A FOCK SPACE MODEL FOR ADDITION AND MULTIPLICATION OF C-FREE RANDOM VARIABLES

MIHAI POPA

Abstract

The paper presents a Fock space model suitable for constructions of c-free algebras. Immediate applications are direct proofs for the properties of the c-free R - and S-transforms.

AMS Subject Classification: 46L54; 30H20 Keywords: free independence, c-free independence, creation/annihilation operators, ${ }^{c} R$ - and ${ }^{c} S$-trasforms

1. Introduction

Two important tools in Free Probability theory are the R - and S-transforms, that play similar role to Fourier, respectively Mellin transform. More precisely, besides strong regularity properties, if X and Y are two free non-commutative random variables, then $R_{X+Y}(z)=R_{X}(z)+R_{Y}(z)$ and $S_{X Y}(z)=S_{X}(z) \cdot S_{Y}(z)$ if X, Y have non-zero first order moments.

In literature there are two main techniques to prove the additive, respectively multiplicative properties of the R - and S-transforms. The proofs given by D.-V. Voiculescu ([14, [15]) and U. Haagerup ([7]) based on functional analysis techniques, namely on the properties of the annihilation and creation operators on the full Fock space, while the proofs of R. Speicher and A. Nica ([8]) are based on combinatorial techniques on the lattice of non-crossing partitions (also non-crossing linked partitions appear in the proofs for the multiplicative property of the S-transform in [5], [11).

In early '90's, M. Bozejko, M. Leinert and R. Speicher introduced the notion of c-freeness, which extends the notion of freeness to the framework of and algebra endowed with two (ϕ, ψ), rather than one, normalized linear functionals (see Section 2 for the exact definitions). (A more general approach to c-freeness, considering pairs of completely positive maps and conditional expectations have been pursued by F. Boca ([2), K. Dykema and E. Blanchard (6), M. Popa, V. Vinnikov (9], [12]) etc). Addition of c-free random variables is studied in [4], where is constructed a c-free version of the R-transform, the ${ }^{c} R$-transform, with similar additivity and analytic properties (for $\phi=\psi$, the two transforms coincide); multiplication of cfree random variables was studied in [13, where is constructed a c-free extension of the S-transform. In both cases, the proofs of the key properties (addition for the ${ }^{c} R$ - and multiplication for the ${ }^{c} S$-transform) are combinatorial, much like the proofs from [8], heavily relaying on the properties on non-crossing partitions. The present material gives a new approach to c-free random variables, in the spirit of the construction from [7]. Particularly, we give a more direct proof of the additive and multiplicative properties of the ${ }^{c} R$ - and ${ }^{c} S$-transforms, based on the properties of the creation and annihilation operators on a certain type of Fock space.

Besides the Introduction, the paper is organized in 3 sections. Section 2 presents basic definitions, the construction of the space $\mathcal{E}(\mathfrak{H}, \mathcal{T}(\mathcal{K}))$ and an operator algebras model for c-free algebras. Section 3 presents the construction of some operators of prescribed ${ }^{c} R$ and ${ }^{c} S$-transforms and Section 4 gives the proof for the additive, respective multiplicative properties of ${ }^{c} R$ and ${ }^{c} S$.

In this paper, rather than the S - or ${ }^{c} S$-transforms, we use, to simplify the notations their multiplicative inverses, the so-called T - and ${ }^{c} T$-transforms - i. e. $T_{X}(z) \cdot S_{X}(z)=1$ (see [5], 11]), respectively ${ }^{c} T(z) \cdot{ }^{c} S(z)=1$ (see [13]).

2. A CONSTRUCTION OF C-FREE ALGEBRAS

§1. Suppose \mathcal{A} is a complex unital algebra endowed and $\psi: \mathcal{A} \longrightarrow \mathbb{C}$ is a linear map such that $\varphi(1)=1$. A family of unital subalgebras $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ of \mathcal{A} is said to be free (with respect to ψ) if

$$
\psi\left(x_{1} \cdots x_{n}\right)=0
$$

whenever $x_{j} \in \mathcal{A}_{\epsilon(j)}$ with $\epsilon(k) \neq \epsilon(k+1)$ and $\psi\left(x_{j}\right)=0$ for $1 \leq j \leq n$ and $1 \leq k<n$.

If $\phi: \mathcal{A} \longrightarrow \mathbb{C}$ is another linear map with $\phi(1)=1$, the family $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ of unital subalgebras of \mathcal{A} is said to be c-free with respect to (ϕ, ψ) if $\left\{A_{i}\right\}_{i \in I}$ are free with respect to ψ and

$$
\phi\left(x_{1} \cdots x_{n}\right)=\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)
$$

whenever $x_{j} \in \mathcal{A}_{\epsilon(j)}$ with $\epsilon(k) \neq \epsilon(k+1)$ and $\psi\left(x_{j}\right)=0$ for $1 \leq j \leq n$ and $1 \leq k<n$.

Take X an element from \mathcal{A} and let $m_{X}(z)=\sum_{k=1}^{\infty} \psi\left(X^{k}\right)$ denote the moment generating series of X with respct to ψ. As formal power series, the transforms $R_{X}(z)$ and, if $\psi(X) \neq 0, T_{X}(z)$ are defined by the equations

$$
\begin{align*}
m_{X}(z) & =R_{X}\left(z\left[1+m_{X}(z)\right]\right) \tag{1}\\
\frac{1}{z} m_{X}(z) & =\left[T_{X}\left(m_{X}(z)\right)\right] \cdot\left(1+m_{X}(z)\right)
\end{align*}
$$

We warn the reader that the version of the R-trasform that is used in the present material differs from the original definition of D.-V. Voiculescu (that we will call here \mathcal{R}) by a multiplication with the variable $z: R_{X}(z)=z \cdot \mathcal{R}_{X}(z)$. As also seen in [13], [8], this shift of coefficients is simplifying the notations in several recurrence relations from $\S 2$.

For \mathcal{H} a complex Hilbert space, we define $\mathcal{T}^{0}(\mathcal{H})=\mathcal{H} \oplus(\mathcal{H} \otimes \mathcal{H}) \oplus(\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}) \oplus \ldots$ and $\mathcal{T}(\mathcal{H})=\mathbb{C} \omega \oplus \mathcal{T}^{0}(\mathcal{H})$, where $\|\omega\|=1$. For $e \in \mathcal{H}$ a nonzero vector, the creation operator over $e, a_{e}^{*} \in \mathcal{L}(\mathcal{T}(\mathcal{H}))$, is given by the relations

$$
\begin{aligned}
& a_{e}^{*} \omega=e \\
& a_{e}^{*} v_{1} \otimes v_{2} \otimes \cdots v_{k}=e \otimes v_{1} \otimes v_{2} \otimes \cdots v_{k}, \text { for } v_{1}, \ldots, v_{k} \in \mathcal{H}
\end{aligned}
$$

while the annihilation operator over $e, a_{e} \in \mathcal{L}(\mathcal{T}(\mathcal{H}))$, is given by

$$
\begin{aligned}
& a_{e} \omega=0 \\
& a_{e} v_{1} \otimes v_{2} \otimes \cdots v_{k}=\left\langle v_{1}, \xi\right\rangle \cdot v_{2} \otimes \cdots \otimes v_{k}
\end{aligned}
$$

We remind the following result (see [16] for (1), [7], Theorem 2.2 and Theorem 2.3 , for (2) and (3)):

Theorem 2.1. Let \mathcal{H} be a complex Hilbert space, e_{1} and e_{2} be two orthogonal vectors from \mathcal{H}, and f_{1}, f_{2} be polynomials with complex coefficients. For $e \in \mathcal{H} \backslash$ $\{0\}$ we will denote by $\mathcal{A}(e)$ the algebra generated by the creation and annihilation operators over e.
(1) The algebras $\mathcal{A}\left(e_{1}\right)$ and $\mathcal{A}\left(e_{2}\right)$ are free with respect to the vacuum state $T \mapsto\langle T \omega, \omega\rangle$.
(2) If $\alpha_{i}=a_{e_{i}}^{*}+f\left(a_{e_{i}}\right),(i=1,2)$, then $R_{\alpha_{i}}(z)=z \cdot f_{i}(z)$ and $R_{\alpha_{1}+\alpha_{2}}(z)=$ $z \cdot f_{1}(z)+z \cdot f_{2}(z)$.
(3) If $f_{i}(0) \neq 0$, and $\beta_{i}=\left[\boldsymbol{I} \boldsymbol{d}_{\mathcal{T}(\mathcal{H})}+a_{e_{i}}^{*}\right] f\left(a_{e_{i}}\right),(i=1,2)$, then $T_{\beta_{i}}(z)=f_{i}(z)$ and $T_{\beta_{1} \beta_{2}}(z)=f_{1}(z) \cdot f_{2}(z)$.
§2. Consider now two complex Hilbert spaces \mathcal{K} and \mathfrak{H} and ω a distinguished unit vector in \mathfrak{H}. Take $\mathcal{T}(\mathcal{K})=\omega_{1} \oplus \mathcal{T}^{0}(\mathcal{K})$, where again $\left\|\omega_{1}\right\|=1$ and

$$
\mathcal{E}(\mathfrak{H}, \mathcal{K})=\mathfrak{H} \oplus(\mathfrak{H} \otimes \mathcal{T}(\mathcal{K})) .
$$

Later, in Sections 2 and 4, we will consider $\mathcal{E}(\mathfrak{H}, \mathcal{K})$ for a particular \mathfrak{H}; when there is no possibility of confusion, to simplify the writting, we will use \mathcal{E} for $\mathcal{E}(\mathfrak{H}, \mathcal{K})$. Put $\mathfrak{H}^{0}=\mathfrak{H} \ominus \mathbb{C} \omega, \Omega=\omega \otimes \omega_{1}, \mathcal{E}^{0}=\mathcal{E} \ominus \mathbb{C} \Omega$. We define the following embedding $\pi: \mathcal{L}(\mathcal{K}) \longrightarrow \mathcal{L}(\mathcal{T}(\mathcal{H})):$

$$
\pi(a)=a \oplus a \otimes\left(\mathbf{I d}_{\mathfrak{H} \otimes \mathcal{T}^{0}(\mathcal{K})} \oplus 0_{\mathbb{C} \Omega}\right)
$$

Note that $\pi(\mathcal{L}(\mathfrak{H}))$ has unit $\pi\left(\mathbf{I d}_{\mathfrak{H}}\right)=\mathbf{I d}_{\mathcal{E}_{0}} \neq \mathbf{I d}_{\mathcal{E}}$.
For a nonzero vector $\eta \in \mathcal{K}$ we define the operators A_{η}^{*} and $\left\{A_{\eta, n}\right\}_{n \geq 0}$ from $\mathcal{L}(\mathcal{E})$ as follows:

$$
\begin{aligned}
A_{\eta}^{*} \zeta & =0, \text { if } \zeta \in \mathfrak{H} \oplus \mathfrak{H}^{0} \otimes \mathcal{T}(\mathcal{K}) \\
A_{\eta}^{*} \omega \otimes \omega_{1} & =\omega \otimes \eta \\
A_{\eta}^{*} \omega \otimes \zeta & =\omega \otimes(\eta \otimes \zeta) \text { for all } \zeta \in \mathcal{T}^{0}(\mathcal{K})
\end{aligned}
$$

we put $A_{\eta, 0}=\mathbf{I d}_{\mathbb{C} \Omega}$ and, for $n \leq 1$, we define $A_{\eta, n}$ via

$$
\begin{aligned}
& A_{\eta, n} \omega \otimes\left(\eta^{\otimes n}\right)=\omega \otimes \omega_{1} \\
& A_{\eta, n} \zeta=0, \text { if } \zeta \notin \mathbb{C} \omega_{1} \otimes\left(\eta^{\otimes n}\right), \text { where } \eta^{\otimes n}=\underbrace{\eta \otimes \cdots \otimes \eta}_{n \text { times }} .
\end{aligned}
$$

We will use the notation $\mathcal{D}(\eta)$ for the algebra generated by A_{η}^{*} and $\left\{A_{\eta, n}\right\}_{n \geq 0}$. If \mathcal{A}_{1} and \mathcal{A}_{2} are two subalgebras of $\mathcal{L}(\mathcal{E})$, then the notation $\mathcal{A}_{1} \vee \mathcal{A}_{2}$ will stand for the algebra generated by them in $\mathcal{L}(\mathcal{E})$.

Remark 2.2. Fix $\eta, \eta_{0} \in \mathcal{K}$ unit vectors. From the definitions of $\pi, A_{\eta}^{*}, A_{\eta, n}$, trivial verifications give that that

$$
A_{\eta, n}\left(A_{\eta}^{*}\right)^{p}= \begin{cases}A_{\eta, n-p} & \text { if } n \geq p \\ 0 & \text { if } n<p\end{cases}
$$

If $x \in \pi(\mathcal{L}(\mathfrak{H}))$ and $n \geq 0$, then $x A_{\eta, n}=0$. Also, if $m, n>0$, then

$$
\begin{aligned}
& A_{\eta, n} A_{\eta_{0}, m}=0 \\
& \boldsymbol{I} \boldsymbol{d}_{\mathbb{C} \Omega} A_{\eta, n}=A_{\eta, n} ; \quad A_{\eta, n} \boldsymbol{I} \boldsymbol{d}_{\mathbb{C} \Omega}=0 \\
& A_{\eta, n} \boldsymbol{I} \boldsymbol{d}_{\mathcal{E}_{0}}=0 ; \quad \boldsymbol{I} \boldsymbol{d}_{\mathcal{E}_{0}} A_{\eta}^{*}=A_{\eta}^{*} \boldsymbol{I} \boldsymbol{d}_{\mathcal{E}_{0}}=A_{\eta}^{*}
\end{aligned}
$$

Remark 2.3. For $\eta_{1}, \eta_{2} \in \mathcal{K}$, we have that

$$
\operatorname{Range}\left(\left(A_{\eta_{1}}^{*}\right)^{p} A_{\eta_{2}}^{*}\right)=\operatorname{Span}\left\{\omega \otimes \eta_{2} \otimes \eta_{1}^{\otimes p}, \omega \otimes \zeta \otimes \eta_{2} \otimes \eta_{1}^{\otimes p}: \zeta \in \mathcal{T}^{0}(\mathcal{K})\right\}
$$

therefore, if $\eta_{1} \perp \eta_{2}$, then

$$
A_{\eta_{1}, n}\left(A_{\eta_{1}}^{*}\right)^{p} A_{\eta_{2}}^{*}=0
$$

On $\mathcal{L}(\mathcal{E})$ we consider the functionals $\phi(\cdot)=\langle\cdot \Omega, \Omega\rangle$ and $\psi(\cdot)=\left\langle\cdot \Omega_{1}, \Omega_{1}\right\rangle$.
Lemma 2.4. Suppose $\eta_{1}, \eta_{2} \in \mathcal{K}$ and $x \in \pi(\mathcal{L}(\mathfrak{H}))$. Then

$$
\begin{aligned}
A_{\eta_{1}}^{*} x A_{\eta_{2}}^{*} & =A_{\eta_{1}}^{*} \psi(x) A_{\eta_{2}}^{*} \\
A_{\eta_{1}, n} x A_{\eta_{2}}^{*} & =A_{\eta_{1}, n} \psi(x) A_{\eta_{2}}^{*}
\end{aligned}
$$

Proof. Since $A_{\eta_{2}}(\mathcal{E})=\omega_{1} \otimes \mathcal{T}^{0}(\mathcal{K})$, for any $\zeta \in \mathcal{E}$ we have that:

$$
\begin{aligned}
& A_{\eta_{2}} \zeta=\omega_{1} \otimes \zeta^{\prime} \text { for some } \zeta^{\prime} \in \mathcal{T}^{0}(\mathcal{K}) \\
& x A_{\eta_{2}} \zeta=\psi(x) \omega_{1} \otimes \zeta^{\prime}+v \otimes \zeta^{\prime} \text { for some } v \in \mathcal{T}^{0}(\mathcal{H})
\end{aligned}
$$

But $\mathcal{T}^{0}(\mathcal{H}) \otimes \mathcal{T}^{0}(\mathcal{K}) \subset \operatorname{ker}\left(A_{\eta_{1}}^{*}\right), \operatorname{ker}\left(A_{\eta_{1}, n}\right)$ hence the conclusion.
In the proof of the main result of this section, Theorem 2.6 we will use the following lemma:
Lemma 2.5. Suppose \mathcal{A}_{1} and \mathcal{A}_{2} are two free independent subalgebras of an algebra \mathcal{A} with respect to some linear map φ and $a_{0}, a_{1}, \ldots, a_{n+1} \in \mathcal{A}_{1}, b_{1}, \ldots, b_{n} \in \mathcal{A}_{2}$ are such that $\varphi\left(a_{k}\right)=\varphi\left(b_{k}\right)=0$ for all $1 \leq k \leq n$. Then

$$
\varphi\left(a_{0} b_{1} \cdots b_{n} a_{n+1}\right)=0
$$

Proof. Take $d_{j}=a_{j}-\varphi\left(a_{j}\right), j \in\{0, n+1\}$. Then $\varphi\left(d_{j}\right)=0$ and $a_{j}=\varphi\left(a_{j}\right)+d_{j}$, therefore

$$
\begin{aligned}
\varphi\left(a_{0} b_{1} \cdots b_{n} a_{n+1}\right)= & \varphi\left(a_{0}\right) \varphi\left(a_{0} b_{1} \cdots b_{n} d_{n+1}\right)+\varphi\left(a_{0}\right) \varphi\left(a_{0} b_{1} \cdots b_{n}\right) \varphi\left(a_{n+1}\right) \\
& +\varphi\left(d_{0} b_{1} \cdots b_{n} d_{n+1}\right)+\varphi\left(d_{0} b_{1} \cdots b_{n}\right) \varphi\left(a_{n+1}\right)
\end{aligned}
$$

and all the above four terms cancel from the definition of free independence.
Theorem 2.6. Let $\mathcal{A}_{1}, \mathcal{A}_{2}$ be two subalgebras of $\mathcal{L}(\mathfrak{H})$ which are free independent with respect to ψ and let η_{1}, η_{2} be two orthogonal unit vectors \mathcal{K}. Then the algebras $\mathfrak{A}_{1}=\pi\left(\mathcal{A}_{1}\right) \vee \mathcal{D}\left(\eta_{1}\right)$ and $\mathfrak{A}_{2}=\pi\left(\mathcal{A}_{2}\right) \vee \mathcal{D}\left(\eta_{2}\right)$ are c-free with respect to (ϕ, ψ).
Proof. It suffices to prove that for x_{1}, \ldots, x_{m} such that $x_{j} \in \mathcal{A}\left(e_{\epsilon(j)}, \eta_{\epsilon(j)}\right)$ with $\epsilon(i) \neq \epsilon(i+1)$ and $\psi\left(x_{k}\right)=0$, we have

$$
\begin{align*}
& \psi\left(x_{m} \cdots x_{2} x_{1}\right)=0 \tag{2}\\
& \phi\left(x_{m} \cdots x_{2} x_{1}\right)=\phi\left(x_{m}\right) \cdots \phi\left(x_{2}\right) \phi\left(x_{1}\right) \tag{3}
\end{align*}
$$

Note that $\mathcal{T}(\mathcal{H}) \otimes \mathcal{T}(\mathcal{K}) \perp \Omega_{1}$ and

$$
\begin{aligned}
\mathcal{D}\left(\eta_{i}\right)(\mathcal{E}) & \subseteq \mathcal{T}(\mathcal{H}) \otimes \mathcal{T}(\mathcal{K}) \\
\pi\left(\mathcal{A}_{i}\right)(\mathcal{T}(\mathcal{H}) \otimes \mathcal{T}(\mathcal{K})) & \subseteq \mathcal{T}(\mathcal{H}) \otimes \mathcal{T}(\mathcal{K})
\end{aligned}
$$

hence ψ cancels on all reduced products from $\mathfrak{A}_{1} \cup \mathfrak{A}_{2}$ that contain factors from $\mathcal{D}\left(\eta_{1}\right)$ or $\mathcal{D}\left(\eta_{2}\right)$. It follows that we only need to prove the relation (2) for $x_{1}, \ldots, x_{m} \in$ $\pi\left(\mathcal{A}_{1}\right) \cup \pi\left(\mathcal{A}_{2}\right)$, statement which is equivalent to the free independence of \mathcal{A}_{1} and \mathcal{A}_{2}.

We will prove (3) by induction on n. For $n=1$, the assertion is trivial. For the induction step, it suffices to prove that

$$
\begin{equation*}
\phi\left(x_{n} \cdots x_{1}\right)=\phi\left(x_{n}\right) \phi\left(x_{n-1} \cdots x_{1}\right) \tag{4}
\end{equation*}
$$

Taking $x_{n}^{\prime}=x_{n}-\phi\left(x_{n}\right) \mathbf{I} \mathbf{d}_{\mathbb{C} \Omega}$, we have that $\phi\left(x_{n}^{\prime}\right)=0$ hence (4) is equivalent to $\phi\left(x_{n} \cdots x_{1}\right)=0$ whenever $\phi\left(x_{n}\right)=0$.

Suppose $x_{n} \in \mathcal{A}_{1} \vee \mathcal{D}\left(\eta_{1}\right)$. then x_{n} is a linear combination of monomials in elements from \mathcal{A}_{1} and $\mathcal{D}\left(\eta_{1}\right)$. From Lemma 2.4, we can suppose that all factors from $\mathcal{D}\left(\eta_{1}\right)$ are consecutive, so x_{n} is a sum of elements from \mathcal{A}_{1} and monomials of the types $y_{1}^{\prime}\left(A_{\eta_{1}}^{*}\right)^{p} A_{\eta_{1}, m} y_{1}$ or $y_{1}^{\prime}\left(A_{\eta_{1}}^{*}\right)^{p} y_{1}$, with $y_{1}^{\prime}, y_{1} \in \mathcal{A}_{1} \cup \mathbf{I d}$ and $p \geq 0$. If $y_{1}^{\prime} \neq \mathbf{I d}$ or $p \neq 0$, then $x_{n}(\mathcal{E}) \perp \Omega$, hence $\phi\left(x_{n} \cdots x_{1}\right)=0$. Also, if $m=0$, then either $y_{1}=\mathbf{I d}$ and $\phi\left(x_{n}\right) \neq 0$ or $y_{1} \in \mathcal{A}_{1}$ and $x_{n}=0$. Therefore we can suppose that $x_{n}=A_{\eta_{1}, m} y_{1}$ for some $m>0$ and $y_{1} \in \mathcal{A}_{1}$ and all other x_{j} are either elements of $\mathcal{A}_{\epsilon(j)}$ or monomials as above.

Let $k=\max \left\{j: x_{j}\right.$ contains $\left.A_{\epsilon(j)}^{*}\right\}$ and $p=\max \left\{j: x_{j}\right.$ contains $\left.A_{\epsilon(j)}\right\}$. If $p>k$, then $x_{n} \cdots x_{p}=A_{\eta_{1}, m} y A_{\eta_{\epsilon(p)}} y^{\prime}$, for some $y \in \mathcal{A}_{1} \vee \mathcal{A}_{2}$ and $y^{\prime} \in \mathcal{A}_{\epsilon(p)} \vee \mathcal{D}\left(\eta_{\epsilon(j)}\right)$. From Lemma 2.4 and Remark 2.2, $A_{\eta_{1}, m} y A_{\eta_{\epsilon(p)}}=A_{\eta_{1}, m} \psi(y) A_{\eta_{\epsilon(p)}}=0$.

Suppose that $p \leq k$. If $\epsilon(k)=2$, then $x_{n} \cdots x_{k}=A_{\eta_{1}, m} y A_{\eta_{2}}^{*} y^{\prime}$, for some $y \in \mathcal{A}_{1} \vee \mathcal{A}_{2}$ and $y^{\prime} \in \mathcal{A}_{2} \vee \mathcal{D}\left(\eta_{2}\right)$. Applying Lemma 2.4 and Remark 2.3, we have

$$
x_{n} \cdots x_{k}=A_{\eta_{1}, m} \psi(y) A_{\eta_{2}}^{*} y^{\prime}=0
$$

If $\epsilon(j)=1$, then, from Remark 2.3,

$$
\begin{aligned}
x_{n} \cdots x_{k} & =A_{\eta_{1}, m} y_{1} x_{n-1} \cdots x_{k+1} y A_{\eta_{1}}^{*} y^{\prime} \\
& =A_{\eta_{1}, m} \psi\left(y_{1} x_{n-1} \cdots x_{k+1} y\right) A_{\eta_{1}}^{*} y^{\prime}
\end{aligned}
$$

but $\psi\left(y_{1} x_{n-1} \cdots x_{k+1} y\right)=0$ from Lemma [2.5, so q.e.d..

Corollary 2.7. With the notations from $\S 1$, take $\mathfrak{H}=\mathbb{C} \omega \oplus \mathcal{T}^{0}(\mathcal{H})$, where \mathcal{H} is a complex Hilbert space of dimension at least 2.

Let e_{1}, e_{2}, respectively η_{1}, η_{2} be two pairs of orthogonal unit vector from \mathcal{H}, respectively \mathcal{K}. Then the algebras $\mathcal{D}\left(\eta_{1}\right) \vee \pi\left(\mathcal{A}\left(e_{1}\right)\right)$ and $\mathcal{D}\left(\eta_{2}\right) \vee \pi\left(\mathcal{A}\left(e_{2}\right)\right)$ are c-free with respect to the maps ϕ and ψ considered above.

Proof. From Theorem 2.1(1), the algebras $\mathcal{A}\left(e_{1}\right)$ and $\mathcal{A}\left(e_{2}\right)$ are free in $\mathcal{L}(\mathcal{T}(\mathcal{H}))$ with respect to $\langle\cdot \omega, \omega\rangle$, and the conclusion follows from Theorem 2.6.

3. THE ${ }^{c} R$ - AND ${ }^{c} T$ - TRANSFORMS

Consider an algebra \mathcal{A} with two states $\phi, \psi: \mathcal{A} \longrightarrow \mathbb{C}$ and $X \in \mathcal{A}$. Let $m_{X}(z)=$ $\sum_{k=1}^{\infty} \psi\left(X^{k}\right)$, respectively $M_{X}(z)=\sum_{k=1}^{\infty} \phi\left(X^{k}\right)$ be the moment-generating series of X with respect to ψ, respectively ϕ. We define the ${ }^{c} R-$, and, if $\psi(X) \neq 0$, the ${ }^{c} T$-transforms of X by the following equations:

$$
\begin{align*}
{ }^{c} R_{X}\left(z\left[1+m_{X}(z)\right]\right) \cdot\left(1+M_{X}(z)\right) & =M_{X}(z)\left[1+m_{X}(z)\right] \tag{5}\\
{\left[{ }^{c} T_{X}\left(m_{X}(z)\right)\right] \cdot\left(1+M_{X}(z)\right) } & =\frac{M_{X}(z)}{z} \tag{6}
\end{align*}
$$

With the notations from Section 2 , for $\eta \in \mathcal{K}$ a non-zero vector and $f=$ $\sum_{k=0}^{N} f_{k} X^{k}$ a polynomial with complex coefficients, we define $A_{\eta, f \otimes} \otimes$ via:

$$
A_{\eta, f^{\otimes}}=\sum_{k=0}^{N} f_{k} \cdot A_{\eta, k}
$$

3.1. The ${ }^{c} R$-transform.

Theorem 3.1. Let η be a unit vector from $\mathcal{K}, b \in \pi(\mathcal{L}(\mathfrak{H}))$ and $f=\sum_{p=0}^{M} g_{p} \cdot z^{p}$ be a polynomial with complex coefficients. Consider $\alpha \in \mathcal{L}(\mathcal{E})$ given by:

$$
\alpha=b+A_{\eta}^{*}+A_{\eta, f \otimes}
$$

Then ${ }^{c} R_{\alpha}(z)=z f(z)$.
Proof. It suffices to show that $z f(z)$ satisfies the equation (5), which is equivalent to the following recurrence

$$
\begin{equation*}
\phi\left(\alpha^{n}\right)=\sum_{0 \leq p \leq n} \sum_{\substack{q_{1}, \ldots, q_{p} \geq 0 \\ n \geq 1+p+q_{1}+\cdots q_{p}}} \phi\left(\alpha^{n-1-\left(p+q_{1}+\cdots+q_{p}\right)}\right) \cdot f_{p} \cdot \psi\left(\alpha^{q_{1}}\right) \cdots \psi\left(\alpha^{q_{p}}\right) \tag{7}
\end{equation*}
$$

for all $n>0$.
Let us denote $A=A_{\eta}^{*}$ and $B=A_{\eta, f \otimes}$. The triple (b, A, B) satisfies the following relations:

$$
\begin{align*}
& b \Omega=0, B(\mathcal{E})=\mathbb{C} \Omega \tag{8}\\
& A b^{q} A=A \psi\left(b^{q}\right) A, B b^{q} A=B \psi\left(b^{q}\right) A \text { for all } q>0 \tag{9}\\
& \phi\left(B A^{n}\right)=f_{n}, \text { for all } n \geq 0 \tag{10}
\end{align*}
$$

(equations (8) and (9) are consequences of the relations from Remark 2.2, and (10) follows from Lemma 2.4)

Let $I=\{b, A, B\}$. Since $\alpha=\sum_{x \in I} x$, we have that

$$
\begin{equation*}
\phi\left(\alpha^{n}\right)=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in I^{n}} \phi\left(x_{n} x_{n-1} \cdots x_{1}\right) \tag{11}
\end{equation*}
$$

To further simplify the writting, we introduce the following notations

$$
I[n, j]=\left\{\left(x_{1}, \ldots, x_{n}\right) \in I^{n}, \min \left\{k: x_{k}=B\right\}=j\right\}
$$

Since $b \Omega=0$ and $A(\mathcal{E}) \perp \Omega$, we have that $\phi\left(x_{n} \cdots x_{1}\right)=0$ unless $x_{n}=B$, hence $\left(x_{n}, \ldots, x_{1}\right) \in I[n, j]$ for some j. Also, for $\left(x_{n}, \ldots, x_{1}\right) \in I[n, j]$, since $B(\mathcal{E})=\mathbb{C} \Omega$, we have that $x_{j} \cdots x_{1} \Omega=\phi\left(x_{j} \cdots x_{1}\right)$, so $\phi\left(x_{n} \cdots x_{1}\right)=\phi\left(x_{n} \cdots x_{j+1}\right) \phi\left(x_{j} \cdots x_{1}\right)$, therefore (11) becomes

$$
\begin{align*}
\phi\left(\alpha^{n}\right) & =\sum_{j=1}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right) \in I[n, j]} \phi\left(x_{n} \cdots x_{1}\right) \\
& =\sum_{j=1}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right) \in I[n, j]} \phi\left(x_{n} \cdots x_{j+1}\right) \phi\left(x_{j} \cdots x_{1}\right) \\
& =\sum_{j=1}^{n} \sum_{\left(x_{1}, \ldots, x_{j}\right) \in I[j, j]} \phi\left(\alpha^{n-j}\right) \phi\left(x_{j} \cdots x_{1}\right) \tag{12}
\end{align*}
$$

Consider $\left(x_{1}, \ldots, x_{n}\right) \in I[n, n]$. If $n=1$, then $\phi\left(x_{n} \cdots x_{1}\right)=\phi(B)=f_{0}$. If $n>1$, then $x_{1} \Omega=0$ unless $x_{1}=A$. Let $1=k_{1}<\cdots<k_{p}<n$ be the set of all indices k such that $x_{k}=A$. Letting $q_{j}=k_{j+1}-k_{j}-1, q_{p}=n-k_{p}-1$ and applying property (10), we obtain:

$$
\begin{align*}
\sum_{\left(x_{1}, \ldots, x_{n}\right) \in I[n, n]} \phi\left(x_{n} \cdots x_{1}\right) & =\sum_{p=1}^{n-1} \sum_{\substack{0 \leq q_{1}, \ldots, q_{p} \\
q_{1}+\ldots q_{p}<n-p}} \phi\left(B \cdot \psi\left(b^{q_{p}}\right) \cdot A \cdots \psi\left(b^{q_{1}}\right) A\right) \\
& =\sum_{\substack{0 \leq q_{1}, \ldots, q_{p} \\
q_{1}+\ldots q_{p}<n-p}} f_{p} \cdot \psi\left(b^{q_{p}}\right) \cdots \psi\left(b^{q_{1}}\right) \tag{13}
\end{align*}
$$

Finally, the equality $\psi\left(b^{q}\right)=\psi\left(\alpha^{q}\right)$ and equations (12), (15) imply (7), so q.e.d..

3.2. The ${ }^{c} T$-transform.

Theorem 3.2. Let η be a unit vector from \mathcal{K}, $d \in \pi(\mathcal{L}(\mathfrak{H}))$ and $f(z)=\sum_{k=0}^{M} f_{k} \cdot z^{k}$ be a polynomial with complex coefficients such that $\psi(b), f_{0} \neq 0$. Consider $\beta \in \mathcal{L}(\mathcal{E})$ given by:

$$
\beta=d+d A_{\eta}^{*}+A_{\eta, f \otimes} .
$$

Then ${ }^{c} T_{\beta}(z)=f(z)$.
Proof. The proof is similar to the one of Theorem 3.1. Denote again $A=A_{\eta}^{*}$, $B=A_{\eta, f \otimes}$ and consider the sets

$$
\begin{aligned}
& J=\{d, d A, B\} \\
& J[n, l]=\left\{\left(x_{1}, \ldots, x_{n}\right) \in J^{n}, \min \left\{k: x_{k}=B\right\}=l\right\}
\end{aligned}
$$

For $\left(x_{1}, \ldots, x_{n}\right) \in J^{n}$, we have that $\phi\left(x_{n} \ldots x_{1}\right)=0$ unless $x_{n}=B$, hence $\left(x_{1}, \ldots, x_{n}\right) \in J[n, l]$ for some $1 \leq l \leq n$. Also, note that equation (12) holds true if we replace I with J, therefore

$$
\begin{equation*}
\phi\left(\beta^{n}\right)=\sum_{l=1}^{n} \phi\left(\beta^{n-l}\right) \sum_{\left(x_{1}, \ldots, x_{l}\right) \in J[l, l]} \phi\left(x_{l} \cdots x_{1}\right) \tag{14}
\end{equation*}
$$

Fix $n>0$ and let $\left(x_{1}, \ldots, x_{1}\right) \in J[n . n]$. If $n=1$, then $\phi\left(x_{n}, \ldots, x_{1}\right)=\phi(B)=f_{0}$. If $n=1$, then $\phi\left(x_{n} \cdots x_{1}\right)$ cancels unless $x_{1}=d A$. Let $1=k_{1}<k_{2}<\cdots<k_{p} \leq$ $n-1$ be the set of indices k such that $x_{k}=d A$. Taking $q_{j}=k_{j+1}-k_{j}-1$ for $1<j<n-1$ and $q_{p}=n-k_{p}-1$, and applying property (10), we obtain:

$$
\begin{aligned}
\sum_{\left(x_{1}, \ldots, x_{n}\right) \in J[n, n]} \phi\left(x_{n} \cdots x_{1}\right) & =\sum_{p=1}^{n-1} \sum_{\substack{0 \leq q_{1}, \ldots, q_{p} \\
q_{1}+\ldots q_{p}<n}} \phi\left(B \cdot\left(b^{q_{p}-1}\right) \cdot d A \cdot b^{q_{p-1}-1} \cdots b^{q_{1}-1} \cdot d A\right) \\
& =\sum_{p=1}^{n-1} \sum_{\substack{0 \leq q_{1}, \ldots, q_{p} \\
q_{1}+\ldots q_{p}<n}}\left(B \cdot \psi\left(d^{q_{p}}\right) \cdot A \cdot \psi\left(b^{q_{p-1}}\right) \cdots \psi\left(d^{q_{1}}\right) A\right) \\
& =\sum_{p=1}^{n-1} \sum_{\substack{0 \leq q_{1}, \ldots, q_{p} \\
q_{1}+\ldots q_{p}<n}} f_{p} \cdot \psi\left(d^{q_{p}}\right) \cdots \psi\left(d^{q_{1}}\right) .
\end{aligned}
$$

And the conclusion follows, since (15), (14) and the identity $\psi\left(\beta^{q}\right)=\psi\left(d^{q}\right)$ imply the $f(z)$ satisfies (6).

4. Addition and multiplication of c-Free Random variables

Theorem 4.1. Let η_{1}, η_{2} be orthogonal unit vectors from \mathcal{K}, let $b_{1}, b_{2}, d_{1}, d_{2}$ be some elements from $\pi(\mathcal{L}(\mathfrak{H}))$ and let $f_{1}, f_{2}, F_{1}, F_{2}$ be polynomials with complex coefficients, such that $\psi\left(d_{i} \neq 0 \neq F_{i}(0)\right.$. Define $(i=1,2)$:

$$
\begin{aligned}
& \alpha_{i}=b_{i}+A_{\eta_{i}}^{*}+A_{\eta_{i}, f_{i} \otimes} \\
& \beta_{i}=d_{i}+d_{i} \cdot A_{\eta_{i}}^{*}+A_{\eta_{i}, F_{i} \otimes} .
\end{aligned}
$$

Then ${ }^{c} R_{\alpha_{1}+\alpha_{2}}(z)={ }^{c} R_{\alpha_{1}}(z)+{ }^{c} R_{\alpha_{2}}(z)$ and ${ }^{c} T_{\beta_{1} \cdot \beta_{2}}(z)={ }^{c} T_{\beta_{1}}(z) \cdot{ }^{c} T_{\beta_{2}}(z)$.
Proof. Suppose that $F_{1}(z)=\sum_{k=0}^{M} h_{k} \cdot z^{k}$ and $F_{2}(z)=\sum_{k=0}^{M} l_{k} \cdot z^{k}$ (eventually h_{M} or l_{M} are zero).

To prove the first equality, we introduce the notations

$$
\begin{aligned}
\widetilde{b} & =b_{1}+b_{2} \\
\widetilde{A} & =A_{\eta_{1}}^{*}+A_{\eta_{2}}^{*} \\
\widetilde{B} & =A_{\eta_{1}, F_{1}}+A_{\eta_{2}, F_{2}^{\otimes}}
\end{aligned}
$$

Trivial verifications show that the triple $(\widetilde{b}, \widetilde{A}, \widetilde{B})$ verify the conditions (8)-(10), therefore the reccurrence (7) holds true for $\alpha=\widetilde{b}+\widetilde{A}+\widetilde{B}=\alpha_{1}+\alpha_{2}$ and $\left\{g_{k}\right\}_{k=1}^{M}$ the coefficients of $f_{1}(z)+f_{2}(z)$, so ${ }^{c} R_{\alpha_{1}+\alpha_{2}}(z)=z\left[f_{1}(z)+f_{2}(z)\right]$, q.e.d..

For the second equality, we need to prove that $F_{1}(z) \cdot F_{2}(z)$ satisfies (6) for $\beta=\beta_{1} \cdot \beta_{2}$, that is the recurrence formula:

$$
\begin{align*}
\phi\left(\beta^{n}\right) & =\sum_{p=0}^{n-1} \sum_{\substack{q_{1}, \ldots, q_{p}>0 \\
q_{1}+\cdots+q_{p} \leq n}} \phi\left(\beta^{n-1-\left(q_{1}+\cdots+q_{p}\right)}\right) \cdot\left[g_{p} \cdot \psi\left(\beta^{q_{p}}\right) \cdots \psi\left(\beta^{q_{1}}\right)\right] \\
& =\sum_{m=1}^{n} \phi\left(\beta^{n-m}\right) \cdot\left[\sum_{p=1}^{m-1} \sum_{\substack{q_{1}, \ldots, q_{p}>0 \\
q_{1}+\cdots+q_{p}<m}} g_{p} \cdot \psi\left(\beta^{q_{p}}\right) \cdots \psi\left(\beta^{q_{1}}\right)\right] \tag{16}
\end{align*}
$$

is verified for $\beta=\beta_{1} \cdot \beta_{2}$ and g_{m} the coefficient of z^{m} in $F_{1}(z) \cdot F_{2}(z)$.
We introduce the notations

$$
\begin{aligned}
& b=d_{1} ; \quad d=d_{2} \\
& A_{1}=A_{\eta_{1}}^{*} ; \quad A_{2}=A_{\eta_{2}}^{*} \\
& B_{1}=A_{\eta_{1}, F_{1}^{\otimes}} ; \quad B_{2}=B_{\eta_{2}, F_{2}^{\otimes}}
\end{aligned}
$$

Then $B_{i} A_{j}=0$ whenever $i \neq j$ and $\beta_{1}=b+b A_{1}+B_{1}, \beta_{2}=d+d A_{2}+B_{2}$. For $\beta=\beta_{1} \cdot \beta_{2}$, we have that

$$
\begin{aligned}
\beta & =\left(b+b A_{1}+B_{1}\right)\left(d+d A_{2}+B_{2}\right) \\
& =b d+b d A_{2}+b B_{2}+b A_{1} d+b A_{1} d A_{2}+b A_{1} B_{2}+B_{1} d+B_{1} d A_{2}+B_{1} B_{2}
\end{aligned}
$$

Consider the sets

$$
\begin{aligned}
& \mathcal{J}=\left\{b d, b d A_{2}, b A_{1} d, b A_{1} d A_{2}, b A_{1} B_{2}, B_{1} d, B_{1} d A_{2}, B_{1} B_{2}\right\} \\
& \mathcal{J}[n, m]=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{J}^{n}, \min _{k}\left\{x_{k} \in\left\{B_{1} d, B_{1} B_{2}\right\}\right\}=m\right\} \\
& \overline{\mathcal{J}}=\mathcal{J} \cup\left\{b A_{1} d A_{2}\right\}
\end{aligned}
$$

Note first that $b B_{2}=0$; also, since Lemma 2.4 implies $B_{1} d A_{2}=B_{1} \psi(d) A_{2}=0$ we have that $\beta=\sum_{x \in \bar{J}} x$, hence

$$
\phi\left(\beta^{n}\right)=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathcal{J}}} \phi\left(x_{n} \ldots x_{1}\right)
$$

If some x_{k} is $b A_{1} d A_{2}$, then $\phi\left(x_{n} \cdots x_{1}\right)$ cancels, since the vectors from \mathcal{E} with the $\mathcal{T}(\mathcal{K})$ component containing mixed tensors in η_{1} and η_{2} are cancelled by any B_{i} $(i=1,2)$ and are also orthogonal to Ω. On the other hand, $\phi\left(x_{n} \cdots x_{1}\right)$ also cancels if $x_{n} \cdots x_{1} \perp \Omega$, that is if x_{n} does not start with some B_{i}. It follows that only terms having $x_{n} \in\left\{B_{1} d, B_{1} B_{2}\right\}$ contribute to the sum, that is the sum can be taken only for $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{J}[n, m],(1 \leq m \leq n)$.

Consider now $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{J}[n, m]$. Then $x_{m} \cdots x_{1} \Omega=\phi\left(x_{m} \cdots x_{1}\right) \Omega$, hence $\phi\left(x_{n} \cdots x_{1}\right)=\phi\left(x_{n} \cdots x_{m}\right) \phi\left(x_{m} \cdots x_{1}\right)$, and

$$
\begin{align*}
\sum_{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{J}[n, m]} \phi\left(x_{n} \ldots x_{1}\right) & =\sum_{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{J}[n, m]} \phi\left(x_{n} \cdots x_{m+1}\right) \cdot \phi\left(x_{m} \cdots x_{1}\right) \\
& =\phi\left(\beta^{n-m}\right) \cdot\left[\sum_{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{J}[m, m]} \phi\left(x_{m} \cdots x_{1}\right)\right] \tag{17}
\end{align*}
$$

therefore it suffices to prove that the second factors from the right hand sides of (17) coincides to the second factor of the m-th summand in (16), that is (we use that $\left.g_{m}=\sum_{p+k=m} l_{p} \cdot h_{k}\right)$:

$$
\begin{align*}
\sum_{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{J}[n, n]} \phi\left(x_{n} \cdots x_{1}\right) & =\sum_{m=0}^{n-1} g_{m} \cdot \sum_{\substack{q_{1}, \ldots, q_{m}>0 \\
q_{1}+\cdots+q_{m}<n}} \psi\left(\beta^{q_{m}}\right) \cdots \psi\left(\beta^{q_{1}}\right) \\
& =\sum_{\substack{p, k \geq 0 \\
p+q<n}} E(p, k) \tag{18}
\end{align*}
$$

for $E(p, k)=\left[l_{p} \psi\left(\beta^{q_{m}}\right) \cdots \psi\left(\beta^{q_{1}}\right)\right] \cdot\left[h_{k} \psi\left(\beta^{s_{k}}\right) \cdots \psi\left(\beta^{s_{1}}\right)\right.$ where the summation is done over al $p, q \geq 0$ such that $p+q<n$ and all $q_{1}, \ldots, q_{p}, s_{1}, \ldots s_{k}>0$ with $q_{1}+\ldots q_{p}+s_{1}+\cdots+s_{k}=n-1$.

Consider $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{J}[n, n]$ such that $\phi\left(x_{n} \cdots x_{1}\right) \neq 0$; then $x_{1} \Omega \neq 0$, so $x_{1} \in\left\{B_{1} B_{2}, b A_{1} B_{2}, b d A_{2}\right\}$.

Case I: $x_{1}=B_{2} B_{2}$; this imply that $n=1$ (since x_{1} already starts with a B_{i}) and $\phi\left(x_{1}\right)=\left\langle B_{1} B_{2} \Omega, \Omega\right\rangle=l_{0} h_{0}$, that is (18) for $n=1$.

Case II: $x_{1}=b A_{1} B_{2}$.
In this case $x_{1} \Omega=b A_{1} B_{2} \Omega=b A_{1} \Omega \cdot l_{0}$.
Let $j=\min \left\{k: x_{k}\right.$ contains B_{1}, i. e. $\left.x_{k} \in\left\{B_{1} B_{2}, B_{1} d\right\}\right\}$ (since $x_{n} \in\left\{B_{1} B_{2}, B_{1} d\right\}$, the set is not void). Also, $j \neq n$ will contradict the definition of $\mathcal{J}[n, n]$, so $j=n$.

Tensors containing η_{1} are canceled by B_{2} and, as seen earlier, summands with A_{2} and A_{1} not separated by B_{1} do not contribute to the sum, therefore it follows
that x_{2}, \ldots, x_{n-1} do not contain A_{2} nor B_{2}, so they can be only of the types $b d$ and $b A_{1} d$.

Let $1<k_{2}<\cdots<k_{p}<n$ be the indices of the factors of type $b A_{1} d$ and put $k_{1}=1$ and $k_{p+1}=n$. For $q_{i}=k_{i+1}-k_{i}$, applying Lemma 2.4, we have

$$
\begin{align*}
x_{n} \cdots x_{2} b A_{1} \Omega & =B_{1} d(b d)^{q_{p}-1} b A_{1} d(b d)^{q_{p-1}-1} \cdots(b d)^{q_{1}-1} b A_{1} \Omega \\
& =B_{1} \psi\left((d b)^{q_{p}}\right) A_{1} \psi\left((d b)^{q_{p-1}}\right) \cdots \psi\left((d b)^{q_{1}}\right) A_{1} \Omega \\
& =\left(B_{1} A_{1}^{p} \Omega\right) \psi\left((d b)^{q_{p}}\right) \cdots \psi\left((d b)^{q_{1}}\right) \\
& =h_{p} \Omega \cdot \psi\left(\beta^{q_{p}}\right) \cdots \psi\left(\beta^{q_{1}}\right) \tag{19}
\end{align*}
$$

since $B_{1} A_{1}^{p} \Omega=h_{p} \Omega$ and $\psi(d b)=\psi(b d)=\psi(\beta)$ due to the traciality of the vector states. Multiplying with l_{0} and summing, we obtain

$$
\begin{equation*}
\sum_{\substack{\left(x_{1}, \ldots, x_{n}\right) \mathcal{J}[n, n] \\ x_{1}=d A_{1} B_{2}}} \phi\left(x_{n} \cdots x_{1}\right)=\sum_{p=1}^{n-1} E(p, 0) \tag{20}
\end{equation*}
$$

Case III: $x_{1}=b d A_{2}$.
Let x_{j} be the factor of the smallest index that contains B_{2}. Since $x_{j} \in \mathcal{J}$, we have that $x_{j}=y \cdot B_{2}$, with $y \in\left\{b A_{1}, B_{1}\right\}$.

None of the factors x_{2}, \ldots, x_{j-1} contains B_{1} (otherwise it will contradict the definition of $J[n, n]$); if some of them will contain A_{1}, then $y B_{2} x_{j-1} \cdots x_{2}=0$, since B_{2} cancels all the tensors mixing η_{1} and η_{2}. Hence $x_{2}, \ldots, x_{j-1} \in\left\{b d, b d A_{2}\right\}$. Again, let $1=j_{1}<\cdots<j_{k}<n$ be the indices of the factors of type $b d A_{2}$ and put $j_{k+1}=j$. For $s_{i}=k_{i+1}-k_{i}$, applying Lemma 2.4, we have

$$
\begin{align*}
x_{j} \cdots x_{1} \Omega & =y \cdot B_{2}(b d)^{s_{k}} A_{2}(b d)^{s_{k-1}} A_{2} \cdots(b d)^{s_{1}} A_{2} \Omega \\
& =y \Omega \cdot l_{k} \psi(\beta)^{s_{k}} \cdots \psi\left(\beta^{s_{1}}\right) \tag{21}
\end{align*}
$$

(we used that $B_{2} A_{2}^{k} \Omega=l_{k} \Omega$ and that $\psi\left(\beta^{s}\right)=\psi\left((b d)^{s}\right)$.
If $y=B_{1}$ then $y \Omega=h_{0}$; also, the minimality of n implies $j=n$.
If $y=b A_{1}$, since $x_{n} \in\left\{B_{1} B_{2}, B_{1} d\right\}$, the minimality of n implies that x_{j+1}, \ldots, x_{n-1} do not contain B_{1}. If they will contain A_{2} or B_{2}, then $\phi\left(x_{n} \cdots x_{1}\right)=0$ as seen earlier, so they must be of the types $b d$ or $b A_{1} d$. Also, if $x_{n}=B_{1} B_{2}$, then again $\phi\left(x_{n} \cdots x_{1}\right)=0$, so we can suppose $x_{n}=B_{1} d$. In this case, $x_{n} \cdots x_{j=1} y \Omega$ is in the setting of formula (19), so it is computed accordingly to it.

Summing, we obtain

$$
\begin{equation*}
\sum_{\substack{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{J}[n, n] \\ x_{1}=b A_{2}}} \phi\left(x_{n} \cdots x_{1}\right)=\sum_{\substack{p, k-1>0 \\ p+k<n}} E(p, k) \tag{22}
\end{equation*}
$$

and the conclusion follows, since (22) and (20) imply (18).

Corollary 4.2. Let \mathcal{A} be a unital algebra, $\Phi, \Psi: \mathcal{A} \longrightarrow \mathbb{C}$ be two linear maps with $\Phi(1)=\Psi(1)=1$ and let X, Y be two c-free (with respect to the maps Φ, Ψ) elements from \mathcal{A}.
(i) $R_{X+Y}=R_{X}+R_{X}$ and ${ }^{c} R_{X=Y}={ }^{c} R_{X}+{ }^{c} R_{Y}$ as formal power series.
(ii) If $\Psi(X), \Psi(Y)$ are nonzero, then $T_{X Y}=T_{X} \cdot T_{Y}$ and ${ }^{c} T_{X Y}={ }^{c} T_{X} \cdot{ }^{c} T_{Y}$ as formal power series.

Proof. The equalities for R - and T-transforms are basic properities in the Free Probability Theory (see [16, [8]). We need to prove (i) and (ii) for the ${ }^{c} R$ - and ${ }^{c} T$-transforms.

As in Corollary 2.7, we will consider two complex Hilbert spaces \mathcal{H} and \mathcal{K} of dimension at least two and $\mathcal{E}=\mathcal{T}(\mathcal{H}) \oplus[\mathcal{T}(\mathcal{H}) \otimes \mathcal{T}(\mathcal{K})]$, where

$$
\begin{aligned}
& \mathcal{T}(\mathcal{H})=\mathbb{C} \omega \oplus \mathcal{H} \oplus(\mathcal{H} \otimes \mathcal{H}) \oplus \ldots \\
& \mathcal{T}(\mathcal{K})=\mathbb{C} \omega \oplus \mathcal{K} \oplus(\mathcal{K} \otimes \mathcal{K}) \oplus \ldots
\end{aligned}
$$

We fix e_{1}, e_{2}, respectively η_{1}, η_{2} two pairs of orthogonal unit vectors from \mathcal{H}, respectively \mathcal{K}. From Corollary 2.7, the algebras $\mathfrak{A}_{1}=\mathcal{D}\left(\eta_{1}\right) \vee \pi\left(\mathcal{A}\left(e_{1}\right)\right)$ and $\mathfrak{A}_{2}=\mathcal{D}\left(\eta_{2}\right) \vee \pi\left(\mathcal{A}\left(e_{2}\right)\right)$ are c-free with respect to $\phi(\cdot)=\langle\cdot \omega \otimes \omega, \omega \otimes \omega\rangle$ and $\psi(\cdot)=\langle\cdot \omega, \omega\rangle$.

Also note that, from the relations defining the free, respectively c-free independence (see Section 2, §1), the moments up to order N of $X+Y$ and $X Y$ with respect to Φ and Ψ are uniquelly determined by the moments of order up to N of X and Y.

For (i), consider $f_{1}(z), F_{1}(z)$, repectively $f_{2}(z), F_{2}(z)$ be the polynomials obtained by the trucation of order N of $R_{X},{ }^{c} R_{X}$, respectively $R_{Y},{ }^{c} R_{Y}$ (i. e. if $c R_{X}(z)=\sum_{k=1}^{\infty} l_{k} \cdot z^{k}$, then $F_{1}(z)=\sum_{k=1}^{N} l_{k} \cdot z^{k}$ and the analogues).

With the notations from Section 2, take $(i=1,2)$

$$
\alpha_{i}=\pi\left(a_{e_{i}}^{*}+f_{i}\left(a_{e_{i}}\right)\right)+A_{\eta_{i}}^{*}+A_{\eta_{i}, F_{i}^{\otimes}}
$$

We have that $\alpha_{i} \in \mathfrak{A}_{i}$, so α_{1}, α_{2} are c-free with respect to ϕ and ψ, hence, from Theorem 4.1,

$$
\begin{equation*}
{ }^{c} R_{\alpha_{1}+\alpha_{2}}(z)={ }^{c} R_{\alpha_{1}}(z)+{ }^{c} R_{\alpha_{2}}(z) \tag{23}
\end{equation*}
$$

From Theorem[2.1(2) and Theorem[3.1, we have that $R_{\alpha_{i}}(z)=f_{i}(z)$ and ${ }^{c} R_{\alpha_{i}}(z)=$ $F_{i}(z)$, therefore $R_{\alpha_{1}},{ }^{c} R_{\alpha_{1}}$, and $R_{X},{ }^{c} R_{X}$ coincide up to order N. Then equations (11) and (5) imply that the moments up to order N of X with respect to Φ, respectively Ψ, coincide to the moments up to order N of α_{1} with respect to ϕ and ψ. The same holds true for Y and α_{2}, therefore the moments up to order N of $X+Y$ and $\alpha_{1}+\alpha_{2}$ do coincide. Henceforth, from equation (5), the first N coefficients of ${ }^{c} R_{\alpha_{1}+\alpha_{2}}$ and ${ }^{c} R_{X+Y}$ do coincide. Since N is arbitrary, equation (23) gives the conclusion.

The proof for (ii) is similar, taking $(i=1,2)$

$$
\beta_{i}=\pi\left(\left(\mathbf{I d}+a_{e_{i}}^{*}\right) f_{i}\left(a_{e_{i}}\right)\right)+\pi\left(\left(\mathbf{I d}+a_{e_{i}}^{*}\right) f_{i}\left(a_{e_{i}}\right)\right) A_{\eta_{i}}^{*}+A_{\eta_{i}, F_{i}}
$$

where f_{1}, F_{1}, respectively f_{2}, F_{2} are now the polynomials given by the truncation of order N of T_{X} and ${ }^{c} T_{X}$, respectively T_{Y} and ${ }^{c} T_{Y}$.

References

[1] A. Ben Ghorbal, M. Schurmann Quantum stochastic calculus on Boolean Fock space, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7 (2004), no. 4, 631650.
[2] F. Boca Free products of completely positive maps and spectral sets, J. Funct. Anal. 97 (1991), no. 2, 251-263
[3] M. Bożejko and R. Speicher. ψ-independent and symmetrized white noises, Quantum Probability and Related Topics, (L. Accardi, ed.), World Scientific, Singapore, VI (1991), 219-236
[4] M. Bożejko, M. Leinert and R. Speicher. Convolution and Limit Theorems for Conditionally free Random Variables, Pac. J. Math. 175 (1996), 357-388
[5] K. Dykema, Multilinear function series and transforms in free probability theory, Adv. Math. 208 (2007), no. 1, 351407
[6] E. F. Blanchard, K. Dykema, Embeddings of reduced free products of operator algebras, Pacific J. Math. 199 (2001), no. 1, 119
[7] U. Haagerup. On Voiculescu's R - and S-transforms for Free non-commuting Random Variables, Fields Institute Communications, vol. 12(1997), 127-148
[8] A. Nica, R. Speicher. Lectures on the Combinatorics of the Free Probability, London mathematical Society Lecture Note Series 335, Cambridge University Press 2006
[9] Popa, Mihai Multilinear function series in conditionally free probability with amalgamation, Com. on Stochastic Anal., Vol 2, No 2 (Aug 2008)
[10] Popa, Mihai Realization of conditionally monotone independence and monotone products of completely positive maps, arXiv:0911.1319
[11] Popa, Mihai Non-crossing linked partitions and multiplicative free convolution, Operator Theory 22, Proceedings (2008), Theta Foundation
[12] Popa, Mihai; Vinnikov, Victor Non-commutative functions and non-commutative free LevyHincin formula, arXiv:1007.1932
[13] Popa, Mihai; J. C. Wang On multiplicative conditionally free convolution, arXiv:0805.0257, to appear in Trans. Amer. Math. Soc.
[14] D. V. Voiculescu Addition of certain non-commuting random variables, J. Funct. Anal., 66(1986), 323-346
[15] D. V. Voiculescu Multiplication of certain non-commuting random variables, J. Operator Theory, 18(1987), 223-235
[16] D.V. Voiculescu, K. Dykema, A. Nica Free random variables, CRM Monograph Series, 1. AMS, Providence, RI, 1992.

Center for Advanced Studies in Mathematics at the Ben Gurion University of Negev, P.O. B. 653, Beer Sheva 84105, Israel and

Institute of Mathematics Simion Stoilow of the Romanian Academy, P.O. Box 1-764, Bucharest, RO-70700, Romania

E-mail address: popa@math.bgu.ac.il

