
ar
X

iv
:1

01
2.

41
06

v1
  [

m
at

h.
A

G
] 

 1
8 

D
ec

 2
01

0

EQUATIONS IN SIMPLE LIE ALGEBRAS

TATIANA BANDMAN, NIKOLAI GORDEEV, BORIS KUNYAVSKĬI,
EUGENE PLOTKIN

Abstract. Given an element P (X1, . . . , Xd) of the free Lie K-
algebra Ld, for any Lie algebra g we can consider the induced
polynomial map P : gd → g. Assuming that K is an arbitrary
field of characteristic 6= 2, we prove that if P is not an identity in
sl(2,K), then this map is dominant for any Chevalley algebra g.
This result can be viewed as a weak infinitesimal counterpart of
Borel’s theorem on the dominancy of the word map on connected
semisimple algebraic groups.

We prove that for the Engel monomials [[[X,Y ], Y ], . . . , Y ] and,
more generally, for their linear combinations, this map is, moreover,
surjective onto the set of noncentral elements of g provided that
the ground field K is big enough, and show that for monomials
of large degree the image of this map contains no nonzero central
elements.

We also discuss consequences of these results for polynomial
maps of associative matrix algebras.

1. Introduction

For a given element P (X1, . . . , Xd) of the free Lie K-algebra Ld on
the finite set {X1, . . . , Xd} over a given field K, and a given Lie algebra
g over K, one can ask the following question:

Question 1.1. Is the equation

P (X1, . . . , Xd) = A

solvable
a) for all A ∈ g,

or, at least,
b) for a generic A ∈ g?

In the present paper we consider the following case. Let R be a root
system and let Π be a simple root system corresponding to R. Further,
let L(R,C) be a semisimple complex Lie algebra. Then there exists a
Chevalley basis {hα}α∈Π ∪ {eβ}β∈R of L(R,C) such that

1) [eα, e−α] = hα for every α ∈ Π;
2) hβ := [eβ , e−β] ∈

∑

α∈Π Zhα for every β ∈ R;
3) [hβ, hγ] = 0 for every β, γ ∈ R;

4) [hβ, eγ ] =
2(β,γ)
(β,β)

eγ for every β, γ ∈ R (note that 2(β,γ)
(β,β)

= 0,±1,±2,±3);

5) [eβ, eγ ] = 0 if β + γ /∈ R;
1
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6) [eβ, eγ ] = pβ,γeβ+γ if β + γ ∈ R (note that pβ,γ = ±1,±2,±3).
One can now define the corresponding Lie algebra over any prime

field F using the same basis and relations 1)–6) in the case F = Q

or the same basis and relations 1)-6) modulo p in the case F = Fp.
Then one can define the Lie algebra L(R, K) over any field K using
the same basis and relations induced by 1.-6. We will denote such an
algebra by L(R, K) and call it a Chevalley algebra. The Chevalley
algebra L(R, K) decomposes into the sum

∑

i L(Ri, K) where R = ∪iRi

is the decomposition of the root system R into the disjoint union of
irreducible root subsystems. The Lie algebras L(Ri, K) are not simple
if the characteristic of K is not a “very good prime” [Ca]. However, if
Ri 6= A1,Br,Cr, F4 when char(K) = 2 and Ri 6= G2 when char(K) = 3,
the algebra L(Ri, K)/zi is simple (here zi is the centre of L(Ri, K)).
Thus, if the Lie algebra L(Ri, K) has no components pointed out above,
the quotient L(R, K)/z (where z is the centre of L(R, K)) is a semisim-
ple Lie algebra.

In this paper we consider maps P (X1, . . . , Xd) : g
d → g for semisim-

ple Lie algebras g = L(R, K)/z which are quotients of Chevalley alge-
bras modulo the centre. Such algebras are called “classical” semisimple
Lie algebras (abusing the terminology accepted in the characteristic
zero case in order to distinguish from Lie algebras of Cartan type ap-
pearing in positive characteristics).

Our motivation lies in widely discussed group-theoretic analogues of
Question 1.1:

Question 1.2. Let w(x1, . . . , xd) be an element of the free group Fd

on the finite set {x1, . . . , xd} (i.e., a word in xi and x−1
i ) and a group

G be given. Is the equation

w(x1, . . . , xd) = g

solvable
a) for all g ∈ G,

or, at least,
b) for a generic g ∈ G?

If G is a connected semisimple algebraic K-group, a theorem of Borel
[Bo2], stating that the word map Gd → G is dominant whenever w 6= 1,
gives a positive answer to part b). One can, however, easily produce ex-
amples where the word map is not surjective and so the answer to part
a) is negative (see [Bo2] and references therein). Some particular words
have been extensively studied, and Question 1.2a has been answered
in the affirmative. Say, if d = 2 and w(x, y) = [x, y] (the commutator),
the positive answer is known long ago for the connected semisimple
compact topological groups [Got], connected complex semisimple Lie
groups [PW] and algebraic groups defined over an algebraically closed
field [Ree], as well as for some simple groups over reals [Dj] and more
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general fields [Th1], [Th2]. In the case where G is a finite (nonabelian)
simple group, Question 1.2 for this word constitutes an old problem
posed by Ore in 1950s and solved very recently in [LOST]; on the way
to this solution, part b) was thoroughly investigated, and several dif-
ferent approaches to the definition of a “generic” element have been
tried, see, e.g., [Gow], [EG], [Sh1] (the last paper contains a survey
of some recent developments). Note that the simplicity assumption is
essential: even for groups very close to simple, the answer to Question
1.2a may be negative; say, some quasisimple groups contain central
elements that are not commutators, see [Th1], [Dj] for infinite groups
and [Bl] for finite groups. One has to note that the question on the
existence of a simple group not every element of which is a commutator
remained open for a long time. First examples of such groups appeared
in geometric context [BG], where the groups under consideration were
infinitely generated; later on there were constructed finitely generated
groups with the same property [Mu]. These are counter-examples in
very strong sense: the so-called commutator width, defined as supre-
mum of the minimal number of commutators needed for a representa-
tion of a given element as a product of commutators, may be arbitrarily
large or even infinite [Mu, Theorems 4 and 5].

Similar questions for words more complicated than the commutator
remain widely open (see, however, [GS], [Sh2] for new approaches to-
wards part b), and [BGG], where a particular case G = PSL(2, q) and
w an Engel word is treated).

It is worth noting that analogues of Questions 1.1 and 1.2 for asso-
ciative algebras have also been intensely investigated (first questions of
such kind go back to Kaplansky), see [KBMR] and references therein.
In a sense, the case of Lie algebras treated in the present paper may be
viewed as a sort of “bridge” between groups and associative algebras
in what concerns dominancy and surjectivity of polynomial maps; see
Remark 5.1 below.

Going over to infinitesimal analogues, one can first mention that
the equation [X, Y ] = A is solvable for all A in any classical split
semisimple Lie algebra g, under the assumption that the ground field
K is sufficiently large. (Here, of course, brackets stand for the Lie
product.) This fact was established by Brown [Br], and in [Hi] estimates
on the size of K were improved.

Our first results (Section 3) concern the general case where we are
given an element P (X1, . . . , Xd) of the free Lie K-algebra Ld. Then
for any Lie algebra g we can consider the induced polynomial map
P : gd → g. Assuming that K is an arbitrary field of characteristic
6= 2, we prove that if P is not an identity in sl(2, K), then this map is
dominant for any Chevalley algebra g. This result can be viewed as a
weak infinitesimal counterpart of Borel’s theorem on the dominancy of
the word map on connected semisimple algebraic groups.
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Going over from dominancy to surjectivity (Section 4), we prove that
for the Engel monomials [[[X, Y ], Y ], . . . , Y ] and, more generally, for
their linear combinations, the image of the corresponding map contains
the set of noncentral elements of g provided that the ground field K
is big enough. We show that for Engel monomials of large degree this
image contains no nonzero central elements.

We also discuss consequences of these results for polynomial maps
of associative matrix algebras as well as some other possible general-
izations (Section 5).

2. Preliminaries. Chevalley and classical Lie algebras

2.1. First recall that a K-morphism f : V → W of algebraic K-
varieties (=reduced K-schemes of finite type) is called dominant if its
image f(V ) is Zariski dense in W . We will mostly deal with the case
where V and W are irreducible. In such a case f(V ) contains a non-
empty open set U (see, e.g., [Pe, Th. IV.3.7]). If L/K is a field exten-
sion, then f is dominant if and only if the L-morphism fL : VL → WL

obtained by extension of scalars is dominant.

2.2. Let L(R, K) be a Chevalley algebra over a field K which corre-
sponds to an irreducible reduced root system R. Denote by R+ (resp.
R−) the set of positive (resp. negative) roots and put

H =
∑

α∈Π

Khα, U± =
∑

β∈R±

Keβ , U = U− + U+.

Then

L(R, K) = H + U = H + U− + U+.

The number r = dimH = |Π| is called the rank of L(R, K).
Let now i : L(R, K) → End(V ) be a linear representation. Then one

can construct the corresponding Chevalley group G(R, K) ≤ GL(V ),
which is generated by the so-called root subgroups xβ(t) (see [St2],
[Bo1]), and a homomorphism j : G(R, K) → Aut(i(L(R, K))).

Suppose K is an algebraically closed field and i is a representation
of L(R, K) such that the group of weights of i coincides with the group
generated by fundamental weights. Then G(R, K) is a simple, simply
connected algebraic group, i(L(R, K)) is the Lie algebra of G(R, K),
and the homomorphism j defines the adjoint action of G(R, K) on its
Lie algebra i(L(R, K)) [Bo1, 3.3].

Below we will always consider the Chevalley group G(R, K) con-
structed through a faithful representation i such that G(R, K) is simply
connected. We also identify the Lie algebra i(L(R, K)) with L(R, K).
The group j(G(R, K)) ≤ Aut(L(R, K)) will be denoted by G. Note
that G is the group generated by the images j(xβ(t)) of the root sub-
groups which will also be denoted by xβ(t).
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An element x ∈ L(R, K) is called semisimple (resp. nilpotent) if for a
faithful linear representation ρ : L(R, K) → End(V ) the operator ρ(x)
is semisimple (resp. nilpotent). Every x ∈ L(R, K) has the Jordan
decomposition x = xs + xn where xs is semisimple, xn is nilpotent,
[xs, xn] = 0.

Let K be an algebraically closed field. Then:
a. Every element of the Lie algebra L(R, K) is G-conjugate to an

element x = xs + xn such that xs ∈ H, xn ∈ U+, [xs, xn] = 0.

b. [SS, II.3.20] The G-orbit of an element x ∈ L(R, K) is closed if

and only if x is semisimple.

c. Suppose there is a regular element h ∈ H, i.e., β(h) 6= 0 for every

β ∈ R. Then the set of all elements in L(R, K) which are G-conjugate

to elements from H is dense in L(R, K).

d. There is a G-equivariant dominant morphism

π : L(R, K) → Q

where Q is an affine variety and the map

π̄ = π|H : H → Q

satisfies the following condition:

π̄−1(π(h)) = Wh

where W is the Weyl group, which acts naturally on H.

Proof. Put L = L(R, K), and let S = K[L] be the algebra of polynomial
functions on L. Since G is a simple algebraic group, R = SG is finitely
generated (see, e.g., [Sp, Cor. 2.4.10]), say, by f1, . . . , fk. Consider the
map

π : L → Ak

given by the formula π(x) = (f1(x), . . . , fk(x)). If x = xs + xn is the
Jordan decomposition then π(x) = π(xs). (Indeed, xs ∈ Ox. Since π is
a regular map constant on the orbit Ox, it is constant on Ox.) Hence
Q := Im π = Im π̄. Further, functions from R separate closed orbits in
L (see, e.g., [Po, Chapter 1, § 1.2]). Hence π̄−1(π(h)) = H ∩Oh where
Oh is the orbit of h. Since H ∩ Oh = Wh [SS, 3.16], we are done. �

Remark 2.1. If char(K) is not a torsion prime for G(R, K), then there

is an isomorphism π′ : L(R, K)/G
∼

−→H/W , and the quotient H/W is
isomorphic to Ar [Sl, 3.12]. Hence in this case Q ∼= H/W ∼= Ar.

2.3. For every root β ∈ R there is a linear map β : H → K defined by

the formula [h, eβ ] = β(h)eβ.

β ≡ 0 ⇔ R = Cr, r ≥ 1, char(K) = 2, β is a long root (2.1)

(here C1 = A1, C2 = B2). Thus, if we are not in the case R = Cr,

r ≥ 1, char(K) = 2, the subalgebra H is a Cartan subalgebra, that
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is, a nilpotent subalgebra coinciding with its normalizer. In the case

R = Cr, r ≥ 1, char(K) = 2, the subalgebra H is a Cartan subalgebra

of [L(R, K), L(R, K)] ∼= L(Dr, K) (here L(D1, K) = K,L(D2, K) =
sl(2, K)× sl(2, K)).

e. Suppose we are not in the case R = Cr, r ≥ 1, char(K) = 2. Then
if |K| ≥ |R+|, the subalgebra H contains a regular element. Moreover,

if |K| > m|R| for some m ∈ N, then for every subset S ⊂ K of size m
there exists h ∈ H such that β(h) /∈ S for every β ∈ R.

Proof. For infinite fields the statement is trivial. If K is a finite field,
then |H| = |K|r, and the hyperplane Hx,β of H defined by the equation
[h, eβ] = x, x ∈ S, consists of |K|r−1 points. Thus,

|
⋃

x∈S,β∈R

Hx,β| ≤ |S| · |Hx,β| = m|R| · |K|r−1 < |H|,

and therefore we can take h ∈ H \ ∪x∈S,β∈RHx,β. The first statement
can be proved by the same arguments for S = {0} using the fact that
0 ∈ H0,β = H0,−β for every β ∈ R. �

2.4. The Chevalley algebra L(R, K) modulo the centre is not simple
in the following cases:

R = A1,Br,Cr, F4 if char(K) = 2, R = G2 if char(K) = 3. (2.2)

Namely:
1) Let R = A1 and char(K) = 2. Then L(A1, K) ∼= sl(2, K) is a

nilpotent algebra satisfying the identity [[X, Y ], Z] ≡ 0.
2) Let R = B2 and char(K) = 2. Then L(B2, K) ∼= so(5, K) is a

solvable algebra satisfying the identity [[X, Y ], [Z, T ]] ≡ 0.
3) Let R = Br, r > 2 and char(K) = 2. Then L(Br, K) con-

tains the nilpotent ideal I generated by {eβ | β is a short root} and
L(Br, K)/I ∼= L(Dr, K)/Z ′ where Z ′ ≤ Z(L(Dr, K)).

4) Let R = F4 and char(K) = 2. Then L(F4, K) contains the ideal I
generated by {eβ | β is a short root} and L(F4, K)/I ∼= L(D4, K)/Z ′

with Z ′ ≤ Z(L(D4, K)) where Z(L(D4, K)) is the centre.
5) Let R = G2 and char(K) = 3. Then L(G2, K) contains the ideal

I ∼= sl(3, K) generated by {eβ | β is a short root} and L(G2, K)/I ∼=
sl(3, K)/Z(sl(3, K)).

6) Let R = Cr, r > 2 and char(K) = 2. Then L(Cr, K) contains
the ideal I ∼= L(Dr, K) generated by {eβ | β is a short root} and the
algebra L(Cr, K)/I is abelian.

The other Chevalley algebras L(R, K) corresponding to irreducible
root systems R are simple modulo the center [St1]. The simple algebras
g = L(R, K)/Z(L(R, K)) are classical. The classical semisimple Lie
algebras and the corresponding Chevalley algebras form a natural class
to consider polynomial maps P (X1, . . . , Xd) on its products. However,



EQUATIONS IN SIMPLE LIE ALGEBRAS 7

note that the algebras appearing in “bad cases” 3)–5) are perfect, i.e.,
satisfy the condition [L(R, K), L(R, K)] = L(R, K), and therefore we
can also raise the question on dominancy of polynomial maps on such
algebras.

f.Suppose we are not in the cases appearing in list (2.2). Fix an arbi-

trary non-central element h ∈ H. Then for every non-central element

l ∈ L(R, K) there is g ∈ G such that g(l) ∈ h + U [Gorde, Proposi-
tion 1] (actually we mostly need below a particular case h = 0 treated
in [Br, Lemma II]).

3. Dominancy of polynomial maps on Chevalley algebras

In this section K is an algebraically closed field.

3.1. We are interested in the following analogue of the Borel domi-
nancy theorem for semisimple Lie algebras:

Question 3.1. For a given element P (X1, . . . , Xd) of the free Lie K-
algebra Ld on the finite set {X1, . . . , Xd} over a given algebraically
closed field K, and a given semisimple Lie algebra g over K, is the
map

P (X1, . . . , Xd) : g
d → g

dominant under the condition that P (X1, . . . , Xd) is not an identity on
g?

We do not know the answer to this question. However, we can get
it under some additional assumption. Our main result is

Theorem 3.2. Let L(R, K) be a Chevalley algebra. If char(K) = 2,
assume that R does not contain irreducible components of type Cr, r ≥ 1
(here C1 = A1,C2 = B2).

Suppose P (X1, . . . , Xd) is not an identity of the Lie algebra sl(2, K).
Then the induced map P : L(R, K)d → L(R, K) is dominant.

Below we repeatedly use the following construction. Put

I = P (L(R, K)d).

Then I is an irreducible affine variety, and therefore π(I) →֒ Q is an
irreducible closed subset of an r-dimensional affine variety Q (see 2.3.d).

If π(I) = Q, then, by 2.3.d, the set I contains all elements which are
G-conjugate to elements of H . It implies, by 2.3.c, that I = L(R, K).
Thus,

P is dominant ⇔ π(I) = Q. (3.1)

Lemma 3.3. Let M ⊂ L(R, K) be an irreducible closed subset such

that

(i) dim π(P (M)) = r − 1;

(ii) π(P (M)) 6= π(I).
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Then P is dominant.

Proof. Since M is irreducible and dim π(P (M)) = r − 1, we conclude

that π(P (M)) is an irreducible hypersurface in Q. The assertion of the
lemma now follows from (ii) and (3.1). �

We can now start the proof of Theorem 3.2.
First of all, the statement is obviously reduced to the case where R

is irreducible. Indeed, if R is a disjoint union of Ri, then g = L(R, K)
is a direct sum of gi = L(Ri, K), and the image Im P of the map P =
P (X1, . . . , Xd) : g

d → g is equal to ⊕iImPi where Pi is the restriction
of P to gi.

Note that

P (X1, . . . , Xd) =
∑

i

aiXi +
∑

(monomials of Ld of degree > 1)

where ai ∈ K. If ai 6= 0 for some i, the statement is trivial. Thus we
may and will assume ai = 0 for every i.

First we prove the assertion of the theorem for the case R = Ar.
By (3.1), it is enough to prove π(I) = Q. Note that in the case

char(K) = 2 the statement of the theorem fails for r = 1. However, as

we will see below, the equality π(I) = Q holds even in this case. Thus

we can prove that π(I) = Q by induction on the rank r starting at
r = 1.

We identify L(Ar, K) with sl(r+ 1, K), the algebra of (r+ 1)× (r+
1)-matrices with zero trace. We fix the chain of subalgebras L1 ⊂
L2 ⊂ · · · ⊂ Lr = sl(r + 1, K) where Li−1 = sl(i, K) is the subalgebra
embedded in the i × i upper left corner of the matrix algebra Li =
sl(i+1, K). We also fix, for each i, the subalgebra Hi ⊂ Li of diagonal
matrices in Li. Further, let Pi = P|Li

.

Induction base: we prove that dim π(Im P1) = 1.
Let first char(K) = 2. Then according to case 1) of Section 2.4, we

have
P1 =

∑

i,j

aij [Xi, Xj]

where aij ∈ K. On putting X = Xi0 , Y = ai0,j0Xj0 , Xi = 0 for
appropriate i 6= i0, j0, we can get the map P ′

1 = [X, Y ]. Then Im P ′
1 =

H1 ⊂ Im P1, and therefore dim π(Im P1) = 1.
Let us now assume char(K) 6= 2.
As the map P is not identically zero, we may apply Lemma 3.3 with

M = 0d. We obtain the dominancy of P1 : L
d
1 → L1 which implies

dim π(Im P1) = 1.

Inductive step: assume

dim π(Im Pr−1) = r − 1 (3.2)
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and prove

dim π(Im Pr) = r. (3.3)

We have

Hr−1 = {x = diag(α1, . . . , αr, 0) ∈ Mr+1(K) | trx = 0}.

(Here Mr+1(K) is the algebra of (r+1)× (r+1)-matrices over K.) We
have

π(Im Pr−1) = π̄(Hr−1). (3.4)

Suppose that

I ∩Hr 6= WHr−1. (3.5)

Then

π(I) ⊇ π̄(I ∩Hr) 6= π̄(Hr−1). (3.6)

Condition (3.2) is condition 1) from Lemma 3.3 with M = Lr−1. Con-
ditions (3.4) and (3.6) give us condition 2) from the same lemma. Note

that the dominancy of P implies dim π(I) = r. Hence we have to prove
that condition (3.5) holds.

We may assume that the transcendence degree of K is sufficiently
large because this does not have any influence on dominancy of P .
Then we may also assume that there exist a subfield F ⊂ K and a
division algebraDr+1 ⊂ Mr+1(K) with centre F such thatDr+1⊗FK =
Mr+1(K) [DS], [Bo2]. The algebra Dr+1 is dense in Mr+1(K). Hence
the set [Dr+1, Dr+1] is dense in [Mr+1(K),Mr+1(K)] = sl(r + 1, K).
On the other hand, [Dr+1, Dr+1] ⊂ Dr+1. Thus the set Sr+1 = Dr+1 ∩
sl(r + 1, K) is dense in sl(r + 1, K), and therefore the restriction of P
to Sd

r+1 is not the zero map. Then there exist s1, . . . , sd ∈ Sr+1 such
that s = P (s1, . . . , sd) 6= 0. Since s1, . . . , sd ∈ Dr+1, we have s ∈ Dr+1.
As there are no nonzero nilpotent elements in division algebras, all
elements of Dr+1 are semisimple, so we may assume s ∈ Hr. Since s
has no zero eigenvalues, s /∈ WHr−1, and we get (3.5). Thus (3.3) is
proven, and the assertion of the theorem for slr is established.

The general case is a consequence of the following observation [Bo2]:
every irreducible root system R has a subsystem R′ which has the same
rank as R and decomposes into a disjoint union of irreducible subsys-
tems R′ =

⋃

i R
′
i where each R′

i is a system of type Ari . Hence

L′ =
⊕

i

L(Ari , K) ⊂ L(R, K),
∑

i

ri = r.

Thus

dim π(P (L′)) = r ⇒ π(I) = Q,

and we get the statement from (3.1).
Theorem 3.2 is proved. �
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Corollary 3.4. Let g be a classical semisimple Lie algebra. Suppose

P (X1, . . . , Xd) is not an identity of the Lie algebra sl(2, K). Then the

induced map P : gd → g is dominant.

Proof. Let R be the root system corresponding to g. If the Chevalley
algebra L(R, K) is semisimple, we have g = L(R, K), and there is
nothing to prove. If g = L(R, K)/z, where z is the centre, the assertion
is an immediate consequence of the following obvious observation: if
the Lie polynomial P (X1, . . . , Xd) does not contain terms of degree 1,
then the map P : L(R, K)d → L(R, K) is trivial on z. �

3.2. Theorem 3.2 reduces the problem of dominancy to the class of
maps P which are identically zero on sl(2, K). The following theorem
gives another possibility to reduce the problem of dominancy.

Theorem 3.5. Let L(R, K) be a Chevalley algebra corresponding to an

irreducible root system R, and suppose that R 6= Cr if char(K) = 2.
Suppose that the map P : L(R, K)d → L(R, K) is dominant for R = A2

and B2. Then P is dominant for every L(R, K), r > 1.

Proof. We prove the theorem by induction on r. Let first r = 2. The
cases R = A2,B2 are included in the hypothesis, and the case R = G2

is established by the same argument as at the end of the proof of
Theorem 3.2 because G2 contains A2.

Let now r > 2, and make the induction hypothesis:
the map P is dominant for every L(R, K) where 1 < rank R < r.

We proceed case by case.

R = Ar. The induction step is the same as in the proof of Theo-
rem 3.2.

R = Cr (r ≥ 3) or Dr (r ≥ 4). Let Π = {α1, . . . , αr} be the simple
root system numerated as in Bourbaki [Bou]. Let Π1 = {α1, . . . , αr−1},
Π2 = {α2, . . . , αr}. Then R1 = 〈Π1〉 = Ar−1, R2 = 〈Π2〉 = Cr−1 or
Dr−1, respectively. Let Hi = H ∩ L(Ri, K). There exists h ∈ H1 such
that h /∈ WH2.

Indeed, let ǫi : H → K be the weights given by the formula ǫi(hαk
) =

2(ǫi,αk)
(αk ,αk)

. Then ǫ1(H2) = 0, and therefore for every h′ ∈ WH2 we have

ǫi(h
′) = 0 for some i. On the other hand, since R1 = Ar−1, we can find

h ∈ H1 such that ǫi(h) 6= 0 for every i, and therefore h /∈ WH2.

Note that h ∈ P (L(R1, K)d) because P is dominant on L(R1, K) (see
the proof of Theorem 3.2). Then h ∈ I. On the other hand, π(h) /∈

π(P (L(R2, K)d)) because h /∈ WH2. Hence we can apply Lemma 3.3
with M = L(R2, K).

R = Br, F4. Here we have Dr ⊂ R. (The respective embeddings are
as follows: so(2r) ⊂ so(2r + 1) is a natural inclusion, and D4 embeds
into F4 as the subsystem consisting of the long roots.)

Then H ⊂ P (L(Dr, K)), and therefore P is dominant on L(R, K).
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R = Er. Consider the extended Dynkin diagram. We obtain a needed
subsystem of type A by removing one of its vertices. In each case the
diagram is a trident. We remove the 3-valent vertex in the case r = 6,
and the tooth of length 1 (the lower vertex α2 in the Bourbaki notation)
in the cases r = 7, 8. We obtain subsystems of types A2 × A2 × A2, A7,
and A8, respectively. Then we use the same argument as above. �

3.3. To use the theorems proven above for practical purposes, the
following simple remarks may be useful.

If P (X1, . . . , Xd) ∈ Ld is a polynomial containing a monomial of
degree < 5, then the map P : L(R, K)d → L(R, K) (char(K) 6= 2) is
dominant.

The reason is that such a polynomial cannot be an identity in sl(2, K).
Indeed, if it were an identity, so would be its homogeneous component
of the lowest degree (because any homogeneous component of any poly-
nomial identity of any algebra of any signature over any infinite field
is an identity, see [Ro, 6.4.14]). On the other hand, any identity of the
Lie algebra sl(2, K) (char(K) 6= 2), is an identity of gl(2, K) (because
every matrix is a sum of a trace zero matrix and a scalar matrix, and
such an identity lifts to an identity of the associative matrix algebra
M2(K). The latter one does not contain identities of degree less than 4
(which is the smallest degree of the so-called standard identity satisfied
in M2), hence the same is true for gl(2) (see, e.g., [Ro, Remark 6.1.18]
or [Ba, Exercise 2.8.1]). Moreover, a little subtler argument allows one
to show that sl(2, K) does not contain identities of degree 4 (see, e.g.,
[Ba, Section 5.6.2]).

Note that Razmyslov [Ra] found a finite basis for identities in this
algebra (assuming K to be of characteristic zero). Moreover, it turned
out that all such identities are consequence of the single identity [Fi]:

P = [[[Y, Z], [T,X ]], X ] + [[[Y,X ], [Z,X ]], T ],

and this result remains true for any infinite field K, char(K) 6= 2 [Va].
Below we illustrate how one can apply Theorem 3.5 using one of the

identities appearing in Razmyslov’s basis (the reader willing to deduce
this identity from Filippov’s one mentioned above is referred to Section
2 of [Fi]).

Example 3.6. The polynomial [[[[Z, Y ], Y ], X ], Y ]−[[[[Z, Y ], X ], Y ], Y ]
appears in [Ra] as one of the elements of a finite basis of identities in
sl(2, K) (char(K) = 0). Clearly, the polynomial

P (X, Y, Z) = [[[[[Z, Y ], Y ], X ], Y ], [[[[Z, Y ], X ], Y ], Y ]]

is also identically zero in sl(2, K). We check dominancy of the map

P : L(R, K)3 → L(R, K)

using computations by MAGMA. In view of Theorem 3.5, we have to
check dominancy only for R = A2,B2.
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Consider the map π : L(R, K) → Q defined in Section 2.2.d. Since
char(K) = 0, we have Q ∼= H/W ∼= Ar, and π = (f1, f2, . . . , fr) where
f1, f2, . . . , fr areG-invariant homogeneous polynomials on L(R, K) which
generate the invariant algebra K[L(R, K)]G ∼= K[H ]W . Moreover,
deg f1 deg f2 · · ·deg fr = |W | (see Section 2.2.d). In our cases, r = 2
and we have deg f1 = 2, deg f2 = 3 for R = A2 and deg f1 = 2,
deg f2 = 4 for R = B2.

Let

0 6= D1 = P (A,B,C), D2 = P (A′, B′, C ′) ∈ I = ImP (L(R, K))3.

Since P is a homogeneous map with respect to X, Y, Z, the lines lj :=
KDj , j = 1, 2, also lie in I, and the curves π(lj) in the affine space A2

with coordinates (x1, x2) are defined by equations of the form

xm1

1 /xm2

2 = cj, where m1 = deg f2, m2 = deg f1, cj = const . (3.7)

Put
θ := fm1

1 /fm2

2 . (3.8)

From (3.7) and (3.8) we get

θ(D1) 6= θ(D2) ⇒ π(l1) 6= π(l2). (3.9)

By Lemma 3.3 with M = l1, from (3.9) we see that the inequality

θ(P (A,B,C)) 6= θ(P (A′, B′, C ′)) (3.10)

implies the dominancy of P .

Case R = A2. We may identify L(A2, K) = sl(3, K). The charac-
teristic polynomial is χ(t) = t3 + pt + q where p and q can be viewed
as SL3(K)-invariant homogeneous polynomials of degrees 2 and 3, re-
spectively. Therefore p = f1, q = f2. We point out triples (A,B,C),
(A′, B′, C ′) satisfying inequality (3.10) which were found by MAGMA:

A =





3 1 0
1 −1 1
0 1 −2



 , B =





2 1 5
0 4 −3
1 0 −6



 , C =





0 0 2
1 0 3
0 1 0



 ,

A′ =





8 1 0
1 −1 1
0 1 −7



 , B′ =





2 3 5
0 4 −3
1 0 −6



 , C ′ =





0 0 2
1 0 3
0 1 0



 .

Case R = B2. We may identify L(R, K) = so(5, K). Consider the
embedding so(5, K) →֒ sl(5, K) given by identification of so(5, K) with
matrices of the form 



0 b c
−ct m n
−bt p −mt





wherem, n, p are 2×2-matrices, and n, p are skew-symmetric (see, e.g.,
[Hu, 1.2]). The characteristic polynomial is χ(t) = t5 + pt3 + qt where
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p and q can be viewed as SO5(K)-invariant homogeneous polynomials
on so(5, K) of degrees 2 and 4, respectively. Hence f1 = p, f2 = q.
We point out triples (A,B,C), (A′, B′, C ′) satisfying inequality (3.10)
which were found by MAGMA:

A =









0 1 2 3 4
−3 5 6 0 9
−4 7 8 −9 0
−1 0 10 −5 −7
−2 −10 0 −6 −8









, A′ =









0 5 −6 −7 8
7 −1 2 0 2
−8 3 4 −2 0
−5 0 −3 1 −3
6 3 0 −2 −4









,

B =









0 4 1 2 3
−2 −8 6 0 −9
−3 −9 7 9 0
−4 0 10 8 9
−1 −10 0 −6 −7









, B′ =









0 6 −7 10 −3
−10 −8 −6 0 5
3 1 2 −5 0
−6 0 −4 8 −1
7 4 0 6 −2









,

C =









0 −1 2 −3 4
3 −5 −6 0 10
−4 7 8 −10 0
1 0 9 5 −7
−2 −9 0 6 −8









, C ′ =









0 −6 6 −3 8
3 7 6 0 11
−8 7 3 −11 0
6 0 −2 −7 −7
−6 2 0 −6 −3









.

4. From dominancy to surjectivity

For some polynomials P ∈ Ld we can say more than in the preceding
section. Namely, we present here several cases where the map P : gd →
g is surjective.

We start with the following simple observation (parallel to Remark
3 in [Bo2, §1]).

Proposition 4.1. Let P1(X1, . . . , Xd1), P2(Y1, . . . , Yd2) be Lie polyno-

mials. Let g be a Lie algebra. Suppose that each of the maps Pi : g
di → g

is dominant. Let d = d1 + d2,

P (X1, . . .Xd1 , Y1, . . . Yd2) = P1(X1, . . . , Xd1) + P2(Y1, . . . Yd2).

Then the map P : gd → g is surjective.

Proof. We may assume the ground field to be algebraically closed. As
the underlying variety of g is irreducible, the image of each of the
dominant morphisms Pi (i = 1, 2) contains a non-empty open subset
Ui. It remains to notice that U1 + U2 = g (see, e.g., [Bo3, Chapter I,
§ 1, 1.3]). �

Let us now prove surjectivity for some special maps, which are linear
in one variable.
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Definition 4.2. We call

Em(X, Y ) = [[. . . [
︸ ︷︷ ︸

m times

X, Y ], Y ], . . . , Y ] ∈ L2

an Engel polynomial of degree (m+ 1). We call
m∑

i=1

aiEi(X, Y ) ∈ L2,

where ai ∈ K, a generalized Engel polynomial.

Theorem 4.3. Let P (X, Y ) ∈ L2 be a generalized Engel polynomial of

degree (m + 1), and let P : L(R, K)2 → L(R, K) be the corresponding

map of Chevalley algebras. If R does not contain irreducible components

of types listed in (2.2) and |K| > m|R|, then the image of P contains

(L(R, K) \ Z(L(R, K)) ∪ {0}.

Moreover, if P is an Engel polynomial, then the same is true under the

assumption |K| > |R+|.

Proof. Since |K| > m|R|, for any chosen S ⊂ K of sizem there is h ∈ H
such that β(h) /∈ S for all β ∈ R (see 2.3.e). Further, for every h ∈ H
the map Ph : L(R, K) → L(R, K), given by X 7→ P (X, h), is a semisim-
ple linear operator on L(R, K) which is diagonalizable in the Chevalley
basis. Each hα is its eigenvector with zero eigenvalue. Further, there
is a degree m polynomial f ∈ K[t] such that P (eβ, h) = f(β(h))eβ for
every β ∈ R. (Explicitly, one can take f =

∑m

i=1(−1)iait
i.) Define S

as the set of roots of f in K. Then f(β(h)) 6= 0 for every β ∈ R, and
therefore Im(Ph) = U . Now the statement follows from 2.4.f.

If P is an Engel polynomial of degree (m + 1), then one can take
f = xm, and therefore S = {0}, that is, h is a regular element. Once
again, we can use 2.4.f. �

Corollary 4.4. Let P = P (X, Y ) ∈ L2 be a generalized Engel poly-

nomial of degree (m + 1), and let g be a simple classical Lie algebra

corresponding to the root system R. If |K| > m|R|, then the map

P : g2 → g is surjective. Moreover, if P is an Engel polynomial, the

same is true under the assumption |K| > |R+|.

Remark 4.5. Corollary 4.4 generalizes Theorem 7 of [Th3] where
Question 1.1a was answered in the affirmative for the words in three
variables P (X, Y, Z) of the form [X, Y, . . . , Y, Z] and g = sl(n).

Our next result shows that one cannot hope to extend surjectivity
to central elements.

Proposition 4.6. Let Pm(X, Y ) ∈ L2 be an Engel polynomial of de-

gree m, and let P : L(R, K)2 → L(R, K) be the corresponding map of

Chevalley algebras. Then for m big enough the image of P contains no

nonzero elements of Z(L(R, K)).
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Proof. The idea is as follows: if X and Y centralize the same element of
a Cartan subalgebra of L(R, K), then Pm(X, Y ) = 0 for m big enough.
Otherwise, the term corresponding to the “shortest” nontrivial root
which does not vanish on X never goes to zero after multiplication by
Y . Here is a detailed argument.

We may assume K algebraically closed. Then, by “bringing to the
Jordan form”, we may assume Y = h + y where h ∈ H , y ∈ U+,
[h, y] = 0. Further, let X = h′ + x, h′ ∈ H , x ∈ U .

For brevity, for every n denote zn = Pn(X, Y ).
Case I. [h, x] = 0.
Let us prove that zn = Pn(X, y) and [zn, h] = 0. We use induction

on n. For n = 1 we have z1 = [X, h + y] = [X, h] + [X, y]. Since
[x, h] = [h′, h] = 0, we have z1 = [X, y]. Further, [z1, h] = [[X, y], h] =
[[h′, y], h] + [[x, y], h]. Since [h′, h] = [x, h] = [y, h] = 0, each summand
equals zero by the Jacobi identity, so [z1, h] = 0.

Assume zn−1 = Pn−1(X, y) and [zn−1, h] = 0. We have

zn = [zn−1, Y ] = [zn−1, h+ y] = [zn−1, y] = [Pn−1(X, y), y] = Pn(X, y)

and [zn, h] = [[zn−1, y], h] = 0 by the Jacobi identity (because [zn−1, h] =
[y, h] = 0).

Thus we have Pn(X, Y ) = [[X, y], y, . . . , y] which is zero for n big
enough because y is nilpotent.

Case II. [h, x] 6= 0.
First suppose that y = 0, i.e. Y = h is semisimple. As x 6= 0, we

can write

x =
∑

β∈R

fβeβ,

where fβ ∈ K. Since [h, x] 6= 0, there exists β such that [h, eβ] 6= 0.
We now observe that if fβ 6= 0 then for every m the term of Pm(X, Y )
containing eβ enters with nonzero coefficient, so Pm(X, Y ) belongs to
U and thus does not belong to the centre.

So assume y 6= 0 and write

y =
∑

β∈R+

pβeβ ,

where pβ ∈ K.
Put

Rh = {β ∈ R | β(h) 6= 0}, R̂h = {β ∈ R | β(h) = 0},

Rx = {β ∈ R | fβ 6= 0}, Ry = {β ∈ R | pβ 6= 0}.

All these sets are non-empty, and

Rh,x = Rh ∩ Rx 6= ∅.

We have Ry ⊆ R+, Ry ⊆ R̂h.
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Let ≺ be the (partial) order on R induced by height. Recall that by
definition α ≺ β if and only if β − α is a sum of positive roots. We fix
some minimal γ in Rh,x.

Further, write

Pn(X, Y ) = zn =
∑

β∈R

dn,βeβ + hn

where hn ∈ H , dn,β ∈ K.
Claim:

a) dn,γ 6= 0;

b) if dn,δ 6= 0 and δ 6= γ, then either δ ∈ R̂h or δ ⊀ γ.
Evidently, a) is enough to establish the assertion of the proposition.
Let us prove the claim by induction on n. Let first n = 1. We have

[h′, y] =
∑

β∈R̂h

aβeβ, [x, y] =
∑

β∈R

bβeβ + h1, [x, h] =
∑

β∈Rh

cβeβ , (4.1)

where h1 ∈ H , and we have d1,β = aβ + bβ or d1,β = bβ + cβ.
a) We have aγ = 0, cγ 6= 0 because γ ∈ Rh,x ⊆ Rh. Let us prove that

bγ = 0. Assume to the contrary that bγ 6= 0. Then from the middle
equality in (4.1) it follows that there are roots α ∈ Rx and β ∈ Ry such
that [eα, eβ] = eγ (and so γ = α+ β). Since [h, eβ] = 0 and [h, eγ ] 6= 0,
we have [h, eα] 6= 0. Hence α ∈ Rh and therefore α ∈ Rh,x = Rh ∩ Rx.
Since γ = α + β, we have the inequality α ≺ γ because β is a positive
root. This is a contradiction with the choice of γ (recall that γ is a
minimal root in Rh,x with respect to the partial order ≺). Thus bγ = 0
and d1,γ = cγ 6= 0.

b) Suppose d1,δ 6= 0 and δ /∈ R̂h. Then δ ∈ Rh and d1,δ = bδ + cδ. If
cδ 6= 0, then δ ∈ Rx. Hence δ ∈ Rh,x and δ ⊀ γ because of the choice
of γ. If cδ = 0, then d1,δ = bδ 6= 0. Then eδ = [eα, eβ ] for some α ∈ Rx,

β ∈ Ry. Since δ ∈ Rh (and so [h, eδ] 6= 0) and β ∈ Ry ⊆ R̂h (and so
[h, eβ] = 0), we have [h, eα] 6= 0 ⇒ α ∈ Rh ⇒ α ∈ Rh,x. Suppose that
δ = α + β ≺ γ. Then α ≺ γ which is again a contradiction with the
choice of γ. Hence δ ⊀ γ.

Let us now assume
a) dn−1,γ 6= 0;

b) if dn−1,δ 6= 0 and δ 6= γ, then either δ ∈ R̂h or δ ⊀ γ,
and prove the same assertions for n.
Consider

zn = [zn−1, h+ y] =
∑

β∈R

dn−1,β[eβ, h]

︸ ︷︷ ︸

I

+
∑

β∈R

dn−1,β[eβ, y]

︸ ︷︷ ︸

II

+ [hn−1, y]
︸ ︷︷ ︸

III

.
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The induction hypotheses imply that

zn =
∑

δ∈R̂h

qδeδ

︸ ︷︷ ︸

♠

+sγeγ +
∑

δ∈Rh,δ⊀γ

sδeδ

︸ ︷︷ ︸

♥

+hn,

where hn ∈ H and sγ 6= 0. Indeed, sum I has only terms of types
♥ and the term sγeγ 6= 0. Further, sum II has terms of types ♠ and
♥ and elements of H . Sum III has only terms of type ♠ because
Ry ⊆ R̂h. Thus conditions a) and b) hold for zn, and zn = P (X, Y ) /∈
Z(L(R, K)). �

Remark 4.7. Suppose we are in one of the exceptional cases listed
in (2.2). Let us exclude abelian and solvable cases 1), 2) of Section
2.4. Also in case 6) in Theorem 4.3 we may consider the Lie algebra
[L(R, K), L(R, K)] instead of L(R, K). In cases 3),4), 5) the algebra
L(R, K) contains an ideal I (generated by short roots) such that the
quotient L̄ = L(R, K)/I is not on list (2.2), and therefore the assertion
of Theorem 4.3 on surjectivity of P holds for L̄.

Example 4.8. In the following example we show that non-Engel maps
are not necessarily surjective. Let

P = P (X, Y ) = [[[X, Y ], X ], [X, Y ], Y ]] : sl(2, K)× sl(2, K) → sl(2, K)

where char(K) 6= 2 and K is an algebraically closed field. Note that if
either X or Y is nilpotent, then either [[X, Y ], X ] = 0 or [X, Y ], Y ] = 0.
So we may assume that both X and Y are semisimple and X = h ∈ H .
Then P (X, Y ) = P (X, Y + X), and therefore, by subtracting scalar
multiples of X , we may assume Y = v + u where 0 6= v ∈ U−, 0 6= u ∈
U+. Then [X, Y ] = av − au for some 0 6= a ∈ K and

[X, Y ], X ] = −a2v+a2u, [X, Y ], Y ] = [av−au, v+u] = 2a[v, u] = h′ ∈ H,

and so
[[[X, Y ], X ], [X, Y ], Y ]] = a2dv − a2du

for some d 6= 0. Thus P (X, Y ) is a semisimple element. Hence in
Im(P ) there are no nilpotent elements.

5. Possible generalizations

Remark 5.1. The method used in the proof of Theorem 3.2 (which
goes back to [DS] and [Bo2]) is applicable to the problem of dominancy
of polynomial maps on associative matrix algebras (which is attributed
to Kaplansky, see [KBMR] and references therein). More precisely, let
P (X1, . . . , Xd) ∈ K 〈X1, . . . , Xd〉 be an associative, noncommutative
polynomial (i.e., an element of the free associative algebra on d vari-
ables over K), and let P : Mn(K)d → Mn(K) denote the corresponding
map. Then the same inductive argument as in the proof of Theorem 3.2
shows that if P (X1, . . . , Xd) is not identically zero on Kd then the map
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P is dominant for all n. In the situation where P (X1, . . .Xd) is identi-
cally zero on Kd, one can consider the induction base n = 2 and prove
that if the restriction of P to M2(K)d is dominant then so is P . The
assumption made above holds, for instance, for any semi-homogeneous,
non-central polynomial having at least one 2 × 2-matrix with nonzero
trace among its values [KBMR, Theorem 1]. If, under the same as-

sumptions on P , Im(P ) lies in sl(n,K), then Im(P ) = sl(n,K).

Remark 5.2. It would be interesting to consider maps P with some
fixed Xi = Ai. Then one could find an approach to the dominancy
calculating the differential map of P .

Remark 5.3. It would be interesting to consider a more general set-up
when we have a polynomial map P : Ld → Ls. In [GR] some dominancy
results were obtained for the multiple commutator map P : L×Ld → Ld

given by the formula P (X,X1, . . . , Xd) = ([X,X1], . . . , [X,Xd]).

Remark 5.4. In a similar spirit, one can consider generalized word
maps w : Gd → Gs on simple groups. Apart from [GR], see also a
discussion of a particular case w = (w1, w2) : G

2 → G2 in [BGGT,
Problem 1].

Remark 5.5. One could try to extend some of results of this paper to
the case where the ground field is replaced with some sufficiently good
ring. One has to be careful in view of [RR]: there are rings R such that
not every element of sl(n,R) is a commutator.

Remark 5.6. One can ask questions similar to Questions 1.1 and 1.2
for other classes of algebras (beyond groups, Lie algebras and associa-
tive algebras). The interested reader may refer to [Gordo] for the case
of values of commutators and associators on alternative and Jordan
algebras.
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