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ON TRIPLY EVEN BINARY CODES

KOICHI BETSUMIYA AND AKIHIRO MUNEMASA

Abstract. A triply even code is a binary linear code in which
the weight of every codeword is divisible by 8. We show how two
doubly even codes of lengths m1 and m2 can be combined to make
a triply even code of length m1 +m2, and then prove that every
maximal triply even code of length 48 can be obtained by combin-
ing two doubly even codes of length 24 in a certain way. Using
this result, we show that there are exactly 10 maximal triply even
codes of length 48 up to equivalence.

1. Introduction

For the past few decades, extensive research of doubly even binary
linear codes has been done. These codes turned out to be connected
with objects in various areas, for example, sphere packing problem,
combinatorial designs, finite groups, integral lattices, modular forms
and so on [4, 17]. In this paper, we are concerned with a subclass
of the class of doubly even codes, called triply even binary codes. A
triply even code is a binary linear code in which every codeword has
weight divisible by 8, in other words, a binary divisible code of level
3 in the sense of [12]. Dong, Griess and Höhn [5] pointed out that a
certain triply even binary code of length 48 arose naturally from a Vira-
soro frame of the moonshine vertex operator algebra V ♮. Subsequently,
Miyamoto [15] found a construction method of V ♮ from that code. Lam
and Yamauchi [11] formulated this construction for the class of framed
vertex operator algebras. To be precise, a framed vertex operator alge-
bra of central charge n is constructed from a triply even code of length
2n whose dual is even. Unlike doubly even codes, the classification of
all triply even codes of modest lengths has not been established yet.
The purpose of this paper is to develop a basic theory of maximal

triply even codes, and to give a classification of maximal triply even
codes of length 48. Since any triply even code of length up to 48 can
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be regarded as a subcode of some maximal triply even codes of length
48, one can derive easily the classification of all triply even codes of
lengths up to 48. It turns out that every maximal triply even code of
length n with n ≡ 0 (mod 8) and n ≤ 40 is obtained as the generalized

doubling D̃(C) of a maximal doubly even code C (see Definition 7),
and n = 48 is the smallest length with n ≡ 0 (mod 8) for which there

exists a triply even code not equivalent to D̃(C) for any doubly even

self-dual code C. The unique maximal triply even code Ĉ(T10) of length
48 not equivalent to generalized doublings is obtained by augmenting
the code C(T10) of length 45 generated by the adjacency matrix of the
triangular graph T10.
By Lam and Yamauchi [11], every triply even code of length a mul-

tiple of 16 containg the all-ones vector is the structure code of some
framed vertex operator algebra. So it is natural to ask which framed
vertex operator algebra of central charge 24 has Ĉ(T10) as its structure

code. Since Ĉ(T10)
⊥ has minimum weight 2, Ĉ(T10) cannot be any

structure code of the moonshine vertex operator algebra by [7, Propo-
sition 3.2]. Also this implies that every structure code of moonshine

vertex operator algebra lies in the generalized doubling D̃(C) of a dou-
bly even self-dual code C of length 24. We note that Lam [10] recently
constructed 10 vertex operator algebras which correspond to conformal
field theories predicted to exist by Schellekens [18], using subcodes of

Ĉ(T10).
This paper is organized as follows. In Section 2, properties and some

construction methods of triply even codes are given. In Section 3, we
prove that some maximal triply even codes can be constructed from
doubly even self-dual codes by the doubling process. In Section 4, an
infinite series of maximal triply even codes is constructed by triangular
graphs and some properties of the codes in this class are given. In
Section 5, a method for constructing a triply even code from a pair
of doubly even codes is given. The main result in Section 5 states
that every maximal triply even code is obtained from a pair of doubly
even codes containing their radicals. In Section 6, an efficient method is
described for determining whether a given doubly even code contains its
radical. In Section 7, we show that the method described in Section 5
gives all maximal triply even codes of length 48 and, as a result, a
classification of maximal triply even codes of length 48 is given. In
Section 8, a classification of maximal triply even codes of lengths 8,
16, 24, 32 and 40 is given. Appendix gives a complete program in
Magma [1] needed to produce the result. The result is also available
electronically from [2].
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2. Basic constructions for triply even codes

Throughout the paper, a code will mean a binary linear code, or
equivalently, a linear subspace of the vector space Fn

2 over the field F2

of two elements. The support of a vector u = (u1, . . . , un) ∈ Fn
2 is the

set supp(u) = {i | ui = 1}, and the weight of u is wt(u) = | supp(u)|. A
triply even code is a code in which every codeword has weight divisible
by 8. A doubly even code is a code in which every codeword has weight
divisible by 4.
In this section, we give basic properties of triply even codes, and

construction methods of triply even codes from doubly even codes. An
[n, k] code is a code C ⊂ Fn

2 with dimC = k, and n is called the length
of C. For codes C and D of length n, C is equivalent to D if C = Dσ

for some coordinate permutation σ ∈ Sn. The automorphism group
Aut(C) of C is defined as {σ ∈ Sn | C = Cσ}. The linear span of a
subset S ⊂ Fn

2 over F2 is denoted by 〈S〉. For u, v ∈ Fn
2 , we define

u ∗ v to be the vector in Fn
2 with supp(u ∗ v) = supp(u)∩ supp(v). For

C,D ⊂ Fn
2 , we define C ∗ D := 〈u ∗ v | u ∈ C, v ∈ D〉. For vectors

u ∈ Fm
2 and v ∈ Fn

2 , we denote by (u | v) ∈ Fm+n
2 the vector obtained

by concatenating u and v. For subsets C ⊂ Fn1

2 , D ⊂ Fn2

2 , we define
the direct sum of C and D as

C ⊕D = {(u | v) ∈ Fn1+n2

2 | u ∈ C, v ∈ D}.

If C and C ′ (resp. D and D′) are codes of length n1 (resp. n2) then
(C ⊕ D) ∗ (C ′ ⊕ D′) = (C ∗ C ′) ⊕ (D ∗ D′). A code C is said to be
decomposable if it is a direct sum of two codes. We denote by 1n ∈ Fn

2

and 0n ∈ Fn
2 , the all-ones vector, the zero vector, respectively. We will

omit the subscript if there is no confusion.
For vectors u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fn

2 , we denote by u ·v
the standard inner product

∑n
i=1 uivi. The dual code of a code C is

defined as {u ∈ Fn
2 | u · v = 0 for any v ∈ C} and is denoted by C⊥. A

code C is self-dual (resp. self-orthogonal) if C = C⊥ (resp. C ⊂ C⊥).
There exists a doubly even self-dual code of length n, if and only if n
is divisible by 8. If C and D are codes, then (C ⊕D)⊥ = C⊥ ⊕D⊥.
The following lemma is a special case of [20, Theorem 5.3] (see also

[13, Proposition 2.1]).

Lemma 1. Let C = 〈S〉 be a code generated by a set S. Then C is
a triply even code if and only if the following conditions hold for any
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u, v, w ∈ S:

wt(u) ≡ 0 (mod 8),(1)

wt(u ∗ v) ≡ 0 (mod 4),(2)

wt(u ∗ v ∗ w) ≡ 0 (mod 2).(3)

Definition 2. Let C be a doubly even code of length n. We define
functions

Q : C −→ F2, u 7→
wt(u)

4
mod 2,

B : C × C⊥ −→ F2, (v, u) 7→
wt(v ∗ u)

2
mod 2,

T : Fn
2 × Fn

2 × Fn
2 −→ F2, (u, v, w) 7→ wt(u ∗ v ∗ w) mod 2.

Clearly, the following equalities hold:

Q(x+ y) = Q(x) +Q(y) +B(x, y) (x, y ∈ C),(4)

B(x, y + z) = B(x, y) +B(x, z) + T (x, y, z) (x ∈ C, y, z ∈ C⊥),

(5)

B(x+ y, z) = B(x, z) +B(y, z) + T (x, y, z) (x, y ∈ C, z ∈ C⊥),

(6)

T (x, y, z) = 0 (x, y ∈ C, z ∈ (C ∗ C)⊥).(7)

The doubly even radical radC, and the triply even radical RadC are
defined as

radC = {y ∈ C⊥ | B(x, y) = 0 (∀x ∈ C)},

RadC = {x ∈ radC | Q(x) = 0}.

Clearly

rad(C ⊕D) = radC ⊕ radD,(8)

Rad(C ⊕D) ⊃ RadC ⊕ RadD(9)

hold.

In general, the radicals radC, RadC are not linear and not neces-
sarily contained in C, even if C is triply even. An example is C =
〈18〉 ⊕ 〈18〉. However, the following holds.

Lemma 3. Let C be a doubly even code. Then radC ⊂ (C ∗ C)⊥.

Proof. We note that (C ∗C)⊥ = {z ∈ C⊥ | T (x, y, z) = 0 for any x, y ∈
C}. Suppose x, y ∈ C and z ∈ radC. Since x + y ∈ C, we have
T (x, y, z) = 0 by (6). Thus z ∈ (C ∗ C)⊥, and the result follows. �

Lemma 4. Let C be a doubly even code, and suppose x, y ∈ radC.
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(i) If y ∈ C, then x+ y ∈ radC.
(ii) If x+ y ∈ C, then x+ y ∈ radC.

Proof. Observe that, by Lemma 3, x ∈ (C ∗C)⊥ holds. For any z ∈ C,
we have B(z, x + y) = T (x, y, z) by (5). If y ∈ C, then T (x, y, z) =
0. Thus (i) holds. If x + y ∈ C, then T (x, y, z) = T (x, x + y, z) +
T (x, x, z) = 0. Thus (ii) holds. �

Lemma 5. Let C be a doubly even code, and suppose x ∈ radC and
z ∈ RadC. Then

x+ C ∩ radC = (x+ C ∩ (C ∗ C)⊥) ∩ radC,(10)

z + C ∩ RadC = (z + C ∩ (C ∗ C)⊥) ∩ RadC.(11)

Proof. The containment x + C ∩ radC ⊂ (x + C ∩ (C ∗ C)⊥) ∩ radC
follows from Lemma 3 and Lemma 4(i). As for the reverse containment,
suppose y ∈ C ∩ (C ∗C)⊥ and x+ y ∈ radC. Since x ∈ radC, we have
y ∈ radC by Lemma 4(ii). Thus x+ y ∈ x+C ∩ radC and (10) holds.
From (10),

(z + C ∩ (C ∗ C)⊥) ∩ RadC = (z + C ∩ radC) ∩ RadC.

Suppose y ∈ C ∩ radC. Since wt(z) ≡ 0 (mod 8), z + y ∈ RadC if
and only if wt(y) ≡ 0 (mod 8). Therefore

(z + C ∩ (C ∗ C)⊥) ∩ RadC = z + C ∩ RadC.

Thus (ii) holds. �

Lemma 6. Let C be a doubly even code and D = (C ∗C)⊥ ∩C. Then
the restriction B|C×D of B to C × D is a bilinear pairing and Q|D
is a quadratic form with associated bilinear form B|D×D. Moreover,
C ∩ radC and C ∩ RadC are linear subcodes of C. In particular, if
radC ⊂ C (resp. RadC ⊂ C), then radC (resp. RadC) is linear.

Proof. First, note that since C ⊂ C ∗C, we have D ⊂ (C ∗C)⊥ ⊂ C⊥.
For any x, y ∈ C and z ∈ D, we have T (x, y, z) = 0 by (7), hence
B(x+y, z) = B(x, z)+B(y, z) by (6). Also, for any x ∈ C and y, z ∈ D,
we have T (x, y, z) = 0 by (7), hence B(x, y+ z) = B(x, y)+B(x, z) by
(5). Therefore, B is a bilinear pairing on C×D, and Q|D is a quadratic
form with associated bilinear form B|D×D by (4).
By Lemma 3, C ∩ radC = {y ∈ D | B(x, y) = 0 for any x ∈ C}.

Since B|C×D is linear in the second variable, C ∩ radC is a linear
subcode of C.
Also, by (4), Q is linear on C ∩ radC. Then, C ∩ RadC = {x ∈

C ∩ radC | Q(x) = 0} is a linear subcode of C. �
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Definition 7. Let C be a code of length n and set R = C ∩ RadC.
We define the extended doubling D(C) and the generalized doubling

D̃(C) as

D(C) = 〈(1n|0n), (0n|1n), {(x|x) | x ∈ C}〉,(12)

D̃(C) = 〈R⊕ 0n, {(x|x) | x ∈ C}〉.(13)

We note that if C is a doubly even code, then D̃(C) is a triply even
code and

(14) dim D̃(C) = dimC + dim(C ∩ RadC).

Note also that if C is a doubly even [n, d] code and n ≡ 0 (mod 8),
then D(C) is a triply even code of length 2n, dimension d+1 or d+2,
depending on 1 ∈ C or not. In particular, if C is a doubly even self-dual
code of length n, then D(C) is a triply even [2n, n+ 1] code. This is a
particularly important construction in connection with framed vertex
operator algebras and lattices (see [7]). In the next section, we give a

sufficient condition for C under which D̃(C) is a maximal triply even
code.

3. Maximality of triply even codes

In this section, we discuss maximal triply even codes, that is, triply
even codes not contained in any larger triply even code.

Lemma 8. If C is a triply even code, then C ⊂ RadC. Moreover,
equality holds if and only if C is a maximal triply even code.

Proof. The first part is immediate from Lemma 1. For a vector x,
Lemma 1 implies that 〈C, x〉 is a triply even code if and only if x ∈
(C ∗ C)⊥ ∩ RadC = RadC by Lemma 3. Thus the result follows. �

Lemma 9. Let C =
⊕k

i=1Ci be a maximal doubly even code where Ci

is an indecomposable component of length ni for i = 1, . . . , k. Then

radC =
k

⊕

i=1

〈si〉,(15)

RadC =
k

⊕

i=1

〈ti〉.(16)
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where

si =

{

1ni
ni ≡ 0 (mod 4)

0ni
ni 6≡ 0 (mod 4),

ti =

{

1ni
ni ≡ 0 (mod 8)

0ni
ni 6≡ 0 (mod 8).

In particular, if C is a doubly even self-dual code, then

radC = RadC =
k

⊕

i=1

〈1ni
〉,(17)

D̃(C) ∼=

k
⊕

i=1

D̃(Ci) =

k
⊕

i=1

D(Ci).(18)

Proof. By (8), it suffices to prove (15) when C is indecomposable. Sup-
pose v ∈ radC and x ∈ C. Then

(19) wt(v ∗ x) ≡ 0 (mod 4)

By Lemma 3, v ∈ (C∗C)⊥. Then for any y ∈ C, 0 = v·(x∗y) = (v∗x)·y.
Hence

(20) v ∗ x ∈ C⊥.

By (19) and (20), 〈C, v ∗ x〉 is a doubly even code. By maximality,
v ∗x ∈ C. Also since x ∈ C was arbitrary, C is the direct sum of codes
supported by supp(v) and its complement. Since C is indecomposable,
we obtain v ∈ 〈1〉. Hence radC ⊂ 〈1〉. Therefore (15) holds.
We claim that there is at most one i such that ni ≡ 4 (mod 8). If

there are distinct i, j such that i ≡ j ≡ 4 (mod 8), then Ci ⊕ Cj is
not a maximal doubly even code. This contradicts maximality of C.
Therefore (16) follows from (15).
If C is a doubly even self-dual code, then each Ci is a doubly even

self-dual code, hence ni is divisible by 8. Now, (17) follows from (15)
and (16).
By (17), we have

C ∩ RadC =
k

⊕

i=1

〈1ni
〉

=
k

⊕

i=1

Ci ∩ RadCi
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and hence D̃(
⊕k

i=1Ci) =
⊕k

i=1 D̃(Ci). Since Ci is indecomposable,

(17) implies D̃(Ci) = D(Ci). This proves (18). �

Proposition 10. For any doubly even self-dual code C, (D̃(C)∗D̃(C))⊥ =

D̃(C). In particular D̃(C) a maximal triply even code.

Proof. Suppose that C is an indecomposable doubly even self-dual code
of length 2n. Then (18) implies D̃(C) ∗ D̃(C) = D(C) ∗ D(C) =

C⊕C+D(C ∗C), hence dim(D̃(C)∗D̃(C)) = 3n−1 = 4n−dim D̃(C).

This implies that (D̃(C)∗ D̃(C))⊥ = D̃(C). By (18), the identity holds

also for decomposable double even self-dual codes C. Now rad D̃(C) ⊂
D̃(C) by Lemma 3, and hence D̃(C) a maximal triply even code by
Lemma 8. �

Example 11. It is known that the [8, 4, 4] Hamming code e8 = D(〈14〉
⊥)

is the unique doubly even self-dual codes of length 8, up to equivalence.
Also, d+16 = D(〈18〉

⊥) and e8 ⊕ e8 are the only doubly even self-dual

codes of length 16, up to equivalence. By Proposition 10, D̃(e8), D̃(d+16),

D̃(e8⊕e8) are maximal triply even code of dimension 5, 9 and 10 respec-

tively. In particular D̃(e8) = D(e8) is the Reed–Muller code RM(1, 4)

and D̃(e8 ⊕ e8) = RM(1, 4)⊕2.

Example 12. It is known [16] that there are precisely 9 doubly even
self-dual codes of length 24. Two of these 9 codes are decomposable,
and they are d+16⊕ e8 and e⊕3

8 . The remaining 7 codes are indecompos-
able and they are denoted by g24, d

+
24, d

2+
12 , (d10e

2
7)

+, d3+8 , d4+6 , d6+4 . By

Proposition 10, D̃(C) is a maximal triply even code for any of the 9
doubly even self-dual codes C. We note from (17) that RadC ⊂ C and
dimRadC is the number of indecomposable components. Thus, for in-
decomposable doubly even self-dual codes C of length 24, dim D̃(C) =

13 holds. Also, D̃(d+16 ⊕ e8) = D(D(〈18〉
⊥))⊕ RM(1, 4) has dimension

14, while D̃(e⊕3
8 ) = RM(1, 4)⊕3 has dimension 15.

Remark 13. As shown in Example 12, the dimension of maximal triply
even codes varies even if the length is fixed. The largest possible di-
mension of triply even codes, however, has been determined in [21],
and the codes achieving the largest dimension have been determined
in [13].

4. Triply even codes constructed from triangular graphs

Let n be a positive integer with n ≥ 4, and let Ω be a set of n
elements. We denote by

(

Ω
2

)

the set of two-element subsets of Ω. The

triangular graph Tn has the set of vertices
(

Ω
2

)

, and two vertices α, β
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are adjacent whenever |α∩ β| = 1. It is known [8] that the graph Tn is
a strongly regular graph with parameters

(v, k, λ, µ) =

(

n(n− 1)

2
, 2(n− 2), n− 2, 4

)

.

Let An denote the adjacency matrix of Tn. Then every row of An has
weight 2(n − 2), and for any two distinct rows of An, the size of the
intersection of their supports is either n − 2 or 4. Let C(Tn) be the
binary code with generator matrix An.
It is clear that the code C(Tn) is triply even only if n ≡ 2 (mod 4).

The converse also holds by the following lemma.

Lemma 14 (Haemers, Peeters and van Rijckevorsel [6, Subsection 4.1]).
If n ≡ 2 (mod 4), the weight enumerator of C(Tn) is

weC(Tn)(x) =

⌊(n−1)/4⌋
∑

l=0

(

n

2l

)

x2l(n−2l).

In particular, C(Tn) is a triply even of dimension n− 2.

Let αi = {i, n} ∈
(

Ω
2

)

, and we denote by ri the row of An indexed
by αi i.e., {k, l} ∈ supp(ri) if and only if |αi ∩ {k, l}| = 1. Then the
following lemma holds.

Lemma 15 (Key, Moori and Rodrigues [9, Lemma 3.5]). If n is even,
then {ri | i = 1, 2, . . . , n− 2} is a basis of C(Tn).

We note that the dimension of C(Tn) has already been determined by
Tonchev [19, Lemma 3.6.6] and Brouwer and Van Eijl [3]. An explicit
basis of C(Tn) is needed in the sequel to establish maximality of C(Tn).
The weight enumerator given in Lemma 14 can also be derived from
the basis.

Lemma 16. If n is even, then {ri ∗ rj | 1 ≤ i ≤ j ≤ n− 2} is a basis
of C(Tn) ∗ C(Tn). In particular,

dim(C(Tn) ∗ C(Tn)) =
(n− 1)(n− 2)

2
.

Proof. Observe that, for 1 ≤ i < j < n, we have

(21) supp(ri ∗ rj) = {{i, j}} ∪ {αk | 1 ≤ k < n, k 6= i, j}.

Suppose
n−2
∑

i=1

ciri +
∑

1≤i<j≤n−2

ci,jri ∗ rj = 0,
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where ci, ci,j ∈ F2. Then ci = 0 for i = 1, . . . , n − 2, because |αi ∩
{j, n− 1}| = 1 if and only if i = j. Thus

∑

1≤i<j≤n−2

ci,jri ∗ rj = 0.

For i, j, k, l ∈ {1, . . . , n − 2} with i 6= j, k 6= l, (21) implies {k, l} ∈
supp(ri ∗ rj) if and only if {k, l} = {i, j}. This implies ci,j = 0. �

Lemma 17. If n ≡ 2 (mod 4), then (C(Tn) ∗C(Tn))
⊥ = C(Tn) + 〈1〉.

In particular, C(Tn) is a maximal triply even code.

Proof. By (C(Tn) ∗ C(Tn))
⊥ ⊃ C(Tn) + 〈1〉 and comparing the di-

mensions using Lemmas 15 and 16, we obtain (C(Tn) ∗ C(Tn))
⊥ =

C(Tn) + 〈1〉. Since wt(1) = n(n−1)
2

≡ 1 (mod 2), Lemma 3 implies
RadC(Tn) ⊂ C(Tn). Thus C(Tn) is a maximal triply even code by
Lemma 8. �

We define Ĉ(Tn) to be the code of length l = 8⌈1
8
n(n−1)

2
⌉ constructed

from C(Tn) together with the all-ones vector of length l, i.e., Ĉ(Tn) =

〈1l〉+ C(Tn)⊕ 0l′ where l′ = l − n(n−1)
2

.

Theorem 18. If n ≡ 2 (mod 4), then Ĉ(Tn) is a maximal triply even
code.

Proof. Let l = 8⌈1
8
n(n−1)

2
⌉. Then

(Ĉ(Tn) ∗ Ĉ(Tn))
⊥ = (〈1l〉+ (C(Tn) ∗ C(Tn))⊕ 0)⊥

= 〈1l〉
⊥ ∩ ((C(Tn) ∗ C(Tn))

⊥ ⊕ Fl′

2 )

= 〈1l〉
⊥ ∩ ((C(Tn) + 〈1〉)⊕ Fl′

2 ) (by Lemma 17)

= C(Tn)⊕ 〈1l′〉
⊥ + 〈1l〉

= Ĉ(Tn) + 0⊕ 〈1l′〉
⊥.

Since l′ < 8, Lemma 3 implies RadC(Tn) ⊂ C(Tn). The result follows
from Lemma 8. �

5. Triply even codes constructed from pairs of doubly

even codes with isometries

In Section 2, we gave construction methods for a triply even code
from a doubly even code. In this section, we give a generalization of
these construction methods for a pair of doubly even codes.
For a set of coordinates {i1, i2, . . . , it} ⊂ {1, 2, . . . , n}, let π : Fn

2 →
Ft
2, π

′ : Fn
2 → Fn−t

2 be the projection to the set of coordinates {i1, i2, . . . , it},
{j1, . . . , jn−t}, respectively, where {j1, . . . , jn−t} = {1, . . . , n}\{i1, . . . , it}.
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For a code C of length n, the punctured code and the shortened code
of C on a set of coordinates {i1, i2, . . . , it} are the codes π′(C), {π′(c) |
c ∈ C, π(c) = 0}, respectively.
Let C1 and C2 be doubly even codes and Ri be a subcode of Ci ∩

RadCi for i = 1, 2. A bijective linear map

(22) f : C1/R1 → C2/R2

is called an isometry if wt(x1) ≡ wt(x2) (mod 8) for any x1 + R1 ∈
C1/R1 and x2+R2 ∈ f(x1+R1). We note that if x+R1 = y+R1 with
x, y ∈ C1, then wt(x) ≡ wt(y) (mod 8). The set of isometries (22) is
denoted by Φ(C1/R1, C2/R2).
For an isometry f ∈ Φ(C1/R1, C2/R2), we define a code

(23) D(C1, C2, R1, R2, f) = {(x1|x2) | x1 ∈ C1, x2 ∈ f(x1 +R1)}.

Since f is a bijective linear map,

(24) D(C1, C2, R1, R2, f) = {(x1|x2) | x2 ∈ C2, x1 ∈ f−1(x2 +R2)}.

Proposition 19. Let Ci be a doubly even code of length mi for i = 1, 2
and Ri be a subcode of Ci ∩ RadCi. If f ∈ Φ(C1/R1, C2/R2), then
the code D(C1, C2, R1, R2, f) is a triply even code of length m1 +m2 of
dimension dimC1 + dimR2 = dimR1 + dimC2.

Proof. Fix C1, C2, R1, R2 and f . We abbreviate D(C1, C2, R1, R2, f)
as D. Since f is a linear map, D is linear. Since C1 and C2 are doubly
even codes and f is an isometry, all the weights of elements of D are
multiple of 8, that is, D is a triply even code. Moreover

|D(C1, C2, R1, R2, f)| = |C1| × |f(R1)| = |C1| × |R2|.

Therefore dimD = dimC1 + dimR2 = dimR1 + dimC2. �

Remark that the construction method in Proposition 19 contains the
constructions D(C) in (12) and D̃(C) in (13) as special cases. Indeed,
let C be a doubly even code of length n. Then we have

D̃(C) = D(C,C, C ∩ RadC,C ∩ RadC, id)(25)

and if, moreover, n ≡ 0 (mod 8), then

D(C) = D(C + 〈1〉, C + 〈1〉, 〈1〉, 〈1〉, id).

Note that, given doubly even codes C1, C2 and subcodes R1 ⊂ C1 ∩
RadC1, R2 ⊂ C2 ∩ RadC2, the set Φ(C1/R1, C2/R2) may be empty,
and in this case Proposition 19 produces no triply even codes. We shall
give a necessary and sufficient condition for the set Φ(C1/R1, C2/R2)
to be non-empty in Proposition 21 below. First we need to introduce
some terminology.
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Definition 20. Let C be a doubly even code, and let R be a subcode
of C ∩ RadC. Let

X = {x+R ∈ C/R | wt(x) ≡ 0 (mod 8)}.

We call the elements of the set X singular points of C/R. Then the
group G1(C,R) forms the setwise stabilizer of X in GL(C/R). The
triply even check code C(C,R) of (C,R) is defined as

C(C,R) = {c = (cx ∈ F2 | x ∈ X) ∈ FX
2 |

∑

x∈X

cxx ∈ R}.

By the definition, G1(C,R) acts on C(C,R) as automorphisms, but
the action is not necessarily faithful. Indeed, X may not span C/R.

Proposition 21. Let Ci be a doubly even code for i = 1, 2 and Ri be
a subcode of Ci ∩RadCi. Suppose that dimC1/R1 = dimC2/R2. Then
C(C1, R1) ∼= C(C2, R2) if and only if Φ(C1/R1, C2/R2) 6= ∅.

Proof. If C(C1, R1) ∼= C(C2, R2), then there exists a bijection f from
the set X1 of singular points of C1/R1 to the set X2 of those of C2/R2

which induces an equivalence from C(C1, R1) to C(C2, R2). It follows
from the definition of the triply even check code that the bijection f
extends to a linear mapping 〈X1〉 → 〈X2〉. Extending further to C1/R1

in an arbitrary manner, we obtain an isometry from C1/R1 to C2/R2.
The proof of the converse is immediate. �

The next proposition shows that every triply even code can be con-
structed by means of the construction described in Proposition 19.

Proposition 22. Let D be a triply even code of length n. Fix a code-
word x ∈ D of weight m1 with 0 < m1 < n. Let S1 = supp(1 + x)
and S2 = supp(x) and let Ci and Ri be the punctured code and the
shortened code of D on Si, respectively, for i = 1, 2. Then Ci is doubly
even, Ri ⊂ Ci ∩ RadCi for i = 1, 2, and

D ∼= D(C1, C2, R1, R2, f)

for some f ∈ Φ(C1/R1, C2/R2).
Moreover, If D is a maximal, then RadCi = Ri for i = 1, 2.

Proof. All the statement except on the last one follows easily from
Lemma 1. Let π1 : Fn

2 → Fm1

2 , π2 : Fn
2 → Fn−m1

2 be the projection
to the set of coordinates supp(x), supp(1 + x), respectively. Define
π : Fn

2 → Fn
2 by π(x) = (π1(x)|π2(x)) (x ∈ Fn

2). Then Ci = πi(D)
(i = 1, 2) and D is equivalent to π(D). It is clear that the mapping

f : C1/R1 −→ C2/R2

c1 +R1 7→ {x ∈ C2 | (c1|x) ∈ π(D)}
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is a well-defined isometry and π(D) = D(C1, C2, R1, R2, f).
If D is a maximal triply even code, then so is π(D). This implies

(r1|0), (0|r2) ∈ Radπ(D) for r1 ∈ RadC1 and r2 ∈ RadC2. By
Lemma 8, Radπ(D) ⊂ π(D). Therefore Ri ⊂ RadCi for i = 1, 2.
Hence the result follows. �

Proposition 22 indicates that every triply even code of length n con-
taining a codeword of weight m1 can be constructed from a pair of
doubly even codes of lengths m1 and n−m1. We will classify maximal
triply even codes of length 48 by setting m1 = 24 in Section 7.
For fixed codes C1, C2 and R1 ⊂ C1∩RadC1, R2 ⊂ C2∩RadC2 the

resulting code

D(C1, C2, R1, R2, f)

depends on the choice of the isometry f . However, some of these codes
are equivalent to each other. The first algorithm is to check this, that
is, we will give a sufficient condition for two resulting codes to be
equivalent. We need this algorithm to reduce the amount of calculation
to be reasonable.
First, we define some groups. For a code C and a subcode R ⊂

C ∩ RadC, we denote by G0(C,R) the subgroup of GL(C/R) induced
by the action of Aut(C)∩Aut(R) on C/R and denote by G1(C,R) the
subgroup Φ(C/R,C/R) of GL(C/R). By the definition, the group
G0(C,R) is a subgroup of G1(C,R). If R = C ∩ RadC, then we
abbreviate G0(C,R), G1(C,R) as G0(C), G1(C), respectively. If f ∈
Φ(C1/R1, C2/R2), then

G1(C1, R1) = f−1 ◦ G1(C2, R2) ◦ f(26)

and

Φ(C1/R1, C2/R2) = f ◦ G1(C1, R1) = G1(C2, R2) ◦ f.(27)

If we replace f by σ2 ◦ f ◦ σ1, where σi ∈ G0(Ci, Ri), then the resulting
codes are equivalent, that is,

D(C1, C2, R1, R2, f) ∼= D(C1, C2, R1, R2, σ2 ◦ f ◦ σ1).

This means that, in order to enumerate

{D(C1, C2, R1, R2, h) | h ∈ Φ(C1/R1, C2/R2)}

up to equivalence, we first fix f ∈ Φ(C1/R1, C2/R2), and it suffices to
enumerate the codes D(C1, C2, R1, R2, f ◦ g) where g runs through a
set of representatives for the double cosets

(f−1 ◦ G0(C2, R2) ◦ f)\G1(C1, R1)/G0(C1, R1).
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6. Doubly even codes containing their radicals

In view of Propsition 22, it will be necessary to extract only those
doubly even codes C which satisfy RadC ⊂ C, in order to enumerate
maximal triply even codes. In this section, we will give a criteria to
verify whether a doubly even code C contains its triply even radical
i.e., RadC ⊂ C.
Throughout this section, let C be a doubly even code containg 1,

and we denote (C ∗ C)⊥ ∩ C by D. For x ∈ C⊥, one can define a
mapping Bx : C → F2 by Bx(c) = B(c, x) (c ∈ C). By (6), Bx is linear
when x ∈ (C ∗ C)⊥. Thus we obtain a map

φ : (C ∗ C)⊥ → Hom(C,F2)

x 7→ Bx.

By Lemma 3, we can write

(28) φ−1(0) = radC.

We remark that the map φ is not linear in general. More precisely, if
we define a bilinear map δ as

δ : Fn
2 × Fn

2 → Hom(C,F2)

(x, y) 7→ (v 7→ T (x, y, v)),

then for x, y ∈ (C ∗ C)⊥,

φ(x+ y) = φ(x) + φ(y) + δ(x, y)

holds by (5). In particular, (7) implies

(29) φ(x+ y) = φ(x) + φ(y) (x ∈ (C ∗ C)⊥, y ∈ D),

and φ is linear on D.
The function Q from Definition 2 can also be defined on radC, so

we denote it by the same Q as follows.

Q : radC → F2, u 7→
wt(u)

4
mod 2.

Then RadC = Q−1(0), and

(30) Q(x+ y) = Q(x) +Q(y) (x ∈ C ∩ radC, y ∈ radC).

Lemma 23. For a coset M ∈ (C∗C)⊥/D, the following are equivalent.

(i) φ(M) ∩ φ(D) 6= ∅,
(ii) φ(M) = φ(D),
(iii) M ∩ radC 6= ∅.

Moreover, if C ∩ radC 6= C ∩RadC, then each of (i)–(iii) is equivalent
to
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(iv) M ∩ RadC 6= ∅.

Proof. Equivalence of (i)–(iii) follows immediately from (28) and (29).
Suppose C ∩ radC 6= C ∩ RadC. It suffices to show that (iii) implies
(iv).
Suppose x ∈ M ∩ radC. If Q(x) = 0, then clearly (iv) holds, so

suppose Q(x) = 1. By assumption, there exists y ∈ C ∩ radC such
that Q(y) = 1. Then x+ y ∈ M , φ(x+ y) = φ(x) + φ(y) = 0 by (29),
hence x+ y ∈ radC. Moreover, Q(x+ y) = Q(x) +Q(y) = 0 by (30).
Thus x+ y ∈ RadC, and hence (iv) holds. �

Proposition 24. Let C be a doubly even code of length a multiple of
eight, containing 1. Suppose C∩radC 6= C∩RadC. Then RadC 6⊂ C
if and only if there exists a coset M ∈ (C ∗ C)⊥/D satisfying φ(M) ∩
φ(D) 6= ∅ and M 6= D.

Proof. Since RadC ⊂ radC ⊂ (C ∗ C)⊥ by Lemma 3, RadC 6⊂ C if
and only if M ∩ RadC 6= ∅ for some coset M ∈ (C ∗ C)⊥/D different
from D. The resut then follows from Lemma 23. �

In view of equivalence of (i) and (ii) in Lemma 23, one can check the
condition φ(M)∩φ(D) 6= ∅ by testing whether an arbitrarily chosen el-
ement x ∈ M satisfies φ(x) ∈ φ(D). Thus, the above proposition gives
a convenient criterion for RadC ⊂ C in terms of coset representatives
for (C ∗ C)⊥/D, provided C ∩ radC 6= C ∩ RadC. In the case where
C ∩ radC = C ∩ RadC, the situation is slightly more complicated.

Lemma 25. Suppose C ∩ radC = C ∩ RadC, and M ∈ (C ∗ C)⊥/D.
If M ∩ RadC 6= ∅, then

(31) M ∩ radC = M ∩ RadC.

Proof. By assumption, there exists x ∈ M∩RadC. Then by Lemma 5,
we have

(32) M ∩ radC = x+ C ∩ RadC.

Since x ∈ RadC, (11) implies x + C ∩ RadC ⊂ RadC, hence M ∩
radC ⊂ RadC by (32). This proves M ∩ radC ⊂ M ∩RadC, and the
reverse containment is trivial. �

Proposition 26. Let C be a doubly even code of length a multiple of
eight, containing 1. Suppose C∩radC = C∩RadC. Let {x1, . . . , xt} ⊂
(C∗C)⊥ be a set of coset representatives for the cosets M ∈ (C∗C)⊥/D
satisfying φ(M) ∩ φ(D) 6= ∅ and M 6= D. For each i ∈ {1, . . . , t},
choose yi ∈ D in such a way that φ(xi) = φ(yi). Then the following
are equivalent.
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(i) RadC 6⊂ C,
(ii) wt(xi + yi) ≡ 0 (mod 8) for some i ∈ {1, . . . , t}.

Proof. First, we note that φ(M)∩φ(D) 6= ∅ implies that φ(M) = φ(D)
by Lemma 23. Thus there exists yi ∈ D such that φ(xi) = φ(yi), no
matter how we choose a representative xi for the coset xi +D.
Suppose (i) holds. Take x ∈ RadC \ C and set M = x +D. Then

x ∈ M ∩ RadC, and hence (31) holds by Lemma 25. Also, as x /∈ D
and φ(x) = 0 by (28), M = xi +D holds for some i ∈ {1, . . . , t}. Thus
xi + yi ∈ M , while φ(xi + yi) = φ(xi) + φ(yi) = 0 by (29). Therefore,
xi + yi ∈ M ∩ radC ⊂ RadC by (31). This implies wt(xi + yi) ≡ 0
(mod 8).
Conversely, if (ii) holds, then xi + yi ∈ RadC \ C, and hence (i)

holds. �

7. Classification of maximal triply even codes of length

48

In this section, we aim to give a classification of maximal triply even
codes of length 48. In Section 3 and Section 4, we gave 10 distinct
maximal triply even codes of length 48. Now we show that the list is
complete for a classification up to equivalence applying Proposition 22
and 19 for n = 48 and m1 = m2 = 24. To do this, we first need
to establish the existence of a codeword of weight 24 in any maximal
triply even code of length 48.

Lemma 27. Let D be a maximal triply even code of length n. Let Γ
be the graph with vertex set {1, . . . , n} and edge set

{supp(x) | x ∈ D⊥, wt(x) = 2}.

Then the following hold:

(i) every connected component of Γ is a complete graph with at
most 8 vertices,

(ii) if there is a connected component of Γ with more than 4 ver-
tices, then any other connected component has at most 3 ver-
tices.

Proof. Since D⊥ is a linear code, it is clear that every connected com-
ponent of Γ is a complete graph. Suppose that there is a connected
component K of Γ with |K| > 8. Then there exists a vector x ∈ Fn

2

with wt(x) = 8 and supp(x) ⊂ K. Since the restriction of y to K is
0 or 1 for any y ∈ D, we have wt(x ∗ y) = 0 or 8. This implies that
〈D, x〉 is triply even. Taking i ∈ supp(x) and j ∈ K \ supp(x), the
vector with support {i, j} belongs to D⊥ and is not orthogonal to x.
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Thus x /∈ D. This contradicts the fact that D is maximal, and the
proof of (i) is complete.
To prove (ii), suppose that there are distinct connected components

K,K ′ of Γ with |K| > 4 and |K ′| ≥ 4. Then there exists a vector
x ∈ Fn

2 with wt(x) = 8, | supp(x) ∩ K| = | supp(x) ∩ K ′| = 4. Since
the restriction of y to K or K ′ is 0 or 1 for any y ∈ D, we have
wt(x ∗ y) = 0, 4 or 8. This implies that 〈D, x〉 is triply even. The rest
of the proof is exactly the same as (i). �

Lemma 28. Let D be a maximal triply even code of length 48 contain-
ing 1. Then D has at least one codeword of weight 24.

Proof. By Lemma 27, the number of codewords of D⊥ with weight 2 is
of the form

∑

K

(

|K|

2

)

,

where the summation is taken over the set of connected components of
the graph Γ defined in Lemma 27. Let λ1 ≥ λ2 ≥ · · · be the partition
of 48 associated with the decomposition of the vertex set of Γ into
connected components. Lemma 27 implies that one of the following
holds:

(i) 4 < λ1 ≤ 8 and λi ≤ 3 for all i ≥ 2,
(ii) λi ≤ 4 for all i ≥ 1.

It is not difficult to show that the maximum value of
∑

i

(

λi

2

)

is
(

8
2

)

+

13
(

3
2

)

= 67 for the case (i), and 12
(

4
2

)

= 72 for the case (ii). Therefore,

we conclude that D⊥ has at most 72 codewords of weight 2.
Now suppose that D has no codeword of weight 24, so that its weight

enumerator is

X48 + aX40Y 8 + (2k−1 − (1 + a))(X32Y 16 +X16Y 32) + aX8Y 40 + Y 48,

where k = dimD. It follows from the MacWilliams identities that the
number of codewords of weight 2 in D⊥ is

3 · 28−ka+ 104 + 211−k

which is certainly greater than 72. This is a contradiction. �

In order to construct all maximal triply even codes of length 48
by means of Proposition 19 and 22 for n = 48 and m1 = m2 = 24,
it suffices to consider the codes of length 24 satisfying RadCi ⊂ Ci

as candidates for C1 and C2. This is because, if a resulting code
D(C1, C2, R1, R2, f) is maximal, then Ri = RadCi for i = 1, 2 as we
mentioned in Proposition 22.
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We are now ready to describe our enumeration using Magma system
[1].
As the first step, we enumerate all doubly even codes of length 24

containing its triply even radical. Since there is a database of doubly
even codes [14], we could make use of it and extract only those which
contain the triply even radical. However, since every doubly even code
is equivalent to a subcode of the nine doubly even self-dual codes of
length 24 [16], we can find all the desired doubly even codes by suc-
cessively taking subcodes of codimension one starting from the doubly
even self-dual codes. This approach has an advantage that once we
encounter a doubly even code C with RadC 6⊂ C, then RadC ′ 6⊂ C ′

for any subcode C ′ of C, so that it is no longer necessary to consider
subcodes of C by Lemma 8. Table 1 gives the numbers of doubly even
codes of length 24 containing its triply even radical with each given
dimension and dimension of its triply even radical.

Table 1. The numbers of doubly even code C of length
24 with RadC ⊂ C

dimC \ dimRadC 1 2 3 4 5 6
12 7 1 1 0 0 0
11 33 6 3 0 0 0
10 130 19 10 1 0 0
9 308 40 23 5 0 1
8 363 37 25 10 1 1
7 180 16 10 11 2 1
6 27 2 0 4 2 1
5 0 0 0 0 1 0

As the second step, we enumerate all resulting codes

D(C1, C2,RadC1,RadC2, f ◦ g)

obtained from the all combinations of doubly even codes C1, C2 above
and a representative g ∈ ḡ for each double coset

ḡ ∈ (f−1 ◦ G0(C2, R2) ◦ f)\G1(C1, R1)/G0(C1, R1),

where f is a fixed element of Φ(C1/RadC1, C2/RadC2) by the proce-
dure given in Proposition 19
We denote the set of doubly even codes of length 24 by

∆ = {g24, d
+
24, d

2+
12 , (d10e

2
7)

+, d3+8 , d4+6 , d6+4 , d+16 ⊕ e8, e
⊕3
8 },

in accordance with the notation of [16]. From the combinations with
C1 = C2, we obtain 1482 triply even codes. However, many codes of
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them of the form (25) turn out not to be maximal. This is because, if
there is a doubly even code C ′ such that C ( C ′ and RadC = RadC ′,
then D̃(C) ( D̃(C ′). Therefore, we find that only 216 codes among
the 1482 codes are possibly maximal. Then we use Lemma 8 to check
maximality, and we are able to confirm that only 30 codes among them
are maximal. Each of these 30 codes turns out to be equivalent to D̃(C)
for some C ∈ ∆.
From the combinations with C1 6∼= C2, we obtain 225 triply even

codes, and 5 codes among them are maximal. One code is equivalent
to Ĉ(T10). The other codes are equivalent to a member of {D̃(C) | C ∈
∆}. Therefore we obtain the following theorem.

Theorem 29. Every maximal triply even code of length 48 is equivalent
to D̃(C) for some C ∈ ∆ or Ĉ(T10).

8. Classification of maximal triply even codes of lengths

8, 16, 24, 32 and 40

In this section, we give a classification of maximal triply even codes
of lengths 8, 16, 24, 32 and 40 by using a shortening process from
the results of maximal triply even codes of length 48 in the previous
sections.
It is easy to see that every maximal triply even code of length n is

a shortened code of a maximal triply even code of length n+ 1. From
the list of maximal triply even codes of length 48, we can derive the list
of all maximal triply even codes of shorter lengths by the shortening
process. The shortened code of D̃(C) on one coordinate has an odd

length, so it cannot be of the form D̃(C ′) for any C ′. However, for
lengths divisible by 8, the following holds.

Theorem 30. For n = 4, 8, 12, 16 and 20, every triply even code of
length 2n is of the form D̃(C) for some maximal doubly even code C
of length n.

Table 2 gives the numbers of the maximal triply even codes of lengths
8, 16, 24, 32 and 40, up to equivalence.
In Table 2, the first and fifth columns indicate the length of each

doubly even code and each triply even code, respectively. The second
and sixth columns indicate the dimension as well. The third column in-
dicates the number of indecomposable components of the doubly even
code. The fourth and seventh columns indicate the number of codes
satisfying the condition. The eighth column gives the other construc-
tion method to obtain it.
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Note that if C is some maximal doubly even code and k is the num-
ber of self-dual indecomposable components of C, then dim D̃(C) =
dimC + k by (14) and (16). For example, there is a unique doubly
even [20, 9] code C which is the direct sum of three indecomposable

codes, two of which are self-dual. Then D̃(C) is a triply even [40, 11]
code. Similarly, there is a unique doubly even [24, 12] code C which is

the direct sum of three indecomposable self-dual codes. Then D̃(C) is
a triply even [48, 15] code.

Table 2. The numbers of maximal triply even codes of
lengths multiple of 8 up to 48

maximal doubly even codes maximal triply even codes
len dim #compos #codes len dim #codes remark
4 1 1 1 8 1 1

8 4 1 1 16 5 1 Ĉ(T6)
12 5 1 1 24 5 1

2 1 6 1
16 8 1 1 32 9 1

2 1 10 1
20 9 1 7 40 9 7

2 2 10 2
3 1 11 1

24 12 1 7 48 13 7
2 1 14 1
3 1 15 1

48 9 1 Ĉ(T10)

Acknowledgments. The authors would like to thank Ching Hung
Lam, Masaaki Harada and Hiroki Shimakura for helpful discussions,
and Jon-Lark Kim for bringing the paper [13] to the authors’ attention.

References

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput., 24 (1997), 235–265.

[2] K. Betsumiya, DATABASE: Triply even codes of length 48,
http://www.st.hirosaki-u.ac.jp/~betsumi/triply-even/

[3] A.E. Brouwer and C.A. van Eijl, On the p-rank of the adjacency matrices of
strongly regular graphs, J. Algebraic Combin. 1 (1992), 329–346.

[4] J.H. Conway and N.J.A. Sloane, Sphere Packing, Lattices and Groups (3rd ed.),
Springer-Verlag, New York, 1999.

http://www.st.hirosaki-u.ac.jp/~betsumi/triply-even/


ON TRIPLY EVEN BINARY CODES 21
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Appendix A. A Magma program for classification

Enumeration of doubly even codes of length 24. This appendix
gives Magma scripts to verify Theorem 29 in Section 7.
It is known that there are precisely 9 doubly even self-dual codes of

length 24 up to equivalence [16]. The object desd24genmats is the list
of generator matrices in the hexadecimal expression. Also the object
desd24 is the list of the codes

∆ = {g24, d
+
24, d

2+
12 , (d10e

2
7)

+, d3+8 , d4+6 , d6+4 , d+16 ⊕ e8, e
⊕3
8 }.

1 desd24genmats:=[
2 [ 0xC75001, 0x49F002, 0xD4B004, 0x6E3008, 0x9B3010, 0xB66020,
3 0xECC040, 0x1ED080, 0x3DA100, 0x7B4200, 0xB1D400, 0xE3A800 ],
4 [ 0x7FE801, 0x802802, 0x804804, 0x808808, 0x810810, 0x820820,
5 0x840840, 0x880880, 0x900900, 0xA00A00, 0xC00C00, 0xFFF000 ],
6 [ 0x7E0F81, 0xFC0082, 0xFC0104, 0xFC0208, 0xFC0410, 0xFC0820,
7 0x820FC0, 0x861000, 0x8A2000, 0x924000, 0xA28000, 0xC30000 ],
8 [ 0xD003C1, 0xD1A042, 0xD1A084, 0xD1A108, 0xD1A210, 0x01A3E0,
9 0x00E400, 0x01C800, 0x017000, 0x720000, 0xE40000, 0xB80000 ],

10 [ 0x7800E1, 0x88F022, 0x88F044, 0x88F088, 0xF0F0F0, 0x78E100,
11 0x78D200, 0x78B400, 0x787800, 0x990000, 0xAA0000, 0xCC0000 ],
12 [ 0xE24031, 0x738012, 0x738024, 0x91C038, 0x938C40, 0xE1C480,
13 0xE1C900, 0x724E00, 0x02D000, 0x036000, 0xB40000, 0xD80000 ],
14 [ 0xCC6009, 0x66A00A, 0xAAC00C, 0xC6C090, 0x6A60A0, 0xACA0C0,
15 0x6CC900, 0xA66A00, 0xCAAC00, 0x00F000, 0x0F0000, 0xF00000 ],
16 [ 0x0000B1, 0x0000E2, 0x000074, 0x0000D8, 0x7E8100, 0x828200,
17 0x848400, 0x888800, 0x909000, 0xA0A000, 0xC0C000, 0xFF0000 ],
18 [ 0x0000B1, 0x0000E2, 0x000074, 0x0000D8, 0x00B100, 0x00E200,
19 0x007400, 0x00D800, 0xB10000, 0xE20000, 0x740000, 0xD80000 ]];
20

21 desd24:=
22 [LinearCode<GF(2),24|[Prune(Intseq(n+0x1000000,2)) : n in code]>
23 : code in desd24genmats];

The function subcodes takes a doubly even code C containing R as
an argument, and returns the list of subcodes of codimension 1 of C
satisfying C ⊃ R up to the action of Aut(C).

24 subcodes:=function(C,R)
25 A:=AutomorphismGroup(C);
26 P:=PermutationModule(A,GF(2));
27 DC:=Dual(C);
28 DR:=Dual(R);
29 PDC:=sub<P | VectorSpace(DC)>;
30 PDR,e:=sub<P | VectorSpace(DR)>;
31 M,p:=quo<PDR | PDC>;
32 G:=MatrixGroup(M);
33 X:=[DR| o[1] @@ p @ e : o in Orbits(G) | not 0 in o];
34 overcodes:=[sub<DR|DC,x> : x in X];
35 return [Dual(CC) : CC in overcodes];
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36 end function;

Given a sequence of pairs of a code and a number, the function uptoequivalenceDE
returns a subsequence of complete representatives of codes up to equiv-
alence with the largest numbers appearing in the second components.

37 uptoequivalenceDE:=function(Ds)
38 Css:=[];
39 for D in Ds do
40 ord := #AutomorphismGroup(D[1]);
41 we := WeightEnumerator(D[1]);
42 if not exists(v){i:i in [1..#Css]|
43 Css[i][1] eq ord and
44 Css[i][2] eq we and
45 IsEquivalent(Css[i][3], D[1])} then
46 Append(~Css, <ord, we, D[1], D[2]>);
47 else
48 Css[v][4]:=Max([Css[v][4], D[2]]);
49 end if;
50 end for;
51 return [<D[3],D[4]>: D in Css ];
52 end function;

Basic operation for codes. Given a pair of vectors, the functions
entrywiseProduct and CstarC return c1 ∗ c2 = c1 ∩ c2 as the support
and C ∗ C = 〈c1 ∗ c2 | c1, c2 ∈ C〉 respectively.

53 entrywiseProduct:=func<x,y|
54 CharacteristicVector(Parent(x), Support(x) meet Support(y))>;
55

56 CstarC:=function(D)
57 k:=Dimension(D);
58 CC:=LinearCode<GF(2), Length(D)|
59 [entrywiseProduct(D.i,D.j):i,j in [1..k] | i lt j] cat
60 [D.i : i in [1..k]]>;
61 return CC;
62 end function;

Given codewords x, y of a doubly even code C, the functions QForm

and BForm return Q(x) and B(x, y) respectively.

63 QForm:=func<u|GF(2)!(Weight(u) div 4)>;
64 BForm:=func<u,v|GF(2)!(#(Support(u) meet Support(v)) div 2)>;

Given a vector x and a doubly even codeD with a basis {u1, u2, . . . , uk},
the function BFormArray returns an array (B(x, ui))i. Given doubly
even codes C,D with respective bases {u1, u2, . . . , uk} and {v1, v2, . . . , vl},
the function BFormMatrix returns a matrix (B(ui, vi))i,j.

65 BFormArray:=function(x,D)
66 kD:=Dimension(D);
67 return [BForm(x,D.j) : j in [1..kD]];
68 end function;



24 K. BETSUMIYA AND A. MUNEMASA

69

70 BFormMatrix:=function(C,D)
71 kC:=Dimension(C);
72 kD:=Dimension(D);
73 M:=Matrix(GF(2), kC, kD,
74 [BFormArray(C.i, D) : i in [1..kC]]);
75 return M;
76 end function;

Given a doubly even code C, the functions Cmeetrad and CmeetRad

return the subcode C ∩ radC and C ∩ RadC respectively, applying
Lemma 6.

77 Cmeetrad:=function(C)
78 D:=Dual(CstarC(C)) meet C;
79 H:=VectorSpace(GF(2),Dimension(C));
80 VD:=VectorSpace(D);
81 g:=hom<VD->H|BFormMatrix(D,C)>;
82 rad:=sub<D|Kernel(g)>;
83 return rad;
84 end function;
85

86 CmeetRad:=function(C)
87 rad:=Cmeetrad(C);
88 k:=Dimension(rad);
89 H:=VectorSpace(GF(2),1);
90 VD:=VectorSpace(rad);
91 g:=hom<VD->H| [[QForm(rad.i)]:i in [1..k]]>;
92 Rad:=sub<rad|Kernel(g)>;
93 return Rad;
94 end function;

Doubly even codes which contain each triply even radical. The
function outsideVectors returns a complete list of representatives of
cosets (C ∗ C)⊥/((C ∗ C)⊥ ∩ C) up to the action of Aut(C). Given a
doubly even code C, the function existsOutsideRad returns true if
and only if RadC 6⊂ C, applying Lemma 23 and Lemma 25.

95 outsideVectors:=function(C)
96 U:=Generic(C);
97 A:=AutomorphismGroup(C);
98 P:=PermutationModule(A,GF(2));
99 D:=Dual(CstarC(C));

100 E:=C meet D;
101 PD,e:=sub<P | VectorSpace(D)>;
102 PDC:=sub<P | VectorSpace(E)>;
103 M,p:=quo<PD | PDC>;
104 G:=MatrixGroup(M);
105 return {D!(o[1] @@ p @ e) : o in Orbits(G) | not 0 in o};
106 end function;
107

108 existsOutsideRad:=function(C)
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109 H:=VectorSpace(GF(2),Dimension(C));
110 D:=Dual(CstarC(C)) meet C;
111 VD:=VectorSpace(D);
112 g:=hom<VD->H| BFormMatrix(VD,C)>;
113 Im:=Image(g);
114 rad := Kernel(g);
115 b1:=exists(u){ i : i in [1..Dimension(rad)] | QForm(rad.i) ne 0};
116 X:=outsideVectors(C);
117 b2:=exists(v){x : x in X |
118 imgx in Im and (b1 or QForm(x+imgx @@ g) eq 0)
119 where imgx:= H!BFormArray(x,C)};
120 return b2;
121 end function;

The record RF equips the following objects for a doubly even code of
length 24.

122 RF:=recformat<
123 C, // the original code
124 R, // the triply even radical of C
125 prd, // the max dim of radical of supcode of codim = 1
126 CR, // the quotient space C/R
127 p, // the projection C -> C/R
128 X, // the array [ x in CR | Q(x) = 0 ]
129 px, // the projection V(X)->C/R
130 CC, // the triply even check code
131 AutCR // Aut(C) meet Aut(R)
132 >;

Given a doubly even code C and its triply even radical R, the procedure
profiles constructs the quotient C/R, the projection p : C → C/R,
the singular points X , the automorphism group Aut(C) ∩Aut(R) and
the triply even check code, and then returns a record containing them.

133 profiles:=function(C, prd)
134 s:=rec<RF | C:=C, prd:=prd>;
135 s‘R:=CmeetRad(C);
136 s‘CR,s‘p:=VectorSpace(C)/VectorSpace(s‘R);
137 s‘X:=[x:x in s‘CR|QForm(x @@ s‘p) eq 0];
138 M:=Matrix(GF(2), #s‘X, Dimension(s‘CR), s‘X);
139 s‘px:=hom<VectorSpace(GF(2),#s‘X)->s‘CR|M>;
140 s‘AutCR:=AutomorphismGroup(C)
141 meet AutomorphismGroup(s‘R);
142 s‘CC:=LinearCode(Kernel(s‘px));
143 return s;
144 end function;

The procedure constAllSubcodeContainsRad constructs the list of all
doubly even codes of length 24 containing its triply even radical.

145 constAllSubcodeContainsRad:=function(maxcodes24)
146 codes:=[[ profiles(D, 0) : D in maxcodes24]];
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147 print "=> Now, constructing all admissible doubly even codes of length
24...";

148 for i in [1..9] do
149 d:=12-i;
150 ovcodes:=codes[#codes];
151 reps:=&cat[[<C,Dimension(s‘R)>:C in subcodes(s‘C, s‘R)]: s in ovcodes];
152 reps:=uptoequivalenceDE(reps);
153 reps:=[S : S in reps | not existsOutsideRad(S[1])];
154 printf "=> Completed for dim=%3o, the number of codes=%4o.\n", d, #reps

;
155 Append(~codes, [profiles(D[1], D[2]) :D in reps]);
156 if IsEmpty(reps) then
157 break i;
158 end if;
159 end for;
160 printf "=> This is the expected result : %o.\n",
161 [#x:x in codes] eq [9,42,160,377,437,220,36,1, 0];
162 return &cat(codes);
163 end function;

Identification of maximal triply even codes. Given a triply even
code, the function isMaximal returns true if and only if the code is a
maximal triply even code.

164 isMaximal:=function(C)
165 D:=CodeComplement(Dual(CstarC(C)), C);
166 t:=exists(u){x:x in D| x ne 0 and QForm(x) eq 0
167 and forall(v){i:i in [1..Dimension(C)] | BForm(x,C.i) eq 0}};
168 return not t;
169 end function;

The procedure appendCode appends a new maximal triply even code
to the list of codes.

170 appendCode:=procedure(~codenum, ~maxcodes, reps, Ds, id)
171 codenum:=codenum + #Ds;
172 for D in Ds do
173 if isMaximal(D) then
174 Append(~maxcodes, D);
175 invt:=<Dimension(D),NumberOfWords(D,8)>;
176 id0:=Position(reps[2],invt);
177 if id0 ne 0 and not IsEquivalent(D,reps[1][id0]) then
178 id0 := 0;
179 end if;
180 printf
181 "Found a MTE code = Rep.%2o of dim=%2o from DE code No.%o : %o.\n",
182 id0, Dimension(D), id, reps[3][id0+1];
183 end if;
184 end for;
185 end procedure;
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Triply even codes constructed from the combinations with

C1 = C2. We enumerate all codes obtained from the method in Propo-
sition 19 with C1 = C2.
Given a doubly even code and its triply even radical, the function

constDoubleCosetsCC returns the representatives of double cosets

(33) G0(C,R)\G1(C,R)/G0(C,R).

186 constDoubleCosetsCC:=function(s)
187 CRs:={@x:x in s‘CR|x ne 0@};
188 SCRs:=Sym(CRs);
189 G0:=sub<SCRs|{[((x @@ s‘p)^g) @ s‘p:x in CRs]:
190 g in Generators(s‘AutCR)}>;
191 GLCR:=sub<SCRs|{[x^g:x in CRs]:
192 g in Generators(GL(s‘CR))}>;
193 G1:=Stabilizer(GLCR, {x : x in s‘X | x ne 0});
194 return DoubleCosetRepresentatives(G1, G0, G0);
195 end function;

Given a doubly even code C and the double cosets (33), the function
resultingCodesCC returns triply even codes constructed from the code
C using the method in Proposition 19 with C1 = C2 = C.

196 resultingCodesCC:=function(s, dc)
197 D:=DirectSum(s‘R, s‘R);
198 k:=Dimension(s‘CR);
199 M1:=Matrix([s‘CR.i @@ s‘p : i in [1..k]]);
200 codes:=[D+LinearCode(HorizontalJoin(M1, M2)) where
201 M2:=Matrix([((s‘CR.i)^g) @@ s‘p : i in [1..k]])
202 : g in dc];
203 return codes;
204 end function;

The object partsDB is the set of doubly even codes of length 24 con-
taining its triply even radical. The function duplextype returns the
list of all maximal triply even codes and the number of triply even
codes of length 48 constructed from partsDB with C1 = C2.

205 duplextype:=function(partsDB, reps)
206 maxcodes:=[];
207 codenum:=0;
208 excodenum:=0;
209 for id in [1..#partsDB] do
210 s:=partsDB[id];
211 k:=Dimension(s‘CR);
212 if k eq 0 then
213 if Dimension(s‘R) eq s‘prd then
214 excodenum:=excodenum+1;
215 else
216 D:=DirectSum(s‘R, s‘R);
217 appendCode(~codenum, ~maxcodes, reps, [D], id);
218 end if;
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219 else
220 doubleCosets:=constDoubleCosetsCC(s);
221 if Dimension(s‘R) eq s‘prd then
222 Remove(~doubleCosets, 1);
223 excodenum:=excodenum+1;
224 end if;
225 if not IsEmpty(doubleCosets) then
226 list:=resultingCodesCC(s, doubleCosets);
227 appendCode(~codenum, ~maxcodes, reps, list, id);
228 end if;
229 end if;
230 end for;
231 return maxcodes, codenum, excodenum;
232 end function;

Triply even codes constructed from the combinations with

C1 6∼= C2. We enumerate all codes obtained from the method in Propo-
sition 19 with C1 6∼= C2.
Given a pair of doubly even codes and an isomorphism between their

triply even check codes, the function isometry returns an isometry
between them.

233 isometry:=function(s1, s2, g)
234 CX:=Image(s1‘px);
235 bCR1:=ExtendBasis(Basis(CX), s1‘CR);
236 bCX2:=[bCR1[i] @@ s1‘px @ g @ s2‘px : i in [1..Dimension(CX)]];
237 bCR2:=ExtendBasis(bCX2, s2‘CR);
238 return hom<s1‘CR->s2‘CR | [bCR1[i]->bCR2[i] : i in [1..#bCR1]]>;
239 end function;

Given the object partsDB, which is the set of doubly even codes of
length 24 containing its triply even radical, the function isometricPairsC1C2
returns the list of isometric pairs of distinct doubly even codes and an
isometry between them.

240 isometricPairsC1C2:=function(ss)
241 C1C2s:=&cat[[<i, j, isometry(ss[i],ss[j],g)>
242 : j in [i+1..#ss]
243 | Dimension(ss[i]‘CR) eq Dimension(ss[j]‘CR)
244 and #ss[i]‘X eq #ss[j]‘X and isEq
245 where isEq, g := IsEquivalent(ss[i]‘CC, ss[j]‘CC)]
246 : i in [1..#ss]];
247 printf "The number of hybrid pairs = 125: %o.\n", #C1C2s eq 125;
248 return C1C2s;
249 end function;

Given a pair of doubly even codes and an isometry, the function constDoubleCosets
returns the double cosets

(34) h−1G0(C2, R2)h\G1(C1, R1)/G0(C1, R1).
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250 constDoubleCosetsC1C2:=function(s1, s2, h)
251 CRs:={@ x : x in s1‘CR | x ne 0 @};
252 SCRs:=Sym(CRs);
253 G01:=sub<SCRs | {[((x @@ s1‘p)^g) @ s1‘p
254 : x in CRs] : g in Generators(s1‘AutCR)}>;
255 G02:=sub<SCRs | {[((x @ h @@ s2‘p)^g) @ s2‘p @@ h
256 : x in CRs] : g in Generators(s2‘AutCR)}>;
257 GLCR:=sub<SCRs | {[x^g : x in CRs] : g in Generators(GL(s1‘CR))}>;
258 G1:=Stabilizer(GLCR, {x : x in s1‘X | x ne 0});
259 return DoubleCosetRepresentatives(G1, G01, G02);
260 end function;

Given a pair of doubly even codes C1 and C2, an isometry h from C1/R1

to C2/R2 and the double cosets (34), the function resultingCodesC1C2

returns triply even codes constructed from the pair of codes using the
method in Proposition 19.

261 resultingCodesC1C2:=function(s1, s2, h, dc)
262 k:=Dimension(s1‘CR);
263 D:=DirectSum(s1‘R, s2‘R);
264 M1:=Matrix([s1‘CR.i @@ s1‘p : i in [1..k]]);
265 codes:=[D+LinearCode(HorizontalJoin(M1, M2)) where
266 M2:=Matrix([((s1‘CR.i)^g) @ h @@ s2‘p : i in [1..k]])
267 : g in dc];
268 return codes;
269 end function;

Recall that the object partsDB is the set of doubly even codes of length
24 containing its triply even radical. The function hybridtype returns
the list of all maximal triply even codes and number of triply even
codes of length 48 constructed from partsDB with C1 6∼= C2.

270 hybridtype:=function(partsDB, reps)
271 maxcodes:=[];
272 codenum:=0;
273 c1c2s:=isometricPairsC1C2(partsDB);
274 for id in c1c2s do
275 s1:=partsDB[id[1]];
276 s2:=partsDB[id[2]];
277 h:=id[3];
278 k:=Dimension(s1‘CR);
279 if k eq 0 then
280 D:=DirectSum(s1‘R, s2‘R);
281 appendCode(~codenum, ~maxcodes, reps, [D], <id[1],id[2]>);
282 else
283 doubleCosets:=constDoubleCosetsC1C2(s1, s2, h);
284 list:=resultingCodesC1C2(s1, s2, h, doubleCosets);
285 appendCode(~codenum, ~maxcodes, reps, list, <id[1], id[2]>);
286 end if;
287 end for;
288 return maxcodes, codenum;
289 end function;
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Representative examples of maximal triply even codes. We
give 10 maximal triply even codes {D̃(C) | C ∈ ∆} and Ĉ(T10) of
length 48. These codes are constructed by the functions tildeD and
TriangularGraphCode.

290 tildeD := function(C)
291 R := CmeetRad(C);
292 return Juxtaposition(C,C)+DirectSum(R,R);
293 end function;
294

295 TriangularGraph:=function(v)
296 X:=SetToIndexedSet(Subsets({1..v},2));
297 return #X, Matrix(GF(2), #X, #X, [[#(x meet y):y in X] : x in X]);
298 end function;
299

300 TriangularGraphCode:=function(v)
301 n, M:=TriangularGraph(v);
302 r:=(-n) mod 8;
303 return PadCode(LinearCode(M),r) + RepetitionCode(GF(2), n+r);
304 end function;

The object repMTECodes is the list of 10 maximal triply even codes
equipped with their dimensions and the numbers of their codewords of
weight 8.

305 repMTECodes1:=[ tildeD(C) : C in desd24 ] cat [TriangularGraphCode(10)];
306 repMTECodes2:=[<Dimension(C),NumberOfWords(C,8)> : C in repMTECodes1];
307 repMTECodes3:=["New!", "tD( g_{24} )", "tD( d_{24}^{+} )",
308 "tD( d_{12}^{2+} )", "tD( (d_{10}e_7^2)^{+} )",
309 "tD( d_8^{3+} )", "tD( d_6^{4+} )", "tD( d_4^{6+} )",
310 "tD( d_{16}^{+}\oplus e_8 )", "tD( e_8^{\oplus3}\} )",
311 "tT_{10}"];
312 dim_repMTECodes:={* Dimension(C) : C in repMTECodes1*};
313 printf "Representative codes are inequivalent each other: %o.\n",
314 #repMTECodes1 eq #Seqset(repMTECodes2) and
315 dim_repMTECodes eq {* 9^^1, 13^^7, 14^^1, 15^^1 *};
316 repMTECodes:=<repMTECodes1,repMTECodes2,repMTECodes3>;

Non existence of the other maximal triply even code. In this
subsection, we aim to ensure that there does not exist any maximal
triply even code of length 48 except for the representative examples in
the previous subsection up to equivalence.
First, we enumerate all doubly even codes of length 24 which contain

their triply even radicals.

317 partsDB:=constAllSubcodeContainsRad(desd24);
318 table:=[[Integers()!0: j in [1..13-k]]:k in [1..9]];
319 for k in [1..#partsDB] do
320 i:=13-Dimension(partsDB[k]‘C);
321 j:=Dimension(partsDB[k]‘R);
322 table[i][j]+:=1;
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323 end for;
324 printf "The number of admissible codes is same as expected: %o.\n",
325 table eq
326 [
327 [ 7, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
328 [ 33, 6, 3, 0, 0, 0, 0, 0, 0, 0, 0 ],
329 [ 130, 19, 10, 1, 0, 0, 0, 0, 0, 0 ],
330 [ 308, 40, 23, 5, 0, 1, 0, 0, 0 ],
331 [ 363, 37, 25, 10, 1, 1, 0, 0 ],
332 [ 180, 16, 10, 11, 2, 1, 0 ],
333 [ 27, 2, 0, 4, 2, 1 ],
334 [ 0, 0, 0, 0, 1 ],
335 [ 0, 0, 0, 0 ]
336 ];

Second, we check the maximality of triply even codes constructed from
all the doubly even codes in duplicate.

337 duplex_max, duplex_num, exduplex_num
338 :=duplextype(partsDB, repMTECodes);
339 printf "%3o maximal codes of duplex type found.\n",#duplex_max;
340 printf "This is the expected result: %o.\n",
341 <#duplex_max, duplex_num, exduplex_num> eq <30,214,1268>;

Next, we check the maximality of triply even codes constructed from
all the pairs of distinct doubly even codes.

342 hybrid_max, hybrid_num:=hybridtype(partsDB, repMTECodes);
343 printf "%3o maximal codes of hybrid type found.\n",#hybrid_max;
344 printf "This is the expected result: %o.\n",
345 <#hybrid_max, hybrid_num> eq <5,225>;

Result. A classification of triply even codes of length 48 has been
completed into the 10 codes. This calculation has been completed in
the total time: 650.240 seconds, the total memory usage: 534.91MB
under the environment using “IntelR© CoreTM 2 Duo CPU T7500 @
2.20GHz”.
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