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1 Introduction.

We study the periodic homogenization of

uε−c(
x

ε
)
∫
z∈RN

[uε(x+z)−uε(x)−1|z|<1〈∇uε(x), z〉]q(z)dz−g(
x

ε
) = 0 x ∈ Ω,

(1)
uε(x) = φ(x) x ∈ Ωc, (2)

where the integral term, the Lévy operator, has the symmetric density

q(z) =
1

|z|N+α
z ∈ RN, α ∈ (0, 2) a constant, (3)

Ω a bounded domain in RN, c(·) and g(·) real valued, periodic, continuous
functions in TN, c(x) > ∃c0 > 0, and φ a continuous function defined in Ωc.
We consider (1)-(2) in the framework of viscosity solutions for the integro-
differential equation (PIDE in short), introduced and studied in A. Sayah
[17], O. Alvarez and A. Tourin [1], G. Barles, R. Buckdahn and E. Pardoux
[7], H. Pham [16], M. Arisawa [2], [3], [4], [5], E. Jacobsen and K. Karlsen
[14] and G. Barles and C. Imbert [8]. See M. Crandall, H. Ishii and P.-L.
Lions [11], too. The comparaison and the existence of solutions have been
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proved in the above works. Recently in [5], the equivalence of several existing
definitions was proved (see Definitions 1.1 and 1.2 in below). The homoge-
nization means to get the unique limit limε→0 uε = u, and to characterize u
by its effective equation. In mathematical finances, (1) and its evolutionary
form are used in the stochastic volatility model with jump processes (see for
example R. Cont and P. Tankov [10], J.P. Fouque, G. Papanicolaou, and K.
Sircar [13].) We use the formal asymptotic expansion method introduced by
A. Bensoussan, J. L. Lions and G. Papanicolaou [9] for linear PDEs, and
then extended to nonlinear problems by P.-L. Lions, G. Papanicolaou and
S. Varadhan [15] (for first-order PDEs ), L.C. Evans [12] (for second-order
PDEs), in the framework of viscosity solutions. We shall derive the effec-
tive PIDE for u, rigorously. First, we remind two equivalent definitions of
viscosity solutions for a class of PIDEs including (1):

A(x, u(x),∇u(x),∇2u(x), I[u](x)) = 0 x ∈ Ω, (4)

where A(x, u, p, Q, I)∈ C(Ω×R×RN×SN×R), I[u](x) =
∫
z∈RN[u(x+z)−

u(x) − 1|z|<1〈∇u(x), z〉]q(z)dz. For an upper (resp. lower) semicontinuous
function u ∈ USC(RN) (resp. LSC(RN)), (p,X) ∈ RN × SN is a sub(resp.
super)-differential of u at x : if for any δ > 0 there exists ε > 0 such that

u(x+ z)− u(x)<(resp. ≥)〈p, z〉+
1

2
〈Xz, z〉 + (resp.−)δ|z|2 ∀|z|<ε, (5)

Denote the set of all subdifferentials (resp. superdifferentials) of u at x
J
2,+
RNu(x) (resp. J

2,−
RNu(x)). Set I

1,+
ν,δ [u, p,X ](x) =

∫
|z|<ν

1
2
〈(X+2δI)z, z〉q(z)dz

(resp. I1,−ν,δ [u, p,X ](x) =
∫
|z|<ν

1
2
〈(X − 2δI)z, z〉q(z)dz), and

I2ν,δ[u, p,X ](x) =
∫
|z|>ν

[u(x+ z)− u(x)− 1|z|<1〈p, z〉]q(z)dz.

We use the following two equivalent definitions (see [5]).

Definition 1.1. A function u ∈ USC(RN) (resp. LSC(RN)) is a
viscosity subsolution (resp. supersolution) of (4), if for any x̂ ∈ Ω, any
(p,X) ∈ J

2,+
RNu(x̂) (resp. J

2,−
RNu(x̂)), and any pair of numbers (ε, δ) satisfying

(5), the following holds

A(x̂, u(x̂), p,X, I1,+ν,δ (resp.I
1,−
ν,δ )[u, p,X ](x̂) + I2ν,δ[u, p,X ](x̂))<(resp. ≥)0.

If u is a subsolution and a supersolution , it is called a viscosity solution.
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Definition 1.2. A function u ∈ USC(RN) (resp. LSC(RN)) is a viscos-
ity subsolution (resp. supersolution) of (4), if for any x̂ ∈ Ω, any φ ∈ C2(RN)
such that u(x̂) = φ(x̂) and u − φ takes a global maximum (resp. minimum)
at x̂,

A(x̂, u(x̂),∇φ(x̂),∇2φ(x̂), I[φ](x̂))<(resp. ≥)0.

If u is a subsolution and a supersolution , it is called a viscosity solution.

We sometimes abbreviate ”viscosity” to note a (sub or super) solution.
The problem (1) was chosen for simplicity to illustrate the method. The
various generalizations are possible, namely to the nonlinear problem:

uε +H(
x

ε
,∇uε,∇

2uε, I[uε](x)) = 0. (6)

2 Formal asymptotic expansions.

Let uε be the solution of (1), and assume that

uε(x) = u(x) + εαv(
x

ε
) + o(εα) ∀x ∈ RN.

Formally, ∇uε(x) = ∇u(x) + εα−1∇yv(
x
ε
), ∇2uε(x) = ∇2u(x) + εα−2∇2

yv(
x
ε
),

and by introducing them into (1), we get

u− c(
x

ε
)
∫
RN

[u(x+ z)− u(x)− 1|z|<1〈∇u(x), z〉]q(z)dz

−c(
x

ε
)
∫
RN

εα[v(
x+ z

ε
)− v(

x

ε
)− 1|z|<1〈∇yv(

x

ε
),
z

ε
〉]q(z)dz = g(

x

ε
) + o(1).

Put y = x
ε
, and change the variable to z′ = z

ε
. From (3), we have

u− c(y)I[u](x)− c(y)I[v](y)− g(y) = 0. (7)

Then, for each fixed (x, I) ∈ Ω×R (I = I[u](x) in (7)), find a unique number
d(x, I) such that there exists a periodic solution v(y) of

d(x, I)− c(y)
∫
RN

[v(y + z)− v(y)− 1|z|<1〈∇yv(y), z〉]qdz − g − cI = 0, (8)

in TN. In fact, the existence of d(x, I) (in a weaker sense) was shown in
[4] (see Theorem 3.1 in below). The effective nonlocal operator is defined as
I(x, I) = −d(x, I) ((x, I) ∈ Ω×R), and from (7), (8), we get:

u+ I(x, I[u](x)) = 0 x ∈ Ω, (9)

the effective equation for u. Later, we justify (9) by a rigorous argument.
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3 The derivation of the effective equation.

To see the existence of d(x, I) in (8), consider the following

lul+H(y,∇ul)−
∫
RN

[ul(y+ z)−ul(y)−1|z|<1〈∇ul(y), z〉]qdz−g = 0, (10)

for y ∈ TN, l ∈ (0, 1), H , g real valued functions defined in TN ×RN, TN,
periodic and Lipschitz continuous in y.

Theorem 3.1.([4]) Let H(y, p) = a(y)|p| or 0, where a(·) ≥ ∃a0 > 0
periodic in TN, and consider (10). The following unique number dg exists:

lim
l↓0

lul(y) = dg y∈TN, (11)

and for any ρ > 0, there are periodic sub and super solutions u and u of

dg+H(∇u(y))+I[u](y)−g<ρ, dg+H(∇u(y))+I[u](y)−g ≥ −ρ y ∈ TN.

In particular, if N = 1 the convergence (11) is uniform, and for ρ = 0 there
exists u = u = u which satisfies the above at the same time.

We refer the readers to [4] (Theorem 6.1) for the proof of the above result.
Remark 3.1. The convergence (11) is the ergodic property (see M. Arisawa
and P.-L. Lions [6] for the case of PDE). For the case of PIDE, (11) holds in
more generality, e.g. for H= H(x,∇u,∇2u) second-order uniformly elliptic
fully nonlinear operator(see [4] ). In such a case, the nonlocal homogeniza-
tion (6) can be solved by the same method in this paper.

From Theorem 3.1, for any (x, I) ∈ Ω × R, there is ∃!d(x, I) ∈ R such
that for any ρ > 0 there exist v, v, periodic sub and super solutions of

d(x, I) + c(y)I[v](y)− g(y)− c(y)I<ρ y ∈ TN,

d(x, I) + c(y)I[v](y)− g(y)− c(y)I ≥ −ρ y ∈ TN.

Define I(x, I) = −d(x, I) ((x, I) ∈ Ω ×R). We remark the following quali-
tative property, the degenerate version of which was first stated in [8].
(Uniform subellipticity) There exists θ > 0 such that

I(x, I + I ′)<I(x, I)− θI ′ ∀I ′ > 0, ∀(x, I) ∈ Ω×R. (12)
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Theorem 3.2. The effective integro-differential operator I(x, I) is con-
tinuous in Ω×R, and is uniformly subelliptic (12) with θ = c0.

Proof. The proofs are similar to the PDE’s case in [12]. We do not
rewrite the proof of the continuity, and mimic that of (12) for the reader’s
convenience. For I ′ > 0, I ∈ R, ρ > 0, from Theorem 3.1 we can take vI ,
vI+I′ respectively a sub and a super solution of

d(x, I)− c(y)I[vI ](y)− g(y)− c(y)I<ρ y ∈ TN. (13)

d(x, I + I ′)− c(y)I[vI+I′](y)− g(y)− c(y)(I + I ′) ≥ −ρ y ∈ TN. (14)

By adding a constant if necessary, we may asume that vI+I′ < vI . Our goal
is to prove I(x, I + I ′)<I(x, I)− c0I

′, ∀(x, I) ∈ Ω×R. Assume the contrary,
i.e. there exists a constant l > 0 such that I(x, I + I ′) ≥ I(x, I) − c0I

′ + l,
and we shall look for a contradiction. We claim that vI+I′ is a viscosity
supersolution of

− I(x, I)− c(y)I[vI+I′](y)− g(y)− c(y)I ≥ l − ρ y ∈ TN. (15)

To see this, assume that there exists φ ∈ C2(RN) such that vI+I′ − φ takes
a global maximum at a point y0 ∈ Ω, vI+I′(y0) = φ(y0), and

φ(y0 + z)− φ(y0) ≥ 〈∇φ(y0), z〉 +
1

2
〈(∇2φ(y0)− 2δI)z, z〉 ∀|z|<ν.

Since vI+I′ is the supersolution of (14), by Definition 1.1,

−I(x, I+I ′)−c(y0)
∫
|z|<ν

1

2
〈(∇2φ(y0)−2δI)z, z〉q(z)dz−c(y0)

∫
|z|>ν

[vI+I′(y0+z)

−vI+I′(y0)− 1|z|<1〈∇φ(y0), z〉]q(z)dz − g(y0)− c(y0)(I + I ′) ≥ −ρ.

Then, since c(y0) > c0

−c(y0)
∫
|z|<ν

1

2
〈(∇2φ(y0)− 2δI)z, z〉q(z)dz

−c(y0)
∫
|z|>ν

[vI+I′(y0+z)−v
I+I′(y0)−1|z|<1〈∇φ(y0), z〉]q(z)dz−g(y0)−c(y0)I
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≥ −c(y0)
∫
|z|<ν

1

2
〈(∇2φ(y0)−2δI)z, z〉q(z)dz−c(y0)

∫
|z|>ν

[vI+I′(y0+z)−v
I+I′(y0)

−1|z|<1〈∇φ(y0), z〉]q(z)dz−g(y0)−c(y0)(I+I
′)+c0I

′ ≥ I(x, I+I ′)+c0I
′−ρ

≥ I(x, I)− c0I
′ + c0I

′ + l − ρ = I(x, I) + l − ρ,

and (15) is confirmed. For l > 0 small enough, from (15) we have

lvI+I′(y)− c(y)I[vI+I′](y)− g(y)− c(y)I ≥ I(x, I) + l − 2ρ ∀y ∈ TN,

while for l > 0 small enough, lvI−c(y)I[vI ](y)−g(y)−c(y)I<I(x, I)+2ρ, in
TN. From the comparison ([2], [3]), by taking ρ = l

8
we get supy∈TN l(vI(y)−

vI+I′(y))<4ρ− l<− l
2
, which contradicts to vI+I′ < vI . Thus, I is uniformly

subelliptic.

Now, we get the effective equation for u = limε→0 uε:

u+ I(x, I[u](x)) = 0 x ∈ Ω, (16)

with (2). The following comparison result holds.

Theorem 3.3. Let u ∈ USC(RN) and v ∈ LSC(RN) be respectively
a sub and a super solution of (16)- (2). Then, u<v in Ω.

Proof. Since I is uniformly subelliptic (Theorem 3.2), the proof is quite
similar to those in [2], [3] and [8] (see [4], too). So, we abbreviate it.

4 The justification of the effective equation.

The main result of this paper is the following.

Theorem 4.1. Let uε be the solution of (1). Then, there exists a
unique limε→0 uε(x) = ∃u(x), which is the solution of (16)-(2).

Proof. Put u∗(x) = lim supε→0,y→x uε(y), u∗(x) = lim infε→0,y→x uε(y).
As we shall show in below in Lemma 4.2, u∗, u∗ are respectively a sub and
a super solution of (16)- (2). Then, from the comparison (Theorem 3.3),
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u∗<u∗, and u
∗<u∗<u

∗ leads ∃!u = limε→0 uε = u∗ = u∗ which is the unique
solution of (16). To complete the proof, we need the following.

Lemma 4.2. Let uε be the solution of (1). Then, u∗ and u∗ are re-
spectively a sub and a super solution of (16).

Proof of Lemma 4.2. We show that u∗ is a subsolution of (16). The
proof that u∗ is a supersolution is shown in parallel, and we abbreviate it.
Assume that for φ ∈ C2(RN), u∗ − φ takes a global maximum at x̂ ∈ Ω and
u∗(x̂) = φ(x̂). As usual ([11]), we may assume that u∗ − φ takes the global
”strict” maximum at x̂. From Definition 1.2 our goal is to show

u∗(x̂) + I(x̂, I[φ](x̂))<0. (17)

We use the argument by contradiction. Assume the contrary to (17):

φ(x̂) + I(x̂, I[φ](x̂)) = 3γ > 0, (18)

for γ > 0. Since I is continuous, there is Ur(x̂)= {x||x− x̂| < r} such that

φ(x) + I(x, I[φ](x)) ≥ γ > 0 ∀x ∈ Ur(x̂).

Put I = I[φ](x̂). By Theorem 3.1, a unique number d(x̂, I) exists, and for
any ρ > 0 there exists a periodic continuous fuction v(y) satisfying

d(x̂, I)− cI − cI[v](y)− g(y)<ρ, d(x̂, I)− cI − cI[v](y)− g(y) ≥ −ρ, (19)

in TN. For φε(x) = φ(x) + εαv(x
ε
), (18) implies that φε is a supersolution of

φε − c(
x

ε
)I[φε](x)− g(

x

ε
) ≥ γ x ∈ Ur(x̂), (20)

for r > 0 small enough, i.e. for ψ ∈ C2 such that φε − ψ attains a global
minimum at x ∈ Ur(x̂), (φε − ψ)(x) = 0, and we can show (Definition 1.2)

φε(x)−c(
x

ε
)
∫
RN

[ψ(x+z)−ψ(x)−1|z|<1〈∇ψ(x), z〉]q(z)dz−g(
x

ε
) ≥ γ. (21)

For h(y) = 1
εα
(ψ − φ)(εy), (v − h)(y) attains a global minimum at y = x

ε
, as

φε − ψ takes the global minimum at x. Since v is a supersolution of (19),

d(x̂, I)− c(y)I − c(y)I[h](y)− g(y) ≥ −ρ.
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From the assumption (18), since I = I[φ](x̂)

φ(x̂)−c(y)I[φ](x̂)

−c(y)
∫
RN

[h(y + z)− h(y)− 1|z|<1〈∇h(y), z〉]q(z)dz − g(y) ≥ 3γ − ρ.

By remarking h(x
ε
) = 1

εα
(ψ−φ)(x), ∇yh(y) = ε1−α∇x(ψ−φ)(εy), by changing

the variable y = x
ε
to x, from (3), for ρ = γ, r small enough, we get

φ(x̂)− c(y)
∫
RN

[ψ(x+ z)− ψ(x)− 1|z|<1〈∇ψ(x), z〉]q(z)dz − g(y) ≥ 2γ.

The claim (21) is shown, that is φε is the supersolution of (20). From the com-
parison ([2], [3], [5], [8]), (uε − φε)(y)<maxUc

r
(x̂)(uε − φε) + γ for ∀y ∈ Ur(x̂).

By letting ε to 0, y to x̂, we have (u∗ − φ)(x̂)<maxUr(x̂)c(u
∗ − φ) + γ. Since

γ > 0 is arbitrary (u∗ − φ)(x̂)<maxUr(x̂)c(u
∗ − φ). This contradicts to the

assumption that u∗−φ takes the global strict maximum at x̂. Therefore, (18)
is false, and (17) is proved, i.e. u∗ is the subsolution of (16). As mentioned
before, the supersolution property of u∗ is proved similarly.

Since we have proved Lemma 4.2, the proof of Theorem 4.1 is completed.
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ical finances, Proceedings of the 6th RITS symposium on ”Stochastic
processes and applications to mathematical finance” (eds. S. Ogawa, J.
Akahori, S. Watanabe), World scientifics (2007).

8



[5] M. Arisawa, A remark on the definitions of viscosity solutions for the
integro-differential equations with Lévy operators, J. Mathématiques
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