometric realization of a simplicial complex K in the sense of [4, Section 3], for each *l*-simplex σ of K there is an injective linear map $\iota_{\sigma} \colon \Delta^l \longrightarrow |K|$ taking Δ^l to $|\sigma|$.¹ If X is a smooth manifold, a topological embedding $\mu \colon \Delta^l \longrightarrow X$ is a smooth embedding if there exist an open neighborhood Δ^l_{μ} of Δ^l in \mathbb{R}^l and a smooth embedding $\tilde{\mu} \colon \Delta^l_{\mu} \longrightarrow X$ so that $\tilde{\mu}|_{\Delta^l} = \mu$. A triangulation of a smooth manifold X is a pair $T = (K, \eta)$ consisting of a simplicial complex and a homeomorphism $\eta \colon |K| \longrightarrow X$ such that

$$\eta \circ \iota_{\sigma} \colon \Delta^l \longrightarrow X$$

is a smooth embedding for every *l*-simplex σ in K and $l \in \mathbb{Z}^{\geq 0}$. If $T = (K, \eta)$ is a triangulation of X and $\psi: X \longrightarrow X$ is a diffeomorphism, then $\psi_* T = (K, \psi \circ \eta)$ is also a triangulation of X.

Theorem 1 If X, Y are smooth manifolds and $h: Y \longrightarrow X$ is a smooth map, there exists a triangulation (K, η) of X such that h is transverse to $\eta|_{\text{Int } \sigma}$ for every simplex $\sigma \in K$.

This theorem is stated in [7] as Lemma 2.3 and described as an obvious fact. As pointed out to the author by Matthias Kreck, Scharlemann [5] proves Theorem 1 under the assumption that the smooth map h is proper, and his argument makes use of this assumption in an essential way. For the purposes of [7], a transverse C^1 -triangulation would suffice, and the existence of a such triangulation is fairly evident from the point of view of Sard-Smale Theorem [6, (1.3)]. In this note we give a detailed proof of Theorem 1 as stated above, using Sard's theorem [2, Section 2].

The author would like to thank M. Kreck for detailed comments and suggestions on [7] and earlier versions of this note, as well as D. McDuff and J. Milnor for related discussions.

^{*}Partially supported by DMS grant 0846978

¹i.e. ι_{σ} takes the vertices of Δ^{l} to the vertices of $|\sigma|$ and is linear between them, as in [7, Footnote 5]

2 Outline of proof of Theorem 1

If K is a simplicial complex, we denote by sd K the barycentric subdivision of K. For any nonnegative integer l, let K_l be the *l*-th skeleton of K, i.e. the subcomplex of K consisting of the simplices in K of dimension at most *l*. If σ is a simplex in a simplicial complex K with geometric realization |K|, let

$$\operatorname{St}(\sigma, K) = \bigcup_{\sigma \subset \sigma'} \operatorname{Int} \sigma'$$

be the star of σ in K, as in [4, Section 62], and $b_{\sigma} \in \operatorname{sd} K$ the barycenter of σ . The main step in the proof of Lemma 2.3 is the following observation.

Proposition 2 Let $h: Y \longrightarrow X$ be a smooth map between smooth manifolds. If (K, η) is a triangulation of X and σ is an l-simplex in K, there exists a diffeomorphism $\psi_{\sigma}: X \longrightarrow X$ restricting to the identity outside of $\eta(\operatorname{St}(b_{\sigma}, \operatorname{sd} K))$ so that $\psi_{\sigma} \circ \eta|_{\operatorname{Int} \sigma}$ is transverse to h.

If σ and σ' are two distinct simplices in K of the same dimension l,

$$\operatorname{St}(b_{\sigma}, \operatorname{sd} K) \cap \operatorname{St}(b_{\sigma'}, \operatorname{sd} K) = \emptyset.$$
(1)

Since ψ_{σ} is the identity outside of $\eta(\operatorname{St}(b_{\sigma}, \operatorname{sd} K))$ and the collection $\{\operatorname{St}(b_{\sigma}, \operatorname{sd} K)\}$ is locally finite, the composition $\psi_l: X \longrightarrow X$ of all diffeomorphisms $\psi_{\sigma}: X \longrightarrow X$ taken over all *l*-simplices σ in Kis a well-defined diffeomorphism of X.² Since $\psi_l \circ \eta|_{|\sigma|} = \psi_{\sigma} \circ \eta|_{|\sigma|}$ for every *l*-simplex σ in K, we obtain the following conclusion from Proposition 2.

Corollary 3 Let $h: Y \longrightarrow X$ be a smooth map between smooth manifolds. If (K, η) is a triangulation of X, for every $l = 0, 1, ..., \dim X$, there exists a diffeomorphism $\psi_l: X \longrightarrow X$ restricting to the identity on $\eta(|K_{l-1}|)$ so that $\psi_l \circ \eta|_{\text{Int } \sigma}$ is transverse to h for every l-simplex σ in K.

This corollary implies Theorem 1. By [3, Chapter II], X admits a triangulation (K, η_{-1}) . By induction and Corollary 3, for each $l = 0, 1, ..., \dim X - 1$ there exists a triangulation $(K, \eta_l) = (K, \psi_l \circ \eta_{l-1})$ of X which is transverse to h on every open simplex in K of dimension at most l.

3 Proof of Proposition 2

Lemma 4 For every $l \in \mathbb{Z}^+$, there exists a smooth function $\rho_l \colon \mathbb{R}^l \longrightarrow \overline{\mathbb{R}}^+$ such that

$$\rho_l^{-1}(\mathbb{R}^+) = \operatorname{Int} \Delta^l.$$

Proof: Let $\rho \colon \mathbb{R} \longrightarrow \mathbb{R}$ be the smooth function given by

$$\rho(r) = \begin{cases} e^{-1/r}, & \text{if } r > 0; \\ 0, & \text{if } r \le 0. \end{cases}$$

 $^{^{2}}$ The locally finite property implies that the composition of these diffeomorphisms in any order is a diffeomorphism;

by (1), these diffeomorphisms commute and so the composition is independent of the order.

The smooth function $\rho_l : \mathbb{R}^l \longrightarrow \mathbb{R}$ given by

$$\rho_l(t_1,\ldots,t_n) = \rho\left(1 - \sum_{i=1}^{i=l} t_i\right) \cdot \prod_{i=1}^{i=l} \rho(t_i)$$

then has the desired property.

Lemma 5 Let (K,η) be a triangulation of a smooth manifold X and σ an l-simplex in K. If

$$\tilde{\mu}_{\sigma} \colon \Delta^{l}_{\sigma} \times \mathbb{R}^{m-l} \longrightarrow U_{\sigma} \subset X$$

is a diffeomorphism onto an open neighborhood U_{σ} of $\eta(|\sigma|)$ in X such that $\tilde{\mu}_{\sigma}(t,0) = \eta(\iota_{\sigma}(t))$ for all $t \in \Delta_{\sigma}$, there exists $c_{\sigma} \in \mathbb{R}^+$ such that

$$\{(t,v)\in (\operatorname{Int}\Delta^l)\times\mathbb{R}^{m-l}\colon |v|\leq c_{\sigma}\rho_l(t)\}\subset \tilde{\mu}_{\sigma}^{-1}\big(\eta(\operatorname{St}(b_{\sigma},\operatorname{sd} K))\big).$$

Proof: It is sufficient to show that there exists $c_{\sigma} > 0$ such that

$$\{(t,v)\in(\operatorname{Int}\Delta^l)\times\mathbb{R}^{m-l}\colon |v|\leq c_{\sigma}\rho_l(t)\}\subset\tilde{\mu}_{\sigma}^{-1}\big(\eta(\operatorname{St}(\sigma,K))\big).^3$$

We assume that 0 < l < m. Suppose $(t_p, v_p) \in (Int \Delta^l) \times (\mathbb{R}^{m-l} - 0)$ is a sequence such that

$$(t_p, v_p) \notin \tilde{\mu}_{\sigma}^{-1} \big(\eta(\operatorname{St}(\sigma, K)) \big), \qquad |v_p| \le \frac{1}{p} \rho_l(t_p).$$
 (2)

Since $\eta(\operatorname{St}(\sigma, K))$ is an open neighborhood of $\eta(\operatorname{Int} \sigma)$ in X, by shrinking v_p and passing to a subsequence we can assume that

$$(t_p, v_p) \in \tilde{\mu}_{\sigma}^{-1}\big(\eta(|\tau'|)\big) \subset \tilde{\mu}_{\sigma}^{-1}\big(\eta(|\tau|)\big)$$
(3)

for an *m*-simplex τ in *K* and a face τ' of τ so that $\sigma \not\subset \tau'$, $\tau' \not\subset \sigma$, and $\sigma \subset \tau$. Let $\iota_{\tau} \colon \Delta^m \longrightarrow |K|$ be an injective linear map taking Δ^m to $|\tau|$ so that

$$\iota_{\tau}^{-1}(|\sigma|) = \Delta^m \cap \mathbb{R}^l \times 0 \subset \mathbb{R}^l \times \mathbb{R}^{m-l}, \qquad \iota_{\tau}^{-1}(|\tau'|) = \Delta^m \cap 0 \times \mathbb{R}^{m-1} \subset \mathbb{R}^1 \times \mathbb{R}^{m-1}.$$
(4)

Choose a smooth embedding $\mu_{\tau} : \Delta_{\tau}^m \longrightarrow X$ from an open neighborhood of Δ^m in \mathbb{R}^m such that $\mu_{\tau}|_{\Delta^m} = \eta \circ \iota_{\tau}$. Let ϕ be the first component of the diffeomorphism

$$\mu_{\tau}^{-1} \circ \tilde{\mu}_{\sigma} \colon \tilde{\mu}_{\sigma}^{-1} \big(\mu_{\tau}(\Delta_{\tau}^{m}) \big) \longrightarrow \mu_{\tau}^{-1} \big(\mu_{\sigma}(\Delta_{\sigma}^{l} \times \mathbb{R}^{m-l}) \big) \subset \mathbb{R}^{1} \times \mathbb{R}^{m-1} \,.$$

By (3), the second assumption in (4), the continuity of $d\phi$, and the compactness of Δ^l ,

$$\left|\phi(t_p, 0)\right| = \left|\phi(t_p, 0) - \phi(t_p, v_p)\right| \le C|v_p| \qquad \forall p,$$
(5)

for some C > 0. On the other hand, by the first assumption in (4), the vanishing of ρ_l on Bd Δ^l , the continuity of $d\rho_l$, and the compactness of Δ^l ,

$$\left|\rho_l(t_p)\right| \le C \left|\phi(t_p, 0)\right| \qquad \forall \, p,\tag{6}$$

for some C > 0. The second assumption in (2), (5), and (6) give a contradiction for $p > C^2$.

³If K' is the subdivision of K obtained by adding the vertices $b_{\sigma'}$ with $\sigma' \supseteq \sigma$, then $\operatorname{St}(b_{\sigma}, \operatorname{sd} K) = \operatorname{St}(\sigma, K')$.

Lemma 6 Let $h: Y \longrightarrow X$ be a smooth map between smooth manifolds, (K, η) a triangulation of X, σ an l-simplex in K, and

$$\tilde{\mu}_{\sigma} \colon \Delta^{l}_{\sigma} \times \mathbb{R}^{m-l} \longrightarrow U_{\sigma} \subset X$$

a diffeomorphism onto an open neighborhood U_{σ} of $\eta(|\sigma|)$ in X such that $\tilde{\mu}_{\sigma}(t,0) = \eta(\iota_{\sigma}(t))$ for all $t \in \Delta_{\sigma}$. For every $\epsilon > 0$, there exists $s_{\sigma} \in C^{\infty}(\operatorname{Int} \Delta^{l}; \mathbb{R}^{m-l})$ so that the map

$$\widetilde{\mu}_{\sigma} \circ (\mathrm{id}, s_{\sigma}) \colon \mathrm{Int} \, \Delta^l \longrightarrow X$$
(7)

is transverse to h,

$$\left|s_{\sigma}(t)\right| < \epsilon^{2} \rho_{l}(t) \quad \forall t \in \operatorname{Int} \Delta^{l}, \qquad \lim_{t \longrightarrow \operatorname{Bd} \Delta^{l}} \rho_{l}(t)^{-i} \left|\nabla^{j} s_{\sigma}(t)\right| = 0 \quad \forall i, j \in \mathbb{Z}^{\geq 0}, \tag{8}$$

where $\nabla^j s_{\sigma}$ is the multi-linear functional determined by the *j*-th derivatives of s_{σ} .

Proof: The smooth map

$$\phi \colon \operatorname{Int} \Delta^l \times \mathbb{R}^{m-l} \longrightarrow X, \qquad \phi(t,v) = \tilde{\mu}_{\sigma} \left(t, \mathrm{e}^{-1/\rho_l(t)} v \right)$$

is a diffeomorphism onto an open neighborhood U'_{σ} of $\eta(\operatorname{Int} \sigma)$ in X. The smooth map (7) with $s_{\sigma} = e^{-1/\rho_l(t)}v$ is transverse to h if and only if $v \in \mathbb{R}^{m-l}$ is a regular value of the smooth map

$$\pi_2 \circ \phi^{-1} \circ h \colon h^{-1}(U'_{\sigma}) \longrightarrow \mathbb{R}^{m-l}$$

where $\pi_2: \operatorname{Int} \Delta^l \times \mathbb{R}^{m-l} \longrightarrow \mathbb{R}^{m-l}$ is the projection onto the second component. By Sard's Theorem, the set of such regular values is dense in \mathbb{R}^{m-l} . Thus, the map (7) with $s_{\sigma} = e^{-1/\rho_l(t)}v$ is transverse to *h* for some $v \in \mathbb{R}^{m-l}$ with $|v| < \epsilon^2$. The second statement in (8) follows from $\rho_l|_{\operatorname{Bd}} \Delta^l = 0$.

Corollary 7 Let $h: Y \longrightarrow X$ be a smooth map between smooth manifolds, (K, η) a triangulation of X, σ an l-simplex in K, and

$$\tilde{\mu}_{\sigma} \colon \Delta^{l}_{\sigma} \times \mathbb{R}^{m-l} \longrightarrow U_{\sigma} \subset X$$

a diffeomorphism onto an open neighborhood U_{σ} of $\eta(|\sigma|)$ in X such that $\tilde{\mu}_{\sigma}(t,0) = \eta(\iota_{\sigma}(t))$ for all $t \in \Delta_{\sigma}$. For every $\epsilon > 0$, there exists a diffeomorphism ψ'_{σ} of $\Delta^{l}_{\sigma} \times \mathbb{R}^{m-l}$ restricting to the identity outside of

$$\{(t,v)\in(\operatorname{Int}\Delta^l)\times\mathbb{R}^{m-l}: |v|\leq\epsilon\rho_l(t)\}$$

so that the map $\tilde{\mu}_{\sigma} \circ \psi'_{\sigma}|_{\text{Int }\Delta^l \times 0}$ is transverse to h.

Proof: Choose $\beta \in C^{\infty}(\mathbb{R}; [0, 1])$ so that

$$\beta(r) = \begin{cases} 1, & \text{if } r \leq \frac{1}{2}; \\ 0, & \text{if } r \geq 1. \end{cases}$$

Let $C_{\beta} = \sup_{r \in \mathbb{R}} |\beta'(r)|$. With s_{σ} as provided by Lemma 6, define

$$\psi'_{\sigma} \colon \Delta^{l}_{\sigma} \times \mathbb{R}^{m-l} \longrightarrow \Delta^{l}_{\sigma} \times \mathbb{R}^{m-l} \quad \text{by}$$
$$\psi'_{\sigma}(t,v) = \begin{cases} \left(t, v + \beta \left(\frac{|v|}{\epsilon \rho_{l}(t)}\right) s_{\sigma}(t)\right), & \text{if } t \in \text{Int } \Delta^{l};\\ (t,v), & \text{if } t \notin \text{Int } \Delta^{l}. \end{cases}$$

The restriction of this map to $(Int \Delta^l) \times \mathbb{R}^{m-l}$ is smooth and its Jacobian is

$$\mathcal{J}\psi_{\sigma}'|_{(t,v)} = \begin{pmatrix} \mathbb{I}_{l} & 0\\ \beta\left(\frac{|v|}{\epsilon\rho_{l}(t)}\right) \nabla s_{\sigma}(t) - \beta'\left(\frac{|v|}{\epsilon\rho_{l}(t)}\right) \frac{|v|}{\epsilon\rho_{l}(t)} \frac{s_{\sigma}(t)}{\rho_{l}(t)} \nabla \rho_{l} & \mathbb{I}_{m-l} + \beta'\left(\frac{|v|}{\epsilon\rho_{l}(t)}\right) \frac{s_{\sigma}(t)}{\epsilon\rho_{l}(t)} \frac{v^{tr}}{|v|} \end{pmatrix}.$$
(9)

By the first property in (8), this matrix is non-singular if $\epsilon < 1/C_{\beta}$. If W is any linear subspace of \mathbb{R}^{m-l} containing $s_{\sigma}(t)$,

$$\psi'_{\sigma}(t \times W) \subset t \times W, \qquad \psi'_{\sigma}(t, v) = (t, v) \quad \forall v \in W \text{ s.t. } |v| \ge \epsilon \rho_l(t).$$

Thus, ψ'_{σ} is a bijection on $t \times W$, a diffeomorphism on $(\operatorname{Int} \Delta^l) \times \mathbb{R}^{m-l}$, and a bijection on $\Delta^l_{\sigma} \times \mathbb{R}^{m-l}$.

Since $\beta(r) = 0$ for $r \ge 1$, $\psi'_{\sigma}(t, v) = (t, v)$ unless $t \in \text{Int } \Delta^l$ and $|v| < \epsilon \rho_l(t)$. It remains to show that ψ'_{σ} is smooth along

$$\overline{\left\{(t,v)\in(\operatorname{Int}\Delta^l)\times\mathbb{R}^{m-l}\colon |v|\leq\epsilon\rho_l(t)\right\}} - (\operatorname{Int}\Delta^l)\times\mathbb{R}^{m-l} = (\operatorname{Bd}\Delta^l)\times 0.$$

Since $|s_{\sigma}(t)| \longrightarrow 0$ as $t \longrightarrow \operatorname{Bd}\Delta^{l}$ by the first property in (8), ψ'_{σ} is continuous at all $(t, 0) \in (\operatorname{Bd}\Delta^{l}) \times 0$. By the first property in (8), ψ'_{σ} is also differentiable at all $(t, 0) \in (\operatorname{Bd}\Delta^{l}) \times 0$, with the Jacobian equal to \mathbb{I}_{m} . By (9) and the compactness of Δ^{l} ,

$$\left|\mathcal{J}\psi_{\sigma}'|_{(t,v)} - \mathbb{I}_{m}\right| \leq C\left(|\nabla s_{\sigma}(t)| + \rho(t)^{-1}|s_{\sigma}(t)|\right) \quad \forall (t,v) \in (\operatorname{Int} \Delta^{l}) \times \mathbb{R}^{m-l}$$

for some C > 0. So $\mathcal{J}\psi'_{\sigma}$ is continuous at (t, 0) by the second statement in (8), as well as differentiable, with the differential of $\mathcal{J}\psi'_{\sigma}$ at (t, 0) equal to 0. For $i \ge 2$, the *i*-th derivatives of the second component of ψ'_{σ} at $(t, v) \in (\text{Int } \Delta^l) \times \mathbb{R}^{m-l}$ are linear combinations of the terms

$$\beta^{\langle i_1 \rangle} \left(\frac{|v|}{\epsilon \rho_l(t)} \right) \cdot \left(\frac{|v|}{\epsilon \rho_l(t)} \right)^{i_1} \cdot \prod_{k=1}^{k=j_1} \left(\frac{\nabla^{p_k} \rho_l}{\rho_l(t)} \right) \cdot \frac{v_J}{|v|^{2j_2}} \cdot \nabla^{i_2} s_{\sigma}(t) \,,$$

where $i_1, i_2, j_1, j_2 \in \mathbb{Z}^{\geq 0}$ and $p_1, \ldots, p_{j_1} \in \mathbb{Z}^+$ are such that

$$i_1 + (p_1 + p_2 + \ldots + p_{j_1} - j_1) + i_2 = i, \qquad j_1 + j_2 \le i_1,$$

and v_J is a j_2 -fold product of components of v. Such a term is nonzero only if $\epsilon \rho_l(t)/2 < |v| < \epsilon \rho_l(t)$ or $i_1 = 0$ and $|v| < \epsilon \rho_l(t)$. Thus, the *i*-th derivatives of ψ'_{σ} at $(t, v) \in (\text{Int } \Delta^l) \times \mathbb{R}^{m-l}$ are bounded by

$$C_i \sum_{i_1+i_2 \le i} \rho_l(t)^{-i_1} \left| \nabla^{i_2} s_\sigma(t) \right|$$

for some constant $C_i > 0$. By the second statement in (8), the last expression approaches 0 as $t \longrightarrow \operatorname{Bd} \Delta^l$ and does so faster than ρ_l . It follows that ψ'_{σ} is smooth at all $(t, 0) \in (\operatorname{Bd} \Delta^l) \times 0$.

Proof of Proposition 2: Let Δ_{σ}^{l} be a contractible open neighborhood of Δ^{l} in \mathbb{R}^{l} and $\mu_{\sigma} : \Delta_{\sigma}^{l} \longrightarrow X$ a smooth embedding so that $\mu_{\sigma}|_{\Delta^{l}} = \eta \circ \iota_{\sigma}$. By the Tubular Neighborhood Theorem [1, (12.11)], there exist an open neighborhood U_{σ} of $\mu_{\sigma}(\Delta_{\sigma}^{l})$ in X and a diffeomorphism

$$\widetilde{\mu}_{\sigma} \colon \Delta^{l}_{\sigma} \times \mathbb{R}^{m-l} \longrightarrow U_{\sigma} \quad \text{s.t.} \quad \widetilde{\mu}_{\sigma}(t,0) = \mu_{\sigma}(t) \quad \forall t \in \Delta^{l}_{\sigma} \, .4$$

⁴Since Δ_{σ}^{l} is contractible, the normal bundle to the embedding μ_{σ} is trivial.

Let $c_{\sigma} > 0$ be as in Lemma 5 and ψ'_{σ} as in Corollary 7 with $\epsilon = c_{\sigma}$. The diffeomorphism

$$\psi_{\sigma} = \tilde{\mu}_{\sigma} \circ \psi'_{\sigma} \circ \tilde{\mu}_{\sigma}^{-1} \colon U_{\sigma} \longrightarrow U_{\sigma}$$

is then the identity on $U_{\sigma} - \operatorname{St}(b_{\sigma}, \operatorname{sd} K)$. Since ψ_{σ} is also the identity outside of a compact subset of U_{σ} , it extends by identity to a diffeomorphism on all of X.

Department of Mathematics, SUNY, Stony Brook, NY 11790-3651 azinger@math.sunysb.edu

References

- T. Bröcker and K. Jänich, Introduction to Differential Topology, Cambridge University Press, 1982.
- [2] J. Milnor, Topology from a Differentiable Viewpoint, Princeton University Press, 1997.
- [3] J. Munkres, *Elementary Differential Topology*, Princeton University Press, 1966.
- [4] J. Munkres, *Elements of Algebraic Topology*, Addison-Wesley, 1994.
- [5] M. Scharlemann, Transverse Whitehead triangulations, Pacific J. Math 80 (1979), no. 1, 245– 251.
- S. Smale, An infinite-dimensional version of Sard's Theorem, American J. Math, 87 (1965), no. 4, 861–866.
- [7] A. Zinger, Pseudocycles and Integral Homology, Trans. AMS 360 (2008), no. 5, 2741-2765.