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VERTICAL VERSUS CONICAL SQUARE FUNCTIONS

PASCAL AUSCHER, STEVE HOFMANN, AND JOSÉ-MARÍA MARTELL

Abstract. We study the difference between vertical and conical square functions
in the abstract and also in the specific case where the square functions come from
an elliptic operator.

1. Introduction

The purpose of this article is to draw attention to differences between vertical and
conical square functions. By vertical square functions, we mean the usual Littlewood-
Paley-Stein functionals. By conical square functions, we mean the area functionals of
Lusin type. Our interest in this subject was triggered by the recent unpublished work
of Dragičević and Volberg [DV]. Let us first describe what they proved.

Let A = A(x) be an n × n matrix of complex, L∞ coefficients, defined on Rn, and
satisfying the

λ|ξ|2 ≤ ReAξ · ξ and |Aξ · ζ| ≤ Λ|ξ||ζ |,
for ξ, ζ ∈ Cn and for some λ,Λ such that 0 < λ ≤ Λ < ∞. We define a second order
divergence form operator

Lf ≡ − div(A∇f),
which we interpret in the sense of maximal accretive operators via a sesquilinear form.

Proposition 1.1 ([DV]). If A is real and 1 < p < ∞, there is a dimension free
bilinear estimate

(1.1)

∫∫

R
n+1

+

|∇ye
−tLf(y)||∇ye

−tLg(y)|dydt ≤ C(p, λ,Λ)‖f‖p‖g‖p′.

Here p′ is the conjugate exponent to p.

Set aside the dimension free bound, this result is striking in view of the following
vertical square function estimate.

Proposition 1.2 ([Aus]). If A is real and 1 < p < q+(L),

(1.2)

∫

Rn

(
∫ ∞

0

|∇ye
−tLf(y)|2dt

)p/2

dy ≤ C(p, n, λ,Λ)p‖f‖pp.

Furthermore, this estimate fails for p > q+(L) (if q+(L) <∞).
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The number q+(L) has been introduced in [Aus], as well as the three other numbers
p−(L), q−(L) and p+(L) as limits of the following intervals. The interval (p−(L), p+(L))
is the maximal open interval where the heat semigroup {e−tL}t>0 is uniformly bounded
on Lp or equivalently the semigroup satisfies Lp − Lq off-diagonal estimates when
p−(L) < p ≤ q < p+(L) , see (3.1) below. Analogously, (q−(L), q+(L)) is the maximal
open interval where {

√
t∇e−tL}t>0 is uniformly bounded on Lp or satisfies Lp−Lq off-

diagonal estimates when q−(L) < p ≤ q < q+(L) . These intervals also determine up
to endpoints the range of Lp boundedness of the functional calculus, Riesz transform
and vertical square functions. One has p−(L) = q−(L), (q+(L))

∗ ≤ p+(L) —where
q∗ = qn/(n − q) when q < n and q∗ = ∞ otherwise. Also, p−(L) = q−(L) = 1 and
p+(L) = q+(L) = ∞ if n = 1. For n = 2, or for n ≥ 3 and L with real coefficients, the
same is true except that one can only say that q+(L) > 2 for n ≥ 2 and this is sharp.
Additionally, if n ≥ 3 and A with complex coefficients, then p−(L) < 2n/(n + 2)
and p+(L) > 2n/(n − 2). See [Aus] for full details. Also [HMMc] proves the latter
inequalities to be sharp using an example of Freshe [Fre].

Since q+(L) can be arbitrary close to 2, one cannot deduce the bilinear estimate in
Proposition 1.1 from the vertical square function estimate. So the bilinear estimate
seems to exhibit some special feature that the vertical square function does not have.
Indeed, bilinear integrals as above can also be estimated using conical square functions
thanks to an averaging trick that appears in [FS] and [CMS]:
∫∫

R
n+1

+

F (y, t)G(y, t)dydt = b−1
n

∫

Rn

(

∫∫

R
n+1

+

F (y, t)G(y, t)h
(x− y

t1/2

) dydt

tn/2

)

dx

with h the indicator function of the unit ball and bn its volume, so that
∣

∣

∣

∣

∣

∫∫

R
n+1
+

F (y, t)G(y, t)dydt

∣

∣

∣

∣

∣

≤ cn‖ShF‖p‖ShG‖p′

with

ShF (x) =

(
∫∫

|x−y|<
√
t

|F (y, t)|2dydt
tn/2

)1/2

.

Hence, applying this to F (y, t) = ∇ye
−tLf(y) and G(y, t) = ∇ye

−tLg(y) it becomes
natural to expect the corresponding conical square function estimate holds in a larger
range of p than the one for (1.2). Indeed, we shall show as part of Theorem 3.1.

Proposition 1.3. If A is real and 1 < p <∞,

(1.3)

∫

Rn

(
∫∫

|x−y|<
√
t

|∇ye
−tLf(y)|2dydt

tn/2

)p/2

dx ≤ C(p, n, λ,Λ)p‖f‖pp.

Thus (1.1) holds at least with a dimension dependent bound . We shall also study
(1.3) for all complex A and show it holds when p−(L) < p < ∞ and fails when
p < p−(L) (if p−(L) > 1). This is consistent as p−(L) = 1 when A is real. This also
improves [Aus, Corollary 6.10] where (1.3) was obtained in the range p−(L) < p <
q+(L). The bilinear inequality as in Proposition 1.1 then holds for a restricted range
p−(L) < p < p−(L)

′ = p+(L
∗).

This leads us to the main point of this article about comparison between vertical and
conical square functions. Propositions 1.1 and 1.3 show that the ranges of p below
2 are the same but differ above 2. One may wonder whether there is an abstract
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principle behind this. But this is not the case. Aside from p = 2 for which the
averaging trick yields that they are equivalent, vertical and conical square functions
only compare one way for p 6= 2 in the sense that one is automatically controlled by
the other and simple examples show the converses fail. More precisely, for p > 2, it
is well-known and we shall recall why in Section 2, that a vertical square function
controls the corresponding conical one. We shall also prove, and it seems this is not in
the literature, that for p < 2, the conical square function controls the corresponding
vertical one. Comparing the ranges for (1.3) and (1.2) already furnishes a counter-
example for the converse in the p > 2 range and an example where the converse holds
in the p < 2 range. We note this can be done on a space of homogeneous type. We
shall also study some weigthed comparisons using extrapolation.

We finish this introduction by the following observations. As explained before the
range of p for (1.2) is tight to the range of Lp boundedness for

√
t∇e−tL. As the

p < 2 range for (1.3) is a priori smaller than or equal to the p < 2 range for (1.2), we
obtain the best possible result by showing they are equal. For p > 2 we exhibit a new
phenomenon.

Our results show that the p > 2 range for (1.3) is linked to the rate of decay in
the L2 off-diagonal estimates. If the latter is fast enough then one obtains the full
range (2,∞) as it is the case in (1.3). In fact this Lp estimate amounts to proving
boundedness of some vector-valued operator from Lp into the parabolic version of
the tent space T p

2 of Coifman, Meyer, Stein [CMS]. When the L2 off-diagonal decay
is fast enough we can prove, basically following the Fefferman-Stein argument, that
|∇ye

−tLf(y)|2dydt is a parabolic Carleson measure for f ∈ L∞, which is nothing
but an L∞ → T∞

2 estimate. One can then interpolate for 2 < p < ∞. When the
rate of decay is slow (for example polynomial with small exponent) this argument
does not seem to adapt and one needs other tools. This is the case for the conical
square function based on ϕ(t2L) when A is complex and ϕ not smooth as the origin.

An example is the Poisson semigroup since ϕ(z) = e−z1/2 in this case. A different
ingredient then comes into play, which is the decay at 0 of ϕ or the order at which
it vanishes, combined with the definition of p+(L). For instance, in Section 3.4 below
we shall prove the following and this is the p > 2 range that is interesting for our
discussion here.

Proposition 1.4. For m a non negative integer and f ∈ Lp, then

(1.4)

∫

Rn

(
∫∫

|x−y|<t

|t∇y,t

(

(t2L)me−tL1/2

f
)

(y)|2dydt
tn+1

)p/2

dx ≤ C‖f‖pp

whenever

(1.5) p−(L) < p <
np+(L)

n− (2m+ 1)p+(L)
.

For (2m+ 1)p+(L) ≥ n then the right hand side in (1.5) becomes ∞.

If L had been the Laplacian, 2m + 1 would just be the number of vanishing mo-

ments for the kernel of the convolution operator ∇y,t(t
2L)me−tL1/2

or the number of
derivatives in front of the semigroup. Here we have 2mth order “vanishing” coming
from the exponent of the second order operator L, and +1 comes from the gradient.
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A few comments are in order. We first point out that, since vertical and conical
square functions are equivalent in L2, one may integrate by parts in t and use prop-
erties of the semigroup to pass from any choice of non-negative integer m to another,
in the case p = 2. In fact, one may even take m of the form m = k + 1/2, with k a
non-negative integer. For p > 2, different values of m apparently need no longer be
equivalent; the conclusion of the proposition yields a better range of p for larger m
(up to the critical value with (2m+ 1)p+(L) = n).

In particular, the case m = 0 of (1.4) gives standard area integral estimates for
weak solutions of the equation

(1.6) ∂2t u+ divA∇u = 0.

When A is real (in which case p−(L) = 1, p+(L) = ∞)), such estimates may be
obtained as a special case (the “block matrix” case), of the result of Dahlberg, Jerison,
Kenig in [DJK], using the fact that one has non-tangential estimates for the solutions

u(·, t) := e−t
√
Lf in every Lp, 1 < p ≤ ∞. The present argument allows for a direct

(and simpler) proof than that in [DJK] in this special case. Moreover, it has the added
virtue of applying to the case of complex coefficients. Of course, we do not address
the question of “full” coefficient matrices (i.e., those that need not be in block form),
as is done in [DJK].

Acknowledgments. This work was started years ago while the authors were all
visiting the Universidad Autónoma in Madrid on the occasion of a special program in
harmonic analysis and, after a latency period, finished this year while the authors were
all visiting the Center for Mathematics and Applications of the Australian National
University. We are very grateful to these institutions for hospitality and financial
support. Also we want to express our thanks to O. Dragičević and A. Volberg who
showed us their unpublished work.

2. Vertical versus conical

For a locally square integrable function f on R
n+1
+ , denote

Sf(x) =

(
∫∫

|x−y|<t

|f(y, t)|2 dydt
tn+1

)1/2

, x ∈ R
n.

and

V f(x) =

(
∫

t>0

|f(x, t)|2 dt
t

)1/2

, x ∈ R
n.

Sf is lower semi-continuous hence a measurable function. Measurability on V f follows
from the local square integrability of f .

We remark that
‖Sf‖22 = bn‖V f‖22

with bn the volume of the unit Euclidean ball.

2.1. Comparison in Lebesgue spaces.

Proposition 2.1. Let f be locally square integrable on R
n+1
+ .

(a) For 2 < p <∞,
‖Sf‖p ≤ C(p, n)‖V f‖p.
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(b) For 0 < p < 2,

‖V f‖p ≤ C(p, n)‖Sf‖p.
(c) The converses fail for all p 6= 2.

Proof. Part (a) is standard and appears already in [St, p. 91]. For the sake of self-
containment, we recall the argument. As p > 2, q = p/2 > 1 and we can estimate
‖Sf‖p = ‖(Sf)2‖2p/2 by dualizing against a function h ∈ Lq′. Now, the averaging trick
applies and yields

∫

Rn

(Sf)2(x)h(x) dx = bn

∫∫

R
n+1

+

|f(y, t)|2
(

1

|B(y, t)|

∫

B(y,t)

h(x) dx

)

dydt

t

≤ bn

∫

Rn

(V f)2(y)Mh(y) dy

≤ bn‖V f‖2p‖Mh‖q′
and one concludes using the boundedness of the maximal operator over balls M in
Lq′ .

Let us now prove Part (b). Fix 0 < p < 2, f with Sf ∈ Lp and λ > 0. Since
x 7→ Sf(x) is lower semi-continuous, the set O = {Sf > λ} is open. Let F be the
complement of O in Rn, R(F ) be the union of the cones |x − y| < t with vertices

x ∈ F . We also set Õ = {x ∈ R : M(χO)(x) > 1/2} and F̃ = Rn \ Õ. We
note that O ⊂ Õ since O is open, and thus F̃ ⊂ F . If y ∈ F̃ and t > 0 we have
|O ∩ B(y, t)|/|B(y, t)| ≤ 1/2 and consequently, |F ∩ B(y, t)|/tn ≥ bn/2. Hence,

∫

F

(Sf)2(x) dx =

∫

x∈F

∫∫

|x−y|<t

|f(y, t)|2 dxdydt
tn+1

=

∫∫

R(F )

|F ∩ B(y, t)|
tn

|f(y, t)|2 dydt
t
.

≥ bn
2

∫

y∈F̃

∫

t>0

|f(y, t)|2 dydt
t

=
bn
2

∫

F̃

(V f)2(y) dy

≥ bn
2
λ2|{V f > λ} ∩ F̃ |.

Besides, for 0 < r < p, using the weak type (1,1) for M ,

|{V f > λ} ∩ Õ| ≤ |Õ| ≤ 2 · 3n |O| ≤ 2 · 3n
λr

∫

O

(Sf)r(x) dx.

Hence,
∫

Rn

(V f)p(x) dx = p

∫ ∞

0

λp−1|{V f > λ}| dλ

≤ 2p

bn

∫ ∞

0

λp−2−1

∫

Sf≤λ

(Sf)2(x) dxdλ

+ 2p · 3n
∫ ∞

0

λp−r−1

∫

Sf>λ

(Sf)r(x) dxdλ
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=

(

2p

bn(2− p)
+

2p · 3n
p− r

)
∫

Rn

(Sf)p(x) dx.

We now finish the proof with Part (c). It is convenient to introduce

S̃f(x) =

∫∫

|x−y|<t

|f(y, t)|dydt
tn+1

, Ṽ f(x) =

∫

t>0

|f(x, t)|dt
t
.

Note that Sf = S̃(|f |2)1/2 and V f = Ṽ (|f |2)1/2, so that, for a locally integrable
function f on R

n+1
+ , we seek to disprove the inequalities

‖S̃f‖p ≤ C ‖Ṽ f‖p, 0 < p < 1;(2.1)

‖Ṽ f‖p ≤ C ‖S̃f‖p, 1 < p <∞.(2.2)

We write the argument so that it is easy to adapt it to a space of homogeneous type,
denoting v(B) the volume of a ball and using implicitly the doubling property in the
argument. See Remark 2.2 below.

For (2.1) we consider fN(x, t) = N−1 t χ(x)χ0(t/N) with N ≫ 1 and where χ is
the characteristic function of the unit ball B(0, 1) and χ0 denotes the characteristic
function of the interval [0, 1]. On the one hand,

Ṽ fN (x) =

∫ ∞

0

|fN(x, t)|
dt

t
= N−1 χ(x)

∫ N

0

dt = χ(x)

and therefore
‖Ṽ fN‖pp = v(B(0, 1)).

On the other hand, fixed |x| ≤ N/8, if |y| ≤ 1 we have |x−y| < N/4 (provided N > 8)
and then

S̃fN (x) = N−1

∫∫

|x−y|<t

t χ(y)χ0(t/N)
dydt

tv(B(y, t))

= N−1

∫

|y|≤1

∫

|x−y|<t≤N

dtdy

v(B(x, t))

≥ N−1

∫

|y|≤1

∫

N/4<t≤N

dtdy

v(B(x, t))

≥ C
v(B(0, 1))

v(B(0, N))
.

This implies

‖S̃fN‖pp ≥
∫

|x|≤N/8

S̃f(x)p dx ≥ C
v(B(0, 1))p

v(B(0, N))p−1
.

Gathering the obtained estimates

‖S̃fN‖pp
‖Ṽ fN‖pp

≥ C
v(B(0, N))1−p

v(B(0, 1))1−p
.

Thus (2.1) cannot hold as v(B(0, N)) increases to ∞ and 1− p > 0.
For (2.2) we consider fN(x, t) = t v(B(x, t))χN(x)χ0(t) with N ≫ 1 where χN is

the characteristic function of the ball of radius 1/N . We first calculate Ṽ fN :

Ṽ fN (x) =

∫ ∞

0

|fN(x, t)|
dt

t
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≥ χN (x)

∫ 1

1/2

v(B(x, t)) dt

≥ C χN (x)v(B(x, 1))

≥ C χN (x)v(B(0, 1))

and therefore
‖Ṽ fN‖pp ≥ Cv(B(0, 1/N))v(B(0, 1))p.

We find an upper bound for ‖S̃fN‖p. We notice that if |x| > 2, |y| ≤ 1/N and

0 ≤ t ≤ 1 we have |x − y| > 1 ≥ t (if N ≥ 1). Thus, S̃fN(x) = 0 if |x| > 2. On the
other hand, for all x ∈ Rn:

S̃fN(x) =

∫∫

|x−y|<t≤1

χN (y) dydt ≤ v(B(0, 1/N)).

Then, we obtain

‖S̃fN‖pp =
∫

|x|≤2

S̃fN(x)
p dx ≤ Cv(B(0, 1/N))pv(B(0, 1))

so that
‖S̃fN‖pp
‖Ṽ fN‖pp

≤ C
v(B(0, 1/N))p−1

v(B(0, 1))p−1

which goes to 0 as N → ∞ if p > 1. �

Remark 2.2. The reader can notice that this theorem generalizes to spaces of homoge-
neous type X with infinite volume and at least one point that is not an atom (which
plays the role of 0). That is Rn+1

+ is changed to X×R+ and in the definition of Sf(x)

the measure has to change to dµ(y)dt
tµ(B(y,t))

.

2.2. Weighted estimates via extrapolation. Let us present a weighted version of
Proposition 2.1 using extrapolation. That is, L2 estimate with suitable Muckenhoupt
weights imply Lp comparisons in weighted spaces. Let Ap, 1 ≤ p < ∞, denote
the classical Muckenhoupt classes of weights and RHp, 1 < p ≤ ∞, the class of
reverse Hölder weights. See for example [AM]. Again everything extends to a space
of homogeneous type as in the remark above. We stick to the Euclidean space for
simplicity.

Proposition 2.3. Let f be a locally square integrable function on R
n+1
+ .

(a) For 2 < p <∞ and w ∈ Ap/2

‖Sf‖Lp(w) ≤ C(p, w) ‖V f‖Lp(w).

(b) For 0 < p < 2 and w ∈ RH(2/p)′

‖V f‖Lp(w) ≤ C(p, w) ‖Sf‖Lp(w).

Proof. We begin with Part (a). Given any w ∈ A∞ we easily have

‖Sf‖2L2(w) =

∫

Rn

∫∫

|x−y|<t

|f(y, t)|2dydt
tn+1

w(x) dx(2.3)

= bn

∫

Rn

∫ ∞

0

|f(y, t)|2w(B(y, t))

|B(y, t)|
dydt

t
.
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We note that if w ∈ A1, that is, Mw(y) ≤ [w]A1
w(y) for a.e. y ∈ Rn, then we have

for all t > 0
w(B(y, t))

|B(y, t)| ≤ Mw(y) ≤ [w]A1
w(y), a.e. y ∈ R

n.

Then, we obtain

‖Sf‖2L2(w) ≤ bn [w]A1

∫

Rn

∫ ∞

0

|f(y, t)|2dt
t
w(y) dy = bn [w]A1

‖V f‖2L2(w).

Next we invoke the Rubio de Francia extrapolation theorem (see [Rub], [Gar] for
the original result, and [CMP1], [CMP2] for a statement written in terms of pairs
of functions) for the pairs

(

(Sf)2, (V f)2
)

: the starting estimate in L1(w) for every
w ∈ A1 implies that for every 2 < p <∞ and w ∈ Ap/2

‖Sf‖Lp(w) ≤ C(p, w) ‖V f‖Lp(w).

Strictly speaking, the argument applies whenever the left hand side is finite. This is
the case if f is a priori bounded with compact support in R

n+1
+ . Monotone convergence

implies that the inequality is valid for all locally square integrable function f .
For the reverse estimate in Part (b), we recall that w ∈ RH∞ if for every ball B we

have

w(x) ≤ [w]RH∞

1

|B|

∫

B

w(y) dy, a.e. x ∈ B.

Then, using Lebesgue’s differentiation theorem we obtain that for a.e y ∈ R
n and for

all t > 0

w(y) ≤ sup
0<τ≤t

1

|B(y, τ)|

∫

B(y,τ)

w(x) dx

≤ [w]RH∞
sup
0<τ≤t

1

|B(y, τ)|

∫

B(y,τ)

1

|B(y, t)|

∫

B(y,t)

w(z) dz dx

= [w]RH∞

w(B(y, t))

|B(y, t)| .

Thus, for every w ∈ RH∞ by (2.3) we have

‖V f‖2L2(w) =

∫

Rn

∫ ∞

0

|f(y, t)|2dt
t
w(y) dy

≤ [w]RH∞

∫

Rn

∫ ∞

0

|f(y, t)|2w(B(y, t))

|B(y, t)|
dydt

t

= [w]RH∞
b−1
n ‖Sf‖2L2(w).

Considering the pairs (F,G) =
(

(V f)2, (Sf)2
)

we have obtained that
∫

Rn

F (x)w(x) dx ≤ [w]RH∞
b−1
n

∫

Rn

G(x)w(x) dx, ∀w ∈ RH∞.

We take an arbitrary p0 with 0 < p0 < 1 and set q0 = r = 1. Then the last estimate
holds in particular for every w ∈ Ar/p0 ∩ RH(q0/r)′ . We apply the extrapolation
theorem for limited ranges [AM, Theorem 4.9] (see also [CMP2]) to conclude that
for all p0 < q < q0

∫

Rn

F (x)q w(x) dx ≤ Cw

∫

Rn

G(x)q w(x) dx, ∀w ∈ Aq/p0 ∩RH(q0/q)′ ,
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whenever the left hand side is finite. This is the case when f is bounded with compact
support in R

n+1
+ and can be removed by monotone convergence to allow all locally

square integrable function f . Next, we fix 0 < q < 1 and w ∈ RH(1/q)′ . Then,
w ∈ A∞ and there exists 0 < p0 < q such that w ∈ Aq/p0 . Thus we can apply the last
estimate since 0 < p0 < q < 1 = q0 and w ∈ Aq/p0 ∩ RH(q0/q)′ . Hence we have proved
that for every 0 < p < 2 and w ∈ RH(2/p)′

‖V f‖Lp(w) ≤ C(p, w) ‖Sf‖Lp(w).

�

Notice that from the argument one sees that the extrapolations take initial estimates
in L1(w). Indeed, from the beginning one could have worked with the operators S̃ and

Ṽ defined above. The argument just presented shows that for every locally integrable
function f on R

n+1
+ , if 1 ≤ p <∞ and w ∈ Ap then

‖S̃f‖Lp(w) ≤ C(p, w) ‖Ṽ f‖Lp(w),

and if 0 < p ≤ 1 and w ∈ RH(1/p)′ , then

‖Ṽ f‖Lp(w) ≤ C(p, w) ‖S̃f‖Lp(w).

3. Square functions for typical functions of L

Consider the operator L defined in the Introduction. We introduce the following
conical and vertical square functions

GP (f)(x) =

(
∫∫

|x−y|<t

|t∇y,te
−tL1/2

f(y)|2dydt
tn+1

)1/2

,

GP (f)(y) =

(
∫

t>0

|t∇y,te
−tL1/2

f(y)|2dt
t

)1/2

,

Gh(f)(x) =

(
∫∫

|x−y|<
√
t

|∇ye
−tLf(y)|2dydt

tn/2

)1/2

,

Gh(f)(y) =

(
∫

t>0

|∇ye
−tLf(y)|2dt

)1/2

,

The P subscript refers to the fact that we are dealing with the Poisson semigroup

e−tL1/2
for L. The h subscript refers to the heat semigroup e−tL. The curly letters

are for the conical square functions and the capital letters for the vertical ones. So
from our general observations we know that ‖GP (f)‖p . ‖GP (f)‖p for 2 ≤ p <∞ and
‖GP (f)‖p . ‖GP (f)‖p for 0 < p ≤ 2 and similarly for the heat versions by making a
change of variables in t. Note that these square functions all contain a spatial gradient.
Hence we are not working within the functional calculus of L.

We want to compare the Lp norms of each square functions with the Lp norm of
the original function f .

For p = 2, a mere integration by parts (see [Aus]) yields that

‖GP (f)‖2 + ‖Gh(f)‖2 ≈ C(λ,Λ)‖f‖2.
As seen above, conical square functions behave as the vertical ones in L2.
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We turn to a summary of results on Lp. Let p∗ = np
n−p

if p < n and ∞ otherwise. Let

us remind the reader that the exponents p±(L), q±(L) were defined in the introduction,
in the discussion following the statement of Proposition 1.2.

Theorem 3.1. (1) Gh is bounded on Lp for p−(L) < p < q+(L).
(2) Gh is bounded on Lp for p−(L) < p <∞.
(3) GP is bounded on Lp for p−(L) < p < q+(L).
(4) GP is bounded on Lp for p−(L) < p < p+(L)

∗.
The upper bounds are optimal except maybe for GP . The lower bounds are all opti-

mal.
The converse estimates ‖f‖p . ‖g(f)‖p are valid for all p ∈ (1,∞) and f ∈ Lp∩L2

and all four square functions. Hence, each defines a new norm on Lp for p in the
corresponding range above.

Fix µ ∈ (0, π/2) and 1 ≤ p ≤ ∞. We say, following [Aus], that a family of linear
operators (Tz)z∈Σµ satisfies Lp − Lq off-diagonal estimates if there exist constants
c, C such that for all z ∈ Σµ := {z ∈ C∗; | arg z| < µ}, all Borel sets E, F and all
f ∈ Lp(E), we have

(3.1) ‖Tz(f χE)‖Lq(F ) ≤ C |z|−n
2
( 1
p
− 1

q
)e

− cd(E,F )2

|z| ‖f‖Lp(E).

This holds for µ < π/2 − ω with ω the type of L, Tz = (zL)me−zL with p−(L) <
p ≤ q < p+(L) and Tz = |z|1/2∇(zL)me−zL with q−(L) = p−(L) < p ≤ q < q+(L), for
any non-negative integer m. See [Aus, Chapter 3].

For 1 ≤ p <∞, we recall that the tent space T p
2 denotes the space of locally square

integrable functions in R
n+1
+ such that Sf ∈ Lp(Rn) with the notation of Section 2.

The norm in T p
2 is given by ‖Sf‖p as defined in Section 2. Note that changing the

aperture of cones yields equivalent norms. For p = ∞, we let T∞
2 be the space of

locally square integrable functions in R
n+1
+ such that

‖f‖T∞

2
= sup

B

(

1

|B|

∫∫

B×(0,rB)

|f(y, t)|2 dydt
t

)1/2

<∞,

the supremum being taken above all balls and rB denotes the radius of B. The spaces
T p
2 , 1 ≤ p ≤ ∞, form a complex interpolation family. For more see [CMS]. Note that

the Lp boundedness of a conical square function reformulates canonically as an Lp to
T p
2 boundedness.
We first prove boundedness and sharpness for each square function. We consider

next the converse inequalities globally.

3.1. Proof of Theorem 3.1 for Gh. This was treated in [Aus]. There the range of
p is shown to be the largest possible open set.

3.2. Proof of Theorem 3.1 for Gh. For p ≤ 2, it is in [Aus]. For p = ∞, we first
obtain the boundedness of f 7→ t∇e−t2Lf from L∞ to T∞

2 by a well-known argument
of Fefferman-Stein [FS]. More precisely, we fix a ball B and write f = floc + fglob
where floc = f χ4B. Using the L2 boundedness of Gh,

1

|B|

∫∫

B̂

|t∇e−t2Lfloc(x)|2
dx dt

t
.

1

|B|‖Ghfloc‖22 .
1

|B|‖floc‖
2
2 . ‖f‖2∞.
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Next, the off-diagonal decay (3.1) with p = q = 2 for t1/2∇e−tL implies for some
0 < c, C <∞,

1

|B|

∫

B

|t∇e−t2Lfglob(x)|2 dx ≤ C
∑

j≥2

e−
c4jr2B

t2 −
∫

2j+1 B

|f(x)|2 dx

which, integrated against dt/t in t ∈ (0, rB), yields a bound by ‖f‖2∞.
Then interpolate this estimate with the boundedness from L2 to T 2

2 , to get bound-
edness from Lp to T p

2 , which is the same as the Lp boundedness of Gh by rescaling
t2 7→ t in the integrals.

Note that compared to [Aus], the upper bound improves from q+(L) to ∞ and is
of course optimal. As for the lower bounds, we have ‖Ghf‖p . ‖Ghf‖p when p ≤ 2.
Hence the fact that p−(L) is optimal for Gh (see [Aus]) implies the same for Gh.

3.3. Proof of Theorem 3.1 for GP . We begin with removing the ∇ part in GP

when q−(L) < p < q+(L). We know that ∇L−1/2 is bounded on Lp for p in this range
[Aus]. So by vector-valued (in the Hilbert space H = L2(R+, dt/t)) extension ([Gra,
Proposition 4.5.9]), we have that the

‖GPf‖p ≤ C‖gPf‖p, q−(L) < p < q+(L)

with

gP (f)(x) =

(
∫ ∞

0

|tL1/2e−tL1/2

f(x)|2dt
t

)1/2

.

Next, [HM, Lemma 7.2] using the subordination formula

(3.2) e−t L1/2

f = C

∫ ∞

0

e−s

√
s
e−

t2 L
4 s f ds,

proves the pointwise inequality gP ≤ Cg̃h with

g̃h(f)(x) =

(
∫ ∞

0

|t2Le−t2Lf(x)|2dt
t

)1/2

.

and the latter is bounded on Lp for p−(L) < p < p+(L). This can be proved by
adapting line by line [Aus, Theorem 6.1]. This also follows from Le Merdy’s theorem
[LeM, Theorem 3].

We conclude by noticing that p−(L) = q−(L), q+(L) < p+(L) (when q+(L) < ∞).
This finishes the proof.

That the bounds p−(L) and q+(L) are sharp follows by the same argument as for
Step 7 in [Aus, Theorem 6.1].

3.4. Proof of Theorem 3.1 for GP . More generally, we shall discuss here the proof
of Proposition 1.4, for which Theorem 3.1 (4) represents the case m = 0. We shall
treat the case m > 0 explicitly only when p > 2, as the cases m = 0 and m > 0 may
be treated by the same argument when p ≤ 2.

This part of the proof of Theorem 3.1 (and more generally, the proof of Proposition
1.4) is the most involved as it does not follow from other known arguments in a simple
way. For p = 2, this is classical integration by parts. We then present arguments for
p−(L) < p < 2 and 2 < p < p+(L)

∗. That p−(L) is sharp follows by the same
argument as for Gh.
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3.4.1. p < 2. We present two proofs. The first one uses the recent theory of Hardy
spaces adapted to L from [HM] or from [BZ] and the second one adapts arguments in
[Aus] to prove instead weak-type bounds. We remark as above that the same proofs
apply to prove (1.4). We shall omit details and stick to m = 0.

Proof 1. Consider the Hardy spaces Hp
L defined in [HM] for p = 1 and [HMMc] for p ≥

1. The H1
L → L1 boundedness of GP is exactly [HM, Theorem 5.6]. Then interpolation

(see [HMMc, Lemma 4.24]) with the p = 2 case, shows Hp
L → Lp boundedness of GP .

Finally, identification of Hp
L with Lp if and only if p−(L) < p < p+(L) proved in

[HMMc, Proposition 9.1] concludes the argument.
We mention that one can also use the abstract Hardy spaces developed by Bernicot

and Zhao in [BZ] and the interpolation further developed in [Be1]. Namely it suffices
to prove an L1 estimate on some abstract atoms (that is an H1

F,ato to L
1 estimate with

H1
F,ato as in Section 3.3 of [BZ]) and then interpolate. By checking details and values

(left to readers) from the clear presentation in [Be2], one exactly finds the range for
Lp boundedness when p < 2. This theory, compared to the [HM] theory, has the
advantage of not caring much about the “right” definition of the Hardy spaces as this
is not needed for the purpose of interpolation. �

Proof 2. We proceed as in [Aus, p. 61]. We need to adapt the proof of [Aus, Theorem

1.1] to the present situation. We take Ar = I − (I − e−r2 L)N with N ≥ 1 an integer
to be chosen and follow the proof of that result with T = GP and p−(L) < p < 2. As
GP is bounded on L2 and Ar satisfies off-diagonal estimates in the range (p−(L), 2] it
suffices to show that

(3.3) I =
∣

∣

∣

{

x ∈ R
n \ ∪i4Qi : GP

(

∑

i

hi

)

(x) > α/3
}
∣

∣

∣
≤ C

αp

∫

Rn

|f(x)|p dx

where hi = (I −Ari)bi and ri is the sidelength of the cube Qi given by the Calderón-
Zygmund lemma [Aus, Lemma 1.3]. We use Chebichev and Fubini

I ≤ 9

α2

∫

Rn\∪i4Qi

GP

(

∑

i

hi

)

(x)2 dx

=
9

α2

∫

Rn\∪i4Qi

∫∫

|x−y|<t

(

∑

i

|t∇y,te
−t L1/2

hi(y)|
)2 dy dt

tn+1
dx

=
9

α2

∫∫

R
n+1

+

(

∑

i

|t∇y,te
−t L1/2

hi(y)|
)2 |B(y, t) \ ∪i4Qi|

tn
dy dt

t

.
1

α2

∫∫

R
n+1

+

(

∑

i

χ2Qi
(y) |t∇y,te

−t L1/2

hi(y)|
)2 |B(y, t) \ ∪i4Qi|

tn
dy dt

t

+
1

α2

∫∫

R
n+1
+

(

∑

i

χRn\2Qi
(y) |t∇y,te

−t L1/2

hi(y)|
)2 |B(y, t) \ ∪i4Qi|

tn
dy dt

t

=
1

α2
(Iloc + Iglob).
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We estimate Iloc. Notice that since y ∈ 2Qi we have that B(y, t) ⊂ 4Qi for t ≤ c ri.
Then, using that the collection {2Qi}i has bounded overlapping we obtain

Iloc .

∫

Rn

∫ ∞

c ri

(

∑

i

χ2Qi
(y) |t∇y,te

−t L1/2

hi(y)|
)2 dy dt

t

.
∑

i

∫

2Qi

∫ ∞

c ri

|t∇y,te
−t L1/2

hi(y)|2
dy dt

t

.
∑

i

(

∫ ∞

c ri

∫

Rn

|t∇ye
−t L1/2

hi(y)|2
dy dt

t

+

∫ ∞

c ri

∫

Rn

|t L1/2e−t L1/2

hi(y)|2
dy dt

t

)

.
∑

i

∫ ∞

c ri

∫

Rn

|t L1/2e−t L1/2

hi(y)|2
dy dt

t
,

where we have used the solution of the Kato conjecture [AHLMcT] to replace ∇y by
L1/2. Next we use the subordination formula (3.2), Minkowski’s inequality and the
change of variable t 7→ t′ := t2/4 s,

(

∫ ∞

c ri

∫

Rn

|t L1/2e−t L1/2

hi(y)|2
dy dt

t

)1/2

.

∫ ∞

0

e−s
(

∫ ∞

c ri

∫

Rn

t2

4 s
|L1/2e−

t2 L
4 s hi(y)|2

dy dt

t

)1/2

ds

.

∫ ∞

0

e−s
(

∫ ∞

c r2i /s

∫

Rn

|(t L)1/2e−t Lhi(y)|2
dy dt

t

)1/2

ds.

Next we take a = n
p
− n

2
and use the square function estimate of McIntosh-Yagi based

on (t L)(a+1)/2 e−t L:

(

∫ ∞

c ri

∫

Rn

|t L1/2e−t L1/2

hi(y)|2
dy dt

t

)1/2

.

∫ ∞

0

e−s
(

∫ ∞

c r2i /s

∫

Rn

|(t L)(a+1)/2 e−t LL−ahi(y)|2 t−a dy dt

t

)1/2

ds

.

∫ ∞

0

e−s
( s

r2i

)a/2 (
∫

Rn

∫ ∞

0

|(t L)(a+1)/2 e−t L(L−a/2hi)(y)|2
dt

t
dy
)1/2

ds

. r−a
i ‖L−a/2hi‖2 . r−a

i ‖hi‖p = r−a
i ‖(I −Ari)bi‖p,

where we have used [Aus, Proposition 5.3] in the last inequality. To conclude we use

that I − Ari = (I − e−r2i L)N is uniformly bounded on Lp and the CZ lemma

Iloc .
∑

i

r−2a
i ‖bi‖2p . α2

∑

i

r−2a
i |Qi|2/p . α2

∑

i

|Qi|

. α2−p

∫

Rn

|f(x)|p dx.
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Next we estimate Iglob. We write Cj(Qi) = 2j+1Qi \ 2j Qi, j ≥ 1. By duality we

can take a function 0 ≤ H ∈ L2(Rn+1
+ , dy dt

t
) with norm 1 such that

I
1/2
glob .

(

∫∫

R
n+1

+

(

∑

i

χRn\2Qi
(y) |t∇y,te

−t L1/2

hi(y)|
)2dy dt

t

)1/2

=
∑

i

∫ ∞

0

∫

Rn\2Qi

|t∇y,te
−t L1/2

hi(y)|H(y, t)
dy dt

t

.
∑

i

∞
∑

j=1

2j n|Qi|
∫ ∞

0

−
∫

Cj(Qi)

|t∇y,te
−t L1/2

hi(y)|H(y, t)
dy dt

t

≤
∑

i

∞
∑

j=1

2j n|Qi|
(

∫ ∞

0

−
∫

Cj(Qi)

|t∇y,te
−t L1/2

hi(y)|2
dy dt

t

)1/2

×
(

∫ ∞

0

−
∫

2j+1Qi

H(y, t)2
dy dt

t

)1/2

≤
∑

i

∞
∑

j=1

2j n|Qi| Iij ess inf
y∈Qi

MH̃(y)1/2

where H̃(y) =
∫∞
0
H(y, t)2 dt/t. We estimate Iij by the subordination formula,

Minkowski’s inequality and the change of variable t 7→ t′ := t2/4 s,

Iij .

∫ ∞

0

e−s
(

∫ ∞

0

−
∫

Cj(Qi)

∣

∣

∣

t√
4 s

∇ye
− t2 L

4 s hi(y)
∣

∣

∣

2 dy dt

t

)1/2

ds

+

∫ ∞

0

e−s
(

∫ ∞

0

−
∫

Cj(Qi)

∣

∣

∣

t√
4 s

L1/2e−
t2 L
4 s hi(y)

∣

∣

∣

2 dy dt

t

)1/2

ds

.

∫ ∞

0

e−s
(

∫ ∞

0

−
∫

Cj(Qi)

|
√
t∇ye

−t Lhi(y)
∣

∣

∣

2 dy dt

t

)1/2

ds

+

∫ ∞

0

e−s
(

∫ ∞

0

−
∫

Cj(Qi)

∣

∣

∣
(t L)1/2e−t Lhi(y)

∣

∣

∣

2 dy dt

t

)1/2

ds

. −
∫

Cj(Qi)

GL((I − e−r2i L)Nbi)(y)
2 dy +−

∫

Cj(Qi)

gL((I − e−r2i L)Nbi)(y)
2 dy

. 2−j n/2 4−N j 2−j (n
p
−n

2
)
(

−
∫

Qi

|bi(y)|p dy
)

1

p

. 2−j (2N+n
p
) α,

where in the next-to-last estimate we have used [Aus, pp. 55, 56] and the notation
there for GL, gL (the first one is here the same as Gh) and in the last one the Calderón-
Zygmund lemma. Choosing N such that 2N + n

p
− n > 0 we obtain by Kolomogorv’s

lemma

I
1/2
glob . α

∞
∑

j=1

2−j (2m+n
p
−n)

∑

i

|Qi| ess inf
y∈Qi

MH̃(y)1/2

. α

∫

∪iQi

MH̃(y)1/2 dy
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. α | ∪i Qi|1/2
(

∫

Rn

H̃(y) dy
)1/2

. α | ∪i Qi|1/2
(

∫

Rn

∫ ∞

0

H(y, t)2
dt dy

t

)1/2

.
(

α2−p

∫

Rn

|f(x)|p dx
)1/2

.

Gathering the estimates we have obtained for Iloc and Iglob we conclude as desired

I . α−2(Iloc + Iglob) . α−2 α2−p

∫

Rn

|f(x)|p dx =
C

αp

∫

Rn

|f(x)|p dx.

�

3.4.2. p > 2. We shall prove a more general result, namely (1.4). Let m be a non-
negative integer and set

Gm,P (f)(x) =

(
∫∫

|x−y|<t

|t∇y,t

(

(t2L)me−tL1/2)

f(y)|2dydt
tn+1

)1/2

,

We begin with a series of results that are concerned with functions of L in tent
spaces. Then, we shall deal with Gm,P .

Consider the notation of [Aus, p. 10]. Let φ be holomorphic in Σµ, µ ∈ (ω, π/2),
with |φ(ζ)| ≤ C(1+ |ζ |)−s for some s > 0, C <∞ and all ζ ∈ Σµ. Consider for α ∈ C,

with ℜα > 0, ϕα(ζ) =
ζα

(1+ζ)α
φ(ζ). Remark that

ζα

(1 + ζ)α
= (1 + ζ−1)−α

and since ζ ∈ Σµ implies ζ−1 ∈ Σµ and arg(1 + ζ−1) ∈ (−µ, µ), we have that

sup
ζ∈Σµ

∣

∣

∣

∣

ζα

(1 + ζ)α

∣

∣

∣

∣

≤ eµ|ℑα|.

Consider the linear operator, a priori defined for L2 functions and valued in T 2
2 ,

Tαf = (ϕα(t
2L)f)t>0.

In the statements below, constants C are allowed to depend on the real part of α but
not on its imaginary part.

Lemma 3.2. For ℜα > 0, Tα maps Lp ∩ L2 to T p
2 when 2 ≤ p < p+(L) with norm

controlled by Ceµ|ℑα| for any µ ∈ (ω, π/2).

Proof. It is enough to consider the boundedness of Tα for the vertical norm which
dominates the conical one, see Proposition 2.1. In this case, this follows from the
bounded holomorphic functional calculus on Lp for 2 ≤ p < p+(L) combined with Le
Merdy’s theorem [LeM, Theorem 3]. �

Lemma 3.3. For ℜα > n
2p+(L)

, Tα maps Lp to T p
2 when 2 ≤ p ≤ ∞ with norm

controlled by Ceµ|ℑα| for any µ ∈ (ω, π/2).
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Proof. For fixed α it is enough to consider the case p = ∞ as one can then complex
interpolate from [CMS] between T 2

2 and T∞
2 . We claim that for any 2 < q < p+(L),

and any ball B,

(3.4)

(

1

|B|

∫∫

B×(0,rB)

|ϕα(t
2L)f(x)|2 dx dt

t

)1/2

≤ Ceµ|ℑα|
∞
∑

j=1

2−j (2ℜα−n/q)

(

−
∫

2j B

|f(x)|2 dx
)1/2

.

We postpone the proof of the claim until the end of this subsection. Now the right
hand side is dominated by the L∞ norm of f by using ℜα > n

2p+(L)
and choosing

q < p+(L) appropriately. Then the supremum over all B of the left hand side is
precisely the T∞

2 norm of Tαf . �

Lemma 3.4. For 0 < ℜα ≤ n
2p+(L)

, Tα maps Lp to T p
2 when 2 ≤ p < np+

n−2p+ℜα
.

Proof. By a result of Harboure, Torrea, Viviani [HTV], there is a linear map ι which
for all 1 < p < ∞ is an isometry from T p

2 to a closed subspace of Lp
H where H =

L2(Rn+1
+ , dydt

tn+1 ). Thus, the maps ι ◦ Tα form an analytic family of linear operators
and they are bounded from Lp to Lp

H for (1/p, α) given by the two above lemmas.
Stein’s complex interpolation theorem (see [Gra, Theorem 1.3.7]), extended to H-
valued functions (use the linear C-valued maps f 7→ 〈ι◦Tα(f), h〉 for any fixed h ∈ H),
applies since the growth is controlled in ℑα and gives the desired range of p in terms
of ℜα. �

We can use the above combined with the following lemma whose proof is postponed
to Section 4

Lemma 3.5. Let m be a non-negative number. For C depending only on ellipticity
and dimension, for any function f ∈ L2 and any x ∈ R

n,

Gm,P (f)(x) ≤ mC

(
∫∫

|x−y|<2t

∣

∣

(

(t2L)me−t2Lf
)

(y)
∣

∣

2dydt

t n+1

)1/2

+ C

(
∫∫

|x−y|<2t

∣

∣∇y,t

(

(t2L)me−t2Lf
)

(y)
∣

∣

2dydt

t n−1

)1/2

+ C

(
∫∫

|x−y|<2t

∣

∣

(

(t2L)m(e−tL1/2

f(y)− e−t2Lf
)

(y)
∣

∣

2dydt

t n+1

)1/2

.

We now conclude for GP = G0,P . Start from the decomposition in the previous
lemma and notice that the first term vanishes since m = 0. The second term is
bounded on Lp for 2 < p < ∞ using Gh and rescaling t 7→ t1/2 for the part with ∇y

and the same argument applies for the ∂t part because it picks up one more power of
L and one still has good decay in the L2 − L2 off-diagonal estimates.

For the term with e−tL1/2 −e−t2L, we apply the third lemma concerned with Tα with

φ(ζ) = (1+ζ)1/2ζ−1/2(e−ζ1/2−e−ζ) and α = 1/2, which gives 2 ≤ p < np+(L)
n−p+(L)

= p+(L)
∗

if p+(L) < n or 2 < p <∞ if p+(L) ≥ n.
For m positive integer then the third term of the decomposition is estimated as

above with φ(ζ) = (1 + ζ)m+1/2ζ−1/2(e−ζ1/2 − e−ζ) and α = m + 1/2, which gives
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2 ≤ p < np+(L)
n−(2m+1)p+(L)

if (2m+1)p+(L) < n or 2 < p <∞ if (2m+ 1)p+(L) ≥ n. The

first term is as good as the second one, i.e., bounded on Lp for 2 < p <∞. �

Remark 3.6. It seems that the order ζα for ϕα at 0 governs the p range for boundedness
of the conical square function. But if the decay of the off-diagonal estimate is fast
enough, then this information is not necessary. For example, consider the conical
square function made after (t2L)me−t2L for m a positive real number. When m is an
integer, they are bounded on Lp for all 2 < p < ∞ because the decay is gaussian
(polynomial of some high enough degree would suffice). But when m is a non-integer,
then the decay is polynomial and our method gives a limited range of p for small m
unless p+(L) = ∞. In other words, when p+(L) < ∞, we obtain a range of p that is
discontinuous a function of m. We do not know whether this discontinuity is a reality
or an artifact of our method. We ask therefore whether Gm,P is bounded on Lp for
2 < p <∞ and all real m > 0.

Proof of (3.4). We write f = floc + fglob where floc = f χ4B. Then, using the L2

boundedness of square functions associated with ϕα(t
2L),

1

|B|

∫∫

B×(0,rB)

|ϕα(t
2L)floc(x)|2

dx dt

t
≤ 1

|B|

∫

Rn

(

∫ ∞

0

|ϕα(t
2L)floc(x)|2

dt

t

)

dx

≤ C
1

|B|

∫

Rn

|floc(x)|2 dx = C −
∫

4B

|f(x)|2 dx.

It is then enough to show
(

−
∫

B

|ϕα(t
2L)fglob(x)|2 dx

)1/2

≤ Ceµ|ℑα| t
2ℜα

r2ℜα
B

∞
∑

j=2

2−j (2ℜα−n/q)

(

−
∫

2j+1 B

|f(x)|2 dx
)1/2

.

Indeed, plugging this estimate in the integral on the Carleson region, we obtain the
claim.

To this end, we set fj = f χCj(B) with Cj(B) = 2j+1B \ 2jB so that fglob =
∑

j≥2 fj
and by Minkowski’s and Hölder’s inequalities

(

−
∫

B

|ϕα(t
2L)fglob(x)|2 dx

)1/2

≤
∑

j≥2

(

−
∫

B

|ϕα(t
2L)fj(x)|q dx

)1/q

for any q ≥ 2. Fix j ≥ 2 and use the representations [Aus, (2.6)-(2.7)] to estimate
ϕα(t

2L)fj . For the η±,t(z) given by [Aus, (2.7)] we find with ν ∈ (ω, µ),

|η±,t(z)| ≤
Ct2ℜα

|z|ℜα+1
eν|ℑα|.

Next, using (3.1) in [Aus, (2.6)] for e−zL with p = 2 and 2 < q < p+(L), E = Cj(B)
and F = B, we easily obtain
(

−
∫

B

|ϕα(t
2L)fj(x)|q dx

)1/q

≤ Ceµ|ℑα| t
2ℜα

r2ℜα
B

2−j (2ℜα−n/q)

(

−
∫

2j+1 B

|f(x)|2 dx
)1/2

.

We see in this last estimate the combined roles of ℜα and p+(L): ℜα > 0 yields
integrability in t while 2ℜα− n/p+(L) > 0 yields the summability in space. �
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3.4.3. Converse inequalities. We basically follow [Aus, Theorem 6.1, Step 8]. What
we have proved so far applies to any operator L in our class, and in particular, to
L = −∆. The explicit formula for the heat kernel implies that p−(−∆) = 1 and
p+(−∆) = q+(−∆) = ∞. Hence, we obtain the well-known estimates

‖GP,−∆f‖p + ‖Gh,−∆f‖p + ‖GP,−∆f‖p + ‖Gh,−∆f‖p . ‖f‖p
for all 1 < p < ∞ and f ∈ Lp, where we have adapted the notation to indicate the
operator.

The converse ‖f‖p . ‖Gh,Lf‖p is based on the following formula for f, g ∈ L2:
∫

Rn

f(x) g(x) dx = lim
ε↓0

∫

Rn

e−εLf(x) eε∆g(x) dx− lim
R↑∞

∫

Rn

e−RLf(x) eR∆g(x) dx

= −
∫ ∞

0

d

dt

∫

Rn

(e−tLf)(x) (et∆g)(x) dx dt

=

∫∫

Rn×(0,∞)

(A(x) + I)(∇e−tLf)(x) · (∇et∆g)(x) dxdt.

The last equality is obtained by integration by parts in the x variable after computing
the time derivative. Hence, we obtain with obvious notation

∣

∣

∣

∣

∫

Rn

f(x) g(x) dx

∣

∣

∣

∣

≤ (‖A‖∞ + 1)

∫

Rn

Gh,L(f)Gh,−∆(g),

so that
∣

∣

∣

∣

∫

Rn

f(x) g(x) dx

∣

∣

∣

∣

. ‖Gh,L(f)‖p‖g‖p′

and it follows

‖f‖p . ‖Gh,L(f)‖p.
For Gh,L the proof is similar. Starting from the equality above, we use the averaging

trick of the Introduction and then Hölder’s inequality. Details are left to the reader.
For square functions based on the Poisson semigroup, the idea is the same but one

needs to integrate by parts in t twice:
∫

Rn

f(x) g(x) dx = −
∫ ∞

0

d

dt

∫

Rn

(e−tL1/2

f)(x) (e−t(−∆)1/2g)(x) dx dt

=

∫ ∞

0

t
d2

dt2

∫

Rn

(e−tL1/2

f)(x) (e−t(−∆)1/2g)(x) dx dt

=

∫∫

Rn×(0,∞)

(A(x) + I)(t∇xe
−tL1/2

f)(x) · (t∇xe−t(−∆)1/2g)(x)
dxdt

t

+ 2

∫∫

Rn×(0,∞)

(t∇te
−tL1/2

f)(x) · (t∇te−t(−∆)1/2g)(x)
dxdt

t
.

The last line is obtained by distributing the second derivatives in t and integrating by
parts in x using d2

dt2
(e−tL1/2

f)(x) = L(e−tL1/2
f)(x) and similarly with −∆. The two

right hand terms are controlled by both ‖GP,Lf‖p‖GP,−∆g‖p′ and ‖GP,Lf‖p‖GP,−∆g‖p′
so that the conclusion follows as above.
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4. Proof of Lemma 3.5

If m = 0 we take f ∈ L2 and set f0 = f . If m ≥ 1, as the domain of Lm is
dense in L2(Rn), it suffices to assume f in that space and we set fm = Lmf . Define

um = Lme−tL1/2
f = e−tL1/2

fm, vm = Lme−t2Lf = e−t2Lfm. Notice that

t∇y,t(t
2mum) = 2mt2mvm~e + 2mt2m(um − vm)~e + t2m(t∇y,tum)

with ~e = (0, . . . , 0, 1). The first and second terms give rise respectively to the first
and third terms on the right hand side of the desired inequality. Therefore it suffices
to control the third term which gives a square function that is pointwise smaller than
the integral

I(x) =

∫∫

|∇y,tum(y, t)|2ϕ2

(

x− y

t

)

t4mdydt

tn−1
,

where ϕ is a smooth positive function with ϕ = 1 on the unit ball B(0, 1), supported
in the ball B(0, 2). To justify the calculations, for 0 < r < R/10 < ∞, let ψr,R(t) =
ζ(t/r)(1− ζ(t/R)) where ζ is a smooth function that satisfies 0 ≤ ζ ≤ 1, ζ(t) = 0 if
t ≤ 1/2 and ζ(t) = 1 if t ≥ 2 and set

Ir,R(x) =

∫∫

|∇y,tum(y, t)|2ϕ2

(

x− y

t

)

ψ2
r,R(t)

t4mdydt

tn−1
.

Let B be the (n+1)× (n+1) block matrix with A being one block and 1 the other
one. By ellipticity Ir,R(x) ≤ C(λ)ℜIr,R(x) with

Ir,R(x) =

∫∫

B(y)∇y,tum · ∇y,tum ϕ
2

(

x− y

t

)

ψ2
r,R(t)

t4mdydt

tn−1
.

Next, we write

Ir,R(x) =

∫∫

B(y)∇y,tum · ∇y,t(um − vm)ϕ
2

(

x− y

t

)

ψ2
r,R(t)

t4mdydt

tn−1

+

∫∫

B(y)∇y,tum · ∇y,tvm ϕ
2

(

x− y

t

)

ψ2
r,R(t)

t4mdydt

tn−1
= I1

r,R(x) + I2
r,R(x).

In the last integral, distribute the product ϕψ on each gradient term and use Young’s
inequality with ε to obtain a bound

‖B‖∞εIr,R(x) + Cε−1

∫∫

|x−y|<2t

|∇y,tvm|2
t4mdydt

tn−1
.

Using that
t2m(t∇y,tvm) = t∇y,t(t

2mvm)− 2mt2mvm~e

we can obtain

I2
r,R(x) ≤ ‖B‖∞εIr,R(x)

+ Cε−1m

∫∫

|x−y|<2t

|t2mvm|2
dydt

tn+1
+ Cε−1

∫∫

|x−y|<2t

|∇y,t(t
2mvm)|2

dydt

tn−1
.

Note that the first term can be hidden if ε is small enough independently of r, R, x.
For I1

r,R(x) we integrate by parts using the equation satisfied by um to obtain

I1
r,R(x) = −

∫∫

B(y)∇y,tum · ∇y,t

{

t4m

tn−1
ϕ2

(

x− y

t

)

ψ2
r,R(t)

}

(um − vm)dydt.
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Note that

∇y,t

{

t4m

tn−1
ϕ2

(

x− y

t

)

ψ2
r,R(t)

}

=
t2m

t(n−1)/2
ϕ

(

x− y

t

)

ψr,R(t)
θ(y, t)t2m

t(n+1)/2

where θ : Rn+1
+ → Rn+1 is a function with support in the cone defined by |x − y| ≤

2t and is bounded independently of x, r, R. Hence, another application of Young’s
inequality with ε yields a bound

I1
r,R(x) ≤ ‖B‖∞εIr,R(x) + Cε−1

∫∫

|x−y|<2t

|um − vm|2
t4mdydt

t n+1 .

Again, the first term can be hidden if ε is small enough independently of r, R, x.
Gathering the obtained estimates we conclude that

Ir,R(x) ≤ C(n, λ,Λ)

(

m

∫∫

|x−y|<2t

|t2mvm|2
dydt

tn+1
+

∫∫

|x−y|<2t

|∇y,t(t
2mvm)|2

dydt

tn−1

+

∫∫

|x−y|<2t

|t2m(um − vm)|2
dydt

tn+1

)

.

Letting r ↓ 0 and R ↑ ∞, one obtains the desired estimate.
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